

 [image: (missing alt)]

 Table of Contents

 SELinux System Administration

 Credits

 About the Author

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers and more

 Why Subscribe?

 Free Access for Packt account holders

 Preface

 What this book covers

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Errata

 Piracy

 Questions

 1. Fundamental SELinux Concepts

 Providing more security to Linux

 Linux security modules to the rescue

 SELinux versus regular DAC

 Restricting root privileges

 Enabling SELinux – not just a switch

 Everything gets a label

 The context fields

 SELinux types

 SELinux roles

 SELinux users

 Sensitivity labels

 Policies – the ultimate dictators

 SELinux policy store names and options

 MLS status

 Dealing with unknown permissions

 Supporting unconfined domains

 User-based access control

 Policies across distributions

 MCS versus MLS

 Policy binaries

 SELinux policy modules

 Summary

 2. Understanding SELinux Decisions and Logging

 Disabling SELinux

 SELinux on, SELinux off

 Switching to permissive (or enforcing) temporarily

 Using kernel boot parameters

 Disabling SELinux protections for a single service

 Applications that "speak" SELinux

 SELinux logging and auditing

 Configuring SELinux' log destination

 Reading SELinux denials

 Uncovering more denials

 Getting help with denials

 setroubleshoot to the rescue

 Using audit2why

 Using common sense

 Summary

 3. Managing User Logins

 So, who am I?

 The rationale behind unconfined

 SELinux users and roles

 We all are one SELinux user

 Creating additional users

 Limiting access based on confidentiality

 Jumping from one role to another

 Full role switching with newrole

 Managing role access with sudo

 Switching to the system role

 The runcon user application

 Getting in the right context

 Context switching during authentication

 Application-based contexts

 Summary

 4. Process Domains and File-level Access Controls

 Reading and changing file contexts

 Getting context information

 Working with context expressions

 Setting context information

 Using customizable types

 Inheriting the context

 Placing categories on files and directories

 The context of a process

 Transitioning towards a domain

 Other supported transitions

 Working with mod_selinux

 Dealing with types, permissions, and constraints

 Type attributes

 Querying domain permissions

 Understanding constraints

 Summary

 5. Controlling Network Communications

 TCP and UDP support

 Labeling ports

 Integrating with Linux netfilter

 Packet labeling through netfilter

 Assigning labels to packets

 Differentiating between server and client communication

 Introducing labeled networking

 Common labeling approach

 Limiting flows based on the network interface

 Accepting communication from selected hosts

 Verifying peer-to-peer flow

 Example – labeled IPSec

 Setting up regular IPSec

 Enabling labeled IPSec

 About NetLabel/CIPSO

 Summary

 6. Working with SELinux Policies

 Manipulating SELinux policies

 Overview of SELinux Booleans

 Changing Boolean values

 Inspecting the impact of Boolean

 Enhancing SELinux policies

 Handling SELinux policy modules

 Troubleshooting using audit2allow

 Using refpolicy macros

 Using selocal

 Creating our own modules

 Building native modules

 Building reference policy modules

 Creating roles and user domains

 The pgsql_admin role and user

 Creating the user rights

 Shell access

 Creating new application domains

 An example application domain

 Creating interfaces

 Other uses of policy enhancements

 Creating customized SECMARK types

 Using different interfaces and nodes

 Auditing access attempts

 Creating customizable types

 Summary

 Index

 SELinux System Administration

SELinux System Administration

Copyright © 2013 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: September 2013
Production Reference: 1170913
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78328-317-0
www.packtpub.com
Cover Image by Jarek Blaminsky (<milak6@wp.pl>)

Credits

Author
Sven Vermeulen
Reviewers
Thomas Fischer
Dominick Grift
Acquisition Editor
Kartikey Pandey
Commissioning Editor
Neha Nagwekar
Technical Editor
Krishnaveni Haridas
Project Coordinator
Suraj Bist

Proofreaders
Ameesha Green
Maria Gould
Simran Bhogal
Indexer
Priya Subramani
Graphics
Abhinash Sahu
Production Coordinator
Nitesh Thakur
Cover Work
Nitesh Thakur

About the Author

Sven Vermeulen is a long term contributor to various free software projects and the author of various online guides and resources. He got his first taste of free software in 1997 and never looked back since then. In 2003, he joined the ranks of the Gentoo Linux project as a documentation developer and has crossed several roles after that, including Gentoo Foundation’s trustee, council member, project leads for documentation, and (his current role) project lead for Gentoo Hardened’s SELinux integration.
In this time frame, he has gained expertise in several technologies, ranging from operating system level knowledge to application servers as he used his interest in security to guide his projects further: security guides using SCAP languages, mandatory access controls through SELinux, authentication with PAM, (application) firewalling, and more.
On SELinux, he has contributed several policies to the reference policy project and participates actively in policy development and user space development projects.
Sven is an IT infrastructure architect working at a European financial institution. Secured implementation of infrastructure (and the surrounding architectural integration) is of course an important part of this. Prior to this, he graduated with an MSc in Computer Engineering at the University of Ghent and then worked as a web application infrastructure engineer with IBM WebSphere AS.
Sven is the main author of Gentoo’s Handbook which covers the installation and configuration of Gentoo Linux on several architectures. He also authored the Linux Sea online publication, which is a gentle introduction to Linux for novice system administrators.

I would like to thank the SELinux community for their never-ending support in the field, especially the guys frequenting the #selinux chat channel (you know who am I referring to, especially you Dominick.) Without their assistance, I probably wouldn’t have probably been able to be where I am today with SELinux. The same goes to the team members of the Gentoo Hardened project, who despite their geographically distributed nature, are always working together to get Gentoo Linux to a more secure state. Finally, I would like a to give special mention to my colleague “wokwok” for making security a fun field. His approach to security always makes me smile and ensures that this (very) broad and multi-disciplinary field is always alive and kicking.

About the Reviewers

Thomas Fischer is a Computer and IT security specialist since the last 15 years. He is experienced in most fields of IT security and is a master in different programming languages. He was the CEO of a German web and IT company over eight years, and also was also the system architect and administrator for various companies in the professional bike sport scene, Germany. He studied computer networking and security and safety engineering in Furtwangen in the Black Forest. A specialist had made talks at different conferences on the topics of web security and the Linux workstation. Thomas Fischer took part in different international IT security war games and the ICTF 2012. When he is not busy with his machine, he enjoys long distance cycling or extreme mountain bike races.
Dominick Grift has been an SELinux contributor and enthusiast. He has almost 10 years of experience in providing SELinux support to the community. He has been a reference policy contributor and co-maintainer, and Fedora SELinux policy co-maintainer.

I would like to thank the SELinux community for bringing me to the position where I am today.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers and more]
http://PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print and bookmark content
	On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.

Preface

Be it for personal use or for larger enterprises, system administrators have often an ungrateful job of protecting the system from malicious attacks and undefined application behavior. Providing security to systems is a major part of their job description, and to accomplish this there are a large set of security technologies are at the administrator's disposal, such as firewalls, file integrity validation tools, configuration enforcement technologies, and many more. Major parts of system security is the authentication of users, authorization of these users, and auditing of all changes and operations made on the system. Users, however, are becoming more experienced with working around regular access controls that are designed to keep the system safe, and application vulnerabilities are often exposing much more of the system than what the application should have access to.
Fine-grained access controls and enforcement by the system are needed so that users do not need to look for workarounds, and application vulnerabilities remain within the scope of the application. Linux has replied to this demand with a flexible security architecture in which mandatory access control systems can be defined. One of these is SELinux, the security-enhanced Linux subsystem.
More and more distributions are bundling SELinux support with their offerings, making SELinux available to the mass population of Linux administrators. Yet SELinux is often found to be a daunting technology to work with. Be it due to misunderstandings or lack of information, too many times SELinux is being disabled in favor of rapid fixing of permission issues. This, however, is not fixing an issue but it is ignoring an issue and removing the safe barriers that were put in place to protect the system from them.
In this book, we will describe the SELinux concepts and show how to leverage SELinux to improve the secure state of a Linux system. Together with examples and command references, this book will offer a complete view on SELinux and how it integrates with various other components on a Linux system.
What this book covers

Chapter 1, Fundamental SELinux Concepts, describes SELinux covering the basic concepts of this mandatory access control system needed to understand how and why SELinux-enabled systems behave as they do.
Chapter 2, Understanding SELinux Decisions and Logging, focuses on the enforcement of rules within an SELinux system and how are they related to a Linux system. It explains how and what SELinux logs on the system and how SELinux can be enabled or disabled.
Chapter 3, Managing User Logins, teaches how to manage users and logins on a SELinux system and how to assign roles based on the user's needs. It describes the integration of SELinux with other technologies such as PAM or sudo, and gives us a first taste of what unconfined domains mean to an SELinux system.
Chapter 4, Process Domains and File-level Access Controls, describes the SELinux access control rules based on file accesses. We see how SELinux uses file contexts and process contexts and how we can interrogate the SELinux policy.
Chapter 5, Controlling Network Communications, introduces us to access controls on the network level. We see how the standard SELinux socket-based access controls work, and how we can leverage the Linux netfilter system to label network packets. The chapter also gives a brief introduction to the labeled IPSec and NetLabel/CIPSO support, two technologies that can transport SELinux labels across systems.
Chapter 6, Working with SELinux Policies, discusses how to tune SELinux policies, either through SELinux Booleans or by adding additional rules on top of the existing policy. This chapter covers how to use distribution provided tools, as well as manually maintaining additional SELinux policy modules and finish off with a set of use case-driven examples for enhancing SELinux policies.

Who this book is for

This book targets Linux system administrators who have a good understanding of how does Linux work and want to understand and work with the SELinux technology. It might also be interesting for IT architects to understand how SELinux can be positioned to enhance the security of Linux systems within their organization.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: "The context can be seen using the regular file listing tools such as ls -Z or stat."
A block of code is set as follows:
/etc/resolv.conf
/etc/mtab
/var/run/utmp
~/public_html
~/.mozilla/plugins/libflashplayer.so

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
<VirtualHost *:80>
 DocumentRoot /var/www/sales
 ServerName sales.genfic.com
 selinuxDomainMap /etc/apache/selinux/mod_selinux.map
</VirtualHost>

Any command-line input or output is written as follows:

$ chcat -- +Customer2 index.html

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "This usually is "denied", although some actions are explicitly marked for auditing and would result in "granted"".
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title through the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website, or added to any list of existing errata, under the Errata section of that title.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.

Chapter 1. Fundamental SELinux Concepts

SELinux (Security Enhanced Linux) brings additional security measures for your Linux system to further protect the resources on the system.
In this chapter, we will cover:
	Reasons for SELinux using labels to identify resources
	The way SELinux differentiates itself from regular Linux access controls through the enforcement of security rules
	How to know these rules are provided through policy files

At the end, we will provide an overview of the differences between SELinux implementations across distributions.
Providing more security to Linux

Seasoned Linux administrators and security engineers already know that they need to have some trust in the users and processes on their system in order for the system to remain secure. Part of that is because users can attempt to exploit vulnerabilities found on the software running on the system, but a large part of it is because the secure state of the system depends on the behavior of the users. A Linux user with access to sensitive information can easily leak that out to the public, manipulate the behavior of the applications he launches, and can do many more things. The default access controls in place in a regular Linux system are discretionary, meaning it is up to the user's discretion how the access controls should behave.
The Linux DAC (Discretionary Access Control) mechanism is based on the user and/or group information of the process versus the user and/or group information of the file, directory, or other resource that is being manipulated. Consider the /etc/shadow file, which contains the password and account information of the local Linux accounts:

$ ls -l /etc/shadow
-rw------- 1 root root 1010 Apr 25 22:05 /etc/shadow

Without additional access control mechanisms in place, this file is readable and writable by any process that is owned by the root user, regardless of the purpose of the process on the system. The shadow file is a typical example of a sensitive file that we don't want to see leaked or abused in any other fashion. Yet, the moment someone has access to the file he can copy it elsewhere, for example, to their home directory or even mail it to his own computer and attempt to attack the password hashes stored within.
Another example of how Linux DAC requires trust from its users is when a database is hosted on the system. Database files themselves are (hopefully) only manageable by the runtime user of the database management system (DBMS) and the Linux root user. Properly secured systems will grant the additional users access to these files (for instance through sudo) by allowing these users to change their effective user ID from their personal user to the database runtime user, or even root. Those users too can analyze the database files and gain access to potentially very confidential information in the database without going through the DBMS.
But users are not the only reason of securing a system. Lots of software daemons run as the Linux root user or have significant privileges on the system. Errors within those daemons can easily lead to information leakage or might even be exploitable remote command execution vulnerabilities. Backup software, monitoring software, change management software, scheduling software, and so on, they all often run with the highest privileged account possible on a regular Linux system. Even when the administrator does not fully trust the users, their interaction with the daemons still induces a potential security risk. As such, the users still get some kind of trust in order for the system to function properly. And through that, he leaves the security of the system to the discretion of its (many) users.
Enter SELinux which provides an additional access control layer on top of the standard Linux DAC mechanism. SELinux provides a MAC (Mandatory Access Control) system that, unlike its DAC counterpart, gives the administrator full control over what is allowed on the system and what isn't. It accomplishes this by supporting a policy-driven approach on what processes are and aren't allowed to do and what not, and enforcing this policy through the Linux kernel.
The word "mandatory" here, just like the word "discretionary" before, is not chosen by accident to describe the abilities of the access control system. Both are known terms in the security research field and have been described in many other publications, including the TCSEC (Trusted Computer System Evaluation Criteria) (http://csrc.nist.gov/publications/history/dod85.pdf) standard (also known as the "Orange Book") by the Department of Defense, in the United States of America's in 1985. This publication has lead to the common criteria standard for computer security certification at (ISO/IEC 15408) http://www.commoncriteriaportal.org/cc/.
Mandatory means that access control is enforced by the operating system and defined solely by the administrator. Users and processes that do not have the permission to change the security rules cannot work around the access control; security is not left at their discretion anymore.
Linux security modules to the rescue

Consider the example of the shadow file again. A MAC system can be configured so that the file can only be read from and written to by particular processes. A user logged on as root cannot directly access the file or even move it around. He can't even change the attributes of the file:

id
uid=0(root) gid=0(root)
cat /etc/shadow
cat: /etc/shadow: Permission denied
chmod a+r /etc/shadow
chmod: changing permissions of '/etc/shadow': Permission denied

This is enforced through rules that describe when the contents of a file can be read. With SELinux, these rules are defined in the SELinux policy and are loaded when the system boots. It is the Linux kernel itself that is responsible for enforcing the rules, and does so through LSM (Linux Security Modules).
[image: Linux security modules to the rescue]High-level overview of how LSM is integrated in the Linux kernel

LSM has been available in the Linux kernel since version 2.6, somewhere in December 2003. It is a framework that provides "hooks" inside the Linux kernel on various locations, including the system call entry points, and allows a security implementation (for example, SELinux) to provide functions to be called when a hook is triggered. These functions can then do their magic (for instance, checking the policy and other information) and give a go / no go back to allow the call to go through or not. LSM by itself does not provide any security functionality, instead it relies on security implementations that do heavy lifting. SELinux is one of these implementations that uses LSM, but others such as TOMOYO Linux and AppArmor also use it.

SELinux versus regular DAC

SELinux does not change the Linux DAC implementation, nor can it override denials made by the Linux DAC permissions. If a regular system (without SELinux) prevents a particular access, there is nothing SELinux can do to override this decision. This is because the LSM hooks are triggered after the regular DAC permission checks have been done.
If you need to allow an additional user access to a file, you will need to look into other features of Linux such as the use of POSIX Access Control Lists through the setfacl and getfacl commands. These allow the user (not only the administrator!) to set additional access controls on files and directories, opening up the provided permission to additional users or groups.
Restricting root privileges

The regular Linux DAC allows for an all-powerful user: root. Unlike most other users on the system, a logged on root user has all the rights needed to fully manage the entire system, ranging from overriding access controls to controlling audit, changing user ID, managing the network, and many more. This is handled through a security concept called capabilities (for an overview of Linux capabilities, check out the capabilities manual page: man capabilities). SELinux is also able to restrict access to these capabilities in a fine-grained manner.
Due to this fine-grained authorization aspect of SELinux, even the root user can be quite confined without impacting the operations on the system. The example of accessing /etc/shadow previously is just one example of things that a powerful user as root still might not be able to do due to the SELinux access controls in place.
When SELinux was added to the mainstream Linux kernel, some security projects even went as far as providing public root shell access to a SELinux protected system, asking hackers and other security researchers to compromise the box. The ability to restrict root was welcomed by system administrators that sometimes need to pass on the root password or root shell to other users (for example, database administrators) that needed root privileges when their software went haywire. Thanks to SELinux, the administrator can now pass on a root shell while reassuring himself that the user only has those rights he needs, and not full system administration rights.

Enabling SELinux – not just a switch

To enable SELinux on a Linux system, it is not just a matter of enabling the SELinux LSM module within the Linux kernel. SELinux comprises not only of the kernel implementation, but also has libraries and utilities that are needed on the system. These libraries and utilities are called the SELinux userspace (http://userspace.selinuxproject.org/trac). Next to the userspace applications and libraries, various components on a Linux system need to be updated with SELinux-specific code, including the init system, core utilities, and the C library. And finally, we need a policy that tells SELinux how it should enforce access.
Because SELinux isn't just a switch that needs to be toggled, Linux distributions that support SELinux usually come with SELinux predefined and loaded: Fedora and RedHat Enterprise Linux (with its derivatives, for example, CentOS and Oracle Linux) are the most well-known examples. Other supporting distributions might not automatically have SELinux enabled but can easily support it through the installation of additional packages (which is the case for Debian and Ubuntu), and others have a well-documented approach on how to convert a system towards SELinux (for example, Gentoo and Arch Linux).
Throughout the book, examples will be shown from Gentoo and Fedora 19 (which is similar to RedHat Enterprise Linux). We opt to use these two because they have different implementation details, allowing us to show the full potential of SELinux.

Everything gets a label

In natural language, the term "context" can be used in a sentence for example, "it depends on the context". Well, with SELinux, it does depend on the context! The context of a process is what identifies the process to SELinux. SELinux has no notion of Linux process ownership and frankly doesn't care how the process is called, which process ID it has and under which account the process runs. All it wants to know is what the context is of that process. Let's look at an example context: the context of the current user (try it out yourself if you are on a SELinux enabled system):

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

The id command, which returns information about the current user, with the -Z switch (a commonly agreed switch for displaying SELinux information) shows us the context of the current user (actually the context of the id process itself when it was executing). As we can see, the context is a string representation, and looks like it has five fields (it doesn't, it has four fields. The last field just happens to contain a ':').
SELinux developers decided to use contexts (strings) instead of real process metadata as well as contexts on resources (often called labels) for its access controls. This is different to MAC systems such as AppArmor which use the path of the binary (and thus the process name) and the paths of the resources to handle permission checks. The decision to make SELinux a label-based mandatory access control was taken for various reasons, which are as follows:
	Using paths might be easier for administrators, but this doesn't allow to keep the context information close to the resource. If a file or directory is moved, remounted, or a process has a different namespace view on the files, the access controls might behave differently. With contexts, this information is retained and the system keeps controlling the resource properly.
	Contexts reveal the context of the process very well. The same binary application can be launched in different contexts depending on how it got started. The context value (for example, the one shown in the id -Z output earlier on) is exactly what the administrator needs. With it, he knows what the rights are of each of the running instances, but he can also deduce from it how the process might have been launched.
	Contexts also make abstraction of the object itself. We are talking now about processes and files, but this is also applicable to less tangible resources, for example: pipes (inter-process communication) or database objects. Path-based identification only works as long as you can write a path.

As an example, consider the following two sentences:
	Allow the httpd processes to bind to the TCP port 80
	Allow the processes labeled with "httpd_t" to bind to TCP ports labeled with "http_port_t"

In the first example, we cannot easily reuse this policy when the web server process isn't using the httpd binary (perhaps because it was renamed, or it isn't Apache but another web server), or when we want to have HTTP access on a different port. With the labeled approach, the binary can be called "apache2" or "MyWebServer.py"; as long as the process is labeled httpd_t then the policy applies. The same with the port definition, you can label port 8080 with http_port_t and thus allow the web servers to bind to that port as well.
The context fields

To come to a context, SELinux uses at least three, and sometimes four values. Let us look at the context of the Apache web server as an example:

$ ps -eZ | grep httpd
system_u:system_r:httpd_t:s0 511 ? 00:00:00 httpd

As we can see, the process is assigned a context which is made up of the following fields:
	system_u - represents the SELinux user
	system_r - represents the SELinux role
	httpd_t - represents the SELinux type (also known as domain in case of a process)
	s0 - represents the sensitivity

The roles can be depicted as follows:
[image: The context fields]Structure of a SELinux context, using the id -Z output as an example

When we work with SELinux, contexts are all that we need. In the majority of cases, it is the third field (called the domain or type) that is most important as the majority of SELinux policy rules (over 99 percent) consists of rules related to the interaction between two types (without mentioning roles, users, or sensitivities).
SELinux types

As mentioned, SELinux is a label-based access control mechanism. In most SELinux literature, this is fine-tuned to say that SELinux is a type enforcement mandatory access control system. This is because the type of a process (called the domain) defines the fine-grained access controls of that process with respect to itself or other types (which can be processes, files, sockets, network interfaces, and more). When some access attempts are denied, the fine-grained access controls on the type level are most likely to blame.
With type enforcement, SELinux is able to control what an application is allowed to do based on how it got executed in the first place: a web server that is launched interactively by a user will run with a different type than a web server executed through the init system, even though the process binary and path are the same. The web server launched from the init system is most likely trusted (and thus allowed to do whatever web servers are supposed to do), whereas a user launched web server is less likely to be of "normal behavior" and as such will have different privileges.
For instance, look at the following dbus-daemon processes:

ps -eZ | grep dbus-daemon
system_u:system_r:system_dbusd_t 4531 ? 00:00:00 dbus-daemon
staff_u:staff_r:staff_dbusd_t 5266 ? 00:00:00 dbus-daemon

In the preceding example, one dbus-daemon process is the system D-Bus daemon running with the aptly named system_dbusd_t type, whereas another one is running with the staff_dbusd_t type assigned to it. Even though their binaries are completely the same, they both serve a different purpose on the system and as such have a different type assigned. SELinux then uses this type to govern the actions allowed by the process towards other types, including how system_dbusd_t can interact with staff_dbusd_t.
SELinux types are by convention suffixed with "_t", although this is not mandatory.

SELinux roles

SELinux roles - the second part of a SELinux context, enable SELinux to support role-based access controls. Although type enforcement is the most used (and known) part of SELinux, role-based access control is vital in order to keep a system secure, especially from malicious user attempts. SELinux roles are used to define which types a user processes can be in. As such, SELinux roles help define what a user can and cannot do.
On most SELinux enabled systems, the following roles are made available to be assigned to users. By convention, SELinux roles are defined with an "_r" suffix. Some of the roles and their descriptions are as follows:
	
user_r

	
This role is meant for restricted users, the user_r SELinux role is only allowed to have processes with types specific to end-user applications. Privileged types, for instance, those used to switch Linux user are not allowed for this role.

	
staff_r

	
This role is meant for non-critical operator tasks, the SELinux staff_r role is generally restricted to the same applications as the restricted user, but is also allowed to (a very few) more privileged types. It is the default role for operators to be in (so as to keep those users in the "least privileged" role as long as possible).

	
sysadm_r

	
This role is meant for system administration tasks, the sysadm_r SELinux role is very privileged, allowing for various system administration tasks. However, certain end user application types might not be supported (especially if those types are used for potentially vulnerable or untrusted software) to try and keep the system free from infections.

	
system_r

	
This role is meant for daemons and background processes, the system_r SELinux role is quite privileged, supporting the various daemon and system process types. However, end user application types and other administrative types are not allowed in this role.

	
unconfined_r

	
This role is meant for end users, the unconfined_r role is allowed a limited number of types, but those types are very privileged as it is meant for running any application launched by a user in a more or less unconfined manner (not restricted by SELinux rules). This role as such is only available if the system administrator wants to protect certain processes (mostly daemons) while keeping the rest of the system operations almost untouched by SELinux.

Other roles might be supported as well, such as guest_r and xguest_r (Fedora). It is wise to consult the distribution documentation for more information about the supported roles.

SELinux users

A SELinux user is different from a Linux user. Unlike the Linux user information which can change while the user is working on the system (through tools such as sudo or su), the SELinux policy will enforce that the SELinux user remains the same even when the Linux user itself has changed. Because of the immutable state of the SELinux user, specific access controls can be implemented to ensure that users cannot work around the (limited) set of permissions granted to them, even when they get privileged access. An example of such an access control is the UBAC (User Based Access Control) feature that some Linux distributions (optionally) enable, not allowing access to files of different SELinux users.
But the most important feature of SELinux users is that SELinux user definitions restrict which roles the (Linux) user is allowed to be in. Once a user is assigned a SELinux user, he cannot switch to a role that he isn't meant to be in. This is the role-based access control implementation of SELinux.
SELinux users are, by convention, defined with a "_u" suffix, although this is not mandatory. The SELinux users that most distributions have available are named after the role they represent, but instead of ending with "_r" they end with "_u". For instance, for the sysadm_r role, there is a sysadm_u SELinux user.

Sensitivity labels

Although not always present (some Linux distributions by default do not enable sensitivity labels), the sensitivity labels are needed for the MLS (Multi-Level Security) support within SELinux. Sensitivity labels allow classification of resources and restriction of access to those resources based on a security clearance. These labels consists of two parts: a confidentiality value (prefixed with "s") and a category value (prefixed with "c").
In many organizations and companies, documents are labeled internal, confidential, or strictly confidential. SELinux can assign processes a certain clearance level towards these resources. With MLS, SELinux can be configured to follow the Bell-LaPadula model, a security model that can be characterized by "no read up, no write down": based on a process' clearance level, that process cannot read anything with a higher confidentiality level nor write to (or communicate otherwise with) any resource with a lower confidentiality level. SELinux by itself, does not use the "internal", "confidential", and other labels. Instead, it uses numbers from 0 (lowest confidentiality) to whatever the system administrator wants to be as the highest value (this is configurable and set when the SELinux policy is built).
Categories allow for resources to be tagged with one or more categories on which access controls are also possible. The idea behind categories is to support multi-tenancy (for example, as systems hosting applications for multiple customers) within a Linux system, by having processes and resources belonging to one tenant to be assigned a particular category whereas the processes and resources of another tenant getting a different category. When a process does not have proper categories assigned, it cannot do anything with resources (or other processes) that have other categories assigned.
In that sense, categories can be seen as tags, allowing access to be granted only when the tags of the process and the target resource match.

Policies – the ultimate dictators

Enabling SELinux does not automatically start enforcement of access, if SELinux is enabled and it cannot find a policy, it will refuse to start. That is because the policy defines the behavior of the system (what should SELinux allow). Because SELinux is extremely flexible, its policy developers already started differentiating one policy implementation from another through what it calls a policy type or policy store.
A policy store contains a single policy, and only a single policy can be active on a system at any point in time. Administrators can switch a policy, although this requires the system to be rebooted, and might even require relabeling the entire system (relabeling is the act of resetting the contexts on all files and resources available on that system). The active policy on the system can be queried using sestatus (SELinux status) as follows:

sestatus | grep "Loaded policy"
Loaded policy name: targeted

In the preceding example, the currently loaded policy is named targeted. The policy name that SELinux will use upon its next reboot is defined in the /etc/selinux/config configuration file as the SELINUXTYPE parameter.
Most SELinux supporting distributions base their policy on the reference policy [http://oss.tresys.com/projects/refpolicy/], a fully functional SELinux policy set managed as a free software project. This allows distributions to ship with a functional policy set rather than having to write one themselves. Many project contributors are distribution developers, trying to push changes of their distribution to the reference policy project itself, where the changes are peer-reviewed to make sure no rules are brought into the project that might jeopardize the security of any platform.
SELinux policy store names and options

The most common SELinux policy store names are strict, targeted, mcs, and mls. None of the names assigned to policy stores are fixed though, so it is a matter of convention. Hence, it is recommended to consult the distribution documentation to verify what should be the proper name of the policy. Still, the name often gives some information about the options that are enabled on the system.
MLS status

One of the options is MLS support that can either be enabled or disabled. If disabled, then the SELinux context will not have a fourth field with sensitivity information in it, making the contexts of processes and files look as follows:
staff_u:sysadm_r:sysadm_t

To check if MLS is enabled, it is sufficient to see if the context indeed doesn't contains such a fourth field, but it can also be acquired from the Policy MLS status line in the output of sestatus:

sestatus | grep MLS
Policy MLS Status: disabled

Another method would be to look into the pseudo file, /sys/fs/selinux/mls. a value of 0 means disabled, whereas a value of 1 means enabled:

cat /sys/fs/selinux/mls
0

Dealing with unknown permissions

Permissions (such as read, open, and lock) are defined both in the Linux kernel and in the policy itself. However, sometimes newer Linux kernels support permissions that the current policy doesn't.
A recently introduced one is block_suspend (to be able to block system suspension) and when that occurs, SELinux has to take the decision: as the policies are not aware of this new permission, how should it deal with the permission when triggered? SELinux can allow (assume everything is allowed to perform this action), deny (assume no one is allowed to perform this action), or reject (stop loading the policy at all and halt the system) the request. This is configured through the deny_unknown value.
To see the state for unknown permissions, look for the Policy deny_unknown status line in sestatus:

sestatus | grep deny_unknown
Policy deny_unknown status: denied

Administrators can set this for themselves in the /etc/selinux/semanage.conf file through the handle-unknown key (with allow, deny, or reject).

Supporting unconfined domains

A SELinux policy can be written as very strict, limiting applications as close as possible to their actual behavior, but it can also be written to be very liberal in what applications are allowed to do. One of the concepts available in many SELinux policies is the idea of unconfined domains. When enabled, it means that certain SELinux domains (process contexts) are allowed to do almost anything they want (of course within the boundaries of the regular Linux DAC permissions which still hold) and only a few selected are truly confined (restricted) in their actions.
Unconfined domains have been brought forward to allow SELinux to be active on desktops and servers where administrators do not want to fully restrict the entire system, but only a few of the applications running on it.
With other MAC systems, for example, AppArmor, this is inherently part of the design of the system. However, SELinux was designed to be a full mandatory access control system and thus needs to provide access control rules even for those applications that shouldn't need any. By marking these applications as unconfined, almost no additional restrictions are imposed by SELinux.
We can see if unconfined domains are enabled on the system through seinfo:

seinfo -tunconfined_t
 unconfined_t
seinfo -tunconfined_t
ERROR: could not find datum for type unconfined_t

Most distributions that enable unconfined domains call their policy targeted, but this is just a convention that is not always followed. Hence, it is always best to consult the policy using seinfo to make this sure.

User-based access control

When UBAC is enabled, certain SELinux types will be protected by additional constraints. This will ensure that one SELinux user cannot access files (or other specific resources) of another user. UBAC gives some additional control on information flow between resources, but is far from perfect. In its essence, it is made to isolate SELinux users from one another.
Many Linux distributions disable UBAC. Gentoo allows users to select if they want UBAC or not through a Gentoo USE flag (which is enabled by default).

Policies across distributions

As mentioned, policy store names are not standardized. What is called targeted in Fedora is not targeted in Gentoo. Of the options mentioned previously, the following table shows us how some of the policy stores are implemented across these two distributions:
	
Distribution

	
Policy store name

	
MLS?

	
deny_unknown

	
Unconfined domains?

	
UBAC?

	
Gentoo

	
strict

	
No

	
denied

	
No

	
Yes (configurable)

	
Fedora 19

	
minimum

	
Yes (only s0)

	
allowed

	
Yes, but limited

	
No

	
Gentoo

	
targeted

	
No

	
denied

	
Yes

	
Yes (configurable)

	
Fedora 19

	
targeted

	
Yes (only s0)

	
allowed

	
Yes

	
No

	
Gentoo

	
mcs

	
Yes (only s0)

	
denied

	
Yes (configurable)

	
Yes (configurable)

	
Gentoo

	
mls

	
Yes

	
denied

	
Yes (configurable)

	
Yes (configurable)

	
Fedora 19

	
mls

	
Yes

	
allowed

	
Yes

	
No

Other distributions might even have different names and implementation details.
Yet, besides the naming differences, many of the underlying settings can be changed by the administrator. For instance, even though Fedora does not have a strict policy, it does have a documented approach on running Fedora without unconfined domains. It would be wrong to state that Fedora as such does not support fully confined systems.
MCS versus MLS

In the feature table, we notice that for MLS, some policies only support a single sensitivity (s0). When this is the case, we call the policy an MCS (Multi Category Security) policy. The MCS policy enables sensitivity labels, but only with a single sensitivity while providing support for multiple categories (and hence the name).
With the continuous improvement made in supporting Linux in PaaS (Platform as a Service) environments, implementing proper multitenancy requires proper security isolation as a vital part of its offering.

Policy binaries

While checking the output of sestatus, we see that there is also a notation of policy versions:

sestatus | grep version
Max kernel policy version: 28

As the output states, 28 is the highest policy version the kernel supports. The policy version refers to the supported features inside the SELinux policy: every time a new feature is added to SELinux, the version number is increased. The policy file itself (which contains all the SELinux rules loaded at boot time by the system) can be found in /etc/selinux/targeted/policy (where targeted refers to the policy store used, so if the system uses a policy store named strict, then the path would be /etc/selinux/strict/policy).
If multiple policy files exist, we can use the output of seinfo to find out which policy file is used:

seinfo
Statistics for policy file: /etc/selinux/targeted/policy/policy.27
Policy Version & Type: v.27 (binary, mls)
...

The next table gives the current list of policy feature enhancements and the Linux kernel version in which that feature is introduced. Many of the features are only of concern to the policy developers, but knowing the evolution of the features gives us a good idea on the evolution of SELinux.
	
Version

	
Linux kernel

	
Description

	
12

	 	
It is the "Old API" for SELinux, now deprecated

	
15

	
2.6.0

	
It is the "New API" for SELinux

	
16

	
2.6.5

	
It provides conditional policy extensions

	
17

	
2.6.6

	
It provides IPv6 support

	
18

	
2.6.8

	
It adds fine-grained netlink socket support

	
19

	
2.6.12

	
It provides enhanced multi-level security

	
20

	
2.6.14

	
It doesn't access vector table size optimizations”, the version (20) improved the access vector table size (it is a performance optimization).

	
21

	
2.6.19

	
It provides object classes in range transitions

	
22

	
2.6.25

	
It provides policy capabilities (features)

	
23

	
2.6.26

	
It provides per-domain permissive mode

	
24

	
2.6.28

	
It provides explicit hierarchy (type bounds)

	
25

	
2.6.39

	
It provides filename based transition support

	
26

	
3.0

	
It provides role transition support for non-process classes

	
27

	
3.5

	
It supports flexible inheritance of user and role for newly created objects

	
28

	
3.5

	
It supports flexible inheritance of type for newly created objects

By default, when a SELinux policy is built, the highest supported version as defined by the Linux kernel and libsepol (the library responsible for building the SELinux policy binary) is used. Administrators can force a version to be lower using the policy-version parameter in /etc/selinux/semanage.conf.
SELinux policy modules

Initially, SELinux used a single, monolithic policy approach: all possible access control rules are maintained in a single, binary policy file that the SELinux utilities then load. It quickly became clear that this is not manageable in long term, and thus the idea of developing a modular policy approach was born.
Within the modular approach, policy developers can write isolated policy sets for a particular application (or set of applications), roles, and so on. These policies then get built and distributed in their own policy modules. Platforms that need access controls for that particular application load the SELinux policy module that defines the access rules.
On some Linux distributions, these SELinux policy modules are stored inside /usr/share/selinux, usually within a subdirectory named after the policy store (such as "targeted" or "strict"). The policy modules that are currently loaded are always available in /etc/selinux/targeted/modules/active and its modules subdirectory.
Of all the *.pp files in these locations, the base.pp one is special. This policy module file contains core policy definitions. The remaining policy module files are "isolated" policy modules, providing the necessary rules for the system to handle applications and roles related to the module itself. For instance, the screen.pp module contains the SELinux policy rules for the GNU screen (and also tmux) application.
Once those files are placed on the system, the distribution package manager usually calls the semodule command to load the policy modules. This command then combines the files into a single policy file (for example, policy.28) and loads it in memory.
On Fedora, the SELinux policies are provided by the selinux-policy-targeted (or -minimum or -mls) package. On Gentoo, they are provided by the various sec-policy/selinux-* packages (Gentoo uses separate packages for each module, reducing the amount of SELinux policies that are loaded on an average system).

Summary

In this chapter, we saw that SELinux offers a more fine-grained access control mechanism on top of the Linux access control. SELinux uses labels to identify its resources and processes, based on ownership (user), role, type, and even the security sensitivity and categorization of the resource.
Linux distributions implement SELinux policies which might be a bit different from each other based on supporting features such as sensitivity labels, default behavior for unknown permissions, support for confinement levels, or specific constraints put in place, for example, UBAC. However, most of the policy rules themselves are similar.
Switching between SELinux enforcement modes and understanding the log events that SELinux creates when it prohibits a certain access, is the subject of our next chapter. In it, we will also cover how to approach the often-heard requirement of disabling SELinux and why this is the wrong solution to implement.

Chapter 2. Understanding SELinux Decisions and Logging

Once SELinux is enabled on a system, it starts its access control functionality as described in the previous chapter. This however might have some unwanted side effects, so in this chapter, we will:
	Switch between SELinux in full enforcement mode (host-based intrusion prevention) versus its permissive, logging-only mode (host-based intrusion detection)
	Use various methods to toggle the SELinux state (enabled or disabled, permissive or enforcing)
	Disable SELinux protections for a single domain rather than the entire system
	Learn to interpret the SELinux log events that describe to us what activities that SELinux has prevented

We finish with an overview of common methods for analyzing these logging events in day-to-day operations.
Disabling SELinux

Perhaps a weird chapter to begin with, but disabling SELinux is a commonly requested activity. Some vendors do not support their application to be running on a platform that has SELinux enabled. Luckily, this number is reducing.
SELinux supports three major states that it can be in: disabled, permissive, and enforcing. These states are by default set in the /etc/selinux/config file, through the SELINUX variable as follows:

$ grep ^SELINUX= /etc/selinux/config
SELINUX=enforcing

When the system init triggers loading the SELinux policy, the code checks the state that the administrator has configured. The states are described as follows:
	If the state is disabled, then the SELinux code disables further support, making the system boot without activating SELinux.
	If the state is permissive, then SELinux is active but will not enforce its policy on the system. Instead, any violations against the policy will be reported but remain allowed.
	If the state is enforcing, then SELinux is active and will enforce its policy on the system. Violations are reported and also denied.

We can use the getenforce or sestatus command to get information about the current state of SELinux as follows:

sestatus | grep mode
Current mode: enforcing

Try to switch between the enforcing and permissive mode by modifying the configuration file. Reboot the system and validate through sestatus, that the SELinux state has indeed been changed. If we disable SELinux completely though, we might need to fix wrong (or absent) labels later. This is the reason why we switch between enforcing and permissive for now.
In many situations, administrators often want to disable SELinux when it starts preventing certain tasks. Sadly, this is similar to removing train crossing gates because it prevents them from reaching their destination in time. It might help them to get there faster next time, but remember that the gates are there to protect us.

SELinux on, SELinux off

We can toggle the SELinux state through the /etc/selinux/config file and reboot the system to have the changes being reflected. But this is not the only way.
Switching to permissive (or enforcing) temporarily

On most SELinux enabled systems, we can call the setenforce command to switch the system between permissive (0) and enforcing (1) mode. This takes effect immediately, allowing us to easily identify if SELinux is preventing access or not.
Try it out. Switch to the permissive mode and validate (again using sestatus, that the SELinux state has indeed been changed immediately as follows:

setenforce 0

The effect of setenforce is the same as writing the value into the /sys/fs/selinux/enforce (or /selinux/enforce) pseudo file:

echo 0 > /sys/fs/selinux/enforce

The ability to switch between the permissive and enforcing mode can be of interest for policy developers or system administrators who are modifying the system to use SELinux properly. This SELinux feature is called the SELinux development mode and is set through a kernel configuration parameter (CONFIG_SECURITY_SELINUX_DEVELOP). Most SELinux supporting distributions leave this feature on, but on production systems it might be of interest to disable the feature (considering that this can allow malicious users who gain enough privileges to disable SELinux altogether).
Disabling this feature usually requires rebuilding the Linux kernel, but SELinux policy developers have also thought of a different way to disallow users to toggle the SELinux state. The privileges that the users need to switch to the permissive mode have become 'conditional', and system administrators can easily toggle this policy to disable switching back to the permissive mode. Once toggled, the setting cannot be reverted if the -P option is provided. Without the option, the setting is only valid until the system is rebooted:

setsebool -P secure_mode_policyload on

Switching to or from the disabled state however is not supported: once SELinux is active (in either the permissive or enforcing mode) and its policy is loaded, only then a reboot can effectively disable SELinux again.

Using kernel boot parameters

Using the setenforce command makes sense when we want to switch to the permissive or enforcing mode at a point in time when we have interactive access to the system. But what when we need this upon system boot?
The answer is kernel boot parameters. We can boot a Linux system with one or two parameters that take precedence towards the /etc/selinux/config settings as follows:
	selinux=0 informs the system to disable SELinux completely, and is similar to SELINUX=disabled in the config file. When set, the other parameter (enforcing) is not consulted.
	enforcing=0 informs the system to run SELinux in the permissive mode, and is similar to the SELINUX=permissive setting in the config file.
	enforcing=1 informs the system to run SELinux in the enforcing mode, and is similar to the SELINUX=enforcing setting in the config file.

For instance, the following GRUB part will have SELinux enabled and run in the permissive mode, regardless of the /etc/selinux/config settings:
title Linux with SELinux permissive
root (hd0,0)
kernel /kernel root=/dev/md3 selinux=1 enforcing=0
initrd /initramfs

Support for the selinux= boot parameters is also enabled through a kernel configuration parameter, CONFIG_SECURITY_SELINUX_BOOTPARAM. The enforcing= boot parameter is supported through the CONFIG_SECURITY_SELINUX_DEVELOP configuration parameter discussed previously.
While using SELinux in production, it might be wise to either disable the options or properly protect the boot menu, for instance, by password protecting the menu and regularly verifying the integrity of the boot menu files.

Disabling SELinux protections for a single service

Since policy version 23 (which came with Linux 2.6.26), SELinux also supports a more granular approach to switch between permissive and enforcing: the use of permissive domains. As mentioned before, domains is the term which SELinux uses for types (labels) assigned to processes. With permissive domains, we can mark one particular domain as being permissive (and as such not enforcing the SELinux rules) even though the rest of the system is running in the enforcing mode.
Let's say we run a DLNA (Digital Living Network Alliance) server to serve our holiday pictures to other media devices at our place, or to present the latest company internal videos to a distributed set of monitors throughout the campus. Somehow it fails to show the media recently made available and we find out it is SELinux that is preventing it. Even though it is seriously recommended to fine-tune the policy, we might be pushed in fixing (read: working around) the problem first and implementing the fix later properly. Instead of fully disabling SELinux controls, we can put the domain in which the DLNA server runs (most likely minidlna_t) in the permissive mode:

semanage permissive -a minidlna_t

With the same semanage command, we can list the currently running permissive domains (on Fedora, some domains are, by default, marked as permissive):

semanage permissive -l

Builtin Permissive Types

openvswitch_t
systemd_localed_t
virt_qemu_ga_t
...

Customized Permissive Types

minidlna_t

When a domain is marked as permissive, the application should behave as if SELinux is not enabled on the system, making it easier for us to find out if SELinux really is the cause of a permission issue. Note though that other domains that interact with a permissive domain are themselves still governed through SELinux.
If an application requires SELinux to be disabled, it makes much more sense to mark its domain as permissive rather than disabling SELinux protections for the entire system. Look for an example service and find out what domain it runs in. Then mark this domain as permissive (and then back).
Tip
Use ps –eZ to see the SELinux contexts of processes.

Applications that "speak" SELinux

Most applications themselves do not have knowledge that they are running on an SELinux enabled system. When that is the case, the permissive mode truly means that the application behaves as if SELinux was not enabled to begin with. However, some applications actively call SELinux code. These applications can be called 'SELinux aware', because they change their behavior if SELinux is enabled, possibly regardless of SELinux being in the permissive or the enforcing mode.
When those applications run in the permissive mode, they can behave (quite) differently than when SELinux is completely disabled. Such applications change their behavior when SELinux is enabled, for instance to query the policy or to check for the context that it should run in. Examples of such applications are SSH login, some cron daemons as well as the core Linux utilities (which provide ls and id). As a result, they might show permission failures or different behavior based on the SELinux policy even though SELinux is not in the enforcing mode.
We can find out if an application is SELinux aware by checking if the application is dynamically linked with the libselinux library. This can be done with scanelf or ldd as follows:

scanelf -n /bin/ls
 TYPE NEEDED FILE
ET_DYN libselinux.so.1,librt.so.1,libc.so.6 /bin/ls
ldd /bin/ls | grep selinux
 libselinux.so.1 => /lib64/libselinux.so.1 (0x00007f77702dc000)

Knowing if an application is SELinux aware or not can help in troubleshooting failures.
As an exercise, try to find all binaries on a system that are linked with the libselinux library.

SELinux logging and auditing

When SELinux is enabled, it will log (almost) every permission check that was denied. When Linux auditing is enabled, these denials are logged by the audit daemon. If not, then the regular system logger will get the denials and store them in the system logs.
Such denial messages are described with the type AVC (Access Vector Cache) as we can see from the following example:

type=AVC msg=audit(1369306885.125:4702304): avc: denied { append } for pid=1787 comm=72733A6D61696E20513A526567 name="oracle_audit.log" dev=dm-18 ino=65 scontext=system_u:system_r:syslogd_t:s0 tcontext=system_u:object_r:usr_t:s0 tclass=file

The AVC is part of the SELinux security subsystem in the Linux kernel that is responsible for checking and enforcing the SELinux rules. Any permission that needs to be checked is represented as an "access vector" and the cache is then consulted to see if that particular permission has been checked before or not. If it is, then the decision is taken from the cache, otherwise the policy itself is consulted. This inner working of SELinux is less relevant to most administrators, but at least now we know where the term AVC comes from.
Configuring SELinux' log destination

SELinux will try to use the audit subsystem when available, and will fall back to the regular system logging when it isn't.
For the Linux audit, we usually do not need to configure anything as SELinux AVC denials are logged by default. The denials will be shown in the audit logfile (/var/log/audit/audit.log), usually together with the system call that triggered it:

type=AVC msg=audit(1370115017.883:1091): avc: denied { write }
 for pid=20061 comm="mount" name="utab" dev="tmpfs"
 ino=1494 scontext=user_u:user_r:user_t:s0
 tcontext=system_u:object_r:mount_var_run_t:s0 tclass=file

type=SYSCALL msg=audit(1370115017.883:1091): arch=c000003e
 syscall=2 success=no exit=-13 a0=7f0e75149879 a1=42 a2=1a4
 a3=7fff2ad134a0 items=0 ppid=19903 pid=20061 auid=1001
 uid=1001 gid=100 euid=0 suid=0 fsuid=0 egid=100 sgid=100
 fsgid=100 tty=pts2 ses=8 comm="mount" exe="/usr/bin/mount"
 subj=user_u:user_r:user_t:s0 key=(null)

When auditing is not enabled, we can configure the system logger to direct SELinux AVC messages into its own logfile. For instance, with the syslog-ng system logger, the possible configuration parameters could be as follows:
source kernsrc { file("/proc/kmsg"); };
destination avc { file("/var/log/avc.log"); };
filter f_avc { message(".*avc: .*"); };
log { source(kernsrc); filter(f_avc); destination(avc); };

Reading SELinux denials

The one thing every one of us will have to do many times with SELinux systems is to read and interpret SELinux denial information. When SELinux prohibits an access and there is no dontaudit rule in place to hide it, SELinux will log it. If nothing is logged, it was probably not SELinux that was the culprit of the failure. Remember, SELinux comes after Linux DAC checks, so if a regular permission doesn't allow a certain activity, then SELinux is never consulted.
SELinux denial messages are logged the moment SELinux prevents some access from occurring. When SELinux is in the enforcing mode, the application usually returns a Permission denied error, although sometimes it might be a bit more obscure, for example, with the following attempt of an unprivileged user using su to switch to root:

$ su -
Password: (correct password given)
su: incorrect password
Most of the time though, the error is a permission error:
$ ls /proc/1
ls: cannot open directory /proc/1: Permission denied
ls -ldZ /proc/1
dr-xr-xr-x. root root system_u:system_r:init_t:s0 /proc/1

So, what does a denial message look like? The next one shows a denial from the audit subsystem. We can consult the SELinux messages in the audit or system logs. When the Linux audit subsystem is enabled, we can also use the ausearch command as follows:

ausearch -m avc -ts recent

time->Fri May 31 20:05:15 2013
type=AVC msg=audit(1370023515.951:2368): avc: denied { search }
 for pid=5005 comm="dnsmasq" name="net" dev="proc" ino=5403
 scontext=system_u:system_r:dnsmasq_t
 tcontext=system_u:object_r:sysctl_net_t tclass=dir

Let's break up this denial into its individual components. The following table gives more information about each part of the preceding denials. As an administrator, knowing how to read denials is extremely important, so take the necessary time for this, and also try it out on a SELinux system.
	
Field name

	
Description

	
Example

	
(SELinux action)

	
This is the action that SELinux took (or would take if run in the enforcing mode). This usually denied, although some actions are explicitly marked for auditing and would result in granted.

	
denied

	
(permissions)

	
These are the permissions that were checked (action performed by the process). This usually is a single permission, although it can sometimes be a set of permissions (for example, read write).

	
{ search }

	
Process ID

	
This is the ID of the process that was performing the action.

	
for pid=5005

	
Process name

	
The process name (command). It doesn't display any arguments to the command though.

	
comm="dnsmasq
"

	
Target name

	
It is the name of the target (resource) that the process is performing an action on. If the target is a file, this usually is the filename or directory.

	
name="net"

	
Target device

	
It is the device on which the target resource resides. Together with the next field (inode number) this allows us to uniquely identify the resource on a system.

	
dev="proc"

	
Target file inode number

	
It is the inode number of the target file or directory. Together with the device, this allows us to find the file on the filesystem.

	
ino=5403

	
Source context

	
It is the context in which the process resides (the domain of the process).

	
scontext=system_u:system_r:dnsmasq_t

	
Target context

	
It is the context of the target resource.

	
tcontext=system_u:object_r:sysctl_net_t

	
Resource class

	
It is the class of the target resource, for example, a directory, file, socket, node, pipe, file descriptor, file system, capability, and so on.

	
tclass=dir

The previous denial can be read as follows: "SELinux has denied the search operation of the dnsmasq process (with PID 5005) against the "net" directory (with inode 5403) within the proc device. The dnsmasq process runs with the system_u:system_r:dnsmasq_t label and the "net" directory has the system_u:object_r:sysctl_net_t label."
Some denials have different fields, which are as follows:

avc: denied { send_msg } for msgtype=method_call
 interface=org.gnome.DisplayManager.Settings
 member=GetValue dest=org.gnome.DisplayManager
 spid=3705 tpid=2864
 scontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
 tcontext=system_u:system_r:xdm_t:s0-s0:c0.c1023 tclass=dbus

Although it has a few different fields, it is still readable and can be read as follows: "SELinux has denied the process with PID 3705 to invoke a DBus remote method call (the "GetValue"method of the "org.gnome.DisplayManager.Settings" interface) against the "org.gnome.DisplayManager" implementation offered by process with PID 2864. The source process runs with the "unconfined_u:unconfined_r:unconfined_t:s0-s0.c0.c1023" label and the target process with the "system_u:system_r:xdm_t:s0-s0:c0.c1023" label."
Depending on the action and the target class, SELinux uses different fields to give all the information we need to troubleshoot a problem. Try interpreting the following denial:
avc: denied { name_bind } for pid=23849
 comm="postgres" src=6030
 scontext=system_u:system_r:postgresql_t
 tcontext=system_u:object_r:unreserved_port_t
 tclass=tcp_socket

The preceding denial came up because the PostgreSQL database was configured to listen on a non-default port (6030 instead of the default 5432).
Identifying the problem is a matter of understanding how the operations work, and properly reading the denials. In the preceding DBus denial, it is difficult to troubleshoot if we do not know how DBus works (or how it uses message types, members, and interfaces in its underlying protocols). For troubleshooting, the denial logs give us enough to get us started. It gives a clear idea what was denied.
It is wrong to immediately consider allowing the specific denial (by adding an allow rule to the SELinux policy as described in Chapter 6, Enhancing SELinux policies) as other options exist, which are as follows:
	Giving the right label on the target resource (usually the case when the target is a non-default port, non-default location, and so on)
	Switching booleans (flags that manipulate the SELinux policy) to allow additional privileges
	Giving the right label on the source process (often the case when the source process is not installed by the distribution package manager)
	Using the application as intended instead of through other means (as SELinux only allows expected behavior), such as starting a daemon through a service (init script or systemd unit) instead of through a command line

Uncovering more denials

Policy writers can tell SELinux not to log some denials because they are expected; SELinux is able to control very fine-grained access and some applications (many, to be honest) tend to do some checks or get some permissions they never need in reality. Constantly seeing denials for those checks would clutter the logs and might trick us into allowing those calls (even when they do not influence the application at all or might even become a security hazard if allowed). Such statements are called dontaudit statements.
With seinfo we can see how many SELinux rules (such as allow and dontaudit) are currently loaded on the system. The semodule application can be used to rebuild the current policy without dontaudit statements, which is very useful if an application is not working properly and we think SELinux is the reason, but we don't see any denials:

seinfo | grep -E '(dontaudit|allow)'
 Allow: 34631 Neverallow: 0
 Auditallow: 1 Dontaudit: 5414
 Type_member: 6 Role allow: 7
semodule --disable_dontaudit --build

The semodule command can also be shortened to semodule -DB.
Now that we know where to find AVC events, let us disable the dontaudit rules and look at the logs. Notice how many denials are shown. In order not to clutter the logs, fall back to the previous state by again enabling the dontaudit rules: invoke semodule --build without the --disable_dontaudit argument.

Getting help with denials

On some distributions, additional supporting tools are available that help us identify the cause of a denial. These tools have some knowledge of the common mistakes (for instance, setting the right context on application files in order for the web server to be able to read them). Other distributions require us to use our experience to make proper decisions, supporting us through the distribution mailing lists, bug tracking sites, and other cooperation locations, for example, IRC.
setroubleshoot to the rescue

In Fedora and RedHat Enterprise Linux, additional tools are present that help us troubleshoot denials. The tools work together to catch a denial, look for a plausible solution and inform the administrator about the denial and its suggested resolutions. When used on a graphical workstation, denials can even pop up and ask the administrator to review the denials immediately. On the servers without a graphical environment, administrators can see the information in the system logs or can even configure the system to send out SELinux denial messages via e-mail.
Under the hood, it is the audit daemon that triggers its audit event dispatcher application (audispd). This application is built to support plugins, something the SELinux folks gratefully implemented: an application that will act as a plugin for audispd called sedispatch. The sedispatch application checks whether the audit event is a SELinux denial and, if so, forwards the event to DBus (a system bus implementation popular on Linux systems). DBus forwards the event then to the setroubleshootd application (or launches the application if it isn't running yet) which analyzes the denial and prepares feedback for the administrator. Then, when running on a workstation, seapplet is triggered to show a pop up on the administrator workstation. The analyzed feedback is stored on the filesystem and a message is displayed in the system logs.
Try triggering a SELinux denial (for instance, by configuring a daemon to bind to a non-default port and restarting the daemon) and see how the event is brought up.
In the system log, a message comes up, for example as follows:
Jun 14 12:05:43 localhost setroubleshoot: SELinux is preventing
 /usr/sbin/httpd from 'getattr' accesses on the directory
 /var/www/html/infocenter. For complete SELinux messages, run
 sealert -l 26f2a1c3-0134-458e-a69b-4ef223e20009

We can then see the complete explanation through the sealert command as mentioned in the log. The sealert application is a command-line application that parses the information stored by the setroubleshoot daemon (in /var/lib/setroubleshoot). Try the command and read through the output it provides: the output is lengthy, but worth reading.
The sealert application will provide us with a set of options to resolve the denial. In case of the Apache-related denial shown earlier, sealert would give us four options, each of them with a certain confidence score.
As we can see from this example, the setroubleshoot application has a number of plugins to analyze denials. These plugins look at a denial to check if they match a particular, well known use case (for example, when Booleans need to be changed, or when a target context is wrong) and give feedback to setroubleshoot about how "certain" the plugin is so that this denial can be resolved through its recommended method.

Using audit2why

If setroubleshoot and sealert are not available on the Linux distribution, we can still get some information about a denial. Although it isn't as extensible as the plugins offered by setroubleshoot, the audit2why utility (which is short for audit2allow -w) does provide some feedback on a denial. Sadly, it isn't always right in its deduction. Try it out against the same denial for which we used sealert:

ausearch –m avc –ts today | audit2why
type=AVC msg=audit(1371204434.608:475): avc: denied { getattr } for pid=1376 comm="httpd" path="/var/www/html/infocenter" dev="dm-1" ino=1183070 scontext=system_u:system_r:httpd_t:s0 tcontext=unconfined_u:object_r:user_home_t:s0 tclass=dir

Was caused by:
The boolean httpd_read_user_content was set incorrectly.
Description:
Determine whether httpd can read generic user home content files.

Allow access by executing:
setsebool -P httpd_read_user_content 1

The audit2why utility here didn't consider that the context of the target location was wrong, and suggest to enable the web server permission to read user content.

Using common sense

Common sense is not easy to document, but reading a denial often leads to the right solution when we have some experience with file labels (and what they are used for). If we would look at the previous denial example (the one about /var/www/html/infocenter), then seeing that its context is user_home_t should ring a bell. user_home_t is used for end user home files, not system files inside /var.
One way to make sure that the context of the target resource is correct is to check it with matchpathcon. This utility returns the context as it should be according to the SELinux policy:

matchpathcon /var/www/html/infocenter
/var/www/html/infocenter system_u:object_r:httpd_sys_content_t:s0

Performing this on denials related to files and directories might help in finding a proper solution quickly.
Furthermore, many domains have specific manual pages that inform the reader what types are commonly used for each domain, as well as how to deal with the domain in more detail (for example, the available Booleans, common mistakes made, and so on.)

$ man ftpd_selinux

Summary

We saw how to enable and disable SELinux both on a complete system level as well as a per service level using various methods: kernel boot options, SELinux configuration file, or plain commands. One of the commands is the use of semanage permissive, which can disable SELinux protections for a single service.
Next, we saw where SELinux log its events and how to interpret them, which is one of the most important capabilities of an administrator when dealing with SELinux. To assist us with this interpretation, there are tools such as setroubleshoot, sealert, and audit2why.
In the next chapter, we will look at the first administrative task on SELinux systems: managing user accounts and their associated SELinux roles and security clearances towards the resources on the system.

Chapter 3. Managing User Logins

When we log in to an SELinux enabled system, we are assigned with a default context to work in. This context contains a SELinux user part, a SELinux role, a domain, and optionally a sensitivity range.
In this chapter, we will:
	Define users that have sufficient rights to do their jobs, ranging from unprivileged users to fully privileged users, running almost without SELinux protection
	Create and assign categories and sensitivities
	Assign roles to users and use various tools to switch roles

We end the chapter by learning how SELinux integrates with the Linux authentication process.
So, who am I?

Once logged in to a system, our user will run inside a certain context. This user context defines the rights and privileges that we, as a user, have on the system. The command to obtain current user information, id, also supports SELinux context information. Try it out, and use the -Z switch as follows:

$ id -Z
unconfined_u:unconfined_r:unconfined_t

On SELinux systems with a targeted policy type, chances are very high that all users are logged in as unconfined_u (the first part of the context). On more restricted systems, the user can be user_u (regular restricted users), staff_u (operators), sysadm_u (system administrators), or any other of the SELinux user types.
The SELinux user defines the roles that the user can switch to, which themselves define the domains that the user (or his processes) can run in. By default, a fixed number of SELinux users are available on the system, but administrators can create different SELinux users. It is also the administrator’s task to assign Linux logins to SELinux users.
The rationale behind unconfined

SELinux is able to provide full system confinement: each and every application runs in its own restricted environment from where it cannot break out of. But that requires fine-grained policies that are equally fast developed as the new versions of all the applications that they confine.
The following diagram shows this relation between the policies, the domain applicability towards multiple processes and the development effort. As an example, postfix_cleanup_t is shown as a very fine-grained policy domain (which is used for the cleanup process involved in the Postfix mail infrastructure) whereas the unconfined_t domain is shown as the example for a very broad, almost unlimited access domain:
[image: The rationale behind unconfined]Relationship between domain development complexity and the associated SELinux access controls

Most applications do not have a dedicated policy (although most security-sensitive or popular ones do) and policies do not adapt as fast as the applications themselves. For many servers though, this fine-grained mandatory access is not necessary. All that is needed is to confine the services that are exposed to the network. To support this, SELinux policy developers created the “unconfined” concept, that is, although still governed by SELinux, the domain or user is not really restricted.
Not only are those domains very powerful with respect to privilege, the idea is also that these domains do not need to switch to other domains (unless when they need to switch to a confined domain, of course) and that they are not restricted by constraints that are imposed on confined domains (including MLS).
An important asset in this unconfined story is the unconfined_t domain for the unconfined_u SELinux user (with the unconfined_r SELinux role). This is exactly the context that we get when logged in to a default Fedora installation or a Gentoo installation that uses the targeted policy store (or mcs/mls with USE=”unconfined”).
Next to the user domains, we also have unconfined process domains for daemons and other applications. Some of these run in the unconfined_t domain as well, but most of them run in their own domain even though they are still unconfined. The seinfo tool can tell us which domains are unconfined by asking for those domains that have the selinux_unconfined_type attribute set as follows:

seinfo -aselinux_unconfined_type -x

Defining a domain is unconfined or cannot be toggled by administrators, as this is a pure SELinux policy matter.

SELinux users and roles

Within SELinux systems, the moment a user logs in, the login system checks to which SELinux user his login is mapped. Then, when a SELinux user is found, the system looks up the role and domain that the user should be in.
We all are one SELinux user

When we logged in to the system and checked our context using id -Z, we noticed that the presented context is the same regardless of the username through which we logged in to the system. SELinux does not care which Linux user we are, as long as it knows which context we are in.
When our login process is triggered, a local definition file will be checked to see which SELinux user is mapped to our login. Let us take a look at the existing login mappings using semanage login –l as follows:

semanage login -l
Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *
system_u system_u s0-s0:c0.c1023 *

In the output, two login names are special for SELinux: the __default__ and system_u definitions:
	__default__: It is a catchall rule. If none of the other rules match, then the users are mapped to the SELinux user identified in the second column (SELinux user). On targeted systems, all users are mapped to the unconfined_u SELinux user because the policies within targeted systems are meant to confine daemons rather than users. On policy stores that do not support unconfined domains, administrators usually map regular logins to restricted SELinux users while administrative logins are mapped to the staff_u or sysadm_u SELinux users.
	The system_u line is meant for system processes (non-interactively logged in Linux accounts). It should never be assigned to end user logins.

The SELinux user is not the only information of a SELinux mapping. In case of an MLS-enabled system, the mapping also contains information about the sensitivity range in which the user is allowed to work (MLS/MCS Range). This way, two users might both be mapped to the user_u restricted SELinux user, but one might only be allowed to access the low sensitivity (s0) whereas another user might also have access to higher sensitivities (for example, s1). Or, in case of MCS, one user might be mapped to a different set of categories different from another user.
As an exercise, let us create a new Linux user called myuser and make sure that, when this user is logged in, the context is that of the unprivileged SELinux user_u user. We accomplish this using the semanage login tool as follows:

semanage login -a -s user_u myuser

The -s parameter is used to map a login to a SELinux user, whereas sensitivity (and categories) can be handled with the -r parameter. In the next example, we modify the newly created mapping by limiting the user to the sensitivity range s0-s2 and categories c0 to c4:

semanage login -m -r “s0-s2:c0.c4” myuser

The changes take effect when a new login occurs so we should force a logout for these users. The following command locks our myuser account, kills all the processes of that user, and unlocks the user again as follows:

passwd -l myuser
Locking password for user myuser.
passwd: Success
pkill -KILL -u myuser
passwd -u myuser
Unlocking password for user myuser.
passwd: Success

Also, when an existing user is modified, we should also reset the contexts of that users’ home directory (while he is not logged on). To accomplish this, use restorecon using the -F option as follows:

restorecon -RF /home/myuser

That is quite easy. Of course, in larger environments, creating mappings this way for individual users is not manageable. In such cases, it might be better to use (primary) group information. Most regular users are part of the user's Linux group, so let us assign those users to the user_u SELinux user. Accounts that are in the admins Linux group are mapped to sysadm_u. To accomplish this, we use the percentage sign to tell the SELinux tools that this mapping is for groups:

semanage login -a -s user_u “%users”
semanage login -a -s sysadm_u “%admins”

Now that the group mappings are in place, we can remove the myuser individual mapping we made earlier as follows:

semanage login -d myuser

Creating additional users

When we want to use the UBAC feature, we might not have enough facilities with the users that are available by default (which can be obtained using semanage user -l):

semanage user -l
 Labeling MLS/ MLS/
SELinux User Prefix MCS Level MCS Range
SELinux Roles
git_shell_u user s0 s0
git_shell_r
guest_u user s0 s0
guest_r
root user s0 s0-s0:c0.c1023
staff_r sysadm_r system_r unconfined_r
…

Luckily, creating additional SELinux users is a breeze. In the next examples, we create a new SELinux user called finance_u. We configure the user with a default sensitivity (-L s0), its security clearance (the sensitivity range, using -r “s0-s0:c0.c127”), the roles the user is allowed access to (-R user_r), and the new SELinux username as follows:

semanage user -a -L s0 -r “s0-s0:c0.c127” -R user_r finance_u

When the SELinux user is created, its information is made as a part of the SELinux policy, and will also result in a seusers file within /etc/selinux.
Just similar to login mappings, semanage user also accepts the -m option to modify an existing entry, or -d to delete one, as in the following example:

semanage user -d finance_u

Separate SELinux users are not only interesting for UBAC, but also provide additional audit information (as SELinux users do not change during a user’s session whereas the Linux effective user id can), and if the user creates files or other resources, these resources also inherit the SELinux user part in their security context.

Limiting access based on confidentiality

Sensitivity labels and their associated categories are identified through numeric values, which is great for computers but not that obvious for users. The SELinux utilities luckily support translating the levels and categories to human-readable values, even though they are still stored as numbers.
The translations are managed through the setrans.conf file, located in the proper policy store subdirectory within /etc/selinux. Inside this file, we can name specific values (for example, s0:c102) or ranges (similar to s0-s0:c1.c127) with a string that is much easier for administrators to use.
Consider our example of the finance_u SELinux user who was allowed access to the c0.c127 category range. Two of the categories within that range are c102, which we will tag as Contracts, and c103 which we will tag as Salaries. The c1.c127 range will be labeled as FinanceData. The following diagram shows the relationship between these various categories:
[image: Limiting access based on confidentiality]Relationship of the example categories and category ranges

To accomplish this, the following code should be placed in the setrans.conf file:
s0:c102=Contracts
s0:c103=Salaries
s0-s0:c1.c127=FinanceData

With RedHat Enterprise Linux 6, the file needs to be edited manually. However, recent Fedora releases support the semanage translation command to list, create, and modify entries:

semanage translation -a -T FinanceData “s0-s0:c1.c127”

These translations are handled by the SELinux utilities, which connect to the mcstrans daemon through a socket located in /var/run/setrans to query the setrans.conf file. If the daemon is not running or the communication with the daemon fails, the sensitivity and category numeric values are displayed.
We can view the available sensitivities and their human-readable counterparts using the chcat tool. The following one displays the default translations offered by RedHat Enterprise Linux 6:

$ chcat -L
s0 SystemLow
s0-s0:c0.c1023 SystemLow-SystemHigh
s0:c0.c1023 SystemHigh

The same chcat utility can be used to assign categories to users. For instance, to grant the Salaries category (assuming it is defined in setrans.conf) to the myuser Linux user:

chcat -l -- +Salaries myuser

Using the preceding command, the Salaries category (c103) is granted to the Linux user myuser. The user mapping is immediately updated with this information. The myuser user needs to log out again for the changes to take effect.

Jumping from one role to another

Although we can be assigned with multiple roles, we still need to switch roles based on our needs. SELinux supports multiple methods for switching roles and sensitivities or launching applications in specific categories.
Full role switching with newrole

The SELinux newrole application can be used to transition from one role to another. Consider an SELinux system without unconfined domains, and where we are by default logged in as the staff_r role. In order to perform administrative tasks, we need to switch to the sysadm_r administrative role, which we can do with newrole.
If the SELinux user we are mapped to (for example, sysadm_u) is allowed to access the specified role (in the example, sysadm_r), then our context is changed from the previous role to the new one. Usually, this also changes the user domain.
Let’s check our current context, change our role, and then check the context again to ensure that we properly switched to our role as follows:

$ id -Z
staff_u:staff_r:staff_t
$ newrole -r sysadm_r
Password:
$ id -Z
staff_u:sysadm_r:sysadm_t

Notice how the SELinux user remains constant, but the role and domain have changed.
The newrole application can also be used to transition to a specific sensitivity as follows:

$ newrole -l s0:c0.c100

When we switch towards another role or sensitivity, a new session is used (with a new shell). It does not change the context of the current session, nor does it exit from the current session. We can exit from our assigned role and return to the first session by exiting (through exit, logout, or Ctrl + d).

Managing role access with sudo

Most administrators use sudo for privilege delegation: allowing users to run certain commands in a more privileged context than the user is otherwise allowed. The sudo application is also capable of handling SELinux roles and types.
We can pass on the target role and type to sudo directly. For instance, we can tell sudo to switch to the database administrative role when we edit a PostgreSQL configuration file:

$ sudo -r dbadm_r -t dbadm_t vim /etc/postgresql/pg_hba.conf

However, we can also configure sudo through the /etc/sudoers file to allow users to run particular commands within a certain role/type, or get a shell within a certain context. Consider a user that has access to both the user_r as well as dbadm_r role (a role designated for database administrators). Within the sudoers file, the following line allows the user to run any command through sudo which, when triggered, will run by default run with the dbadm_r role and within the dbadm_t domain:
myuser ALL=(ALL) TYPE=dbadm_t ROLE=dbadm_r ALL

Often, sudo is preferred over newrole as most operations that we need another role for require switching effective user IDs anyway. The sudo application also has great logging capabilities, and we can even have commands switching role without requiring the end user to pass on the target role and type. However, it does not support changing sensitivities.

Switching to the system role

Sometimes we need to invoke applications that should not run under our current SELinux user context, but instead as the system_u SELinux user with the system_r SELinux role. This is acknowledged by the SELinux policy administrators who allow a very limited set of domains (applications) to transition even the SELinux user to a different user. One of those applications is run_init.
The run_init application is used mainly (almost exclusively) to start services on a Linux system. Through the use of this application, the daemons do not run under the user’s SELinux context, but the system one instead. As an example, let us start the mcstrans daemon and check its context as follows:

run_init /etc/rc.d/init.d/mcstrans start
ps -Z $(pidof mcstransd)
system_u:system_r:setrans_t 7972 ? Ss 0:00 mcstransd

Since release 15, Fedora used systemd as the service management tool which has the advantage that daemons are no longer started by the user, but by systemd itself on request of the user. As a result, services launched by systemd inherit the system_u SELinux user that systemd runs in, and therefore run_init is not needed there.
On Gentoo, run_init is integrated in the OpenRC service management tool so we do not need to explicitly call it. In Fedora (up to release 14), run_init is only needed when the user is in the sysadm_r role.
Most SELinux policies enable role-managed support for selective service management (for non-systemd distributions). This allows users that do not have complete system administration rights to still manipulate particular services on a Linux system if allowed by the SELinux policy. These users are to be granted the system_r role, but once that has been accomplished they do not need to call run_init to manipulate specific services anymore. The transitions happen automatically and only for the services that are assigned to the user, other services cannot be launched by these users.
For instance, the database administrative role (dbadm_r) can directly execute the postgresql service (preferably through sudo) as follows:

$ sudo /etc/rc.d/init.d/postgresql stop

If these users would have access to run_init, they can launch any service they want, requiring additional protection to access run_init. For this reason, the users granted with system_r are preferred over the run_init tool.

The runcon user application

The last application that can switch roles and sensitivities is the runcon application. runcon is available for all users and is used to launch a specific command as a different role, type, and/or sensitivity. It even supports changing the SELinux user.
Unlike the previous commands, runcon runs in the context of the user rather than its own domain, so any change in role, type, sensitivity, or even SELinux user is governed by the privileges of the user itself.
Most of the time, runcon is used to launch applications with a particular category. This allows users to take advantage of the MCS approach in SELinux without requiring their applications to be MCS-enabled.
For instance, to run the Firefox browser with the Salaries category, enter the following:

$ runcon -l Salaries firefox

This method can also be used to assign categories to daemons, but the command needs to be added in the daemon service script itself.

Getting in the right context

With all the information about SELinux users and roles, we still haven’t touched how we get our context when we log in, or how we can change the type in the context.
Context switching during authentication

Traditionally, we log in to a Linux system through either a login process (triggered through a getty process) in case of a command-line login, a certain service (for example, the OpenSSH daemon), or through a graphical login manager (xdm, kdm, gdm, slim, and so on).
These services are responsible for switching our effective user ID (upon successful authentication of course) so that we are not logged on to the system as the root user. In case of SELinux systems, these processes also need to switch the SELinux user (and role) accordingly.
In theory, all these applications can be made fully SELinux aware, consulting the information we entered through semanage user and semanage login. But instead of converting all these applications, the developers decided to take the authentication route to a next level use the PAM (Pluggable Authentication Modules) services that Linux systems provide.
PAM offers a very flexible interface for handling different authentication methods on a Linux (and Unix) system. All applications mentioned earlier use PAM for their authentication steps. What SELinux does is aligns with the PAM session service to switch the context to the right one.
The following code listing is an excerpt of the Gentoo /etc/pam.d/system-login file, limited to the session service directives. It triggers the pam_selinux code as part of the authentication process as follows:
session optional pam_loginuid.so
session required pam_selinux.so close
session required pam_env.so
session optional pam_lastlog.so
session include system-auth
session optional pam_ck_connector.so nox11
session required pam_selinux.so multiple open
session optional pam_motd.so motd=/etc/motd
session optional pam_mail.so

The supported arguments to the pam_selinux code are described in the pam_selinux manual page. In the preceding example, the close option clears the current context (if any) whereas the open option sets the context of the user.
SELinux supports the aspect of selective contexts. The context is based on the process through which the user logs in. A perfect example of this is to differentiate administrators when they log in through the console (where they can be in the sysadm_r role immediately) versus log in through a remote shell, where we might want to put them in the staff_r role first and force them to reauthenticate (using newrole or sudo) before being given elevated privileges.

Application-based contexts

To cover application-based contexts, SELinux introduces the notion of a default context. Based on the context of the tool through which a user is logged in (or through which it executes commands), a different user context is chosen.
Inside the /etc/selinux/targeted/contexts directory, a file called default_contexts exists that uses a simple syntax. Each line starts with the context information of the parent process, and is then followed by an ordered list of all the contexts that could be picked based on the role(s) that the user is allowed to be in.
Consider the following line of code for the sshd_t context:
system_r:sshd_t:s0 user_r:user_t:s0 staff_r:staff_t:s0 sysadm_r:sysadm_t:s0 unconfined_r:unconfined_t:s0

This line of code mentions that when a user logs in through a process running in the sshd_t domain (or the process wants to set the user context because it needs to run something as a particular user), then the first role that matches a role that the user is assigned to is used.
Assume that we are assigned the roles staff_r and sysadm_r then we will log in as staff_r:staff_t, as that is the first match.
Next to the default_contexts file, there are also similar files in the users/ subdirectory. These files are named after the SELinux user for which they take effect. If such a file exists, then its lines take precedence over the default_contexts file. This allows us to assign different contexts for particular SELinux users even if they share the same roles with other SELinux users. And because the precedence is line-based, we do not need to copy the entire content of the default_contexts file, only the line that is different is sufficient.
Let’s modify the default contexts so that the dbadm_u SELinux user logs in with the dbadm_r role (with the dbadm_t type) when logged in through SSH. To do so, use the sshd_t line but set dbadm_r:dbadm_t:s0 as the only possible context and save the result as /etc/selinux/targeted/contexts/users/dbadm_u:
system_r:sshd_t:s0 dbadm_r:dbadm_t:s0

To validate if our change succeeded, we can ask SELinux what will be the result of a context choice without having to parse the files ourselves. This is accomplished through the getseuser command, which takes two arguments, namely, the Linux user account and the context of the process that switches the user context.
As an example, to see what the context would be for the myuser user when he logs on through a process running in the sshd_t domain:

getseuser myuser system_u:system_r:sshd_t
seuser: dbadm_u, level (null)
Context 0 dbadm_u:dbadm_r:dbadm_t

One of the advantages of the getseuser command is that it asks the SELinux code what the context would be, which not only looks through the default_contexts file, but also checks whether the target context can be reached or not, and that there are no other constraints that prohibit the change to the context.

Summary

SELinux maps Linux users onto SELinux users and defines the roles that a user is allowed to be in through the SELinux user definitions. We learned how to manage those mappings and the SELinux users with the semanage application and were able to grant the right roles to the right people.
We also saw how the same commands are used to grant proper sensitivity to the user and how we can describe these levels in the setrans.conf file. We used the chcat tool to do most of the category-related management activities.
After assigning roles to the users, we saw how to jump from one role to another using newrole, sudo, runcon, and run_init. We ended this chapter with the important insight on how SELinux integrates in the Linux authentication process and how it implements application-specific contexts.
In the next chapter, we will learn to manage the labels on files and processes and see how we can query the SELinux policy rules.

Chapter 4. Process Domains and File-level Access Controls

When we work on an SELinux-enabled system, gathering information about the contexts associated with the files and processes is extremely important. We also need to understand how these contexts are used in policies and what the applicable security rules are for a specific process.
In this chapter, we will:
	Work with file contexts and learn where they are stored
	Understand how contexts are assigned
	Look at how processes get into the context they are in
	Get our first taste of the SELinux policy and how we can query it

We end with another SELinux feature called constraints and how it is used to provide the user-based access control feature.
Reading and changing file contexts

Let us immediately start off with an example here: a web server hosting dokuwiki, a popular PHP wiki site that uses files rather than a database as its backend system.
Getting context information

The application is hosted at /var/www/localhost/htdocs/dokuwiki and stores its wiki pages (user content) in subdirectories of the data/ directory. Getting the contexts of files can easily be accomplished using the -Z option to ls. Most utilities that are able to provide feedback on contexts will try to do so using the -Z option, as we saw already with the id and ps utilities. Let's look at the context of the dokuwiki directory itself:

ls -lZ /var/www/localhost/htdocs
drwxr-xr-x. 1 root root root:object_r:httpd_sys_content_t 45 May 9 20:05 dokuwiki

File and directory contexts are stored on the filesystem as extended attributes when the filesystem supports this. If not, the context of the files is usually defined by the mounted filesystem type or its mount options. We can query the existing extended attributes using the getfattr application as shown in the following example:

$ getfattr -m . -d dokuwiki
file: dokuwiki
security.selinux="system_u:object_r:httpd_sys_rw_content_t"

As we can see, the security.selinux key is used for the SELinux context. The use of the security namespace enforces specific restrictions on manipulating the attribute: if no security module is loaded (for instance, SELinux is not enabled) then only processes with the CAP_SYS_ADMIN capability are able to modify this parameter (and thus influence the behavior of the SELinux system when SELinux is enabled).
Go ahead and look at the various file contexts on an SELinux-enabled system. You can also use the stat application which also provides context information, shown in the following example where we get the dokuwiki context information again:

$ stat dokuwiki | grep Context
Context: system_u:object_r:httpd_sys_rw_content_t

Getting context information from a file or directory should be as common to an administrator as getting regular access control information (read, write, and execute flags). After a while, we will notice that files are labeled based on their intended usage. An important context type is file_t, which is used when SELinux does not find any context information.
Consider the contexts of a user file in its home directory (user_home_t), a temporary directory in /tmp for a Java application (java_tmp_t), and a socket of rpcbind (rpcbind_var_run_t). All these files or directories have considerably different purposes on the filesystem, and this is reflected in their assigned contexts.
Policy writers will always try to name the context consistently, making it easier for us to understand the purpose of the file, but also to make the policy almost self documented and to detect anomalies in the file contexts.
An example of a common anomaly is when a file is moved from the user home directory to the web server location. When this occurs, it retains the user_home_t context as extended attributes are moved with it. As the web server process isn't allowed to access user_home_t by default, it will not be able to serve this file to its users.

Working with context expressions

In the SELinux policy, there is a list of regular expressions that informs the SELinux utilities and libraries what should be the context of a file. Though this expression list is not enforced on the system, it is meant for administrators to see if a context is correct or not, and for tools that need to reset contexts to what they are supposed to be. The list itself is stored on the filesystem in /etc/selinux/strict/contexts/files in the file_contexts.* files.
As an administrator, we can query parts of this list through semanage fcontext as follows:

semanage fcontext -l

Not all the entries are visible through the semanage application though. Entries related to user home directories or that are explicitly marked to not have a hardcoded context are not visible. For those entries that do match, the output of the command is:
	A regular expression
	The classes on which the rule is applicable, but translated in a more human-readable format
	The context to assign to the resources that match the expression and class list

The class list allows us to differentiate contexts based on the resource class, which can be a regular file (--), a directory (-d), a socket (-s), a named pipe (-p), a block device (-b), a character device (-c), or a symbolic link (-l). When it says "all files", the line is valid regardless of the class.
The option-like statements discussed previously are used in the context list itself (on the filesystem) and is also used when we would set our own context definition.
An important property of the context list is how it is prioritized. After all, we could easily have two expressions that both match. Within SELinux, the rule that is the most specific wins. The logic used is as follows (in order):
	If line A has a regular expression, and line B doesn't, then line B is more specific
	If the number of characters before the first regular expression in line A is less than the number of characters before the first regular expression in line B, then line B is more specific
	If the number of characters in line A is less than in line B, then line B is more specific
	If line A does not map to a specific SELinux type (the policy editor has explicitly told SELinux not to assign a type), while if line B does, then line B is more specific

Consider the rules that all match /usr/lib/pgsql/test/regress/pg_regress (shown through the findcon application):

$ findcon /etc/selinux/strict/contexts/files/file_contexts -p /usr/lib/pgsql/test/regress/pg_regress
/.* system_u:object_r:default_t
/usr/.* system_u:object_r:usr_t
/usr/(.*/)?lib(/.*)? system_u:object_r:lib_t
/usr/lib/pgsql/test/regress(/.*)? system_u:object_r:postgresql_db_t
/usr/lib/pgsql/test/regress/pg_regress -- system_u:object_r:postgresql_exec_t

Although the other five rules match, the last one is the most specific because it does not contain any expression. If that line doesn't exist, then the line before is the most specific because the number of characters before the first regular expression is much longer than the match before, and so on.
These rules, however, only hold for the context expressions provided by the policy. If we add our own regular expressions to the system (called local context expressions), and a file matches one of our expressions, then the last expression that we added which matches the file is used.

Setting context information

When we think that the context of a file is wrong, we need to correct the context. SELinux offers several methods to do so, and some distributions even add in more. In order to be able to change contexts we do need proper rights, which are named relabelfrom and relabelto. These rights are granted on domains to indicate if the domain is allowed to change a label from a particular type (similar to user_home_t) and towards another type (similar to httpd_sys_content_t). If we find denials in the audit log related to these permissions, it means that the domain is prohibited from changing the contexts.
Assuming that we have these rights, we can use tools such as chcon, restorecon (together with semanage), setfiles, rlpkg (Gentoo), and fixfiles (Fedora). Of course, we could also use the setfattr command, but will be the least user friendly approach for setting contexts.
The chcon tool updates the context of the file (or files) directly, but does not update the context list as provided by semanage. Let's try this out against the /srv/www directory as follows:

$ chcon -R -t httpd_sys_content_t /srv/www

Another interesting approach through chcon is to tell it to label a file with the same context as a different file. In the next example, we use chcon to label /srv/www/index.html, similarly as the context used for the /var/www/index.html file:

$ chcon --reference /var/www/index.html /srv/www/index.html

If we change the context of a file through chcon and set it to a context different from the one in the context list, then there is a possibility that the context will be reverted later: package managers might reset the files back to their intended context, or the system administrator might trigger a full filesystem relabeling operation.
For this reason, it is seriously recommended to only use chcon when testing the impact of a context change. Once the change is accepted, we need to register it through semanage. For instance, to permanently mark /srv/www (and all its subdirectories) as httpd_sys_content_t we need to execute the following:

semanage fcontext -a -t httpd_sys_content_t "/srv/www(/.*)?"
restorecon -R /srv/www

What we do here is to first register /srv/www and its subdirectories as httpd_sys_content_t through semanage. Then, we use restorecon to reset the contexts (recursively) of /srv/www to the value registered in the context list. This is the recommended approach for setting different contexts on most resources.
These registrations are the local context expressions and are stored in a separate file (file_contexts.local). Considering the priority of expressions, the following will not have the expected behavior since the last rule we added takes precedence:

semanage fcontext -a -t httpd_sys_content_t "/srv/www(/.*)?"
semanage fcontext -a -t var_t "/srv(/.*)?"

In this example, /srv/www would still be labeled as var_t instead of httpd_sys_content_t because the var_t rule was added later.
The semanage fcontext application can also be used to inform SELinux that a part of the filesystem tree should be labeled as if it was elsewhere. This allows us to use different paths for application installations or file destinations, and tell semanage to apply the same contexts as if the destination was the default.
For instance, to have everything under /srv/www be labeled as /var/www including subdirectories, so /srv/www/icons gets the same context as / var/www/icons,we use the –e option to semanage fcontext as follows:

semanage fcontext -a -e /var/www /srv/www

This will create a substitution entry so that anything under /srv/www is labeled as if it was at the same subdirectory but under /var/www.
The setfiles application is an older one, which requires the path to the context list file itself in order to reset contexts. Although it is often used under the hood of other applications, most administrators do not need to call setfiles directly anymore.
Finally, we have the rlpkg and fixfiles applications. Both of the applications have a nice feature that they can be used to reset the contexts of the files of a particular application, rather than having to iterate over the files manually and running restorecon against them. In the next example, we use these tools to restore the contexts of the files provided by the openssh package:

rlpkg openssh
setfiles -R openssh restore

Another feature of both applications is that they can be used to relabel the entire filesystem using the options shown here as follows:

rlpkg -a -r
setfiles -f -F relabel

Another way of relabeling the entire system is to create a touch file called .autorelabel in the root filesystem and reboot (Fedora-only) as follows:

touch /.autorelabel
reboot

We only focused on the type part of a context. Contexts, however, also include a role part and SELinux user part. If UBAC is not enabled, then the SELinux user has no influence on any decisions, but if it is enabled, utilities such as chcon are able to set the SELinux user as well. The role for a file usually is object_r as roles currently only make sense for users (processes).

Using customizable types

Some SELinux types are meant for files whose paths cannot be accurately defined by administrators, or where the administrator does not want the context to be reset when a relabeling operation is triggered. Such types are called customizable types.
The customizable types are declared in the customizable_types file inside /etc/selinux/strict/contexts. When restorecon (or any other tool that wants to reset contexts to the type declared in the context list) wants to relabel a file whose context is of a type known to be a customizable type, it will not reset the context (except when the force reset option -F is given).
Let's take a look at the contents of this customizable_types file:

$ cat /etc/selinux/strict/contexts/customizable_types

As an example, we can mark a file in our home directory (in this example, the file is called convert.sh) as home_bin_t, which is a customizable type and as such will not be relabeled back to user_home_t when a filesystem relabeling operation is done:

$ chcon –t home_bin_t ~/convert.sh

For now, we cannot add customizable types easily. The file needs to be edited manually, and because the file can be overwritten when a new policy package (by the distribution) is pushed to the system, it needs to be governed carefully.
Still, the use of customizable types has its advantages. As an administrator, we might want to create and support specific types usable by end users who can use chcon to set the context of individual files in their home directory. By having those types marked as customizable types, a relabeling operation against /home will not reset those contexts.
Most of the times, however, it is preferred to use semanage fcontext to add an expression, and restorecon to fix the context of the files. Take the convert.sh file as an example again, which would result in the following commands:

semanage fcontext –a –t home_bin_t /home/myuser/convert\.sh
restorecon /home/myuser/convert.sh

Inheriting the context

By default, SELinux uses context inheritance to identify what context should be assigned to a file (or directory, or socket, and so on) when it is created. It does not look at the value in the expression list (the file_contexts.* files). A file created in a directory with a context var_t will get assigned the context var_t as well.
There are a few exceptions to this though: type transition rules, SELinux-aware applications, or the use of restorecond.
Type transition rules are policy rules that force the use of a different type upon certain conditions. In the case of file contexts, such a type transition rule can be as follows: if a process running in the httpd_t domain creates a file in a directory labeled var_log_t, then the type identifier of the file becomes httpd_log_t instead of var_log_t.
Basically, this rule ensures that any file placed by web servers in a log directory is assigned the context specific to web server logs.
We can query these type transition rules using sesearch, one of the most important tools available to query the current SELinux policy. For the preceding example, we need the (source) domain and the (target) context of the directory: httpd_t and var_log_t. In the next example, we use sesearch to find the type transition declaration related to the httpd_t domain towards the var_log_t context:

$ sesearch -T -s httpd_t -t var_log_t
Found 1 semantic te rules:
 type_transition httpd_t var_log_t : file httpd_log_t;

The type_transition line is an SELinux policy rule, which maps perfectly on the description. Let's look at another set of type transition rules for the tmp_t label (assigned to the top directory of temporary file locations, for example, /tmp and /var/tmp):

$ sesearch -T -s httpd_t -t tmp_t
Found 4 semantic te rules:
 type_transition httpd_t tmp_t : file httpd_tmp_t;
 type_transition httpd_t tmp_t : dir httpd_tmp_t;
 type_transition httpd_t tmp_t : lnk_file httpd_tmp_t;
 type_transition httpd_t tmp_t : sock_file httpd_tmp_t;

Found 2 named file transition rules:
type_transition httpd_t tmp_t : file krb5_host_rcache_t "HTTP_23";
type_transition httpd_t tmp_t : file krb5_host_rcache_t "HTTP_48";

The policy tells us that if a file, directory, symbolic link, or socket is created in a directory labeled tmp_t, then this resource gets the httpd_tmp_t context assigned (and not the default, inherited tmp_t one). But it also contains two named file transitions, which is a (rather recent) addition to the SELinux policy (which is not available in RedHat Enterprise Linux 6).
With named file transitions, the policy can take into account the name of the file (or directory) created to differentiate the target context. In the preceding example, if a file named HTTP_23 or HTTP_48 is created in a directory labeled as tmp_t, then it does not get the assigned httpd_tmp_t context (as would be implied by the regular type transition rules), but instead the krb5_host_rcache_t type (used for Kerberos implementations).
Type transitions do not only give us insight into what labels are going to be assigned, but they also give us some clues as to which types are related to a particular domain. In the web server example, we already found out by querying the policy that its logfiles are most likely labeled httpd_log_t and its temporary files as httpd_tmp_t.
Next to type transition rules, contexts can be defined through the application itself if the application is SELinux-aware (that is linked with and uses SELinux libraries). If that is the case, the application can force the context of a file to be different (but only if the policy allows it of course).
Finally, contexts can also be forced by restorecond. The purpose of this daemon is to enforce the expression list rules onto a configured set of locations. These locations are set in its configuration file, /etc/selinux/restorecond.conf. The next is an example list of locations set in the restorecond.conf file, so that restorecond will react upon context changes of these files and directories:
/etc/resolv.conf
/etc/mtab
/var/run/utmp
~/public_html
~/.mozilla/plugins/libflashplayer.so

In this case, if a file that matches any of the previously created paths, restorecond will be notified of it (through the Linux inotify subsystem) and will relabel the file according to the expression list. In the past, the use of restorecond was needed because SELinux didn't support named file transitions yet, so writing resolv.conf in /etc couldn't be differentiated from writing passwd in /etc. The introduction of named file transitions has considerably reduced the need for restorecond.

Placing categories on files and directories

We focused primarily on changing types, but another important part is to support categories (and sensitivity levels). With chcon, we can add sensitivity levels and categories as follows:

$ chcon -l s0:c0,c2 index.html

Another tool that can be used for assigning categories is the chcat tool. With chcat, we can assign additional categories rather than having to iterate them again as in the case with chcon, and even enjoy the human-readable category levels as provided by the setrans.conf file:

$ chcat -- +Customer2 index.html

The context of a process

As everything in SELinux works with labels, even processes are assigned a label, also known as the domain. If a label is absent (or invalid), SELinux will show the process as unlabeled_t. We saw that the Apache web server runs in the httpd_t domain, which can be seen with the ps -Z command as follows:

ps -eZ | grep httpd
system_u:system_r:httpd_t:s0 2270 ? 00:00:00 httpd

The Apache processes don't inform SELinux themselves that they need to run in the httpd_t domain. For that, transition rules in SELinux exist.
Transitioning towards a domain

Just as we did with files, if a process forks and creates a new process, this process inherits the context of the parent process. In case of the web server, the main process is in the httpd_t domain, so all the worker processes that are launched inherit the httpd_t domain from it.
In order to differentiate one process from another, domain transitions can be defined. A domain transition (also known as a process transition) is a rule in SELinux that tells SELinux another domain is to be used for a forked process (actually, it is when the parent process calls the execve() function, most likely after a fork()).
Similar to the files, domain transitions can be searched through using sesearch. Let's look into the domains that are allowed to transition to the httpd_t domain as follows:

$ sesearch -T | grep "process httpd_t"
type_transition initrc_t httpd_exec_t : process httpd_t

In this case, SELinux will switch the context of a launched web server to httpd_t if the parent process is running in the initrc_t domain and is executing a file labeled as httpd_exec_t (which is the label assigned to the httpd binary).
But in order for this to truly happen, a number of other permissions (next to the type transition) need to be in place. The following list describes these various permissions:
	The parent process (initrc_t here) needs to be allowed to transition to the httpd_t domain, which is governed by the transition privilege on the process class:
$ sesearch -s initrc_t -t httpd_t -c process -p transition -A
Found 1 semantic av rules:
 allow initrc_t httpd_t : process transition ;

	This parent process needs to have the execute right on the file it is launching (httpd_exec_t):
$ sesearch -s initrc_t -t httpd_exec_t -c file -p execute -A
Found 1 semantic av rules:
 allow initrc_t httpd_exec_t : file { ioctl read getattr … execute … open } ;

	The httpd_exec_t type must be identified as an entrypoint for the httpd_t domain. An entrypoint is used by SELinux to ensure a domain transition only occurs on the file(s) that should be used to get into a new domain:
$ sesearch -s httpd_t -t httpd_exec_t -c file -p entrypoint -A
Found 1 semantic av rules:
 allow httpd_t httpd_exec_t : file { ioctl read … entrypoint open } ;

	The target domain must be allowed for the role that the parent process is in. In case of system daemons, the role is system_r:
$ seinfo -rsystem_r -x | grep httpd_t

A graphical representation of these rights is shown in the following diagram:
[image: Transitioning towards a domain]Graphical overview of the involved permissions to succesfully transition from one domain to another

Only when all these are allowed, a domain transition occurs. If not, either execution of the application fails (if the domain has no execute rights on the file), or it is running in the same domain as the parent process.

Other supported transitions

Regular domain transitions are the most common transitions in SELinux, but there are other transitions as well.
For instance, some applications (for example, cron or login) are SELinux aware and will specify to which domain a transition needs to be triggered. These applications call the setexeccon() method to specify the target domain, and do not use a type transition rule. The other requirements, however, still hold.
Some SELinux aware applications are even able to change their current context (and not just the context of the application they execute). In order to do so, the application domain needs the dyntransition right (one of the privileges supported for process-level activities). An example of such an application is chromium, which by default runs in the chromium_t domain but can transition to the chromium_renderer_t type. Another example is the httpd_t domain.
The support for dynamic transitions in httpd_t is to support the mod_selinux Apache module. With this module, requests for a particular web application can be handled in a different domain than the (main) httpd_t domain, even though no additional process is launched. Instead, one of the worker processes (or threads, as SELinux contexts can be put on threads as well) dynamically transitions to the security domain the administrator wants it to run in.

Working with mod_selinux

When dynamic transitions are used, we need to know if the process is single-threaded or not. If it is single-threaded, then the target domain can be "freely" chosen. However, if the process is multithreaded and we want to change the context of a single thread, then the target domain must be bounded by the current (parent) domain. SELinux will enforce this, and refuse to change to a new domain if this domain isn't bounded.
A bounded domain means that the privileges of the domain are the same or less than the permissions of the parent domain. This is a requirement because threads share the same memory segments, so SELinux is not able to control information flows between different threads. By ensuring that target domains are bounded, SELinux is able to contain the information flow within the process.
Consider a web server configuration with multiple virtual hosts; for each virtual host, a different domain can be selected through the selinuxDomainVal directive (or the same domain but with a different sensitivity level or category set).
NameVirtualHost *:80
<VirtualHost *:80>
 DocumentRoot /var/www/sales
 ServerName sales.genfic.com
 selinuxDomainVal *:s0:c1
</VirtualHost>
<VirtualHost *:80>
 DocumentRoot /var/www/hr
 ServerName hr.genfic.com
 selinuxDomainVal hr_site_t:s0
</VirtualHost>

The mod_selinux module can also select the domain (or sensitivity level and category) based on the authenticated web user. To support this, a user mapping file needs to be created that provides the target context for each authenticated user as follows:
someuser *:s0:c1
otheruser *:s0:c2
__anonymous__ anon_webapp_t:s0
* *:s0:c0

The __anonymous__ user is a special one for unauthenticated users.
This mapping file can then be referenced in the web server configuration as follows:
<VirtualHost *:80>
 DocumentRoot /var/www/sales
 ServerName sales.genfic.com
 selinuxDomainMap /etc/apache/selinux/mod_selinux.map
</VirtualHost>

We can also differentiate them based on the origin of the requests. Suppose we want to assign a different category range if the user is on one subnet than when he is connected from another subnet:
<VirtualHost *:80>
 DocumentRoot /var/www/sales
 ServerName sales.genfic.com
 SetEnvIf Remote_Addr "10.18.12.[0-9]+$" SELINUX_DOMAIN=*:s0:c0
 SetEnvIf Remote_Addr "10.160.18.[0-9]+$" SELINUX_DOMAIN=*:s0:c0.c5
 selinuxDomainEnv SELINUX_DOMAIN
 selinuxDomainVal anon_sales_t:s0:c0
</VirtualHost>

In this example, if the IP address of the user matches, then the domain mentioned in the SELINUX_DOMAIN variable is used. Otherwise, the context falls back to the one provided by the selinuxDomainVal directive. By supporting variables, more integrated approaches can be used, such as selecting the target domains through database queries.

Dealing with types, permissions, and constraints

Now that we know more about types (both in the context of processes as well as files and other resources), let's look into how these are used in the SELinux policy in more detail.
Type attributes

We have discussed the sesearch application already and how it can be used to query the current SELinux policy. Let us look again at the process transitions, this time on a Fedora system:

$ sesearch -s initrc_t -t httpd_t -c process -p transition -A
Found 1 semantic av rules:
 allow initrc_domain daemon : process transition ;

Even though we asked for the rules related to the initrc_t source and the httpd_t target, we get a rule back for the initrc_domain source and the daemon target. What sesearch did here was it told us a privilege of initrc_t based on a privilege assigned to an attribute.
Type attributes in SELinux are used to group multiple types and assign privileges on these groups, rather than having to assign the privileges on each type individually. In case of initrc_domain, the following types are all "tagged" with the initrc_domain attribute, which can be seen through the seinfo application:

$ seinfo -ainitrc_domain -x
 initrc_domain
 piranha_pulse_t
 initrc_t
 kdumpctl_t
 init_t
 rgmanager_t
 condor_startd_t

As we can see, the initrc_t type is indeed one of the initrc_domain tagged types. Similarly, the daemon attribute is assigned to several types (several hundreds even). So the single allow rule mentioned earlier consolidates more than a thousand rules into one (hundreds of allow rules, each for the preceding six initrc domains).
Attributes are being used increasingly in the policy as a way of consolidating and simplifying policy development. With seinfo -a, you can get an overview of all attributes supported in the current policy.

Querying domain permissions

The most common rules in SELinux are the allow rules, informing the SELinux subsystem what permissions a domain has. Allow rules using the following syntax:
allow <source> <destination> : <class> <permissions> ;

The <source> field is always a domain, whereas the <destination> field can be of any kind of type.
The <class> field allows us to differentiate privileges based on the resource: is it for a regular file, a directory, a TCP socket, a capability, and so on. A full overview of all supported classes can be obtained from seinfo -c. Each class has a set of permissions assigned to it that SELinux can control. For instance, the sem class (used for semaphore access) is as follows:

$ seinfo -csem -x
 sem
 associate
 create
 write
 unix_read
 destroy
 getattr
 setattr
 read
 unix_write

In the <permissions> field, most rules will bundle a set of permissions through the use of the { … } brackets:
allow user_t etc_t : file { ioctl read getattr lock execute execute_no_trans open } ;

This syntax allows policy developers to make very fine-grained permission controls. We can use the sesearch command to query through these rules. The more options that are given to the sesearch command, the finer-grained our search parameters become. For instance, sesearch -A would give us all allow rules currently in place. Adding a source (-s) filters the output to only show the allow rules for this domain. Adding a destination or target (-t) filters the output even more. Other supported options for allow rules with sesearch are the class (-c) and permission (-p).
The syntax also perfectly matches with the information provided by AVC denials:
type=AVC msg=audit(1371993742.009:15990): avc: denied { getattr } for pid=31069 comm="aide" path="/usr/lib64/postgresql-9.2/bin/postgres" dev="dm-3" ino=803161 scontext=root:sysadm_r:aide_t tcontext=system_u:object_r:postgresql_exec_t tclass=file

Allowing this particular denial would result in the following allow rule:
allow aide_t postgresql_exec_t : file { getattr };

Understanding constraints

The allow statements in SELinux however only focus on the type-related permissions. Sometimes, however, we need to restrict certain actions based on the user or role information. In SELinux, this is supported through constraints.
Constraints in SELinux are rules that are applied against a class and a set of its permissions which have to be true in order for SELinux to further allow the request. Consider the following constraint on process transitions:
constrain process { transition dyntransition noatsecure siginh rlimitinh }
(
 u1 == u2
 or (t1 == can_change_process_identity and t2 == process_user_target)
 or (t1 == cron_source_domain and (t2 == cron_job_domain or u2 == system_u))
 or (t1 == can_system_change and u2 == system_u)
 or (t1 == process_uncond_exempt)
);

This constraint says that the following rule(s) have to be true if a transition, dyntransition, or any of the other three mentioned process permissions is invoked:
	The SELinux user of the domain (u1) and target (u2) have to be the same
	The SELinux type of the domain (t1) has to have the can_change_process_identity attribute set and the SELinux type of the target (t2) has to have the process_user_target attribute set
	The SELinux type of the domain (t1) has to have the can_system_change attribute set and the SELinux user of the target (u2) has to be system_u
	The SELinux type of the domain (t1) has to have the process_uncond_exempt attribute set

It is through constraints that UBAC is implemented as follows:
u1 == u2
or u1 == system_u
or u2 == system_u
or t1 != ubac_constrained_type
or t2 != ubac_constrained_type

You can list the currently enabled constraints using seinfo --constrain, but the output expands the attributes immediately and uses a postfix notation, making it not that obvious to read.

Summary

In this chapter, we saw how file contexts are stored as extended attributes on the filesystem and where SELinux keeps its definition on what contexts are to be assigned on which files. We also learned to work with the semanage tool to manipulate this information.
On the process level, we got our first taste of SELinux policies, identifying when a process is launched inside a certain SELinux domain. With it, we touched the sesearch and seinfo applications to query the SELinux policy.
In the next chapter, we will expand our knowledge of protecting the operating system from a regular file, and process protection measures towards the networking-related features of SELinux.

Chapter 5. Controlling Network Communications

The SELinux mandatory access controls go much beyond the file and process access controls. One of the features provided by SELinux is controlling network communications. By default, the socket-based access control mechanism is used for general network access controls, but more detailed approaches are also possible.
TCP and UDP support

When we confine network facing services, for example, web servers or database servers, we not only focus on the file-based restrictions and process capabilities, but also what network activities the services are allowed to do. Many database servers should not be able to initiate a connection themselves to other systems and, if they do, these connections should be limited to the expected services (like other database services).
The first approach on limiting this is to define what sockets a process is allowed to bind on (as a service) or connect to (as a client). In the majority of cases, the sockets are either TCP sockets or UDP sockets. In SELinux, these are mapped to the tcp_socket and udp_socket classes.
Labeling ports

In order to easily map SELinux domain accesses to the TCP or UDP ports, SELinux allows administrators to label these ports and define which domains can access what ports. When a domain tries to connect or bind to a port, the name_connect or name_bind permissions on the socket class related to the port are checked. If it fails, an AVC denial similar to the following one is shown:
type=AVC msg=audit(1372361247.465:76): avc: denied { name_bind } for pid=2880 comm="apache2" src=84 scontext=system_u:system_r:httpd_t:s0 tcontext=system_u:object_r:reserved_port_t:s0 tclass=tcp_socket

As we can see, the httpd_t domain tried to bind (name_bind permission) against a tcp_socket class labeled with reserved_port_t, but was prevented by SELinux. In the denial, we can find out what the port number is (src=84).
The labels for the various ports can be seen using semanage port, as shown in the following example:

semanage port -l | grep http_port
http_port_t tcp 80, 443, 488, 8008, 8009, 8443
pegasus_http_port_t tcp 5988

In the preceding example, we see that the http_port_t label is assigned to a set of TCP ports. It comes as no surprise that daemons, for example, web servers, are policywise, allowed to bind to this port. We can check this using the sesearch application as follows:

$ sesearch -s httpd_t -t http_port_t -A
Found 1 semantic av rules:
 allow httpd_t http_port_t : tcp_socket { recv_msg send_msg name_bind } ;

Note
From the output, we can imagine that there are also recv_msg and send_msg permissions. Although these are still known in the policy, they are no longer used and expected to disappear in the near future. The only permissions that are checked are the
name_bind and name_connect ones.

As an administrator, we can change the label assigned to particular ports. For instance, we can assign the http_port_t label to port 84 using semanage port as follows:

semanage port -a -t http_port_t -p tcp 84

This is the recommended approach when you have daemons assigned to run on non default ports to hide them from port scanners: instead of modifying the policy to allow the daemon to bind on other ports, just assign the same label on the non standard port as we did in the preceding example with port 84 (which is now also labeled as http_port_t).

Integrating with Linux netfilter

The approach with TCP and UDP ports has a few downsides. One of them is that there is no knowledge of the target host, so you cannot govern where a domain can connect to. There is also no way of limiting daemons from binding on any interface: in a multi-homed situation, we might want to make sure that a daemon only binds on the interface facing the internal network and not the Internet-facing one, or vice-versa.
In the past, SELinux allowed support for this binding issue through the interface and node labels: a domain could only be allowed to bind on one interface and not on any other, or even on a particular address (referred to as the node). This support has been deprecated for the regular network access control support because it had a flaw; there was no link between host or interface binding information and the connect or bind permission towards a particular socket.
Consider the example of a web server on a DMZ system. The web server is allowed to receive web requests from the Internet (interface 0) as well as connect to a database in the internal network (through interface 1) to serve the dynamic content. For SELinux, in this previous approach, this allowed the web server to bind on both interfaces, bind on the http_port_t socket and connect to a postgresql_port_t socket (or other database socket).
The flaw here is that the domain now is also allowed (SELinux wise) to connect to a PostgreSQL socket on a database the Internet, which we might not want. To fix this, packet labeling is introduced which is called SECMARK.
Packet labeling through netfilter

With packet labeling, we can use the filtering capabilities of iptables and ip6tables to assign particular labels on packets and connections. Because we can use the flexible options provided by the filtering subsystem, we can mark only the packets related to the PostgreSQL connection from our web server to the internal PostgreSQL server and allow the web server to send and receive permissions on these packets.
Because packets originating from (or going to) a database on the Internet are then marked with a default label (or an explicit label we assign it with), SELinux is able to prevent the web server in our DMZ example to connect to an Internet-hosted database, as SELinux can now control the labeled traffic.
This packet labeling uses the idea of security markings, hence the name SECMARK. Although we use the term SECMARK, there are actually two markings: one for packets (SECMARK) and one for connections (CONNSECMARK).
The filtering capabilities for which we use iptables (for IPv4) and ip6tables (for IPv6) are based on the Linux netfilter subsystem, which offers a full-featured packet filtering framework. Basically, Linux offers a set of packet matching tables based on the functionality through which the packet "flows": filter, nat, mangle, raw, and security. For SECMARK, the mangle and security tables are those that offer the security marking capabilities.
Next to the tables, there are also chains (where we can define a sequential set of filtering rules in) assigned to the tables, and which are used by the netfilter subsystem while it is handling a packet. By default, the netfilter subsystem comes with a set of chains (PREROUTING, INPUT, FORWARD, POSTROUTING, and OUTPUT) which are triggered in a well-defined flow. Custom chains can also be created (and reused), and can be referred to using rules in the predefined chains.
A rule in a chain provides a matching criterion for a packet which, if the packet indeed matches, is handled according to the target. Targets can be a custom chain, or one of the predefined resulting values ACCEPT, DROP, QUEUE, RETURN, or (in our case) SECMARK.

Assigning labels to packets

When no SECMARK related rules are loaded in the netfilter subsystem, then SECMARK is not enabled and none of the SELinux rules related to SECMARK permissions are checked. The network packets are not labeled, so no enforcement can be applied to them. Of course, the regular TCP/UDP socket related labels still apply.
Once a SECMARK rule is enabled, SECMARK becomes active and SELinux starts enforcing the packet label mechanism. This means that all of the network packets now need a label on them (as SELinux can only deal with labeled resources). This label is unlabeled_t, which does not mean that there is no label (because that is the label), but because there is no marking rule that matches this particular network packet.
Because SECMARK rules are now being enforced, all domains that interact with network packets are checked to see if they are allowed to send or receive these packets. In order to simplify management, some distributions enable send and receive rights against the unlabeled_t packets for all domains. Without these rules, all network services would stop functioning properly, the moment a single SECMARK rule is enabled.
For those systems that accept the unlabeled_t packets by default, we can add in a netfilter rule that automatically marks all packets, which are not labeled otherwise, with a non default label (for example, forbidden_packet_t). So, no unlabeled_t packet goes through anymore. This allows us to toggle the default acceptance of packets on and off easily without rebuilding SELinux policies.
To assign a packet, we need to define a set of rules that match a particular network flow. It is a common practice to create a separate chain for the security markings, and jump to this chain when needed. So let's start with an example of marking incoming HTTP packets (and connection) as http_server_packet_t, by performing the following steps:
	First, we define the SEL_M_HTTP custom chain (which is an arbitrary name) for the security table. If the security table is not present on the system, we can use the mangle table as well (the security table is a recent addition and not fully integrated everywhere yet):
iptables -t security -N SEL_M_HTTP

	Next, we label all packets that enter the chain as http_server_packet_t:
iptables -t security -A SEL_M_HTTP -j SECMARK --selctx system_u:object_r:http_server_packet_t:s0

	Now we inform netfilter to save the state of the connection based on the security marking of the packet as follows:
iptables -t security -A SEL_M_HTTP -j CONNSECMARK –save

	We end the custom chain with the ACCEPT target, so that the packets (and connection) are allowed (for the security table) and there are no more rules in this chain that need to be processed.
iptables -t security -A SEL_M_HTTP -j ACCEPT

We can now define a matching filter: incoming packets (our destination is a local network address) on port 80, and jump to the SEL_M_HTTP custom chain if the packets match using the following command:

iptables -t security -A INPUT -p tcp -d 192.168.1.1/24 --dport 80 -j SEL_M_HTTP

That's it. With these rules in place, the matching packets are labeled as http_server_packet_t.

Differentiating between server and client communication

The SELinux policy provides a set of packet types by default, based on the service that is usually assigned to a particular port, and also on the function of the packet. Is it a client packet (sent or received by a client application) or a server packet (sent or received by a daemon)?
Consider the web server example again: we labeled it as http_server_packet_t, because it is a packet intended for the locally running web server. Systems that run a web browser which connects to a web server, however, would label these packets as http_client_packet_t, as they are intended as a client packet.
Although in both cases the rules can be quite equivalent (both can use similar or even the same filtering rules), this distinction shows one of the most important things to remember from the SECMARK labeling: the markings are local to the system and are never, ever exposed to the network (nor can they ever be used by other systems). A label is assigned the moment the packet enters the netfilter subsystem, but the moment it exits the subsystem the label is gone.
Work is being done to integrate default SECMARK labels in distributions, allowing us to enable the standard service packet labels easily. For now though, we will need to manage this ourselves.

Introducing labeled networking

Another approach to further fine-tune the access controls on network level is to introduce labeled networking. With labeled networking, security information is passed on between hosts (unlike SECMARK which only starts when the packet is received by the netfilter subsystem). This is also known as peer labeling, as the security information is passed on between hosts (peers).
The advantage of labeled networking is that security information is retained across the network, allowing an end-to-end enforcement on mandatory access control settings between systems, as well as retaining the sensitivity level of communication flows between systems. The major downside however is that this requires an additional network technology (protocol) that is able to manage labels on network packets or flows.
SELinux currently supports two implementations as part of the labeled networking approach: NetLabel/CIPSO and labeled IPSec. With NetLabel/CIPSO, only the sensitivity of the source domain is retained across the communication. Labeled IPSec supports transporting the entire security context with it.
In this book, we will focus on labeled IPSec and only briefly touch NetLabel/CIPSO, as labeled IPSec is much more common.
Common labeling approach

Quite some time ago, support for NetLabel/CIPSO and labeled IPSec has been merged in a common framework called netpeer. The netpeer approach introduces three additional privilege checks in SELinux: interface checking, node checking, and peer checking. These privilege checks are only active when labeled traffic is being used: without labeled traffic, these checks are simply ignored.
In the interface and node checks, the domain that is acting is the peer domain. For instance, if we are looking at the configuration from a web server perspective, the peer domain can be httpd_t (as that is the context of the socket), if the web server is initiating something, or mozilla_t (as that is the context of the web browser socket on the client) if the web server is receiving something.
Limiting flows based on the network interface

The idea behind interface checking is that each packet that comes into a system passes an ingress check on an interface, whereas a packet that goes out of a system passes an egress check. Ingress and egress are the SELinux permissions involved, whereas interfaces are given a security context.
Interface labels can be granted using the semanage tool, and are especially useful to assign sensitivity levels and categories to interfaces, as we will do in the following example where the categories for the tap0 interface are set:

semanage interface -a -t netif_t -r s0-s0:c0.c128 tap0

Similar to the other semanage commands, we can also view the current mappings as follows:

semanage interface -l
SELinux Interface Context
tap0 system_u:object_r:netif_t:s0-s0:c0.c128

As the communication flows originate from a peer label (as with the web server and client example) we will see, on the server side, the mozilla_t ingress activity, and not httpd_t ingress. The following denial confirms this as follows:
type=AVC msg=audit(1372954432.866:1592): avc: denied { ingress } for pid=0 comm="swapper/1" saddr=192.168.100.1 src=40854 daddr=192.168.100.152 dest=80 netif=eth0 scontext=staff_u:staff_r:mozilla_t:s0 tcontext=system_u:object_r:netif_t:s0 tclass=netif

Accepting communication from selected hosts

Nodes represent specific hosts (or network of hosts) that data is sent towards (sendto) or received from (recvfrom) and are handled through the SELinux node class. Just like with interfaces, these can be listed and defined by the semanage tool. In the following example, we mark the 10.0.0.0/8 network with the node_t type, as follows:

semanage node -a -t node_t -p tcp 10.0.0.0/8
semanage node -l
IP Address Netmask Protocol Context
10.0.0.0 255.0.0.0 ipv4 system_u:object_r:node_t:s0

Similarly, as activity will be seen originating from the peer label, we will see the recvfrom activity on the server side for the mozilla_t peer, as shown in the following denial:
type=AVC msg=audit(1372954797.871:1636): avc: denied { recvfrom } for pid=0 comm="swapper/1" saddr=192.168.100.1 src=40864 daddr=192.168.100.152 dest=80 netif=eth0 scontext=staff_u:staff_r:mozilla_t:s0 tcontext=system_u:object_r:node_t:s0 tclass=node

Verifying peer-to-peer flow

The final check is a peer class check. In case of labeled IPSec, this is the label of the socket that is sending out the data (mozilla_t). For NetLabel/CIPSO however, the peer will be static, based on the source, as NetLabel (actually CIPSO) is only able to pass on sensitivity levels. A common label seen for Netlabel is netlabel_peer_t.
The following is an example of an AVC denial on the peer class:
type=AVC msg=audit(1372954885.960:1659): avc: denied { recv } for pid=9 comm="rcu_preempt" saddr=192.168.100.1 src=40870 daddr=192.168.100.152 dest=80 netif=eth0 scontext=system_u:system_r:httpd_t:s0 tcontext=staff_u:staff_r:mozilla_t:s0 tclass=peer

As we can see, unlike the interface and node checks, peer checks have the peer domain as the target rather than the source. In this example, we saw that the httpd_t domain (local) does not have the right to receive traffic from the mozilla_t peer.
In all of theprevious examples, the process listed in the denial has nothing to do with the actual denial. This is because the denial is triggered from within a kernel subsystem rather than through a call made by a user process. As a result, an unrelated process that was interrupted while the denial was being prepared is listed.

Example – labeled IPSec

Although setting up and maintaining an IPSec setup is far beyond the scope of this book, let us look at a simple IPSec example to show how labeled IPSec is enabled on such a system. In the example, a simple IPSec tunnel is set up between two hosts.
Setting up regular IPSec

First, the racoon daemon is configured with information about the pre-shared key (to use during the handshake with the remote side), handshake details for the remote side, and association information for the "joined" networks. The following code is an excerpt of the racoon configuration file:

File contains remote address with a shared key, like:
192.178.100.153 ThisIsABigSecret
path pre_shared_key "/etc/racoon/psk.txt";
remote 192.168.100.153 { … };
sainfo address 10.1.2.0/24 any address 10.1.3.0/24 any { … };

Most distributions offer sane defaults for the racoon configuration. In the preceding example, the 192.168.100.153 IP address is the address of the remote side, whereas, the sainfo address ranges are used for the VPN (10.1.2.0/24 is local, 10.1.3.0/24 is remote).
The setkey information (to manipulate the IPSec SA/SP databases) looks as follows:

#!/usr/sbin/setkey -f
flush; spdflush;
spdadd 10.1.2.0/24 10.1.3.0/24 any -P out ipsec esp/tunnel/192.168.1.5-192.168.100.153/require;
spdadd 10.1.3.0/24 10.1.2.0/24 any -P in ipsec esp/tunnel/192.168.100.153-192.168.1.5/require;

With the following proper routing information at hand, any communication towards an address at the remote site (10.1.3.0/24) will go through this IPSec tunnel as follows:

ip addr add 10.1.2.1/24 dev eth0
ip route add to 10.1.3.0/24 via 10.1.2.1 src 10.1.2.1

Enabling labeled IPSec

To enable labeled IPSec, we need to inform IPSec to add a context on the security policy database. Once enabled, racoon will automatically negotiate labeled IPSec support. Adding a context to the SPD is a matter of adding a -ctx option to the spdadd commands in the setkey configuration. For instance, we can add the ipsec_spd_t context to an IPSec security policy as follows:

spdadd … -ctx 1 1 "system_u:object_r:ipsec_spd_t:s0" -P out ipsec …

With this change in place, we can see the context in the output of setkey -DP as shown in the following example:

setkey -DP
…
10.1.2.0/24[any] 10.1.3.0/24[any] 255
 out prio def ipsec
 esp/tunnel/192.168.100.152-192.168.100.153/require
 created: Jul 4 21:45:44 2013 lastused:
 lifetime: 0(s) validtime: 0(s)
 security context doi: 1
 security context algorithm: 1
 security context length: 33
 security context: system_u:object_r:ipsec_spd_t:s0
 spid=1 seq=0 pid=3237
 refcnt=1

When an IPSec connection (by setting up security associations) is set up to the other site, the following set of permissions are checked:
	The SELinux domain of the client (for example, ping_t for the ping command or ssh_t for the SSH client) must have polmatch permissions against the ipsec_spd_t type through the association class
	The SELinux domain of the target on the server (for example, kernel_t for replying to ping commands, or sshd_t for the SSH server) must have polmatch permissions against the ipsec_spd_t type through the association class

Once set up, the following permissions are needed for the communication flow to work properly:
	The SELinux domains of the client (ping_t or ssh_t) and server (kernel_t or sshd_t) must have sendto rights on their own domains (actually the domain of the socket it uses, but that is almost always the type of the application itself) through the association class
	The SELinux domains of the server (kernel_t or sshd_t) and client (ping_t or ssh_t) must have receive (recv) rights against the client or server domains (which are known as the peer domain) through the peer class

The permissions work in both ways because the examples are using packets being sent in both ways. In case of a single direction flow, this is of course not necessary.
The huge advantage here is that the client and server contexts are sent over the wire, including the sensitivity and categories.

About NetLabel/CIPSO

With NetLabel/CIPSO support, traffic is labeled with sensitivity information that can be used across the network. Unlike labeled IPSec, no other context information is sent over. So when we see communication flows, they will originate from a single base context, but will have sensitivity labels based on the sensitivity label of the remote side.
With NetLabel, mappings are defined that inform the system which communication flows (from particular interfaces, or even from particular IP addresses), are for a certain DOI (Domain Of Interpretation). The CIPSO standard defines the DOI as a collection of systems which interpret the CIPSO label similarly, or in our case, use the same SELinux policy and configuration of sensitivity labels.
With the mappings in place, NetLabel/CIPSO will pass on the sensitivity information (and categories) between hosts. The context we will see on the communication flows will be netlabel_peer_t, a default context assigned to NetLabel/CIPSO originated traffic.
Through this approach, we can start daemons with a particular sensitivity range and thus only accept connections from users or clients that have the right security clearance, even on remote, NetLabel / CIPSO-enabled systems.

Summary

SELinux by default uses access controls based on the TCP and UDP ports and the sockets that are bound on them. This is configurable through the semanage command. More advanced communication control can be accomplished through Linux netfilter support, using the SECMARK labeling, and through peer labeling.
In case of SECMARK labeling, local firewall rules are used to map contexts to packets, which are then governed through SELinux policy. In case of peer labeling, either the application context itself (in case of labeled IPSec) or its sensitivity level (in case of netfilter/CIPSO support) is used. This allows an almost application-to-application network flow control through SELinux policies.
In the next chapter, we will see how to enhance the SELinux policy ourselves, not only through the SELinux Booleans already available, but also through the creation of additional types (which can be used for the SECMARK labeling), user domains, application policies, and many more.

Chapter 6. Working with SELinux Policies

Until now, we have been working with an existing SELinux policy by tuning our system to deal with the proper SELinux contexts, assigning the right labels on files, directories, and even network ports. In this chapter we will:
	Manipulate conditional SELinux policy rules through booleans
	Create our own SELinux policy modules and use this to enhance the SELinux policies on our systems

Manipulating SELinux policies

One of the methods for manipulating SELinux policies is by toggling SELinux Booleans.
An SELinux Boolean is a flag that, when enabled or disabled, changes the active SELinux rules in the policy. Booleans are used by policy writers to make conditional rules which can then be triggered by administrators to enable or disable additional access controls.
For instance, a Boolean called httpd_can_sendmail enables additional SELinux rules to allow web servers to send mail. The web servers are then allowed to execute sendmail-like applications or connect to SMTP and POP ports. If the Boolean is disabled, the web server does not have these privileges.
Overview of SELinux Booleans

An overview of SELinux Booleans can be obtained using the semanage command with the boolean option. On a regular system, we can easily find over a hundred SELinux Booleans, so it is necessary to filter out the description of the Boolean we need:

semanage boolean -l | grep httpd_can_sendmail
httpd_can_sendmail (off , off) Determine whether httpd can send mail.

The output not only gives us a brief description of the Boolean, but also the current value (actually, it gives us the value that is pending a policy change and the current value, but this will almost always be the same).
Another method for getting the current value of a Boolean is through the getsebool application as follows:

getsebool httpd_can_sendmail
httpd_can_sendmail --> off

Changing Boolean values

We can change the value of the Boolean using setsebool or togglesebool. The latter application flips the value, whereas setsebool sets it to the provided value as follows:

setsebool httpd_can_sendmail on
togglesebool httpd_can_sendmail

After the preceding togglesebool happens, the value is back to off.
SELinux Booleans have a default state defined by the policy administrator. Changing the value using setsebool or togglesebool updates the current policy, but this does not persist across reboots. In order to keep the changes permanently, add the -P option to setsebool as follows:

setsebool -P httpd_can_sendmail on

Another way to persist the boolean settings is to use semanage boolean as follows:

semanage boolean -m -1 httpd_can_sendmail

In this case, the boolean value is modified (-m) to on (-1).
Persisting the changes will take a while (whereas non-persistent changes are almost instantaneous) as the SELinux policy is being rebuilt. The larger the SELinux policy on a system, the more time it takes.

Inspecting the impact of Boolean

To find out what a Boolean does, the description usually suffices, but sometimes we might want to know which SELinux rules change when a boolean is toggled. With the sesearch application we can query the SELinux policy, including the rules that are affected by a Boolean. To show this information in detail, we use the -b option (for the boolean) and -C option (to show conditional rules):

$ sesearch -b httpd_can_sendmail -ACT
Found 33 semantic av rules:
…
DT allow httpd_t bin_t : dir { getattr search open } ; [httpd_can_sendmail]
DT allow httpd_sys_script_t smtp_client_packet_t : packet { send recv } ; [httpd_can_sendmail]
DT allow httpd_t pop_client_packet_t : packet { send recv } ; [httpd_can_sendmail]
DT allow httpd_t smtp_port_t : tcp_socket { recv_msg send_msg name_connect } ; [httpd_can_sendmail]
…

In the example, we can see the two characters, DT. These inform us about the state of the boolean in the policy (first character) and when the SELinux rule is enabled (second character).
The state reflects if the boolean is currently disabled (D) or enabled (E). The rule state itself tells us when the displayed rule is active: when the boolean is enabled (T for true) or disabled (F for false). So, "DT" means that the boolean (shown at the end of the line) is currently disabled in the policy, and that the SELinux rule will become active if the boolean is enabled.
When we query the SELinux policy, it makes sense to always add the conditional option so that we can easily see if the policy supports a certain access based on one or more Booleans. This is specially the case when we consider web servers, as the web server policy has many booleans.

$ sesearch -s httpd_t -t user_home_t -p read -AC
Found 1 semantic av rules:
DT allow httpd_t user_home_t : file { ioctl read getattr lock open } ; [httpd_read_user_content]

Enhancing SELinux policies

Not all situations can be perfectly defined by policy writers. At times, we will need to make modifications to the SELinux policy. As long as the changes involve adding rules, we can create additional SELinux modules to enhance the policy. If the change is more intrusive, we might need to remove an existing SELinux module and replace it with an updated one.
Let's start with SELinux policy modules.
Handling SELinux policy modules

SELinux policy modules are, as mentioned at the beginning of this book, sets of SELinux rules that can be loaded and unloaded. They are packaged as files with the .pp suffix and can be loaded and unloaded using the semodule command as follows:

cd /usr/share/selinux/mcs
semodule -i screen.pp

To list the current set of installed (loaded) modules, use semodule -l:

semodule -l
aide 1.6.1
apache 2.7.0	Disabled
application 1.2.0
authlogin 2.4.2
…

The output shows each SELinux module with its version (as provided by the policy authors). In the example we saw that the Apache module (which provides the web server policies) is disabled: although loaded in memory, none of its rules are active on the system.
Disabling modules is not done often, but one of the reasons would be when a module (say wikiwiki.pp) requires another module (similar to apache.pp because it refers to SELinux types provided by the apache.pp module), but we don't want this module to be active. In that case, we can load the module (so that dependent modules can work) and disable it.
To enable or disable modules, use semodule -e (enable) or -d (disable):

semodule -d apache

Knowing how to handle SELinux modules is important when we enhance the existing policy, as these enhancements will be done using SELinux modules.

Troubleshooting using audit2allow

When SELinux prevents certain actions, we already know it will log the appropriate denial in the audit logs. Consider the following denials:
type=AVC msg=audit(1373121736.897:6882): avc: denied { use } for pid=15069 comm="setkey" path="/dev/pts/0" dev="devpts" ino=3 scontext=root:sysadm_r:setkey_t:s0-s0:c0.c1023 tcontext=root:staff_r:newrole_t:s0-s0:c0.c1023 tclass=fd
type=AVC msg=audit(1373121736.907:6883): avc: denied { search } for pid=15069 comm="setkey" name="/" dev="dm-4" ino=2 scontext=root:sysadm_r:setkey_t:s0-s0:c0.c1023 tcontext=system_u:object_r:var_t:s0 tclass=dir

If there is no solution offered by sealert other than running audit2allow, and a quick investigation reveals that there are no SELinux Booleans using which we can toggle to allow this, then we only have few options left. We can refuse to handle this solution, telling the user to log in directly as sysadm_r (as then no newrole command needs to be invoked, so the file descriptor that setkey wants to use will not have the newrole_t type), but let us use this as an example to enhance the policy.
The audit2allow application transforms a denial or a set of denials into SELinux allow rules. Then, it can build an SELinux policy module based on these allow rules, which we can then load in memory.

$ grep setkey /var/log/audit/audit.log | audit2allow
#============= setkey_t ==============
allow setkey_t newrole_t:fd use;
allow setkey_t var_t:dir search;

Based on the denials, two allow rules are prepared. We can also ask audit2allow to immediately create a SELinux module as follows:

$ grep setkey /var/log/audit/audit.log | audit2allow -M localpolicy

A file called localpolicy.pp will be available in the current directory, which we can load in memory using semodule -i localpolicy.pp. We only need to do this once as the loaded modules are retained across reboots.
We can improve audit2allow a bit more if we tell it to use reference policy macros.

Using refpolicy macros

The reference policy project provides distributions and policy editors with a set of functions that simplify the development of SELinux policies. As an example, let us see what the macros can do with the previous example:

$ grep setkey /var/log/audit/audit.log | audit2allow -R
require {
 type setkey_t;
 type newrole_t;
 class fd use;
}

#============= setkey_t ==============
allow setkey_t newrole_t:fd use;
files_search_var(setkey_t)

As audit2allow –R uses an automated approach for finding potential functions, we still need to review the results carefully.
One of the rules in the example has been written as files_search_var(setkey_t). This is a reference policy macro that explains a particular SELinux rule (or set of rules) in a more human-readable way. In this case, it allows the setkey_t domain to search through the var_t labeled directories.
All major distributions base their SELinux policies upon the macros and content provided by the reference policy. The list of methods we can call while building SELinux policies is available online (http://oss.tresys.com/docs/refpolicy/api/) but can also be installed on our local filesystem at /usr/share/doc/selinux-base-* (for Gentoo) or /usr/share/doc/selinux-policy (for Fedora).
These named methods bundle a set of rules that are related to the functionality that we, as SELinux policy administrators, want to enable. For instance, the storage_read_tape() method allows us to enhance the SELinux policy to allow the given domain read access on tapes.

Using selocal

On Gentoo, a script called selocal is available that allows administrators to add rules to the policy. These are the rules written in the raw SELinux policy or reference policy macros, and can be documented by the administrator to keep track of the changes.
For instance, to allow all domains to send and receive unlabeled packets as follows:

selocal -a "allow domain unlabeled_t:packet { send recv };" -Lb

Going back to our example, we had setkey_t trying to use a newrole_t file descriptor. If we investigate the SELinux policy further, we can see that newrole_t has an attribute called privfd:

$ seinfo -tnewrole_t -x

One of the reference policy methods available is domain_use_interactive_fds(), which allows the domains to use file descriptors of types with the privfd attribute set. To allow this for the setkey_t domain using selocal:

selocal -a "domain_use_interactive_fds(setkey_t)" -c "Needed to get output of setkey" -L -b

The selocal application maintains a single SELinux policy module, unlike audit2allow where we need to continuously create new SELinux policy modules (for example, localpolicy1, localpolicy2, and so on) as time goes by. The application also builds this module for us (-b) and loads it in memory (-L).
We can of course easily list the existing set of "enhancements" that selocal manages:

selocal -l
23: domain_use_interactive_fds(setkey_t) # Needed to get output of setkey

Creating our own modules

We can always maintain our own SELinux policy modules as well. To accomplish this, we need to have at least a file with the .te suffix (which stands for type enforcement) and optionally an .fc file (file context) and .if (interface). All these files need to have the same base name, which will be used as a module name later.
There are two "formats" in which SELinux policy modules can be written: the native one, and the reference policy one. The native one does not understand reference policy macros but remains supported (as the reference policy builds on this). Formats using the reference policy support all functions of the "native" one as well, so this format is becoming more and more popular for building and maintaining our own modules.
Building native modules

A native SELinux policy language module starts with a line defining the name of the module, followed by a set of requirements (types or attributes, classes, and permissions) and then the rules themselves, as follows:
module localpolicy 1.0;
require {
 type setkey_t;
 type newrole_t;
 class fd { use };
}
allow setkey_t newrole_t:fd use;

The localpolicy.te file can then be transformed into an intermediate module file as follows:

$ checkmodule -M -m -o localpolicy.mod localpolicy.te

Then, the SELinux policy module is built as follows:

$ semodule_package -o localpolicy.pp -m localpolicy.mod

The resulting localpolicy.pp file can then be loaded in memory using semodule.

Building reference policy modules

In case of a reference policy module, a similar structure as with the native format is used, but the leveraging functions provided by the various SELinux policy module definitions are as follows:
policy_module(localpolicy, 1.0)
gen_require('
 type setkey_t;
')
domain_use_interactive_fds(setkey_t)

The localpolicy.te file can then be built using a specific Makefile command on the system which transforms the functions to the raw SELinux policy rules and builds the policy packages afterwards. On Gentoo systems, Makefile resides in /usr/share/selinux/mcs/include while Fedora has it in /usr/share/selinux/devel:

$ make -f /usr/share/selinux/devel/Makefile localpolicy.pp

Now the localpolicy.pp file is created and can be loaded using semodule -i.

Creating roles and user domains

One of the best features of SELinux is its ability to confine end users and only grant them the rights they need to do their job. To accomplish this, we need to create a restricted user domain that these users should use (either immediately, or after switching from their standard role to the more privileged role).
Such user domains and roles need to be created through SELinux policy enhancements. These enhancements, however, require a deep understanding of the available permission checks, reference policy macros and more, which one can only obtain through experience (or assistance). Still, that shouldn't prevent us from giving a working example of how to create a special end user role and domain for the PostgreSQL administration.
The pgsql_admin role and user

First, let us look at the file. Each line is commented to explain why the various methods are used as follows:
policy_module(pgsql_admin, 1.0)
Define the pgsql_admin_r role
role pgsql_admin_r;
Create a pgsql_admin_t type that has minimal rights a regular
user domain would need in order to work on a Linux system
userdom_base_user_template(pgsql_admin)
Allow the pgsql_admin_t type to execute regular binaries (f.i. id)
corecmd_exec_bin(pgsql_admin_t)
Allow the user domain to read its own selinux context
selinux_getattr_fs(pgsql_admin_t)
Allow the user to administer postgresql, but do not fail
if no postgresql SELinux module is loaded yet
optional_policy('
 postgresql_admin(pgsql_admin_t, pgsql_admin_r)
')
To allow transition from staff_r to pgsql_admin_r
gen_require('
 role staff_r;
')
allow staff_r pgsql_admin_r;

Creating the user rights

With this policy loaded, the pgsql_admin_r and pgsql_admin_t role and types are now available. Next, we create a SELinux user called pgsql_admin_u that is allowed access to the staff_r role (for non-privileged activities), system_r role (for handling the PostgreSQL service) and pgsql_admin_r role (for administering the PostgreSQL files and commands) as follows:

semanage user -a -R "staff_r system_r pgsql_admin_r" pgsql_admin_u

Now we need to map one or more users to this SELinux user, assuming the user is named janedoe, as follows:

semanage login -a -s pgsql_admin_u janedoe

Now we need to reset the contexts of the user, as the contexts of all files now need to be changed, as follows:

restorecon -RvF /home/janedoe

Finally we need to edit the sudoers file, so that every command the user launches through sudo will be with the pgsql_admin_r role (and in the pgsql_admin_t domain):
janedoe ALL=(ALL) ROLE=pgsql_admin_r TYPE=pgsql_admin_t ALL

With these changes in place, the user can now log in and handle PostgreSQL. By default, janedoe will remain logged in through the staff_r role (and in the staff_t domain), so that most end user commands work. The moment a more privileged activity needs to be launched, janedoe has to use sudo. As the user is not in the wheel group, using su to get a root shell is not possible. And through sudo, this and the pgsql_admin_t domain will fail as well as the does not have the right to execute a shell.
Still, the pgsql_admin_t domain has enough rights to manage PostgreSQL as janedoe can restart the service or even edit its configuration file:

$ sudo rc-service postgresql-9.2 start
* Starting PostgreSQL... [ok]
$ sudo vim /etc/postgresql-9.2/pg_hba.conf

By updating the policy as additional rights are needed, the pgsql_admin_t domain can become a better match for the requirements that the user can have in his job.

Shell access

Eventually, users might want to ask for shell access, either indirectly (through sudo) or perhaps immediately after login (so that the user can log in to the pgsql_admin_r role directly). This is not a problem for SELinux, even if that would mean that the user now holds a root shell: SELinux still prevents the user from making changes that the user is not allowed to.
By adding corecmd_exec_shell(pgsql_admin_t), the user is allowed to run shells. Still, because the pgsql_admin_t type is forced on the user, the security impact on the system is still quite low.
If we want a user to be logged in directly to the new type, a few more changes are needed.
First, we need to create a default context file for the SELinux user (in /etc/selinux/mcs/contexts). We can work from a copy (for instance from staff_u) and substitute staff_r with pgsql_admin_r everywhere. This file will tell SELinux what the default type should be when a login is handled through one of the mentioned contexts.
Next, the /etc/selinux/mcs/default_type file has to be updated to tell SELinux that pgsql_admin_t is the default type for the pgsql_admin_r role (as a fallback).
Finally, we need to add a few more privileges to the policy as follows:
Unprivileged login shell
userdom_restricted_user_template(pgsql_admin)
Allow sudo to be called
sudo_role_template(pgsql_admin, pgsql_admin_r, pgsql_admin_t)

With these changes in place, we can update the role mappings for the user to only contain pgsql_admin_r system_r (don't forget to reset the contexts of the user files) as follows:

semanage user -m -R "pgsql_admin_r system_r" pgsql_admin_u

Creating new application domains

By default, Linux distributions come with many prepackaged application domains. However, we will most likely come across situations where we need to build our own application policy.
Building such a policy can be to allow a particular application to run without SELinux protections (by marking the domain as a permissive domain) or perhaps with more controls that are currently in place.
Unlike users and roles, application domains usually have file context-related information with them.
An example application domain

The following SELinux policy is for mojomojo, an open source, catalyst-based wiki. The code is pretty light in weight as it is a web application. Thus, calling a template for the web server module (apache_content_template) that provides most of the rules already:
policy_module(mojomojo, 1.1.0)
Create all types based on the apache content template
apache_content_template(mojomojo)
Needed by the mojomojo application
allow httpd_mojomojo_script_t httpd_t:unix_stream_socket rw_stream_socket_perms;
Network connectivity
corenet_sendrecv_smtp_client_packets(httpd_mojomojo_script_t)
corenet_tcp_connect_smtp_port(httpd_mojomojo_script_t)
corenet_sendrecv_smtp_client_packets(httpd_mojomojo_script_t)
Additional File system access
files_search_var_lib(httpd_mojomojo_script_t)
Networking related activities (name resolving & mail sending)
sysnet_dns_name_resolve(httpd_mojomojo_script_t)
mta_send_mail(httpd_mojomojo_script_t)

This is not much different from the user domain module we created earlier. Obviously, there are lots of different calls, but the method is the same. Let us look at the file context definition file (mojomojo.fc):
/usr/bin/mojomojo_fastcgi\.pl -- gen_context(system_u:object_r:httpd_mojomojo_script_exec_t,s0)
/usr/share/mojomojo/root(/.*)? gen_context(system_u:object_r:httpd_mojomojo_content_t,s0)
/var/lib/mojomojo(/.*)? gen_context(system_u:object_r:httpd_mojomojo_rw_content_t,s0)

The first column is the same as we used with the semanage fcontext command. The -- in the first line tells the SELinux policy that the regular expression is only for a regular file. Again, just like what we could do with semanage fcontext.
The last column is a reference policy macro again. The macro generates the right context as well as the target policy based on the options given. If the target policy is MLS-enabled, then the sensitivity level is also used (s0), otherwise it is dropped.

Creating interfaces

When we are building a policy for end user applications, we will eventually need to tell SELinux that existing (and new) roles and types are allowed to execute the new application. Although we can do this through standard SELinux rules, it is much more flexible to create an interface for this. Regular rules that refer to several types break the isolation provided by SELinux policy modules. Interfaces allow us to group rules coherently.
As an example, let us look at the interfaces of the zosremote module (in the zosremote.if file), which is as follows:
interface('zosremote_domtrans','
 gen_require('
 type zos_remote_t, zos_remote_exec_t;
 ')
 corecmd_search_bin($1)
 domtrans_pattern($1, zos_remote_exec_t, zos_remote_t)
')
interface('zosremote_run','
 gen_require('
 attribute_role zos_remote_roles;
 ')
 zosremote_domtrans($1)
 roleattribute $2 zos_remote_roles;
')

The interface file provides the following interfaces:
	zosremote_domtrans: It allows a given domain to transition to the zosremote_t domain upon executing a file labeled zos_remote_exec_t
	zosremote_run: It allows a given domain to transition to the zosremote_t domain, but also ensures that zosremote_t is allowed for the given role

The difference lies with the use: zosremote_domtrans will be used for transitions between applications, whereas zosremote_run will be used for users (and user roles). For instance, to allow our PostgreSQL user to run zosremote applications, we need to execute the following code:
zosremote_run(pgsql_admin_t, pgsql_admin_r)

Other uses of policy enhancements

Throughout the book, we covered quite a few technological features of SELinux. By creating our own SELinux policies, we can augment this further.
Creating customized SECMARK types

A use case for building our own policy is to create a custom SECMARK type and make sure that a particular domain is the only domain that is allowed to handle this communication.
The following SELinux rules create an invalid_packet_t type (to match packets that should not be sent out, for example, the PostgreSQL communication that is directed to the Internet rather than the internal network) and an intranet_packet_t type (to match packets being sent to an intranet server):
type invalid_packet_t;
corenet_packet(invalid_packet_t)
type intranet_packet_t;
corenet_packet(intranet_packet_t)

With these rules loaded, we can now create SECMARK rules that label packets with invalid_packet_t and intranet_packet_t.
The next step is to allow certain domains to send and receive intranet_packet_t. For instance, for nginx_t (a reverse proxy application, which is shown in the following code) it makes sense to keep this rule close to the packet definitions as they are very much related:
allow nginx_t intranet_packet_t:packet { send recv };

Using different interfaces and nodes

In the Chapter 5, Controlling Network Communications, we also discussed the ability to put labels on interfaces and nodes (hosts). To create types for network interfaces and nodes, the following SELinux rules can be used:
gen_require('
 attribute netif_type;
')
Mark external_netif_t as a network interface.
There is no macro for this (yet) though.
type external_netif_t, netif_type;
Create a node for vpn addresses
type vpn_node_t;
corenet_node(vpn_node_t)

Once these policy enhancements are loaded, the external_netif_t and vpn_node_t interface types are available to use with semanage interface and semanage node.

Auditing access attempts

Some applications have privileges that we still want to be notified about when they are used. The Linux auditing subsystem has powerful features to be notified about various activities on the system, and SELinux enhances those capabilities by supporting the auditallow statement.
The auditallow SELinux statement has a similar syntax as the regular allow statement. But instead of telling SELinux that the access is allowed, it tells SELinux that the access, if it is allowed, should still be logged to the audit subsystem.
When this occurs, we will see a granted statement (rather than a denial) as follows:
The SELinux auditallow statement; domain is an attribute that is
assigned to all application domains.
auditallow domain etc_runtime_t:file write;
The resulting AVC "granted" statement
type=AVC msg=audit(1373135944.183:209339): avc: granted { write } for pid=23128 comm="umount" path="/etc/mtab" dev="md3" ino=135500 scontext=pgsql_admin_u:sysadm_r:mount_t tcontext=root:object_r:etc_runtime_t tclass=file

From the (granted) message, we can devise that the pgsql_admin_u SELinux user called umount has resulted in the modification of /etc/mtab.

Creating customizable types

To create a customizable type, we need to create the type definition in SELinux (which is a regular file type), grant the correct users (and applications) access to the type, and then register the type as customizable (so that a relabel operation does not change the type back).
For instance, we want to have a separate type for an embedded database file used by end users through the sqlite3 command (which does not run in its own domain, it runs in the caller domain, so user_t or staff_t). By using a separate type, other access to the file (by applications that run in a different domain) is by default denied, even when those other applications have access to the (standard) user_home_t type:
gen_require('
 type user_t;
')
type mydb_embedded_t;
files_type(mydb_embedded_t)
allow user_t mydb_embedded_t:file { manage_file_perms relabel_file_perms };

Next, we edit the /etc/selinux/mcs/contexts/customizable_types file and add the mydb_embedded_t type to it.
With those steps completed, all users (in the user_t domain) can now use chcon to label a file as mydb_embedded_t and (still) use this file through sqlite (or other application programs that run in the user domain).

Summary

We saw how to toggle SELinux policy Booleans using tools such as setsebool and to get more information about Booleans, both from their description (using semanage boolean) and the rules they influence (using sesearch).
Next, we created our own policy modules to enhance the SELinux policy using various examples such as user domain definitions, web application types, SECMARK types, and many more.
With all this completed, we now have all the experience needed to successfully administer a SELinux system.

 Index

 A

 	accesses	auditing / Auditing access attempts

 	allow statement / Auditing access attempts

 	application-based contexts / Application-based contexts

 	application domain	creating / Creating new application domains
	example / An example application domain
	interfaces, creating / Creating interfaces

 	applications	running, in SELinux / Applications that "speak" SELinux

 	audispd application / setroubleshoot to the rescue

 	audit2allow	used, for troubleshooting / Troubleshooting using audit2allow

 	audit2allow application / Troubleshooting using audit2allow

 	audit2why	using / Using audit2why

 	audit2why utility / Using audit2why

 	auditallow statement / Auditing access attempts

 	ausearch command / Reading SELinux denials

 	authentication	context switching, using / Context switching during authentication

 	AVC	about / SELinux logging and auditing

 	AVC value / SELinux logging and auditing

 B

 	-b option / Inspecting the impact of Boolean

 	Boolean impact	inspecting / Inspecting the impact of Boolean

 	boolean option / Overview of SELinux Booleans

 	boolean value / Changing Boolean values

 	Boolean values	changing / Changing Boolean values

 	bounded domain / Working with mod_selinux

 C

 	<class> field / Querying domain permissions

 	categories	placing, on files / Placing categories on files and directories
	placing, on directories / Placing categories on files and directories

 	chcat tool / Limiting access based on confidentiality, Placing categories on files and directories

 	chcat utility / Limiting access based on confidentiality

 	chcon / Creating customizable types

 	chcon tool / Setting context information

 	client	and server, differentiating between / Differentiating between server and client communication

 	common sense	using / Using common sense

 	communication	accepting, from selected hosts / Accepting communication from selected hosts

 	confidentiality	access, limiting on / Limiting access based on confidentiality

 	constraints	about / Understanding constraints

 	context	inheriting / Inheriting the context

 	context expressions	working with / Working with context expressions

 	context fields	SELinux types / SELinux types
	SELinux roles / SELinux roles
	SELinux users / SELinux users
	Sensitivity labels / Sensitivity labels

 	context information	obtaining / Getting context information
	setting / Setting context information

 	context switching	used, during authentication / Context switching during authentication

 	ctx option / Enabling labeled IPSec

 	customizable type	creating / Creating customizable types

 	customizable types	using / Using customizable types

 D

 	--disable_dontaudit argument / Uncovering more denials

 	DAC	about / Providing more security to Linux

 	daemon attribute / Type attributes

 	DBMS	about / Providing more security to Linux

 	directories	categories, placing on / Placing categories on files and directories

 	DLNA	about / Disabling SELinux protections for a single service

 	dnsmasq process / Reading SELinux denials

 	DOI	about / About NetLabel/CIPSO

 	dokuwiki directory / Getting context information

 	domain permissions	querying / Querying domain permissions

 	domain transitions	about / Transitioning towards a domain

 	domain_use_interactive_fds() / Using selocal

 	dontaudit statement / Uncovering more denials

 	dynamic transitions / Other supported transitions

 E

 	enforcing=0 / Using kernel boot parameters

 	enforcing=1 / Using kernel boot parameters

 	enforcing mode / Disabling SELinux, Switching to permissive (or enforcing) temporarily, Using kernel boot parameters, Applications that "speak" SELinux, Reading SELinux denials

 	enforcing state / Disabling SELinux

 F

 	files	categories, placing on / Placing categories on files and directories

 G

 	getenforce command / Disabling SELinux

 	getfacl command / SELinux versus regular DAC

 	getfattr application / Getting context information

 	getsebool application / Overview of SELinux Booleans

 	getseuser command / Application-based contexts

 	granted statement / Auditing access attempts

 H

 	hosts	communication, accepting from / Accepting communication from selected hosts

 	httpd binary / Everything gets a label

 	httpd_can_sendmail / Manipulating SELinux policies

 	httpd_t / The context fields

 I

 	id command / Everything gets a label

 	init command / Disabling SELinux

 	initrc_domain attribute / Type attributes

 	initrc_t type / Type attributes

 	init script / Reading SELinux denials

 	inode number / Reading SELinux denials

 	interfaces	using / Using different interfaces and nodes

 	intranet_packet_t type / Creating customized SECMARK types

 	invalid_packet_t type / Creating customized SECMARK types

 	IPSec	setting up / Setting up regular IPSec

 K

 	kernel boot parameters	using / Using kernel boot parameters

 L

 	labeled IPSec	example / Example – labeled IPSec
	enabling / Enabling labeled IPSec

 	labeled networking	about / Introducing labeled networking
	flows, limiting on network interface / Limiting flows based on the network interface
	communication, accepting from selected hosts / Accepting communication from selected hosts
	peer to peer flow, verifying / Verifying peer-to-peer flow

 	libselinux library / Applications that "speak" SELinux

 	Linux	securing / Providing more security to Linux

 	Linux DAC	versus SELinux / SELinux versus regular DAC

 	Linux NetFilter	integrating with / Integrating with Linux netfilter

 	LSM	about / Linux security modules to the rescue

 M

 	MAC (Mandatory Access Control) / Providing more security to Linux

 	Makefile command / Building reference policy modules

 	matchpathcon utility / Using common sense

 	MCS	versus MLS / MCS versus MLS

 	MLS	versus MCS / MCS versus MLS

 	MLS status / MLS status

 	modules	creating / Creating our own modules
	native modules, building / Building native modules
	reference policy modules, building / Building reference policy modules

 	mod_selinux	working with / Working with mod_selinux

 	mount option / Getting context information

 N

 	name_bind permission / Labeling ports

 	name_connect permission / Labeling ports

 	native modules	building / Building native modules

 	NetFilter	packet, labeling through / Packet labeling through netfilter
	labels, assigning to packets / Assigning labels to packets
	server and client communication, differentiating between / Differentiating between server and client communication

 	NetLabel/CIPSO	about / About NetLabel/CIPSO

 	netpeer	about / Common labeling approach

 	network interface	flows, limiting on / Limiting flows based on the network interface

 	newrole	role, switching with / Full role switching with newrole

 	nodes	using / Using different interfaces and nodes

 O

 	openssh package / Setting context information

 P

 	(permissions) / Reading SELinux denials

 	<permissions> field / Querying domain permissions

 	packet	labeling, through NetFilter / Packet labeling through netfilter
	labels, assigning to / Assigning labels to packets

 	PAM / Context switching during authentication

 	peer to peer flow	verifying / Verifying peer-to-peer flow

 	Permission denied error / Reading SELinux denials

 	permissive mode / Disabling SELinux, Switching to permissive (or enforcing) temporarily, Using kernel boot parameters, Applications that "speak" SELinux	switching to / Switching to permissive (or enforcing) temporarily

 	permissive state / Disabling SELinux

 	pgsql_admin role / The pgsql_admin role and user

 	pgsql_admin user / The pgsql_admin role and user

 	ping command / Enabling labeled IPSec

 	policy	MCS versus MLS / MCS versus MLS
	binaries / Policy binaries

 	polmatch permission / Enabling labeled IPSec

 	privfd / Using selocal

 	process class / Transitioning towards a domain

 	process ID / Reading SELinux denials

 	process name / Reading SELinux denials

 R

 	-r parameter / We all are one SELinux user

 	reference policy	URL / Policies – the ultimate dictators

 	reference policy modules	building / Building reference policy modules

 	refpolicy macros	using / Using refpolicy macros

 	relabel operation / Creating customizable types

 	resource class / Reading SELinux denials

 	role	switching, with newrole / Full role switching with newrole

 	role access	managing, with sudo / Managing role access with sudo

 	roles	about / SELinux users and roles
	creating / Creating roles and user domains

 	root rights	configuring / Restricting root privileges

 	runcon user application / The runcon user application

 	run_init application / Switching to the system role

 S

 	(SELinux action) / Reading SELinux denials

 	-s parameter / We all are one SELinux user

 	<source> field / Querying domain permissions

 	s0 / The context fields

 	sealert application / setroubleshoot to the rescue

 	sealert command / setroubleshoot to the rescue

 	seapplet / setroubleshoot to the rescue

 	SECMARK types	creating / Creating customized SECMARK types

 	security namespace / Getting context information

 	sedispatch application / setroubleshoot to the rescue

 	seinfo tool / The rationale behind unconfined

 	SELinux	versus Linux DAC / SELinux versus regular DAC
	enabling / Enabling SELinux – not just a switch
	disabling / Disabling SELinux
	applications, running / Applications that "speak" SELinux
	logging / SELinux logging and auditing
	auditing / SELinux logging and auditing
	log events, sending / Configuring SELinux' log destination

 	selinux=0 / Using kernel boot parameters

 	SELinux Booleans	about / Overview of SELinux Booleans

 	SELinux denials	reading / Reading SELinux denials

 	SELinux development mode / Switching to permissive (or enforcing) temporarily

 	selinuxDomainVal directive / Working with mod_selinux

 	SELinux policy	about / Policies – the ultimate dictators
	store names / SELinux policy store names and options
	options / SELinux policy store names and options
	MLS status / MLS status
	unknown permissions, dealing / Dealing with unknown permissions
	unconfined domains, supporting / Supporting unconfined domains
	UBAC / User-based access control
	manipulating / Manipulating SELinux policies
	SELinux Booleans / Overview of SELinux Booleans
	Boolean values, changing / Changing Boolean values
	Boolean impact, inspecting / Inspecting the impact of Boolean
	enhancing / Enhancing SELinux policies
	troubleshooting, audit2allow used / Troubleshooting using audit2allow
	refpolicy macros, using / Using refpolicy macros
	selocal, using / Using selocal

 	SELinux policy modules / SELinux policy modules	handling / Handling SELinux policy modules

 	SELinux protections	disabling, for single service / Disabling SELinux protections for a single service

 	SELinux roles / SELinux roles	about / SELinux roles
	user_r role / SELinux roles
	staff_r role / SELinux roles
	sysadm_r role / SELinux roles
	system_r role / SELinux roles
	unconfined_r role / SELinux roles

 	SELINUXTYPE parameter / Policies – the ultimate dictators

 	SELinux types / SELinux types

 	SELinux user	about / So, who am I?, SELinux users and roles, We all are one SELinux user
	__default__ / We all are one SELinux user
	system_u / We all are one SELinux user
	additional users, creating / Creating additional users
	access, limiting on confidentiality / Limiting access based on confidentiality

 	SELinux users / SELinux users

 	SELinux userspace	URL / Enabling SELinux – not just a switch

 	SELINUX variable / Disabling SELinux

 	SELINUX_DOMAIN variable / Working with mod_selinux

 	selinux_unconfined_type attribute / The rationale behind unconfined

 	selocal	using / Using selocal
	about / Using selocal

 	semanage application / Working with context expressions

 	semanage command / Disabling SELinux protections for a single service, Overview of SELinux Booleans

 	semanage commands / Limiting flows based on the network interface

 	semanage fcontext command / An example application domain

 	semanage login tool / We all are one SELinux user

 	semanage tool / Limiting flows based on the network interface, Accepting communication from selected hosts

 	semanage translation command / Limiting access based on confidentiality

 	sem class / Querying domain permissions

 	semodule application / Uncovering more denials

 	semodule command / SELinux policy modules, Uncovering more denials, Handling SELinux policy modules

 	Sensitivity labels / Sensitivity labels

 	server	and client, differentiating between / Differentiating between server and client communication

 	sesearch application / Inspecting the impact of Boolean

 	sesearch command / Querying domain permissions

 	sestatus command / Disabling SELinux

 	setenforce command / Switching to permissive (or enforcing) temporarily, Using kernel boot parameters

 	setexeccon() method / Other supported transitions

 	setfacl command / SELinux versus regular DAC

 	setfattr command / Setting context information

 	setfiles application / Setting context information

 	setroubleshoot daemon / setroubleshoot to the rescue

 	shell access / Shell access

 	single service	SELinux protections, disabling for / Disabling SELinux protections for a single service

 	source context / Reading SELinux denials

 	spdadd command / Enabling labeled IPSec

 	sqlite3 command / Creating customizable types

 	staff_r role / SELinux roles

 	stat application / Getting context information

 	storage_read_tape() method / Using refpolicy macros

 	strict policy / Policies across distributions

 	sudo	role access, managing with / Managing role access with sudo

 	sysadm_r role / SELinux roles

 	systemd unit / Reading SELinux denials

 	system role	switching to / Switching to the system role

 	system_r / The context fields

 	system_r role / SELinux roles

 	system_u / The context fields, We all are one SELinux user

 T

 	target context / Reading SELinux denials

 	target device / Reading SELinux denials

 	target name / Reading SELinux denials

 	TCP port	labeling / Labeling ports

 	tcp_socket class / TCP and UDP support, Labeling ports

 	TCSEC (Trusted Computer System Evaluation Criteria) / Providing more security to Linux

 	transition privilege / Transitioning towards a domain

 	type attributes / Type attributes

 	type identifier / Inheriting the context

 U

 	UBAC / User-based access control

 	UDP port	labeling / Labeling ports

 	udp_socket class / TCP and UDP support

 	umount / Auditing access attempts

 	unconfined domains	supporting / Supporting unconfined domains

 	unconfined_r role / SELinux roles

 	unknown permissions	dealing with / Dealing with unknown permissions

 	USE flag / User-based access control

 	user domains	creating / Creating roles and user domains

 	user rights	creating / Creating the user rights

 	users	creating / Creating additional users

 	user_r role / SELinux roles

 Z

 	-Z switch / Everything gets a label

 	zosremote_domtrans interface / Creating interfaces

 	zosremote_run interface / Creating interfaces

 OEBPS/graphics/3170_01_01.jpg
Process

systefn call

User space.

Lookup data

no efrors.

DAC checks

DAC ok
v

LSM hook

Retumn
system call
result

Permission
denied
Permission
denied

Call ok?
LSM returns yes/no

Kemel space

Linux Security
Module

(e.g. SELinux)

OEBPS/cover/cover.jpg
SELinux System
Administration

Acomprehensive guide to walk you through SELinux
access controls

PACKT &

OEBPS/graphics/3170_01_02.jpg
unconfined_u | unconfined_r | unconfined_t | s0-s0:c0.c1023

SELinux user SELinux role SELinuxtype Sensitivity level

OEBPS/graphics/3170_03_01.jpg
Fine-grained
access controls,
postfix_cleanup_t

sessaooid aiow 0} ajgeaiddy

Almost no privilege
restrictions.

£
2
g
8
g
g
£
8
H
&
z

OEBPS/graphics/3170_03_02.jpg
Contracts

rsa\anes

c102 0103‘ c127 c128|

FinanceData

OEBPS/graphics/PacktLibLogo.jpg

OEBPS/graphics/3170_04_01.jpg
allowed type
7 system_r

transition
initrc_t hitpd_t

! entrypoint

