


ptg

UNIX
®
 AND LINUX

®
 SYSTEM

ADMINISTRATION 
HANDBOOK

FOURTH EDITION

  



ptg

This page intentionally left blank 

  



ptg

Evi Nemeth 
Garth Snyder 
Trent R. Hein 
Ben Whaley

UNIX
®
 AND LINUX

®
 SYSTEM

ADMINISTRATION 
HANDBOOK

FOURTH EDITION

with Terry Morreale, Ned McClain, 
Ron Jachim, David Schweikert, and Tobi Oetiker

  



ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. 
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have 
been printed with initial capital letters or in all capitals.
Red Hat Enterprise Linux and the Red Hat SHADOWMAN logo are registered trademarks of Red Hat Inc., and such 
trademarks are used with permission.
Ubuntu is a registered trademark of Canonical Limited, and is used with permission.
SUSE and openSUSE are registered trademarks of Novell Inc. in the United States and other countries.
Oracle Solaris and OpenSolaris are registered trademarks of Oracle and/or its affiliates. All rights reserved.
HP-UX is a registered trademark of Hewlett-Packard Company. (HP-UX®)
AIX is a trademark of IBM Corp., registered in the U.S. and other countries.
The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of 
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential 
damages in connection with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which 
may include electronic versions and/or custom covers and content particular to your business, training goals, marketing 
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales 
(800) 382-3419 
corpsales@pearsontechgroup.com

For sales outside the United States, please contact International Sales (international@pearson.com).
Visit us on the Web: informit.com/ph
Library of Congress Cataloging-in-Publication Data
UNIX and Linux system administration handbook / Evi Nemeth ... [et al.]. 
—4th ed.

p. cm.
Rev. ed of: Unix system administration handbook, 3rd ed., 2001. 
Includes index.
ISBN 978-0-13-148005-6 (pbk. : alk. paper)

1.  Operating systems (Computers) 2.  UNIX (Computer file) 3.  Linux.
I. Nemeth, Evi. II. Unix system administration handbook.

QA76.76.O63N45 2010
005.4'32—dc22

2010018773
Copyright © 2011 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission 
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission 
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding 
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department 
501 Boylston Street, Suite 900 
Boston, MA 02116 
Fax: (617) 671-3447

ISBN-13: 978-0-13-148005-6
ISBN-10: 0-13-148005-7
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, June 2010

  



ptg

v

Table of Contents

FOREWORD xlii

PREFACE xliv

ACKNOWLEDGMENTS xlvi

SECTION ONE: BASIC ADMINISTRATION

CHAPTER 1 WHERE TO START 3

Essential duties of the system administrator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Account provisioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Adding and removing hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Performing backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Installing and upgrading software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Monitoring the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Maintaining local documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Vigilantly monitoring security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Fire fighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Suggested background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Friction between UNIX and Linux  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Linux distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Example systems used in this book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Example Linux distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Example UNIX distributions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

  



ptg

vi UNIX and Linux System Administration Handbook

System-specific administration tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
Notation and typographical conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Man pages and other on-line documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Organization of the man pages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
man: read man pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Storage of man pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
GNU Texinfo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Other authoritative documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
System-specific guides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Package-specific documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Books  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
RFCs and other Internet documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
The Linux Documentation Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Other sources of information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
Ways to find and install software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Determining whether software has already been installed . . . . . . . . . . . . . . . 22 
Adding new software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
Building software from source code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

System administration under duress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

System administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Essential tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

CHAPTER 2 SCRIPTING AND THE SHELL 29

Shell basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Command editing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Pipes and redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
Variables and quoting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
Common filter commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

cut: separate lines into fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
sort: sort lines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
uniq: print unique lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
wc: count lines, words, and characters  . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
tee: copy input to two places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
head and tail: read the beginning or end of a file  . . . . . . . . . . . . . . . . . . 36 
grep: search text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

  



ptg

Table of Contents vii

bash scripting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
From commands to scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
Input and output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
Command-line arguments and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
Variable scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
Control flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 
Loops  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
Arrays and arithmetic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Regular expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
The matching process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
Literal characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
Special characters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
Example regular expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
Captures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 
Greediness, laziness, and catastrophic backtracking . . . . . . . . . . . . . . . . . . . . 53

Perl programming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Variables and arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
Array and string literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 
Function calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 
Type conversions in expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
String expansions and disambiguation of variable references . . . . . . . . . . . . 57 
Hashes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
References and autovivification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 
Regular expressions in Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 
Input and output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
Control flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
Accepting and validating input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
Perl as a filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 
Add-on modules for Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Python scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Python quick start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
Objects, strings, numbers, lists, dictionaries, tuples, and files . . . . . . . . . . . . 69 
Input validation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 
Loops  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Scripting best practices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 
Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Shell basics and bash scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 
Regular expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 
Perl scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 
Python scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

  



ptg

viii UNIX and Linux System Administration Handbook

CHAPTER 3 BOOTING AND SHUTTING DOWN 77

Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Recovery boot to a shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
Steps in the boot process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
Kernel initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
Hardware configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
Creation of kernel processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
Operator intervention (recovery mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . 80 
Execution of startup scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 
Boot process completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Booting PCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 
GRUB: The GRand Unified Boot loader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Kernel options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 
Multibooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Booting to single-user mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Single-user mode with GRUB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 
Single-user mode on SPARC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 
HP-UX single-user mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 
AIX single-user mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Working with startup scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 
init and its run levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 
Overview of startup scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 
Red Hat startup scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 
SUSE startup scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 
Ubuntu startup scripts and the Upstart daemon . . . . . . . . . . . . . . . . . . . . . . . 94 
HP-UX startup scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
AIX startup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Booting Solaris  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
The Solaris Service Management Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 
A brave new world: booting with SMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Rebooting and shutting down  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
shutdown: the genteel way to halt the system . . . . . . . . . . . . . . . . . . . . . . . . 100 
halt and reboot: simpler ways to shut down  . . . . . . . . . . . . . . . . . . . . . . . . . 101

Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

CHAPTER 4 ACCESS CONTROL AND ROOTLY POWERS 103

Traditional UNIX access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Filesystem access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 
Process ownership  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 
The root account. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 
Setuid and setgid execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

  



ptg

Table of Contents ix

Modern access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Role-based access control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 
SELinux: security-enhanced Linux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 
POSIX capabilities (Linux) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 
PAM: Pluggable Authentication Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 
Kerberos: third-party cryptographic authentication . . . . . . . . . . . . . . . . . . . 110 
Access control lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Real-world access control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Choosing a root password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 
Logging in to the root account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 
su: substitute user identity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 
sudo: limited su. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 
Password vaults and password escrow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Pseudo-users other than root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

CHAPTER 5 CONTROLLING PROCESSES 120

Components of a process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
PID: process ID number  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 
PPID: parent PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 
UID and EUID: real and effective user ID  . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 
GID and EGID: real and effective group ID . . . . . . . . . . . . . . . . . . . . . . . . . . 122 
Niceness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 
Control terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

The life cycle of a process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 
Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 
kill: send signals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 
Process states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 
nice and renice: influence scheduling priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 
ps: monitor processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 
Dynamic monitoring with top, prstat, and topas . . . . . . . . . . . . . . . . . . . . . . . . . 133 
The /proc filesystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 
strace, truss, and tusc: trace signals and system calls . . . . . . . . . . . . . . . . . . . . . . 136 
Runaway processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 
Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

CHAPTER 6 THE FILESYSTEM 140

Pathnames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Absolute and relative paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 
Spaces in filenames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Filesystem mounting and unmounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 
The organization of the file tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

  



ptg

x UNIX and Linux System Administration Handbook

File types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Regular files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 
Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 
Character and block device files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 
Local domain sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 
Named pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 
Symbolic links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

File attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
The permission bits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 
The setuid and setgid bits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 
The sticky bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 
ls: list and inspect files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 
chmod: change permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 
chown and chgrp: change ownership and group  . . . . . . . . . . . . . . . . . . . . . 157 
umask: assign default permissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 
Linux bonus flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Access control lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A short and brutal history of UNIX ACLs . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 
ACL implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 
ACL support by system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 
POSIX ACLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Interaction between traditional modes and ACLs . . . . . . . . . . . . . . . . . 163 
Access determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 
ACL inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

NFSv4 ACLs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
NFSv4 entities for which permissions can be specified. . . . . . . . . . . . . 168 
Access determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 
ACL inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 
NFSv4 ACL viewing in Solaris  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 
Interactions between ACLs and modes . . . . . . . . . . . . . . . . . . . . . . . . . . 171 
Modifying NFSv4 ACLs in Solaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

CHAPTER 7 ADDING NEW USERS 174

The /etc/passwd file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Login name  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 
Encrypted password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 
UID (user ID) number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 
Default GID number  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 
GECOS field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 
Home directory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 
Login shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

The /etc/shadow and /etc/security/passwd files . . . . . . . . . . . . . . . . . . . . . . . . . . 183 
The /etc/group file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

  



ptg

Table of Contents xi

Adding users: the basic steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Editing the passwd and group files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 
Setting a password  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 
Creating the home directory and installing startup files. . . . . . . . . . . . . . . . 189 
Setting permissions and ownerships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 
Setting a mail home  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 
Configuring roles and administrative privileges  . . . . . . . . . . . . . . . . . . . . . . 190 
Final steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Adding users with useradd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 
useradd on Ubuntu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 
useradd on SUSE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 
useradd on Red Hat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 
useradd on Solaris  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 
useradd on HP-UX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 
useradd on AIX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 
useradd example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Adding users in bulk with newusers (Linux) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 
Removing users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 
Disabling logins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 
Managing users with system-specific tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 
Reducing risk with PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 
Centralizing account management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

LDAP and Active Directory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 
Single sign-on systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 
Identity management systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

CHAPTER 8 STORAGE 206

I just want to add a disk!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Linux recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 
Solaris recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 
HP-UX recipe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 
AIX recipe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Storage hardware  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Hard disks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 
Solid state disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Storage hardware interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
The PATA interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 
The SATA interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 
Parallel SCSI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 
Serial SCSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 
Which is better, SCSI or SATA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Peeling the onion: the software side of storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

  



ptg

xii UNIX and Linux System Administration Handbook

Attachment and low-level management of drives . . . . . . . . . . . . . . . . . . . . . . . . . 223
Installation verification at the hardware level  . . . . . . . . . . . . . . . . . . . . . . . . 223 
Disk device files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Disk devices for Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 
Disk devices for Solaris  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 
Disk devices for HP-UX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 
Disk devices for AIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Formatting and bad block management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 
ATA secure erase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 
hdparm: set disk and interface parameters (Linux)  . . . . . . . . . . . . . . . . . . . 229 
Hard disk monitoring with SMART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Disk partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Traditional partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 
Windows-style partitioning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 
GPT: GUID partition tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 
Linux partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 
Solaris partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 
HP-UX partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

RAID: redundant arrays of inexpensive disks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Software vs. hardware RAID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 
RAID levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 
Disk failure recovery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 
Drawbacks of RAID 5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 
mdadm: Linux software RAID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Logical volume management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
LVM implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 
Linux logical volume management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Volume snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 
Resizing filesystems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

HP-UX logical volume management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 
AIX logical volume management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Filesystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Linux filesystems: the ext family. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 
HP-UX filesystems: VxFS and HFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 
AIX’s JFS2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 
Filesystem terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 
Filesystem polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 
mkfs: format filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 
fsck: check and repair filesystems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 
Filesystem mounting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 
Setup for automatic mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 
USB drive mounting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 
Enabling swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

  



ptg

Table of Contents xiii

ZFS: all your storage problems solved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
ZFS architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 
Example: Solaris disk addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 
Filesystems and properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 
Property inheritance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 
One filesystem per user  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 
Snapshots and clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 
Raw volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 
Filesystem sharing filesystem through NFS, CIFS, and iSCSI . . . . . . . . . . . 271 
Storage pool management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Storage area networking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
SAN networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 
iSCSI: SCSI over IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 
Booting from an iSCSI volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 
Vendor specifics for iSCSI initiators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

CHAPTER 9 PERIODIC PROCESSES 283

cron: schedule commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 
The format of crontab files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 
Crontab management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 
Linux and Vixie-cron extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 
Some common uses for cron  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Simple reminders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 
Filesystem cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 
Network distribution of configuration files  . . . . . . . . . . . . . . . . . . . . . . . . . . 290 
Log file rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

CHAPTER 10 BACKUPS 292

Motherhood and apple pie  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Perform all backups from a central location. . . . . . . . . . . . . . . . . . . . . . . . . . 293 
Label your media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 
Pick a reasonable backup interval  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 
Choose filesystems carefully . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 
Make daily dumps fit on one piece of media  . . . . . . . . . . . . . . . . . . . . . . . . . 294 
Keep media off-site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 
Protect your backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 
Limit activity during backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 
Verify your media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 
Develop a media life cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 
Design your data for backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 
Prepare for the worst  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

  



ptg

xiv UNIX and Linux System Administration Handbook

Backup devices and media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Optical media: CD-R/RW, DVD±R/RW, DVD-RAM, and Blu-ray  . . . . . 299 
Portable and removable hard disks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 
Magnetic tapes in general  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 
Small tape drives: 8mm and DDS/DAT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 
DLT/S-DLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 
AIT and SAIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 
VXA/VXA-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 
LTO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 
Jukeboxes, stackers, and tape libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 
Hard disks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 
Internet and cloud backup services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 
Summary of media types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 
What to buy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Saving space and time with incremental backups . . . . . . . . . . . . . . . . . . . . . . . . . 305
A simple schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 
A moderate schedule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Setting up a backup regime with dump  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Dumping filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 
Restoring from dumps with restore  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 
Restoring entire filesystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 
Restoring to new hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Dumping and restoring for upgrades  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 
Using other archiving programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

tar: package files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 
dd: twiddle bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 
ZFS backups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Using multiple files on a single tape  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 
Bacula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

The Bacula model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 
Setting up Bacula  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 
Installing the database and Bacula daemons  . . . . . . . . . . . . . . . . . . . . . . . . . 320 
Configuring the Bacula daemons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 
Common configuration sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 
bacula-dir.conf: director configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Catalog resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 
Storage resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Pool resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 
Schedule resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Client resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 
FileSet resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Job resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

  



ptg

Table of Contents xv

bacula-sd.conf: storage daemon configuration . . . . . . . . . . . . . . . . . . . . . . . 327
The Director resource  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 
The Storage resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Device resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 
Autochanger resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

bconsole.conf: console configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 
Installing and configuring the client file daemon  . . . . . . . . . . . . . . . . . . . . . 328 
Starting the Bacula daemons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 
Adding media to pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 
Running a manual backup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 
Running a restore job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 
Backing up Windows clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 
Monitoring Bacula configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 
Bacula tips and tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 
Alternatives to Bacula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Commercial backup products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
ADSM/TSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 
Veritas NetBackup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 
EMC NetWorker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 
Other alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

CHAPTER 11 SYSLOG AND LOG FILES 340

Finding log files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Files not to manage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 
Vendor specifics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Syslog: the system event logger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Syslog architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 
Configuring syslogd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 
Config file examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Stand-alone machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 
Network logging client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 
Central logging host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Syslog debugging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 
Alternatives to syslog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 
Linux kernel and boot-time logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

AIX logging and error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Syslog configuration under AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 

logrotate: manage log files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 
Condensing log files to useful information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 
Logging policies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

  



ptg

xvi UNIX and Linux System Administration Handbook

CHAPTER 12 SOFTWARE INSTALLATION AND MANAGEMENT 362
Installing Linux and OpenSolaris. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Netbooting PCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 
Setting up PXE for Linux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 
Netbooting non-PCs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 
Using Kickstart: the automated installer for Red Hat Enterprise Linux. . . 365

Setting up a Kickstart configuration file . . . . . . . . . . . . . . . . . . . . . . . . . 365 
Building a Kickstart server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 
Pointing Kickstart at your config file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Using AutoYaST: SUSE’s automated installation tool  . . . . . . . . . . . . . . . . . 367 
Automating installation with the Ubuntu installer . . . . . . . . . . . . . . . . . . . . 368

Installing Solaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Network installations with JumpStart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 
Network installations with the Automated Installer . . . . . . . . . . . . . . . . . . . 375

Installing HP-UX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Automating Ignite-UX installations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 

Installing AIX with the Network Installation Manager  . . . . . . . . . . . . . . . . . . . . 380 
Managing packages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 
Managing Linux packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

rpm: manage RPM packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 
dpkg: manage .deb packages in Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Using high-level Linux package management systems. . . . . . . . . . . . . . . . . . . . . 384
Package repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 
RHN: the Red Hat Network  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 
APT: the Advanced Package Tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 
apt-get configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 
An example /etc/apt/sources.list file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 
Creation of a local repository mirror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 
apt-get automation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 
yum: release management for RPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 
Zypper package management for SUSE: now with more ZYpp! . . . . . . . . . 392

Managing packages for UNIX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Solaris packaging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 
HP-UX packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 
Software management in AIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Revision control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Backup file creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 
Formal revision control systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 
Subversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 
Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Software localization and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Organizing your localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 
Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 
Compiling locally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 
Distributing localizations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

  



ptg

Table of Contents xvii

Using configuration management tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 
cfengine: computer immune system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 
LCFG: a large-scale configuration system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 
Template Tree 2: cfengine helper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 
DMTF/CIM: the Common Information Model  . . . . . . . . . . . . . . . . . . . . . . 410

Sharing software over NFS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Package namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 
Dependency management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 
Wrapper scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

CHAPTER 13 DRIVERS AND THE KERNEL 415

Kernel adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 
Drivers and device files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Device files and device numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 
Device file creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 
Naming conventions for devices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 
Custom kernels versus loadable modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Linux kernel configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Tuning Linux kernel parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 
Building a Linux kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 
If it ain’t broke, don’t fix it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 
Configuring kernel options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 
Building the kernel binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 
Adding a Linux device driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

Solaris kernel configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
The Solaris kernel area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 
Configuring the kernel with /etc/system  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 
Adding a Solaris device driver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 
Debugging a Solaris configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

HP-UX kernel configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 
Management of the AIX kernel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

The Object Data Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 
Kernel tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Loadable kernel modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Loadable kernel modules in Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 
Loadable kernel modules in Solaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

Linux udev for fun and profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Linux sysfs: a window into the souls of devices . . . . . . . . . . . . . . . . . . . . . . . 438 
Exploring devices with udevadm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 
Constructing rules and persistent names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

  



ptg

xviii UNIX and Linux System Administration Handbook

SECTION TWO:  NETWORKING 

CHAPTER 14 TCP/IP NETWORKING 447

TCP/IP and its relationship to the Internet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Who runs the Internet? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 
Network standards and documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Networking road map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
IPv4 and IPv6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 
Packets and encapsulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 
Ethernet framing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 
Maximum transfer unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

Packet addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
Hardware (MAC) addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 
IP addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 
Hostname “addressing” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 
Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 
Address types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

IP addresses: the gory details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
IPv4 address classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 
Subnetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458 
Tricks and tools for subnet arithmetic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 
CIDR: Classless Inter-Domain Routing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 
Address allocation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 
Private addresses and network address translation (NAT)  . . . . . . . . . . . . . 462 
IPv6 addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Routing tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 
ICMP redirects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

ARP: the Address Resolution Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 
DHCP: the Dynamic Host Configuration Protocol  . . . . . . . . . . . . . . . . . . . . . . . 469

DHCP software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 
How DHCP works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 
ISC’s DHCP software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Security issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
IP forwarding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 
ICMP redirects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 
Source routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 
Broadcast pings and other directed broadcasts  . . . . . . . . . . . . . . . . . . . . . . . 473 
IP spoofing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 
Host-based firewalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 
Virtual private networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

PPP: the Point-to-Point Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

  



ptg

Table of Contents xix

Basic network configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
Hostname and IP address assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 
ifconfig: configure network interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 
Network hardware options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 
route: configure static routes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 
DNS configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

System-specific network configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 
Linux networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

NetworkManager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 
Ubuntu network configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 
SUSE network configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 
Red Hat network configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 
Linux network hardware options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 
Linux TCP/IP options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490 
Security-related kernel variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 
Linux NAT and packet filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Solaris networking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
Solaris basic network configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 
Solaris configuration examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 
Solaris DHCP configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 
ndd: TCP/IP and interface tuning for Solaris. . . . . . . . . . . . . . . . . . . . . . . . . 498 
Solaris security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 
Solaris firewalls and filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 
Solaris NAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 
Solaris networking quirks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

HP-UX networking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Basic network configuration for HP-UX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 
HP-UX configuration examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502 
HP-UX DHCP configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504 
HP-UX dynamic reconfiguration and tuning  . . . . . . . . . . . . . . . . . . . . . . . . 504 
HP-UX security, firewalls, filtering, and NAT . . . . . . . . . . . . . . . . . . . . . . . . 505

AIX networking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 
no: manage AIX network tuning parameters . . . . . . . . . . . . . . . . . . . . . . . . . 507

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

CHAPTER 15 ROUTING 511

Packet forwarding: a closer look. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 
Routing daemons and routing protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

Distance-vector protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 
Link-state protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 
Cost metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 
Interior and exterior protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

  



ptg

xx UNIX and Linux System Administration Handbook

Protocols on parade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
RIP and RIPng: Routing Information Protocol . . . . . . . . . . . . . . . . . . . . . . . 518 
OSPF: Open Shortest Path First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 
EIGRP: Enhanced Interior Gateway Routing Protocol. . . . . . . . . . . . . . . . . 519 
IS-IS: the ISO “standard” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520 
Router Discovery Protocol and Neighbor Discovery Protocol . . . . . . . . . . 520 
BGP: the Border Gateway Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Routing strategy selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 
Routing daemons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

routed: obsolete RIP implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522 
gated: first-generation multiprotocol routing daemon  . . . . . . . . . . . . . . . . 523 
Quagga: mainstream routing daemon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 
ramd: multiprotocol routing system for HP-UX. . . . . . . . . . . . . . . . . . . . . . 524 
XORP: router in a box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 
Vendor specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Cisco routers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 
Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 
Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

CHAPTER 16 NETWORK HARDWARE 531

Ethernet: the Swiss Army knife of networking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
How Ethernet works  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 
Ethernet topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 
Unshielded twisted pair cabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534 
Optical fiber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 
Connecting and expanding Ethernets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 
Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538 
VLAN-capable switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 
Routers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

Autonegotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 
Power over Ethernet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540 
Jumbo frames  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

Wireless: ethernet for nomads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Wireless security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 
Wireless switches and lightweight access points . . . . . . . . . . . . . . . . . . . . . . 543

DSL and cable modems: the last mile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 
Network testing and debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 
Building wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

UTP cabling options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 
Connections to offices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 
Wiring standards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

  



ptg

Table of Contents xxi

Network design issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
Network architecture vs. building architecture . . . . . . . . . . . . . . . . . . . . . . . 547 
Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 
Congestion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 
Maintenance and documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

Management issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 
Recommended vendors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

Cables and connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 
Test equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 
Routers/switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

CHAPTER 17 DNS: THE DOMAIN NAME SYSTEM 552

Who needs DNS?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
Managing your DNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 

How DNS works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Resource records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 
Delegation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 
Caching and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 
Multiple answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

DNS for the impatient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
Adding a new machine to DNS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 
Configuring a DNS client  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Name servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
Authoritative and caching-only servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 
Recursive and nonrecursive servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

The DNS namespace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
Registering a second-level domain name  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567 
Creating your own subdomains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

Designing your DNS environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
Namespace management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568 
Authoritative servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569 
Caching servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569 
Hardware requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570 
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571 
Summing up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

What’s new in DNS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572 
The DNS database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

Commands in zone files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574 
Resource records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576 
The SOA record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 
NS records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581 
A records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582

  



ptg

xxii UNIX and Linux System Administration Handbook

PTR records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582 
MX records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583 
CNAME records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 
The CNAME hack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 
SRV records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 
TXT records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 
IPv6 resource records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

IPv6 forward records – AAAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 
IPv6 reverse records – PTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

SPF records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590 
DKIM and ADSP records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591 
SSHFP resource records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 
DNSSEC resource records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 
Glue records: links between zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

The BIND software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
Version determination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598 
Components of BIND  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 
Configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 
The include statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 
The options statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 
The acl statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609 
The (TSIG) key statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609 
The trusted-keys statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610 
The server statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610 
The masters statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 
The logging statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612 
The statistics-channels statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612 
The zone statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

Configuring the master server for a zone . . . . . . . . . . . . . . . . . . . . . . . . 613 
Configuring a slave server for a zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 
Setting up the root server hints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 
Setting up a forwarding zone  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

The controls statement for rndc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615 
Split DNS and the view statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

BIND configuration examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
The localhost zone  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619 
A small security company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620 
The Internet Systems Consortium, isc.org . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

The NSD/Unbound software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
Installing and configuring NSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

Fundamental differences from BIND  . . . . . . . . . . . . . . . . . . . . . . . . . . . 626 
NSD configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 
NSD key definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628 
NSD global configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629 
NSD zone-specific configuration options . . . . . . . . . . . . . . . . . . . . . . . . 631

  



ptg

Table of Contents xxiii

Running nsd  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632 
Installing and configuring Unbound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632

Updating zone files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
Zone transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 
BIND dynamic updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

Security issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
Access control lists in BIND, revisited  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 
Open resolvers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644 
Running in a chrooted jail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 
Secure server-to-server communication with TSIG and TKEY  . . . . . . . . . 645 
Setting up TSIG for BIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 
TSIG in NSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648 
DNSSEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648 
DNSSEC policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 
DNSSEC resource records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 
Turning on DNSSEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654 
Key pair generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 
Zone signing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657 
The DNSSEC chain of trust. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660 
DLV: domain lookaside validation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661 
DNSSEC key rollover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662 
DNSSEC tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

ldns tools, nlnetlabs.nl/projects/ldns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664 
Sparta tools, dnssec-tools.org . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664 
RIPE tools, ripe.net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 
Vantages tools, vantage-points.org  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

Debugging DNSSEC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 
Microsoft and DNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667 
Testing and debugging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

Logging in BIND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668 
Categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 
Log Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 
Sample BIND logging configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671 
Debug levels in BIND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672

Logging in NSD/Unbound  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673 
Name server control programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

Using BIND’s rndc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 
Using NSD’s nsdc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675 
Using unbound-control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

Name server statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676 
Debugging with dig  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677 
Lame delegations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 
DNS sanity checking tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679 
Performance issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680

  



ptg

xxiv UNIX and Linux System Administration Handbook

Vendor specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
Specifics for Linux  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681 
Specifics for Solaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 
Specifics for HP-UX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 
Specifics for AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
Mailing lists and newsgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686 
Books and other documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687 
On-line resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688 
The RFCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

CHAPTER 18 THE NETWORK FILE SYSTEM 690

Introduction to network file services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
Issues of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691 
Performance concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691 
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691

The NFS approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
Protocol versions and history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 
Transport protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693 
State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693 
File system exports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693 
File locking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694 
Security concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 
Identity mapping in version 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 
Root access and the nobody account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697 
Performance considerations in version 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698 
Disk quotas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

Server-side NFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
The share command and dfstab file (Solaris, HP-UX)  . . . . . . . . . . . . . . . . 700 
The exportfs command and the exports file (Linux, AIX) . . . . . . . . . . . . . 702 
Exports in AIX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702 
Exports in Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703 
nfsd: serve files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

Client-side NFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
Mounting remote filesystems at boot time . . . . . . . . . . . . . . . . . . . . . . . . . . . 708 
Restricting exports to privileged ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

Identity mapping for NFS version 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709 
nfsstat: dump NFS statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710 
Dedicated NFS file servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711 
Automatic mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

Indirect maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713 
Direct maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713 
Master maps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

  



ptg

Table of Contents xxv

Executable maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714 
Automount visibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715 
Replicated filesystems and automount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715 
Automatic automounts (V3; all but Linux)  . . . . . . . . . . . . . . . . . . . . . . . . . . 716 
Specifics for Linux  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718

CHAPTER 19 SHARING SYSTEM FILES 719

What to share  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720 
Copying files around  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

The NFS option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721 
Push systems vs. pull systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722 
rdist: push files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722 
rsync: transfer files more securely  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 
Pulling files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727

LDAP: the Lightweight Directory Access Protocol . . . . . . . . . . . . . . . . . . . . . . . . 728
The structure of LDAP data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728 
The point of LDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730 
LDAP documentation and specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731 
OpenLDAP: the traditional open source LDAP server . . . . . . . . . . . . . . . . . 731 
389 Directory Server: alternative open source LDAP server  . . . . . . . . . . . . 732 
LDAP instead of /etc/passwd and /etc/group . . . . . . . . . . . . . . . . . . . . . . . . 733 
LDAP querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734 
LDAP and security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

NIS: the Network Information Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
The NIS model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736 
Understanding how NIS works  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736 
NIS security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738

Prioritizing sources of administrative information . . . . . . . . . . . . . . . . . . . . . . . . 739 
nscd: cache the results of lookups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

CHAPTER 20 ELECTRONIC MAIL 742

Mail systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
User agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744 
Submission agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 
Transport agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746 
Local delivery agents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746 
Message stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746 
Access agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747 
So many pieces, so little time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

  



ptg

xxvi UNIX and Linux System Administration Handbook

The anatomy of a mail message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
Reading mail headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748 

The SMTP protocol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750
You had me at EHLO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751 
SMTP error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751 
SMTP authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752

Mail system design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
Using mail servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 

Mail aliases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756
Getting aliases from files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758 
Mailing to files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759 
Mailing to programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759 
Aliasing by example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760 
Building the hashed alias database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760 
Using mailing lists and list wrangling software . . . . . . . . . . . . . . . . . . . . . . . 760 
Software packages for maintaining mailing lists . . . . . . . . . . . . . . . . . . . . . . 761

Content scanning: spam and malware  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
Spam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 
Forgeries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763 
Message privacy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763 
Spam filtering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 
When to filter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 
Greylisting/DCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 
SpamAssassin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 
Blacklists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766 
Whitelists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766 
Miltering: mail filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 
SPF and Sender ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 
DomainKeys, DKIM, and ADSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768 
MTA-specific antispam features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768 
MailScanner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769 
amavisd-new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

How amavisd works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770 
amavisd installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 
Basic amavisd configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 
amavisd-new tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

Tests of your MTA’s scanning effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . 773 
Email configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774 
sendmail  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775

The switch file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776 
Starting sendmail  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776 
Mail queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778

  



ptg

Table of Contents xxvii

sendmail configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778
The m4 preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779 
The sendmail configuration pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779 
A configuration file built from a sample .mc file . . . . . . . . . . . . . . . . . . . . . . 781

sendmail configuration primitives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
Tables and databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 
Generic macros and features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783

OSTYPE macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 
DOMAIN macro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
MAILER macro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784 
FEATURE macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784 
use_cw_file feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784 
redirect feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 
always_add_domain feature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 
access_db feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 
virtusertable feature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 
ldap_routing feature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 
Masquerading features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
MAIL_HUB and SMART_HOST macros. . . . . . . . . . . . . . . . . . . . . . . . . . 787 

Client configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788 
Configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789 
Spam-related features in sendmail  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

Relay control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791 
User or site blacklisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792 
Throttles, rates, and connection limits  . . . . . . . . . . . . . . . . . . . . . . . . . . 792

Milter configuration in sendmail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794 
amavisd and sendmail connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794

Security and sendmail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
Ownerships  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796 
Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797 
Safer mail to files and programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798 
Privacy options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799 
Running a chrooted sendmail (for the truly paranoid) . . . . . . . . . . . . . . . . 800 
Denial of service attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800 
SASL: the Simple Authentication and Security Layer . . . . . . . . . . . . . . . . . . 801 
TLS: Transport Layer Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

sendmail performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
Delivery modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802 
Queue groups and envelope splitting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802 
Queue runners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802 
Load average controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 
Undeliverable messages in the queue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 
Kernel tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804

  



ptg

xxviii UNIX and Linux System Administration Handbook

sendmail testing and debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
Queue monitoring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806 
Logging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806

Exim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
Exim installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808 
Exim startup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810 
Exim utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811 
Exim configuration language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811 
Exim configuration file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812 
Global options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813 
Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814 
Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814

ACLs (access control lists). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815 
Content scanning at ACL time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

Scanning for viruses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818 
Scanning for spam  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819

Authenticators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820 
Routers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821

The accept router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821 
The dnslookup router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822 
The manualroute router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822 
The redirect router. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823 
Per-user filtering via .forward files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823

Transports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
The appendfile transport  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824 
The smtp transport  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824

Retry configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 
Rewriting configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 
Local scan function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 
amavisd and Exim connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826 
Logging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826 
Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827

Postfix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828
Postfix architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828

Receiving mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829 
Managing mail-waiting queues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829 
Sending mail  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830

Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830 
Postfix commands and documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830 
Postfix configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

What to put in main.cf  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 
Basic settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 
Use of postconf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832

  



ptg

Table of Contents xxix

Lookup tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 
Local delivery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

Virtual domains  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
Virtual alias domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 
Virtual mailbox domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836

Access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
Access tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838 
Authentication of clients and encryption . . . . . . . . . . . . . . . . . . . . . . . . 839

Fighting spam and viruses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840
Blacklists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840 
Spam-fighting example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841 
SpamAssassin and procmail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841 
Policy daemons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841 
Content filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842

Content filtering with amavisd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842
Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844

Looking at the queue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844 
Soft-bouncing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845 
Testing access control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845

DKIM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
DKIM: DomainKeys Identified Mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846 
DKIM miltering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846 
DKIM configuration in amavisd-new. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849 
DKIM in sendmail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 
DKIM in Exim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

Signing outgoing messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 
Verifying incoming signed messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851 
A complete example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851

DKIM in Postfix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852 
Integrated email solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 
Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854

General spam references  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854 
sendmail references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854 
Exim references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854 
Postfix references  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855 
RFCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855 
sendmail-specific exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857 
Exim-specific exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858 
Postfix-specific exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858

CHAPTER 21 NETWORK MANAGEMENT AND DEBUGGING 859

Network troubleshooting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 
ping: check to see if a host is alive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861

  



ptg

xxx UNIX and Linux System Administration Handbook

SmokePing: gather ping statistics over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864 
traceroute: trace IP packets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865 
netstat: get network statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868

Inspecting interface configuration information. . . . . . . . . . . . . . . . . . . . . . . 868 
Monitoring the status of network connections  . . . . . . . . . . . . . . . . . . . . . . . 870 
Identifying listening network services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871 
Examining the routing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871 
Viewing operational statistics for network protocols . . . . . . . . . . . . . . . . . . 872

Inspection of live interface activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873 
Packet sniffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874

tcpdump: industry-standard packet sniffer . . . . . . . . . . . . . . . . . . . . . . . . . . 875 
Wireshark and TShark: tcpdump on steroids . . . . . . . . . . . . . . . . . . . . . . . . 877

The ICSI Netalyzr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878 
Network management protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879 
SNMP: the Simple Network Management Protocol . . . . . . . . . . . . . . . . . . . . . . . 880

SNMP organization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881 
SNMP protocol operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882 
RMON: remote monitoring MIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

The NET-SNMP agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883 
Network management applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

The NET-SNMP tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885 
SNMP data collection and graphing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886 
Nagios: event-based service monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887 
The ultimate network monitoring package: still searching  . . . . . . . . . . . . . 888 
Commercial management platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889

NetFlow: connection-oriented monitoring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890
Monitoring NetFlow data with nfdump and NfSen . . . . . . . . . . . . . . . . . . . 890 
Setting up NetFlow on a Cisco router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893 
Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894

CHAPTER 22 SECURITY 896

Is UNIX secure?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897 
How security is compromised  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898

Social engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898 
Software vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899 
Configuration errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900

Security tips and philosophy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901 
Unnecessary services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902 
Remote event logging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902 
Backups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903 
Viruses and worms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903 
Trojan horses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903

  



ptg

Table of Contents xxxi

Rootkits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904 
Packet filtering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904 
Passwords. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905 
Vigilance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905 
General philosophy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

Passwords and user accounts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906
Password aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906 
Group logins and shared logins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907 
User shells  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907 
Rootly entries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907

PAM: cooking spray or authentication wonder? . . . . . . . . . . . . . . . . . . . . . . . . . . 908
System support for PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908 
PAM configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908 
A detailed Linux configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911

Setuid programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912 
Effective use of chroot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913 
Security power tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914

Nmap: network port scanner  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914 
Nessus: next-generation network scanner  . . . . . . . . . . . . . . . . . . . . . . . . . . . 916 
John the Ripper: finder of insecure passwords . . . . . . . . . . . . . . . . . . . . . . . . 916 
hosts_access: host access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917 
Bro: the programmable network intrusion detection system. . . . . . . . . . . . 918 
Snort: the popular network intrusion detection system . . . . . . . . . . . . . . . . 918 
OSSEC: host-based intrusion detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919

OSSEC basic concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920 
OSSEC installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920 
OSSEC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921

Mandatory Access Control (MAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922
Security-enhanced Linux (SELinux)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923 

Cryptographic security tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924
Kerberos: a unified approach to network security . . . . . . . . . . . . . . . . . . . . . 924 
PGP: Pretty Good Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925 
SSH: the secure shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926 
Stunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930

Firewalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932
Packet-filtering firewalls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932 
How services are filtered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933 
Stateful inspection firewalls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934 
Firewalls: how safe are they? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935

Linux firewall features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935
Rules, chains, and tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935 
Rule targets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936 
iptables firewall setup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937 
A complete example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937

IPFilter for UNIX systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939

  



ptg

xxxii UNIX and Linux System Administration Handbook

Virtual private networks (VPNs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
IPsec tunnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943 
All I need is a VPN, right? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943

Certifications and standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
Certifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945 
Security standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945

ISO 27002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946 
PCI DSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946 
NIST 800 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947 
Common Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947 
OWASP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947

Sources of security information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947
CERT: a registered service mark of Carnegie Mellon University  . . . . . . . . 948 
SecurityFocus.com and the BugTraq mailing list  . . . . . . . . . . . . . . . . . . . . . 948 
Schneier on Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948 
SANS: the System Administration, Networking, and Security Institute  . . 948 
Vendor-specific security resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949 
Other mailing lists and web sites  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 950

What to do when your site has been attacked  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 950 
Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952 
Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954

CHAPTER 23 WEB HOSTING 956

Web hosting basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957
Resource locations on the web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957 
Uniform resource locators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957 
How HTTP works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958 
Content generation on the fly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959

Embedded interpreters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959 
FastCGI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959 
Script security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960

Application servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960 
Load balancing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961

HTTP server installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
Choosing a server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963 
Installing Apache  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964 
Configuring Apache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965 
Running Apache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966 
Analyzing log files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966 
Optimizing for high-performance hosting of static content  . . . . . . . . . . . . 967

Virtual interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
Using name-based virtual hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968

  



ptg

Table of Contents xxxiii

Configuring virtual interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968
Linux virtual interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968 
Solaris virtual interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969 
HP-UX virtual interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 970 
AIX virtual interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 970

Telling Apache about virtual interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971 
The Secure Sockets Layer (SSL)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971

Generating a Certificate Signing Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972 
Configuring Apache to use SSL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973

Caching and proxy servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974
Using the Squid cache and proxy server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 
Setting up Squid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 
Reverse-proxying with Apache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976

Scaling beyond your limits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977
Cloud computing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978 
Co-lo hosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978 
Content distribution networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979

SECTION THREE:  BUNCH O' STUFF 

CHAPTER 24 VIRTUALIZATION 983

Virtual vernacular. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 984
Full virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985 
Paravirtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986 
Operating system virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986 
Native virtualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987 
Cloud computing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987 
Live migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988 
Comparison of virtualization technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . 988

Benefits of virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988 
A practical approach  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989 
Virtualization with Linux  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991

Introduction to Xen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991 
Xen essentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 
Xen guest installation with virt-install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993 
Xen live migration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994 
KVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995 
KVM installation and usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996

Solaris zones and containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997 
AIX workload partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1001

  



ptg

xxxiv UNIX and Linux System Administration Handbook

Integrity Virtual Machines in HP-UX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003
Creating and installing virtual machines  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003 

VMware: an operating system in its own right  . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 
Amazon Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 
Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 
Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010

CHAPTER 25 THE X WINDOW SYSTEM 1011

The display manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013 
Process for running an X application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014

The DISPLAY environment variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015 
Client authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 
X connection forwarding with SSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017

X server configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019
Device sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021 
Monitor sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021
Screen sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 
InputDevice sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
ServerLayout sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024 
xrandr: not your father’s X server configurator. . . . . . . . . . . . . . . . . . . . . . 1025 
Kernel mode setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025

X server troubleshooting and debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026
Special keyboard combinations for X  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026 
When X servers attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027

A brief note on desktop environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028
KDE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029 
GNOME. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029 
Which is better, GNOME or KDE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 
Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031

CHAPTER 26 PRINTING 1032

Printing-system architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
Major printing systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033 
Print spoolers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034

CUPS printing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034
Interfaces to the printing system  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034 
The print queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035 
Multiple printers and queues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036 
Printer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036 
Network printing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036 
Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037 
CUPS server administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038

  



ptg

Table of Contents xxxv

Network print server setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1039 
Printer autoconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1040 
Network printer configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1040 
Printer configuration examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1041 
Printer class setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1041 
Service shutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1041 
Other configuration tasks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1042

Printing from desktop environments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1043 
kprinter: print documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1044 
Konqueror and printing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1045

System V printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1045
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1045 
Destinations and classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1046 
A brief description of lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1047 
lpsched and lpshut: start and stop printing . . . . . . . . . . . . . . . . . . . . . . . . .1047 
lpadmin: configure the printing environment. . . . . . . . . . . . . . . . . . . . . . .1048 
lpadmin examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1050 
lpstat: get status information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1051 
cancel: remove print jobs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1051 
accept and reject: control spooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1051 
enable and disable: control printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1052 
lpmove: transfer jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1052 
Interface programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1052 
What to do when the printing system is completely hosed  . . . . . . . . . . . .1053

BSD and AIX printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1054
An overview of the BSD printing architecture . . . . . . . . . . . . . . . . . . . . . . .1054 
Printing environment control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1055 
lpd: spool print jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1056 
lpr: submit print jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1056 
lpq: view the printing queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1056 
lprm: remove print jobs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1057 
lpc: make administrative changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1057 
The /etc/printcap file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1059 
printcap variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1060

sd: spool directory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1061 
lf: error log file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1061 
lp: device name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1062 
rw: device open mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1062 
af: accounting file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1062 
mx: file size limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1062 
rm and rp: remote access information. . . . . . . . . . . . . . . . . . . . . . . . . .1062 
of, if: printing filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1063 
printcap variables for serial devices. . . . . . . . . . . . . . . . . . . . . . . . . . . .1064 
printcap extensions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1064

  



ptg

xxxvi UNIX and Linux System Administration Handbook

What a long, strange trip it’s been . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
Printing history and the rise of print systems  . . . . . . . . . . . . . . . . . . . . . . . 1065 
Printer diversity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066

Common printing software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 
Printer languages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068

PostScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 
PCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 
PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 
XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 
PJL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 
Printer drivers and their handling of PDLs  . . . . . . . . . . . . . . . . . . . . . . . . . 1071

PPD files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 
Paper sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 
Printer practicalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075

Printer selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 
GDI printers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 
Double-sided printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 
Other printer accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077 
Serial and parallel printers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077 
Network printers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077 
Other printer advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077

Use banner pages only if you have to. . . . . . . . . . . . . . . . . . . . . . . . . . . 1078 
Fan your paper  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078 
Provide recycling bins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078 
Use previewers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078 
Buy cheap printers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079 
Keep extra toner cartridges on hand . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079 
Pay attention to the cost per page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080 
Consider printer accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081 
Secure your printers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081

Troubleshooting tips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081
Restarting a print daemon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081 
Logging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082 
Problems with direct printing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082 
Network printing problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082 
Distribution-specific problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083 
Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084

CHAPTER 27 DATA CENTER BASICS 1085

Data center reliability tiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 
Cooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087

Electronic gear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088 
Light fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088

  



ptg

Table of Contents xxxvii

Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1089 
Total heat load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1089 
Hot aisles and cold aisles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1089 
Humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1091 
Environmental monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1091

Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1091
Rack power requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1092 
kVA vs. kW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1093 
Remote control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1094

Racks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1094 
Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1095 
Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1095 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1096

CHAPTER 28 GREEN IT 1097

Green IT initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1098 
The green IT eco-pyramid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1099 
Green IT strategies: data center  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1100

Application consolidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1101 
Server consolidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1102 
SAN storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1103 
Server virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1103 
Only-as-needed servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1104 
Granular utilization and capacity planning  . . . . . . . . . . . . . . . . . . . . . . . . .1104 
Energy-optimized server configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . .1104

Power-saving options for Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1104 
Filesystem power savings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1105

Cloud computing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1106 
Free cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1106 
Efficient data center cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1106 
Degraded mode for outages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1106 
Equipment life extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1107 
Warmer temperature in the data center  . . . . . . . . . . . . . . . . . . . . . . . . . . . .1108 
Low-power equipment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1108

Green IT strategies: user workspace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1108 
Green IT friends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1110 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1111

CHAPTER 29 PERFORMANCE ANALYSIS 1112

What you can do to improve performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1114 
Factors that affect performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1115 
How to analyze performance problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1117

  



ptg

xxxviii UNIX and Linux System Administration Handbook

System performance checkup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118
Taking stock of your hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118 
Gathering performance data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121 
Analyzing CPU usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121 
How the system manages memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124 
Analyzing memory usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125 
Analyzing disk I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127 
xdd: analyze disk subsystem performance . . . . . . . . . . . . . . . . . . . . . . . . . . 1129 
sar: collect and report statistics over time. . . . . . . . . . . . . . . . . . . . . . . . . . . 1129 
nmon and nmon_analyser: monitor in AIX . . . . . . . . . . . . . . . . . . . . . . . . 1130 
Choosing a Linux I/O scheduler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130 
oprofile: profile Linux systems in detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131

Help! My system just got really slow!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131 
Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133 
Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134

CHAPTER 30 COOPERATING WITH WINDOWS 1135

Logging in to a UNIX system from Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135 
Accessing remote desktops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136

X server running on a Windows computer  . . . . . . . . . . . . . . . . . . . . . . . . . 1136 
VNC: Virtual Network Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138 
Windows RDP: Remote Desktop Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 1138

Running Windows and Windows-like applications . . . . . . . . . . . . . . . . . . . . . . 1139
Dual booting, or why you shouldn’t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140 
Microsoft Office alternatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140

Using command-line tools with Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140 
Windows compliance with email and web standards . . . . . . . . . . . . . . . . . . . . . 1141 
Sharing files with Samba and CIFS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142

Samba: CIFS server for UNIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142 
Samba installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143 
Filename encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145 
User authentication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145 
Basic file sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146 
Group shares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146 
Transparent redirection with MS DFS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147 
smbclient: a simple CIFS client  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148 
Linux client-side support for CIFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148

Sharing printers with Samba. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149
Installing a printer driver from Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . 1151 
Installing a printer driver from the command line . . . . . . . . . . . . . . . . . . . 1152

Debugging Samba. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152 
Active Directory authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154

Getting ready for Active Directory integration . . . . . . . . . . . . . . . . . . . . . . 1155 
Configuring Kerberos for Active Directory integration . . . . . . . . . . . . . . . 1156

  



ptg

Table of Contents xxxix

Samba as an Active Directory domain member. . . . . . . . . . . . . . . . . . . . . .1157 
PAM configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1159 
Alternatives to winbind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1160

Recommended reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1160 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1161

CHAPTER 31 SERIAL DEVICES AND TERMINALS 1162

The RS-232C standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1163 
Alternative connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1165

The DB-9 variant  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1166 
The RJ-45 variant  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1166

Hard and soft carrier  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1167 
Hardware flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1168 
Serial device files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1168 
setserial: set serial port parameters under Linux. . . . . . . . . . . . . . . . . . . . . . . . .1169 
Pseudo-terminals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1170 
Configuration of terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1171

The login process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1171 
The /etc/ttytype file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1172 
The /etc/gettytab file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1173 
The /etc/gettydefs file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1173 
The /etc/inittab file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1174 
getty configuration for Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1175 
Ubuntu Upstart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1176 
Solaris and sacadm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1176

Special characters and the terminal driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1177 
stty: set terminal options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1178 
tset: set options automatically  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1178 
Terminal unwedging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1179 
Debugging a serial line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1180 
Connecting to serial device consoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1180 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1182

CHAPTER 32 MANAGEMENT, POLICY, AND POLITICS 1183

The purpose of IT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1184
Budgeting and spending  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1184 
IT policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1185 
Service level agreements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1186

Scope and descriptions of services . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1187 
Queue management policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1188 
Roles and responsibilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1189 
Conformance measurements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1189

  



ptg

xl UNIX and Linux System Administration Handbook

The structure of an IT organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1190
The foundation: the ticketing and task management system. . . . . . . . . . . 1191 
Common functions of ticketing systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191 
Ticket ownership  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192 
User acceptance of ticketing systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192 
Sample ticketing systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193 
Ticket dispatching  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194 
Skill sets within IT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195 
Time management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196

The help desk  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196
Scope of services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196 
Help desk availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196 
Help desk addiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196

The enterprise architects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197
Make processes reproducible  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197 
Leave a trail of bread crumbs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1198 
Recognize the criticality of documentation  . . . . . . . . . . . . . . . . . . . . . . . . . 1198 
Customize and write code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1198 
Keep the system clean  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1198

The operations group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199
Aim for minimal downtime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199 
Document dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199 
Repurpose or eliminate older hardware  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200 
Maintain local documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200

Standardized documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202 
Hardware labeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203 
Network documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204 
User documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204

Keep environments separate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204 
Automate, automate, automate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205

Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206
Leadership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206 
Personnel management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207 
Hiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207 
Firing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208 
Mechanics of personnel management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209 
Quality control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209 
Management without meddling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1210 
Community relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1210 
Management of upper management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1211 
Purchasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212 
Conflict resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213

Mediation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213 
Rogue users and departments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1214

  



ptg

Table of Contents xli

Policies and procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1215
The difference between policies and procedures . . . . . . . . . . . . . . . . . . . . .1215 
Policy best practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1216 
Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1216

Disaster recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1217
Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1217 
Disaster management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1218 
Staff for a disaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1220 
Power and HVAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1220 
Internet connection redundancy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1221 
Security incidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1222

Compliance: regulations and standards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1222
ITIL: the Information Technology Infrastructure Library . . . . . . . . . . . . .1225 
NIST: the National Institute for Standards and Technology . . . . . . . . . . .1225

Legal issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1226
Privacy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1226 
Policy enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1227 
Control = liability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1228 
Software licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1228

Organizations, conferences, and other resources  . . . . . . . . . . . . . . . . . . . . . . . .1229 
Recommended Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1231 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1231

INDEX 1233

A BRIEF HISTORY OF SYSTEM ADMINISTRATION 1264

IN DEFENSE OF AIX 1274

COLOPHON 1277

ABOUT THE CONTRIBUTORS 1278

ABOUT THE AUTHORS 1279

  



ptg

xlii

Foreword

Twenty-seven years ago, in 1983, I wrote what may have been the first system 
administrator’s guide for the UNIX operating system. I’d been hired as a contrac-
tor to write documentation at a UNIX workstation company called Massachusetts 
Computer Company (MASSCOMP for short). When I finished the graphics pro-
gramming manuals I’d been hired to write, I was casting around for something 
else to do there. “When any of us have system problems, we go to Tom Teixeira,” I 
said. “What are our customers going to do?”

The answer was quick: “Uh, oh! We really need a manual.” I was soon rehired to 
extract as much information as I could from Tom Teixeira’s head and put it onto 
paper.

That book covered the basics: the root account, account addition, permission 
management, backup and restore, a bit about networking with UUCP, and so on. 
It was oriented toward System V, one of the two dominant flavors of UNIX at the 
time (the other being Berkeley UNIX).

All things considered, I did a pretty good job of extracting information from Tom 
and other members of the then rare caste of elite system administrators. But there 
was no question in my mind that when the UNIX System Administration Hand-
book (USAH) came out in 1989, the bible of the field had arrived—captured not 
by an amanuensis, but direct from the keyboards of the masters.

By then, O’Reilly had become a publisher. Recognizing that many of my technical 
writing customers were adopting UNIX, I had begun retaining the rights to the 
manuals I wrote so that I could resell them to other companies. In late 1985, we 
introduced our first books that were sold to the public rather than licensed to 
companies. We focused first on small books about individual topics such as vi, 

  



ptg

Foreword xliii

sed and awk, termcap and terminfo, and the UUCP networking system. We 
called them “Nutshell Handbooks” because we wanted to capture everything “in a 
nutshell.”

We didn’t really know anything about publishing. Our books had no spines (they 
were stapled), indexes, or ISBNs. We sold them by mail order, not through book-
stores. But bit by bit, we learned. And eventually, we came into competition with 
the existing world of computer book publishers.

General UNIX administration was an obvious subject for us, but we didn’t tackle 
it till years later. Why not? I am a big believer in filling unmet needs, not compet-
ing for the sake of it. And it was so clear that there was already a book on the topic 
that was not just good but GREAT! I could imagine neither the need to compete 
with such a comprehensive book nor the possibility of success in doing so.

Eventually, as our business matured and we entered the retail computer book 
market, we realized that competition can actually help grow the market. People 
see one book, and it’s an outlier. They see more than one, and, to quote Arlo Guth-
rie, “they may think it’s a movement.” Besides, in that first edition of USAH, the 
authors had a clear bias toward BSD-based systems, and we thought there was 
room for a book with more of a System V bias.

In 1991, we published our own comprehensive book on UNIX system administra-
tion, Æleen Frisch’s Essential System Administration.

As an author, editor, and publisher, I never paid much attention to the competi-
tion—except in a few cases. This is one of those cases. The UNIX System Adminis-
tration Handbook is one of the few books we ever measured ourselves against. 
Could we be as good? Could we be better? Like the NBA duels of Magic Johnson 
and Larry Bird, the competition brought out the best in us.

Uh, oh again! Fourth edition? Æleen had better get back to work! :-)

Tim O’Reilly
June 2010

  



ptg

xliv

Preface

When we were writing the first edition of this book in the mid-1980s, we were 
eager to compare our manuscript with other books about system administration. 
To our delight, we could find only three. These days, you have your choice of 
hundreds. Here are the features that distinguish our book:

• We take a hands-on approach. You already have plenty of manuals; our 
purpose is to summarize our collective perspective on system adminis-
tration and to recommend approaches that stand the test of time. This 
book contains numerous war stories and a wealth of pragmatic advice.

• This is not a book about how to run UNIX or Linux at home, in your 
garage, or on your PDA. We describe the management of production 
environments such as businesses, government offices, and universities.

• We cover networking in detail. It is the most difficult aspect of system 
administration and the area in which we think we can be of most help.

• We cover the major variants of UNIX and Linux.

THE ORGANIZATION OF THIS BOOK

This book is divided into three large chunks: Basic Administration, Networking, 
and Bunch o’ Stuff.

Basic Administration presents a broad overview of UNIX and Linux from a sys-
tem administrator’s perspective. The chapters in this section cover most of the 
facts and techniques needed to run a stand-alone system.

The Networking section describes the protocols used on UNIX systems and the 
techniques used to set up, extend, and maintain networks and Internet-facing 

  



ptg

Preface xlv

servers. High-level network software is also covered here. Among the featured 
topics are the Domain Name System, the Network File System, electronic mail, 
and network management.

Bunch o’ Stuff includes a variety of supplemental information. Some chapters dis-
cuss optional features such as those that support server virtualization. Others give 
advice on topics ranging from eco-friendly computing to the politics of running a 
system administration group.

Each chapter is followed by a set of practice exercises. Items are marked with our 
estimate of the effort required to complete them, where “effort” is an indicator of 
both the difficulty of the task and the time required. There are four levels: 

no stars Easy, should be straightforward 
Harder or longer, may require lab work
Hardest or longest, requires lab work and digging 
Semester-long projects (only in a few chapters)

Some of the exercises require root or sudo access to the system; others require the 
permission of the local sysadmin group. Both requirements are mentioned in the 
text of the exercise.

OUR CONTRIBUTORS

We’re delighted that Ned McClain, David Schweikert, and Tobi Oetiker were able 
to join us once again as contributing authors. With this edition, we also welcome 
Terry Morreale and Ron Jachim as new contributors. These contributors’ deep 
knowledge of a variety of areas has greatly enriched the content of this book.

CONTACT INFORMATION

Please send suggestions, comments, and bug reports to ulsah@book.admin.com. 
We do answer mail, but please be patient; it is sometimes a few days before one of 
us is able to respond. Because of the volume of email that this alias receives, we 
regret that we are unable to answer technical questions. 

To view a copy of our current bug list and other late-breaking information, visit 
our web site, admin.com.

We hope you enjoy this book, and we wish you the best of luck with your adven-
tures in system administration!

Evi Nemeth
Garth Snyder 
Trent R. Hein 
Ben Whaley

June 2010

  



ptg

xlvi

Acknowledgments

Many people contributed to this project, bestowing everything from technical re-
views and suggested exercises to overall moral support. The following folks de-
serve special thanks for hanging in there with us:

Our editor at Prentice Hall, Mark Taub, deserves not only our thanks but also an 
award for dealing patiently with flaky authors and a supporting cast that some-
times seemed to run to thousands of contributors.

We’ve had outstanding technical reviewers. Two in particular, Jonathan Corbet 
and Pat Parseghian, deserve special mention not only for their diplomatic and 
detailed comments but also for their willingness to stick with us over the course of 
multiple editions.

Mary Lou Nohr once again did an exceptional job as copy editor. She is a car 
crushing plant and botanical garden rolled into one.

This edition’s awesome cartoons and cover were conceived and executed by Lisa 
Haney. Her portfolio is on-line at lisahaney.com.

Linda Grigoleit, Terry Hoffman, and John Sullivan helped us negotiate the IBM 
network and obtain equipment for evaluation.

Ron Aitchison Peter Haag Jeremy C. Reed
Eric Allman Bryan Helvey Andy Rudoff
Clay Baenziger Matthijs Mekking Michael Sinatra
Adam Boggs Randall Munroe Paul Vixie
Tom Christiansen Eric Osterweil Wouter Wijngaards
Dan Foster Phil Pennock
Steve Gaede William Putnam

  



ptg

Acknowledgments xlvii

Thanks also to Applied Trust (appliedtrust.com), which contributed laboratory 
space and a variety of logistical support.

Finally, we were unable to reach an agreement that would allow us to publicly 
acknowledge one of our distinguished contributing authors. His contributions 
and support throughout the project were nonetheless appreciated, and we send 
him this palindrome for his collection: “A man, a plan, a canoe, pasta, Hero’s ra-
jahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, 
a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore 
hats, a peon, a canal—Panama!”

  



ptg

This page intentionally left blank 

  



ptg

SECTION ONE 

BASIC ADMINISTRATION

  



ptg

This page intentionally left blank 

  



ptg

3

W
he

re
 to

 S
ta

rt

1 Where to Start

An awful lot of UNIX and Linux information is available these days, so we’ve de-
signed this book to occupy a specific niche in the ecosystem of man pages, blogs, 
magazines, books, and other reference materials that address the needs of system 
administrators. 

First, it’s an orientation guide. It reviews the major administrative systems, identi-
fies the different pieces of each, and explains how they work together. In the many 
cases where you must choose between various implementations of a concept, we 
describe the advantages and drawbacks of the major players.

Second, it’s a quick-reference handbook that summarizes what you need to know 
to perform common tasks on a variety of common UNIX and Linux systems. For 
example, the ps command, which shows the status of running processes, supports 
more than 80 command-line options on Linux systems. But a few combinations of 
options satisfy 99% of a system administrator’s needs; see them on page 130.

Finally, this book focuses on the administration of enterprise servers and net-
works. That is, serious system administration. It’s easy to set up a single desktop 
system; harder to keep a virtualized network running smoothly in the face of load 
spikes, disk failures, and intentional attacks. We describe techniques and rules of 

Where to Start

  



ptg

4 Chapter 1 Where to Start

thumb that help networks recover from adversity, and we help you choose solu-
tions that scale as your site grows in size, complexity, and heterogeneity.

We don’t claim to do all of this with perfect objectivity, but we think we’ve made 
our biases fairly clear throughout the text. One of the interesting things about 
system administration is that reasonable people can have dramatically different 
notions of what constitute the most appropriate policies and procedures. We offer 
our subjective opinions to you as raw data. You’ll have to decide for yourself how 
much to accept and to what extent our comments apply to your environment.

1.1 ESSENTIAL DUTIES OF THE SYSTEM ADMINISTRATOR

See Chapter 2 for 
more information 
about scripting.

The Wikipedia page for “system administrator” includes a nice discussion of the 
tasks that system administration is generally thought to include. This page cur-
rently draws a rather sharp distinction between administration and software de-
velopment, but in our experience, professional administrators spend much of 
their time writing scripts. That doesn’t make system administrators developers 
per se, but it does mean that they need many of the same analytical and architec-
tural skills.

The sections below summarize some of the main tasks that administrators are 
expected to perform. These duties need not necessarily be carried out by a single 
person, and at many sites the work is distributed among a team. However, at least 
one person must understand all the components and make sure that every task is 
being done correctly.

Account provisioning

See Chapter 7 for more 
information about 
adding new users.

The system administrator adds accounts for new users, removes the accounts of 
users that are no longer active, and handles all the account-related issues that 
come up in between (e.g., forgotten passwords). The process of adding and re-
moving users can be automated, but certain administrative decisions (where to 
put a user’s home directory, which machines to create the account on, etc.) must 
still be made before a new user can be added.

When a user should no longer have access to the system, the user’s account must 
be disabled. All the files owned by the account should be backed up and then 
disposed of so that the system does not accumulate unwanted baggage over time.

Adding and removing hardware

See Chapters 8, 13, and 
26 for more informa-
tion about these topics.

When new hardware is purchased or when hardware is moved from one machine 
to another, the system must be configured to recognize and use that hardware. 
Hardware-support chores can range from the simple task of adding a printer to 
the more complex job of adding a disk array.

Now that virtualization has arrived in the enterprise computing sphere, hardware 
configuration can be more complicated than ever. Devices may need installation 

  



ptg

Maintaining local documentation 5

W
he

re
 to

 S
ta

rt

at several layers of the virtualization stack, and the system administrator may 
need to formulate policies that allow the hardware to be shared securely and fairly.

Performing backups

See Chapter 10 for 
more information 
about backups.

Performing backups is perhaps the most important job of the system administra-
tor, and it is also the job that is most often ignored or sloppily done. Backups are 
time consuming and boring, but they are absolutely necessary. Backups can be 
automated and delegated to an underling, but it is still the system administrator’s 
job to make sure that backups are executed correctly and on schedule (and that 
the resulting media can actually be used to restore files).

Installing and upgrading software 

See Chapter 12 for 
more information 
about software 
management.

When new software is acquired, it must be installed and tested, often under sev-
eral operating systems and on several types of hardware. Once the software is 
working correctly, users must be informed of its availability and location. As 
patches and security updates are released, they must be incorporated smoothly 
into the local environment.

Local software and administrative scripts should be properly packaged and man-
aged in a fashion that’s compatible with the native upgrade procedures used on 
systems at your site. As this software evolves, new releases should be staged for 
testing before being deployed to the entire site.

Monitoring the system

Large installations require vigilant supervision. Don’t expect users to report prob-
lems to you unless the issues are severe. Working around a problem is usually 
faster than taking the time to document and report it, so users often follow the 
path of least resistance.

Regularly ensure that email and web services are working correctly, watch log files 
for early signs of trouble, make sure that local networks are properly connected, 
and keep an eye on the availability of system resources such as disk space. All of 
these chores are excellent opportunities for automation, and a variety of off-the-
shelf monitoring systems can help sysadmins with this task.

Troubleshooting

System failures are inevitable. It is the administrator’s job to play mechanic by 
diagnosing problems and calling in experts if needed. Finding the problem is of-
ten harder than fixing it. 

Maintaining local documentation 

See page 1200 for sug-
gestions regarding 
documentation.

As a system is changed to suit an organization’s needs, it begins to differ from the 
plain-vanilla system described by the documentation. Since the system adminis-
trator is responsible for making these customizations, it’s also the sysadmin’s duty 
to document the changes. This chore includes documenting where cables are run 

  



ptg

6 Chapter 1 Where to Start

and how they are constructed, keeping maintenance records for all hardware, re-
cording the status of backups, and documenting local procedures and policies.

Vigilantly monitoring security

See Chapter 22 for 
more information 
about security.

The system administrator must implement a security policy and periodically 
check to be sure that the security of the system has not been violated. On low-
security systems, this chore might involve only a few basic checks for unauthor-
ized access. On a high-security system, it can include an elaborate network of 
traps and auditing programs.

Fire fighting 

Although helping users with their various problems is rarely included in a system 
administrator’s job description, it claims a significant portion of most administra-
tors’ workdays. System administrators are bombarded with problems ranging 
from “It worked yesterday and now it doesn’t! What did you change?” to “I spilled 
coffee on my keyboard! Should I pour water on it to wash it out?”

In most cases, your response to these issues affects your perceived value as an 
administrator far more than does any actual technical skill you might possess. You 
can either howl at the injustice of it all, or you can delight in the fact that a single 
well-handled trouble ticket scores as many brownie points as five hours of mid-
night debugging. You pick!

1.2 SUGGESTED BACKGROUND

We assume in this book that you have a certain amount of Linux or UNIX experi-
ence. In particular, you should have a general concept of how the system looks 
and feels from the user’s perspective since we don’t review this material. Several 
good books can get you up to speed; see the reading list on page 27.

Even in these days of Compiz-powered 3D desktops, the GUI tools for system 
administration on UNIX and Linux systems remain fairly simplified in compari-
son with the richness of the underlying software. In the real world, we still admin-
ister by editing configuration files and writing scripts, so you’ll need to be com-
fortable with both a command-line shell and a text editor. 

Your editor can be a GUI tool like gedit or a command-line tool such as vi or 
emacs. Word processors such as Microsoft Word and OpenOffice Writer are quite 
different from text editors and are nearly useless for administrative tasks. Com-
mand-line tools have an edge because they can run over simple SSH connections 
and on ailing systems that won’t boot; there’s no need for a window system. They 
are also much faster for the quick little edits that administrators often make.

We recommend learning vi (now seen most commonly in its rewritten form, 
vim), which is standard on all UNIX and Linux systems. Although it may appear 
a bit pallid when compared with glitzier offerings such as emacs, it is powerful 
and complete. GNU’s nano is a simple and low-impact “starter editor” that has 

  



ptg

Friction between UNIX and Linux 7

W
he

re
 to

 S
ta

rt

on-screen prompts. Be wary of nonstandard editors, though; if you become ad-
dicted to one, you may soon tire of dragging it along with you to install on every 
new system.

One of the mainstays of administration (and a theme that runs throughout this 
book) is the use of scripts to automate administrative tasks. To be an effective 
administrator, you must be able to read and modify Perl and bash/sh scripts.

See Chapter 2 for 
more information 
about scripting.

For new scripting projects, we recommend Perl or Python. As a programming 
language, Perl is admittedly a bit strange. However, it does include many features 
that are indispensable for administrators. The O’Reilly book Programming Perl by 
Larry Wall et al. is the standard text; it’s also a model of good technical writing. A 
full citation is given on page 27.

Many administrators prefer Python to Perl, and we know of sites that are making 
a concerted effort to convert. Python is a more elegant language, and Python 
scripts are generally more readable and easier to maintain. (As Amazon’s Steve 
Yegge said, “The Python community has long been the refuge for folks who finally 
took the red pill and woke up from the Perl Matrix.”) A useful set of links that 
compare Python to other scripting languages (including Perl) can be found at 
python.org/doc/Comparisons.html.

Ruby is an up-and-coming language that maintains many of the strengths of Perl 
while avoiding some of Perl’s syntactic pitfalls and adding modern object-ori-
ented features. It doesn’t yet have a strong tradition as a scripting language for 
system administrators, but that will likely change over the next few years.

We also suggest that you learn expect, which is not a programming language so 
much as a front end for driving interactive programs. It’s an efficient glue technol-
ogy that can replace some complex scripting. expect is easy to learn.

Chapter 2, Scripting and the Shell, summarizes the most important things to know 
about scripting for bash, Perl, and Python. It also reviews regular expressions 
(text matching patterns) and some shell idioms that are useful for sysadmins.

1.3 FRICTION BETWEEN UNIX AND LINUX

See the section starting 
on page 1264 for more 
of the history of UNIX 
and Linux.

Because they are similar, this book covers both UNIX and Linux systems. Unfor-
tunately, mentioning UNIX and Linux together in the same sentence can some-
times be like stepping into a political minefield, or perhaps blundering into a large 
patch of quicksand. But since the relationship between UNIX and Linux seems to 
engender some confusion as well as animosity, it’s hard to avoid staking out a 
position. Here is our perspective and our short version of the facts.

Linux is a reimplementation and elaboration of the UNIX kernel. It conforms to 
the POSIX standard, runs on several hardware platforms, and is compatible with 
most existing UNIX software. It differs from many—but not all—variants of 
UNIX in that it is free, open source, and cooperatively developed. Linux includes 

  



ptg

8 Chapter 1 Where to Start

technical advances that did not exist in UNIX, so it is more than just a UNIX 
clone. At the same time, traditional UNIX vendors have continued to refine their 
systems, so there are certainly areas in which commercial UNIX systems are supe-
rior to Linux.

Whatever the relative merits of the systems, Linux is a legally, developmentally, 
and historically distinct entity that cannot properly be referred to as “UNIX” or as 
a “version of UNIX.” To do so is to slight the work and innovation of the Linux 
community. At the same time, it’s somewhat misleading to insist that Linux is “not 
UNIX.” If your creation walks like a duck and quacks like a duck, you may have 
invented a duck.

Schisms exist even within the Linux camp. It has been argued, with some justifica-
tion, that referring to Linux distributions simply as “Linux” fails to acknowledge 
the work that went into the software that runs outside the kernel (which in fact 
constitutes the vast majority of software on an average system). Unfortunately, the 
most commonly suggested alternative, GNU/Linux, has its own political baggage 
and has been officially endorsed only by the Debian distribution. The Wikipedia 
entry for “GNU/Linux naming controversy” outlines the arguments on both 
sides.1 Interestingly, the use of open source software is now predominant even on 
most UNIX systems, but no one seems to be pushing for a GNU/UNIX designa-
tion just yet.2

Linux software is UNIX software. Thanks largely to the GNU Project, most of the 
important software that gives UNIX systems their value has been developed un-
der some form of open source model.3 The same code runs on Linux and non-
Linux systems. The Apache web server, for example, doesn’t much care whether 
it’s running on Linux or Solaris. From the standpoint of applications and most 
administrative software, Linux is simply one of the best-supported and most 
widely available varieties of UNIX.

It’s also worth noting that Linux is not the only free UNIX-like operating system 
in the world. OpenSolaris is free and open source, although its exact licensing 
terms have earned suspicious looks from some open source purists. FreeBSD, 
NetBSD, and OpenBSD—all offshoots of the Berkeley Software Distribution from 
UC Berkeley—have ardent followers of their own. These OSes are generally com-
parable to Linux in their features and reliability, although they enjoy somewhat 
less support from third-party software vendors.

1. Since Wikipedia contains Linux information and must therefore refer to Linux frequently, the debate 
has particular relevance to Wikipedia itself. The discussion page for the Wikipedia article is also well 
worth reading.

2. After all, “GNU’s not UNIX!”
3. Several of our technical reviewers protested that we seem to be crediting GNU with the creation of 

most of the world’s free software. We are not! However, GNU has certainly done more than any other 
group to promote the idea of free software as a social enterprise and to structure ongoing debate about 
licensing terms and interactions between free and nonfree software.

  



ptg

Linux distributions 9

W
he

re
 to

 S
ta

rt

UNIX and Linux systems have both been used in production environments for 
many years, and they both work well.4 At this point, the choice between them has 
more to do with packaging, support, and institutional inertia than any real differ-
ence in quality or modernity.

In this book, comments about “Linux” generally apply to Linux distributions but 
not to traditional UNIX variants. The meaning of “UNIX” is a bit more fluid, as 
we occasionally apply it to attributes shared by all UNIX derivatives, including 
Linux (e.g., “UNIX file permissions”). To avoid ambiguity, we usually say “UNIX 
and Linux” when we mean both.

1.4 LINUX DISTRIBUTIONS

All Linux distributions share the same kernel lineage, but the ancillary materials 
that go along with that kernel can vary quite a bit. Distributions vary in their 
focus, support, and popularity. There continue to be hundreds of independent 
Linux distributions, but our sense is that distributions based on the Debian, Red 
Hat, and SUSE lineages will continue to predominate in production environments 
over the next five years.

The differences among Linux distributions are not cosmically significant. In fact, 
it is something of a mystery why there are so many different distributions, each 
claiming “easy installation” and “a massive software library” as its distinguishing 
features. It’s hard to avoid the conclusion that people just like to make new Linux 
distributions.

Many smaller distributions are surprisingly competitive in terms of fit and finish. 
All major distributions, including the second tier, include a relatively painless in-
stallation procedure, a well-tuned desktop environment, and some form of pack-
age management. Most distributions also allow you to boot from the distribution 
DVD, which can be handy for debugging and is also a nice way to take a quick 
look at a new distribution you are considering.

Since our focus in this book is the management of large-scale installations, we’re 
partial to distributions such as Red Hat Enterprise Linux that take into account 
the management of networks of machines. Some distributions are designed with 
production environments in mind, and others are not. The extra crumbs of assis-
tance that the production-oriented systems toss out can make a significant differ-
ence in ease of administration.

When you adopt a distribution, you are making an investment in a particular ven-
dor’s way of doing things. Instead of looking only at the features of the installed 
software, it’s wise to consider how your organization and that vendor are going to 
work with each other in the years to come.

4. We consider a “production” environment to be one that an organization relies on to accomplish real 
work (as opposed to testing, research, or development).

  



ptg

10 Chapter 1 Where to Start

Some important questions to ask are

• Is this distribution going to be around in five years?
• Is this distribution going to stay on top of the latest security patches?
• Is this distribution going to release updated software promptly?
• If I have problems, will the vendor talk to me?

Viewed in this light, some of the more interesting, offbeat distributions don’t 
sound quite so appealing. But don’t count them out: E*Trade, for example, runs 
on Gentoo Linux.

The most viable distributions are not necessarily the most corporate. For example, 
we expect Debian Linux (OK, OK, Debian GNU/Linux!) to remain viable for a 
long time despite the fact that Debian is not a company, doesn’t sell anything, and 
offers no formal, on-demand support. Debian itself isn’t one of the most widely 
used distributions, but it benefits from a committed group of contributors and 
from the enormous popularity of the Ubuntu distribution, which is based on it.

Table 1.1 lists some of the most popular mainstream distributions.

A comprehensive list of distributions, including many non-English distributions, 
can be found at linux.org/dist, lwn.net/Distributions, or distrowatch.com.

1.5 EXAMPLE SYSTEMS USED IN THIS BOOK

We have chosen three popular Linux distributions and three UNIX variants as our 
examples to discuss throughout this book: Ubuntu Linux, openSUSE, Red Hat 
Enterprise Linux, Solaris, HP-UX, and AIX. These systems are representative of 

Table 1.1 Most popular general-purpose Linux distributions

Distribution Web site Comments

CentOS centos.org Free analog of Red Hat Enterprise
Debian debian.org Closest to GNU
Fedora fedoraproject.org De-corporatized Red Hat Linux
Gentoo gentoo.org Compile-it-yourself, optimized
Linux Mint linuxmint.com Ubuntu-based, elegant apps
Mandriva mandriva.com Long history, “easy to try”
openSUSE opensuse.org Free analog of SUSE Linux Enterprise 
Oracle Enterprise Linux oracle.com Oracle-supported version of RHEL
PCLinuxOS pclinuxos.com Fork of Mandriva, KDE-oriented
Red Flag redflag-linux.com Chinese distro, similar to Red Hat
Red Hat Enterprise redhat.com Reliable, slow-changing, commercial
Slackware slackware.com Grizzled, long-surviving distro 
SUSE Linux Enterprise novell.com/linux Strong in Europe, multilingual
Ubuntu ubuntu.com Cleaned-up version of Debian

  



ptg

Example Linux distributions 11

W
he

re
 to

 S
ta

rt

the overall marketplace and account collectively for an overwhelming majority of 
the installations in use at large sites today.

Information in this book generally applies to all of our example systems unless a 
specific attribution is given. Details particular to one system are marked with the 
vendor’s logo:

Ubuntu® 9.10 “Karmic Koala”

openSUSE® 11.2

Red Hat® Enterprise Linux® 5.5

Solaris™ 11 and OpenSolaris™ 2009.06

HP-UX® 11i v3

AIX® 6.1

These logos are used with the kind permission of their respective owners. How-
ever, the vendors have not reviewed or endorsed the contents of this book. The 
paragraphs below provide a bit more detail about each of these example systems.

Example Linux distributions

Information that’s specific to Linux but not to any particular distribution is 
marked with the Tux penguin logo shown at left.

The Ubuntu distributions maintain an ideological commitment to community 
development and open access, so there’s never any question about which parts of 
the distribution are free or redistributable. Ubuntu currently enjoys philanthropic 
funding from South African entrepreneur Mark Shuttleworth. 

Ubuntu is based on the Debian distribution and uses Debian’s packaging system. 
It comes in two main forms, a Desktop Edition and a Server Edition. They are 
essentially similar, but the Server Edition kernel comes pretuned for server use 
and does not install a GUI or GUI applications such as OpenOffice.

SUSE, now part of Novell, has taken the path of Red Hat and forked into two 
related distributions: one (openSUSE) that contains only free software; and an-
other (SUSE Linux Enterprise) that costs money, includes a formal support path, 
and offers a few extra trinkets. Nothing in this book is specific to one SUSE distri-
bution or the other, so we simply refer to them collectively as “SUSE.”

Red Hat has been a dominant force in the Linux world for most of the last decade, 
and its distributions are widely used in North America. In 2003, the original Red 
Hat Linux distribution was split into a production-centered line called Red Hat 
Enterprise Linux (which we refer to as RHEL or Red Hat in this book) and a 

  



ptg

12 Chapter 1 Where to Start

community-based development project called Fedora. The split was motivated by 
a variety of technical, economic, logistic, and legal reasons.

The distributions were initially similar, but Fedora has made some significant 
changes over the last five years and the two systems aren’t currently synchronized 
in any meaningful way. RHEL offers great support and stability but is effectively 
impossible to use without paying licensing fees to Red Hat.

The CentOS Project (centos.org) collects source code that Red Hat is obliged to 
release under various licensing agreements (most notably, the GNU Public Li-
cense) and assembles it into a complete distribution that is eerily similar to Red 
Hat Enterprise Linux, but free of charge. The distribution lacks Red Hat’s brand-
ing and a few proprietary tools, but is in other respects equivalent. CentOS aspires 
to full binary and bug-for-bug compatibility with RHEL. 

CentOS is an excellent choice for sites that want to deploy a production-oriented 
distribution without paying tithes to Red Hat. A hybrid approach is also feasible: 
front-line servers can run Red Hat Enterprise Linux and avail themselves of Red 
Hat’s excellent support, while desktops run CentOS. This arrangement covers the 
important bases in terms of risk and support while also minimizing cost and ad-
ministrative complexity.

Example UNIX distributions

Solaris is a System V derivative with many extensions from the company formerly 
known as Sun Microsystems, now part of Oracle.5 Sun UNIX (as it was called in 
the mid-80s) was originally the progeny of Berkeley UNIX, but a (now historic) 
corporate partnership between Sun and AT&T forced a change of code base. So-
laris runs on a variety of hardware platforms, most notably Intel x86 and SPARC.

In Sun’s hands, Solaris was free to download and use. However, Oracle has 
changed this policy, and current downloads are labeled as 90-day free trial edi-
tions. The existence of OpenSolaris, an explicitly free and open source version of 
Solaris, complicates the picture as well. At this point (mid-2010), Oracle’s exact 
plans for Solaris and OpenSolaris remain unclear.

The release of Solaris 11 is expected some time this year, and every indication so 
far is that it will hew closely to OpenSolaris. In this book, the composite system 
we refer to as “Solaris” is based on production Solaris 10 and OpenSolaris re-
leases, adjusted with guidance from our network of deep-cover spies within Ora-
cle. In a few cases, we note specifics for Solaris 10 or OpenSolaris.

HP-UX is based on System V and is tied to Hewlett-Packard’s hardware platforms. 
It’s closer to the ancestral source tree than either Solaris or AIX, but HP has kept 
pace with developments in the OS world and has added a variety of its own en-
hancements. Now that HP has begun supporting Linux as well, the future of HP-
UX is somewhat less clear.

5. See page 1264 for some background on BSD, System V, and the general history of UNIX.

  



ptg

Notation and typographical conventions 13

W
he

re
 to

 S
ta

rt

IBM’s AIX started as a variant of Berkeley’s 4.2BSD, but as of version 4 in 1994, 
most parts of the system migrated to System V. At this point, AIX has drifted 
rather far from both origins.

In general, we have the impression that AIX has enjoyed less cross-pollination 
from other systems than most UNIX variants. It also seems to have fallen under 
the Svengali-like influence of some of IBM’s mainframe and AS/400 operating 
systems, from which it inherits conventions such as the Object Data Manager (see 
page 432), the use of configuration commands rather than configuration files, and 
the SMIT administrative interface. Over time, one might charitably say, it has 
grown to be more and more like itself.

IBM has been pursuing an interestingly OS-agnostic approach to marketing its 
hardware for most of the last decade. IBM continues to develop and promote AIX, 
but it’s also engaged in partnerships with Red Hat and Novell to ensure that their 
respective Linux distributions run smoothly on IBM hardware. It will be interest-
ing to see how this approach plays out in the years ahead.

1.6 SYSTEM-SPECIFIC ADMINISTRATION TOOLS

Modern systems include a variety of visually oriented tools and control panels 
(such as SUSE’s YaST2 and IBM’s SMIT) that help you configure or administer 
selected aspects of the system. These tools are useful, especially for novice admin-
istrators, but they also tend to be relatively incomplete reflections of the underly-
ing software. They make many administrative tasks easier, but most fall short of 
being authoritative.

In this book, we cover the underlying mechanisms that the visual tools manipu-
late rather than the tools themselves, for several reasons. For one, the visual tools 
tend to be proprietary (or at least, system-specific). They introduce variation into 
processes that may actually be quite consistent among systems at a lower level. 
Second, we believe that it’s important for administrators to have an accurate un-
derstanding of how their systems work. When the system breaks, the visual tools 
are often not helpful in tracking down and fixing problems. Finally, manual con-
figuration is often faster, more flexible, more reliable, and easier to script.

1.7 NOTATION AND TYPOGRAPHICAL CONVENTIONS

In this book, filenames, commands, and literal arguments to commands are 
shown in boldface. Placeholders (e.g., command arguments that should not be 
taken literally) are in italics. For example, in the command

cp file directory

you’re supposed to replace file and directory with the names of an actual file and 
an actual directory.

  



ptg

14 Chapter 1 Where to Start

Excerpts from configuration files and terminal sessions are shown in a fixed-
width font.6 Sometimes, we annotate sessions with italic text. For example:

$ grep Bob /pub/phonelist # Look up Bob’s phone number
Bob Knowles 555-2834 
Bob Smith 555-2311

Outside of these specific cases, we have tried to keep special fonts and formatting 
conventions to a minimum as long as we could do so without compromising intel-
ligibility. For example, we often talk about entities such as the daemon group or 
the printer anchor-lw with no special formatting at all.

We use the same conventions as the manual pages for command syntax:

• Anything between square brackets (“[” and “]”) is optional.
• Anything followed by an ellipsis (“…”) can be repeated.
• Curly braces (“{” and “}”) mean that you should select one of the items 

separated by vertical bars (“|”).

For example, the specification
bork [ -x ] { on | off } filename …

would match any of the following commands:
bork on /etc/passwd 
bork -x off /etc/passwd /etc/smartd.conf
bork off /usr/lib/tmac 

We use shell-style globbing characters for pattern matching:

• A star (*) matches zero or more characters.
• A question mark (?) matches one character.
• A tilde or “twiddle” (~) means the home directory of the current user.7
• ~user means the home directory of user.

For example, we might refer to the startup script directories /etc/rc0.d, /etc/rc1.d, 
and so on with the shorthand pattern /etc/rc*.d.

Text within quotation marks often has a precise technical meaning. In these cases, 
we ignore the normal rules of U.S. English and put punctuation outside the quotes 
so that there can be no confusion about what’s included and what’s not.

1.8 UNITS

Metric prefixes such as kilo-, mega-, and giga- are defined as powers of 10: one 
megabuck is 1,000,000 dollars. However, computer types have long poached these 
prefixes and used them to refer to powers of 2. For example, one “megabyte” of 

6. It’s not really a fixed-width font, but it looks like one. We liked it better than the real fixed-width fonts 
that we tried. That’s why the columns in some examples may not all line up perfectly.

7. Solaris 10’s default shell for root is the original Bourne shell, which (rather surprisingly) does not 
understand ~ or ~user notation.

  



ptg

Units 15

W
he

re
 to

 S
ta

rt

memory is really 220 or 1,048,576 bytes. The stolen units have even made their way 
into formal standards such as the JEDEC Solid State Technology Association’s 
Standard 100B.01, which recognizes the prefixes as denoting powers of 2 (albeit 
with some misgivings).

In an attempt to restore clarity, the International Electrotechnical Commission 
has defined a set of numeric prefixes (kibi-, mebi-, gibi-, and so on, abbreviated 
Ki, Mi, and Gi) based explicitly on powers of 2. Those units are always unambigu-
ous, but they are just starting to be widely used. The original kilo-series prefixes 
are still used in both senses.

Context helps with decoding. RAM is always denominated in powers of 2, but 
network bandwidth is always a power of 10. Storage space is usually quoted in 
power-of-10 units, but block and page sizes are in fact powers of 2.

In this book, we use IEC units for powers of 2, metric units for powers of 10, and 
metric units for rough values and cases in which the exact basis is unclear, undoc-
umented, or impossible to determine. In command output and in excerpts from 
configuration files, we leave the original values and unit designators. We abbrevi-
ate bit as b and byte as B. Table 1.2 shows some examples.

The abbreviation K, as in “8KB of RAM!”, is not part of any standard. It’s a com-
puterese adaptation of the metric abbreviation k, for kilo-, and originally meant 
1,024 as opposed to 1,000. But since the abbreviations for the larger metric pre-
fixes are already uppercase, the analogy doesn’t scale. Later, people became con-
fused about the distinction and started using K for factors of 1,000, too.

The Ubuntu Linux distribution is making a valiant attempt to bring rationality 
and consistency to this issue; see wiki.ubuntu.com/UnitsPolicy for some addi-
tional details.

Table 1.2 Unit decoding examples

Example Meaning

56 kb/s serial line A serial line that transmits 56,000 bits per second
1kB file A file that contains 1,000 bytes 
4KiB SSD pages SSD pages that contain 4,096 bytes 
8KB of memory Not used in this book; see note below 
100MB file size limit Nominally 108 bytes; in context, ambiguous 
100MB disk partition Nominally 108 bytes; in context, probably 99,999,744 bytesa

1GiB of RAM Exactly 1,073,741,824 bytes of memoryb

1 Gb/s Ethernet A network that transmits 1,000,000,000 bits per second 
1TB hard disk A hard disk that stores 1,000,000,000,000 bytes

a. That is, 108 rounded down to the nearest whole multiple of the disk’s 512-byte block size
b. But according to Microsoft, still not enough memory to run the 64-bit version of Windows 7

  



ptg

16 Chapter 1 Where to Start

1.9 MAN PAGES AND OTHER ON-LINE DOCUMENTATION

The manual pages, usually called “man pages” because they are read with the man
command, constitute the traditional “on-line” documentation. (Of course, these 
days all the documentation is on-line in some form or another.) Man pages are 
typically installed with the system. Program-specific man pages come along for 
the ride when you install new software packages. 

Man pages are concise descriptions of individual commands, drivers, file formats, 
or library routines. They do not address more general topics such as “How do I 
install a new device?” or “Why is this system so damn slow?” For those questions, 
consult your vendor’s administration guides (see page 18) or, for Linux systems, 
the documents available from the Linux Documentation Project.

Organization of the man pages

All systems divide the man pages into sections, but there are minor variations in 
the way some sections are defined. The basic schema used by our example sys-
tems is shown in Table 1.3. 

Some sections may be further subdivided. For example, Solaris’s section 3c con-
tains man pages about the system’s standard C library. There is also considerable 
variation in the exact distribution of pages; some systems leave section 8 empty 
and lump the system administration commands into section 1. A lot of systems 
have discontinued games and demos, leaving nothing in section 6. Many systems 
have a section of the manuals called “l” (lowercase L) for local man pages.

The exact structure of the sections isn’t important for most topics because man
finds the appropriate page wherever it is stored. You only need to be aware of the 
section definitions when a topic with the same name appears in multiple sections. 
For example, passwd is both a command and a configuration file, so it has entries 
in both section 1 and section 4 or 5.

Table 1.3 Sections of the man pages

Linux Solaris HP-UX AIX Contents

1 1 1 1 User-level commands and applications
2 2 2 2 System calls and kernel error codes
3 3 3 3 Library calls
4 7 7 4 Device drivers and network protocols
5 4 4 5 Standard file formats
6 6 – 6 Games and demonstrations
7 5 5 7 Miscellaneous files and documents
8 1m 1m 8 System administration commands
9 9 – – Obscure kernel specs and interfaces
– – 9 – HP-UX general information

  



ptg

Storage of man pages 17

W
he

re
 to

 S
ta

rt

man: read man pages

man title formats a specific manual page and sends it to your terminal through 
more, less, or whatever program is specified in your PAGER environment vari-
able. title is usually a command, device, filename, or name of a library routine. 
The sections of the manual are searched in roughly numeric order, although sec-
tions that describe commands (sections 1, 8, and 6) are usually searched first. 

The form man section title gets you a man page from a particular section. Thus, 
on most systems, man sync gets you the man page for the sync command, and 
man 2 sync gets you the man page for the sync system call. 

Under Solaris, you must preface the section number with the -s flag, for example, 
man -s 2 sync.

man -k keyword or apropos keyword prints a list of man pages that have keyword
in their one-line synopses. For example:

$ man -k translate 
objcopy (1) - copy and translate object files 
dcgettext (3) - translate message
tr (1) - translate or delete characters 
snmptranslate (1) - translate SNMP OID values into more useful information 
tr (1p) - translate characters
…

The keywords database can become out of date. If you add additional man pages 
to your system, you may need to rebuild this file with mandb (Ubuntu, SUSE), 
makewhatis (Red Hat), or catman -w (Solaris, HP-UX, AIX).

Storage of man pages

nroff input for man pages is usually kept in directories under /usr/share/man. 
Linux systems compress them with gzip to save space. (The man command 
knows how to uncompress them on the fly.) The man command maintains a 
cache of formatted pages in /var/cache/man or /usr/share/man if the appropriate 
directories are writable, but this is a security risk. Most systems preformat the 
man pages once at installation time (see catman) or not at all.

Solaris understands man pages formatted with SGML in addition to the tradi-
tional nroff. The SGML pages have their own section directories underneath 
/usr/share/man.

The man command can search several man page repositories to find the manual 
pages you request. On Linux systems, you can find out the current default search 
path with the manpath command. This path (from Ubuntu) is typical:

ubuntu$ manpath 
/usr/local/man:/usr/local/share/man:/usr/share/man

  



ptg

18 Chapter 1 Where to Start

If necessary, you can set your MANPATH environment variable to override the 
default path:

export MANPATH=/home/share/localman:/usr/share/man 

Some systems let you set a custom system-wide default search path for man pages, 
which can be useful if you need to maintain a parallel tree of man pages such as 
those generated by OpenPKG. If you want to distribute local documentation in 
the form of man pages, however, it is simpler to use your system’s standard pack-
aging mechanism and to put man pages in the standard man directories. See 
Chapter 12, Software Installation and Management, for more details.

GNU Texinfo

Linux systems include a sort of supplemental on-line man page system called Tex-
info. It was invented long ago by the GNU folks in reaction to the fact that the 
nroff command to format man pages was proprietary to AT&T. These days we 
have GNU’s own groff to do this job for us and the nroff issue is no longer impor-
tant, but Texinfo still lumbers along like a zombie in search of human brains.

Although the use of Texinfo seems to be gradually fading, a few GNU packages 
persist in documenting themselves with Texinfo files rather than man pages. You 
can pipe the output of the Texinfo reader, info, through less to evade info’s built-
in navigation system.

Fortunately, packages that are documented with Texinfo usually install man page 
stubs that tell you to use the info command to read about those particular pack-
ages. You can safely stick to the man command for doing manual searches and 
delve into info land only when instructed to do so. info info initiates you into the 
dark mysteries of Texinfo.

1.10 OTHER AUTHORITATIVE DOCUMENTATION

Man pages are just a small part of the official documentation. Most of the rest, 
unfortunately, is scattered about on the web.

System-specific guides

Major vendors have their own dedicated documentation projects, and many con-
tinue to produce useful book-length manuals. These days the manuals are usually 
found on-line rather than in the form of printed books. The extent and quality of 
the documentation vary widely, but most vendors produce at least an administra-
tion guide and an installation guide. Table 1.4 shows where to look for each of our 
example systems.

The standout in this crowd is IBM, which produces a raft of full-length books on 
a variety of administration topics. You can buy them as books, but they’re also 
available for free as downloads. The downside to IBM’s completeness is that many 
of the documents seem to lag a version or two behind the current release of AIX. 

  



ptg

Books 19

W
he

re
 to

 S
ta

rt

Red Hat is the unfortunate laggard in the documentation race. Most of its docu-
ments relate to its proprietary value-added systems rather than to Linux adminis-
tration generally.

Package-specific documentation

Most of the important software packages in the UNIX and Linux world are main-
tained by individuals or by third parties such as the Internet Systems Consortium 
and the Apache Software Foundation. These groups write their own documenta-
tion. The quality runs the gamut from embarrassing to spectacular, but jewels 
such as Version Control with Subversion from svnbook.red-bean.com make the 
hunt worthwhile.

UNIX vendors and Linux distributors always include the appropriate man pages 
in their packages. Unfortunately, they tend to skimp on other documentation, 
mostly because there really isn’t a standard place to put it (check /usr/share/doc). 
It’s often useful to check the original source of the software to see if additional 
materials are available.

Supplemental documents include white papers (technical reports), design ratio-
nales, and book- or pamphlet-length treatments of particular topics. These sup-
plemental materials are not limited to describing just one command, so they can 
adopt a tutorial or procedural approach. Many pieces of software have both a man 
page and an article. For example, the man page for vi tells you about the com-
mand-line arguments that vi understands, but you have to go to the in-depth 
treatment to learn how to actually edit a file.

Books

The best resources for system administrators in the printed realm (aside from this 
book :-)) are the O’Reilly series of books. The series began with UNIX in a Nut-
shell over 20 years ago and now includes a separate volume on just about every 
important UNIX and Linux subsystem and command. The series also includes 
books on the Internet, Windows, and other non-UNIX topics. All the books are 
reasonably priced, timely, and focused.

Table 1.4 Where to find OS vendors’ proprietary documentation

System URL Comments

Ubuntu help.ubuntu.com Mostly user-oriented; see “server guide”
SUSE novell.com/documentation Admin stuff is in “reference guide” 
RHEL redhat.com/docs Mostly documents Red Hat extensions
Solaris docs.sun.com Extensive catalog of materials
HP-UX docs.hp.com Books, white papers, and tech guides
AIX www.redbooks.ibm.com 

ibm.com/support
Numerous real books in PDF format 
Support gateway to notes, FAQs, etc.

  

www.redbooks.ibm.com


ptg

20 Chapter 1 Where to Start

Tim O’Reilly has become quite interested in the open source movement and runs 
a conference, OSCON, on this topic as well as conferences on other trendy techie 
topics. OSCON occurs twice yearly, once in the United States and once in Europe. 
See oreilly.com for more information.

RFCs and other Internet documents

The Request for Comments document series describes the protocols and proce-
dures used on the Internet. Most of these documents are relatively detailed and 
technical, but some are written as overviews. They are absolutely authoritative, 
and many are quite useful for system administrators. See page 449 for a more 
complete description of these documents.

The Linux Documentation Project

Linux systems have another major source of reference information: the Linux 
Documentation Project at tldp.org. This site hosts a huge array of user-contrib-
uted documentation ranging from FAQs to full-length guides. The LDP also cen-
tralizes efforts to translate Linux-related documents into additional languages.

Unfortunately, many of the LDP documents are not well maintained. Since Linux-
years are a lot like dog-years in their relation to real time, untended documents 
are apt to go out of date quickly. Always check the time stamp on a HOWTO or 
guide and weigh its credibility accordingly.

1.11 OTHER SOURCES OF INFORMATION

The sources discussed in the previous section are generally the most reliable, but 
they’re hardly the last word in UNIX and Linux documentation. Countless blogs, 
discussion forums, and news feeds are available on the Internet.

It should go without saying, but Google is a system administrator’s best friend. 
Unless you’re looking up the details of a specific command or file format, Google 
should be the first resource you consult for any sysadmin question. Make it a 
habit; if nothing else, you’ll avoid the delay and humiliation of having your ques-
tions in an on-line forum answered with a link to Google.8 When stuck, Google.

We can’t enumerate every useful collection of UNIX and Linux information on 
the Internet, but a few of the most significant ones are shown in Table 1.5.

Another fun and useful resource is Bruce Hamilton’s “Rosetta Stone” page at 
bhami.com/rosetta.html. It contains pointers to the commands and tools used for 
various system administration tasks on many different operating systems.

If you’re a Linux site, don’t be shy about accessing general UNIX resources. Most 
information is directly applicable to Linux.

8. Or worse yet, a link to Google through lmgtfy.com

  



ptg

Ways to find and install software 21

W
he

re
 to

 S
ta

rt

1.12 WAYS TO FIND AND INSTALL SOFTWARE

Chapter 12, Software Installation and Management, addresses software provision-
ing in detail. But for the impatient, here’s a quick primer on how to find out what’s 
installed on your system and how to obtain and install new software.

Modern operating systems divide their contents into packages that can be in-
stalled independently of one another. The default installation includes a range of 
starter packages that you can expand according to your needs.

Add-on software is often provided in the form of precompiled packages as well, 
although the degree to which this is a mainstream approach varies widely among 
systems. Most software is developed by independent groups that release the soft-
ware in the form of source code. Package repositories then pick up the source 
code, compile it appropriately for the conventions in use on the systems they 
serve, and package the resulting binaries. It’s usually easier to install a system-
specific binary package than to fetch and compile the original source code. How-
ever, packagers are sometimes a release or two behind the current version. 

The fact that two systems use the same package format doesn’t necessarily mean 
that packages for the two systems are interchangeable. Red Hat and SUSE both 
use RPM, for example, but their filesystem layouts are somewhat different. It’s best 
to use packages designed for your particular system if they are available. 

Table 1.5 Sysadmin resources on the web

Web site Description

blogs.sun.com Great collection of technical articles, many Solaris-related
cpan.org Authoritative collection of Perl modules 
freshmeat.net Large index of Linux and UNIX software
kernel.org Official Linux kernel site
linux.com Linux forum, good for new usersa

linux.org General Linux information clearing house 
linux.slashdot.org Linux-specific arm of tech news giant Slashdot 
linuxhq.com Compilation of kernel-related info and patches
lwn.net Linux and open source news service
lxer.com Linux news aggregator 
rootvg.net AIX-oriented site with lots of links and good forums 
securityfocus.com General computer security info 
serverfault.com Collaboratively edited database of sysadmin questions 
ServerFiles.com Directory of network admin software and hardware 
slashdot.org Tech news in a variety of categories 
solariscentral.org Open blog with Solaris-related news and articles 
sun.com/bigadmin Sun-specific aggregation site for admin info 
sunhelp.org Very nice collection of Sun-related material
ugu.com UNIX Guru Universe – all things sysadmin

a. This site is now run by the Linux Foundation.

  



ptg

22 Chapter 1 Where to Start

Major Linux distributions provide excellent package management systems that 
include tools for accessing and searching Internet software repositories. Distribu-
tors aggressively maintain these repositories on behalf of the community, so there 
is rarely a need for Linux administrators to step outside the bounds of their sys-
tems’ default package manager. Life is good.

UNIX systems show more ambivalence about package management. Solaris, HP-
UX, and AIX all provide packaging software that works at the level of individual 
machines. However, the vendors of these systems don’t maintain repositories of 
open source software, so the user communities are mostly left to fend for them-
selves.9 Unfortunately, one of the main pieces of glue that holds a packaging uni-
verse together is a way for packages to reliably refer to other packages in order to 
express dependency or compatibility information. Without some central coordi-
nation, the whole ecosystem can quickly fall apart.

In the real world, results have varied. Solaris has an add-on system (pkgutil from 
blastwave.org) that provides for easy software installation from an Internet repos-
itory, much like the native systems found on Linux distributions. HP-UX has a 
nice Internet repository in the form of the HP-UX Porting and Archiving Centre 
at hpux.connect.org.uk, but packages must be manually and individually down-
loaded. At the more dismal end of the spectrum, the availability of prepackaged 
software for AIX is somewhat scattershot.

Administrators without access to prepackaged binaries must install software the 
old-fashioned way: by downloading a tar archive of the source code and manually 
configuring, compiling, and installing it. Depending on the software and the op-
erating system, this process can range from trivial to nightmarish.

In this book, we generally assume that optional software is already installed rather 
than torturing you with boilerplate instructions for installing every package. If 
there’s a potential for confusion, we sometimes mention the exact names of the 
packages needed to complete a particular project. For the most part, however, we 
don’t repeat installation instructions since they tend to be similar from one pack-
age to the next.

Determining whether software has already been installed

For a variety of reasons, it can be a bit tricky to determine which software package 
contains the component you actually need. Rather than starting at the package 
level, it’s easier to use the shell’s which command to find out if a relevant binary is 
already in your search path. For example, the following command reveals that the 
GNU C compiler has already been installed on this machine:

aix$ which gcc 
/opt/pware/bin/gcc

9. OpenSolaris does offer a Linux-quality package management system and Internet repository. This fea-
ture does not exist in Solaris 10, but it’s likely to be featured in Solaris 11.

  



ptg

Adding new software 23

W
he

re
 to

 S
ta

rt

If which can’t find the command you’re looking for, try whereis; it searches a 
broader range of system directories and is independent of your shell’s search path. 

Another alternative is the incredibly useful locate command, which consults a 
precompiled index of the filesystem to locate filenames that match a particular 
pattern. locate is part of the GNU findutils package, which is included by default 
on most Linux systems but must be installed by hand on UNIX.

locate is not specific to commands or packages but can find any type of file. For 
example, if you weren’t sure where to find the signal.h include file, you could try

ubuntu$ locate signal.h 
/usr/include/signal.h 
/usr/include/asm/signal.h 
/usr/include/asm-generic/signal.h 
/usr/include/linux/signal.h 
…

locate’s database is updated periodically by the updatedb command, which runs 
out of cron. Therefore, the results of a locate don’t always reflect recent changes to 
the filesystem.

See Chapter 12 for 
more information 
about package 
management.

If you know the name of the package you’re looking for, you can also use your 
system’s packaging utilities to check directly for the package’s presence. For exam-
ple, on a Red Hat or SUSE system, the following command checks for the pres-
ence (and installed version) of the Python scripting language:

redhat$ rpm -q python 
python-2.4.3-21.el5

Adding new software

If you do need to install additional software, you first need to determine the ca-
nonical name of the relevant software package. For example, you’d need to trans-
late “I want to install locate” to “I need to install the findutils package,” or trans-
late “I need named” to “I have to install BIND.” A variety of system-specific 
indexes on the web can help with this, but Google is usually just as effective. For 
example, a search for “locate command” takes you directly to several relevant dis-
cussions. If you’re on a UNIX system, throw in the name of the operating system 
as well.

Once you know the name of the relevant software, you can download and install 
it. The complete installation is usually a single command on Linux systems and on 
Solaris systems that have pkgutil installed. For HP-UX and AIX you’ll have to 
download either a prebuilt binary package or the project’s original source code. If 
the latter, try to locate the project’s official web page through Google and down-
load the source code from one of the project’s mirrors.

The following examples show the installation of the wget command on each of 
our example systems. It’s a nifty GNU utility that turns HTTP and FTP down-
loads into atomic commands—very useful for scripting. wget is installed by 

  



ptg

24 Chapter 1 Where to Start

default on each of our example Linux systems, but the commands shown below 
can be used for both initial installation and later updates.

Ubuntu uses APT, the Debian Advanced Package Tool: 
ubuntu# apt-get install wget 
Reading package lists... Done 
Building dependency tree 
Reading state information... Done 
wget is already the newest version. 
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

The SUSE version is
suse# yast --install wget 
<runs in a terminal-based UI>

The Red Hat version is
redhat# yum install wget 
Loaded plugins: fastestmirror 
…
Parsing package install arguments 
Package wget-1.10.2-7.el5.i386 is already installed and latest version 
Nothing to do

On a Solaris system with pkutil already installed (see blastwave.org for instruc-
tions on setting this up)

solaris# /opt/csw/bin/pkgutil --install wget 
<multiple pages of output as seven packages are installed>

For HP-UX, we found an appropriate binary package on hpux.connect.org.uk and 
downloaded it to the /tmp directory. The commands to unpack and install it were

hpux# gunzip /tmp/wget-1.11.4-hppa-11.31.depot.gz 
hpux# swinstall -s /tmp/wget-1.11.4-hppa-11.31.depot wget 
=======  05/27/09 13:01:31 EDT  BEGIN swinstall SESSION

(non-interactive) (jobid=hpux11-0030)

* Session started for user "root@hpux11".

* Beginning Selection
* Target connection succeeded for "hpux11:/".
* Source: /tmp/wget-1.11.4-hppa-11.31.depot
* Targets: hpux11:/
* Software selections: 

wget.wget-RUN,r=1.11.4,a=HP-UX_B./800
* Selection succeeded.
* Beginning Analysis and Execution 
…
* Analysis and Execution succeeded. 
…

  



ptg

Building software from source code 25

W
he

re
 to

 S
ta

rt

The package depot on the swinstall command line must be specified as a full path 
starting with /; otherwise, swinstall tries to find the file on the network. The wget
at the end tells swinstall which package to install from within the depot file.

Unfortunately, the installation is not really as easy as it first appears. The installed 
version of wget won’t actually run because several of the libraries on which it de-
pends have not been installed:

hpux$ wget http://samba.org/samba/docs/Samba3-HOWTO.pdf 
/usr/lib/dld.sl: Can't open shared library: /usr/local/lib/libcrypto.sl 
/usr/lib/dld.sl: No such file or directory 
[HP ARIES32]: Core file for 32 bit PA-RISC application 
[HP ARIES32]: /usr/local/bin/wget saved to /tmp/core.wget.

swinstall does have some dependency management built in, but its abilities un-
fortunately do not extend to Internet repositories. You’ll have to read the fine 
print and install all the appropriate prerequisite packages (in this case, six more) 
to make things right.

Building software from source code

There is in fact at least one binary wget package available for AIX in RPM format. 
A Google search for “aix wget rpm” should turn up some good leads. After down-
loading, the installation command would be a simple

aix# rpm --install wget-1.11.4-1.aix5.1.ppc.rpm

But just for illustration, let’s build the AIX version of wget from the original 
source code. 

Our first chore is to find the code, but that’s easy: the first Google result for “wget” 
takes us right to the project page at GNU, and the source tarball is just a link away. 
After downloading the current version into the /tmp directory, we unpack, con-
figure, build, and install it:

aix# cd /tmp; gunzip wget-1.11.4.tar.gz 
aix# tar xfp wget-1.11.4.tar 
aix# cd wget-1.11.4 
aix# ./configure --disable-ssl --disable-nls # See comments below 
configure: configuring for GNU Wget 1.11.4 
checking build system type... rs6000-ibm-aix 
… 
config.status: creating src/config.h 
config.status: executing default commands 
generating po/POTFILES from ./po/POTFILES.in 
creating po/Makefile 
aix# make 
<several pages of compilation output> 
aix# make install 
<about a page of output>

  



ptg

26 Chapter 1 Where to Start

This configure/make/make install sequence is common to the majority of UNIX 
and Linux software and works on all systems as long as you have the development 
environment and any package-specific prerequisites installed. However, it’s always 
a good idea to check the package’s INSTALL or README file for specifics.

In this case, the --disable-ssl and --disable-nls options to configure omit some 
wget features that depend on other libraries that haven’t been installed. In real life, 
you’d probably want to install the prerequisites. Use configure --help to see all the 
configuration options. Another useful configure option is --prefix=directory, 
which lets you put the software somewhere other than /usr/local.

1.13 SYSTEM ADMINISTRATION UNDER DURESS

System administrators wear many hats. In the real world, they are often people 
with other jobs who have been asked to look after a few computers on the side. If 
this is your situation, tread carefully and be aware of how this scenario tends to 
play out over the long term.

The more experienced you become at system management, the more the user 
community comes to depend on you. Networks invariably grow, and administra-
tive work tends to accumulate over time as your administration system becomes 
more sophisticated and you add additional layers. You will soon find that you are 
the only person in your organization who knows how to perform a variety of im-
portant tasks.

Once coworkers come to think of you as the local system administrator, it is diffi-
cult to extricate yourself from this role. That is not necessarily a bad thing, but we 
know several people who have changed jobs to escape it. Since many administra-
tive tasks are intangible, you may also find that you’re expected to be both a full-
time administrator and a full-time engineer, writer, or analyst.

There is a common tendency for unwilling administrators to fend off requests by 
adopting a surly attitude and providing poor service.10 This approach usually 
backfires; it makes you look bad and creates additional problems.

Instead, consider keeping detailed records of the time you spend on system ad-
ministration. Your goal should be to keep the work at a manageable level and to 
assemble evidence that you can use when you ask to be relieved of administrative 
duties. In most organizations, you will need to lobby the management from six 
months to a year to get yourself replaced, so plan ahead.

On the other hand, you may find that you enjoy system administration and that 
you prefer it to real work. Employment prospects remain good. Unfortunately, 
your political problems will probably intensify. See Chapter 32, Management, Pol-
icy, and Politics, for a preview of the delights in store.

10. A tendency lovingly and sadistically documented in Simon Travaglia’s Bastard Operator from Hell sto-
ries; see bofh.ntk.net for the archive. (Look under BOFH.)

  



ptg

Essential tools 27

W
he

re
 to

 S
ta

rt

1.14 RECOMMENDED READING

ROBBINS, ARNOLD. UNIX in a Nutshell (4th Edition). Sebastopol, CA: O’Reilly Me-
dia, 2008.

SIEVER, ELLEN, AARON WEBER, AND STEPHEN FIGGINS. Linux in a Nutshell (5th 
Edition). Sebastopol, CA: O’Reilly Media, 2006.

GANCARZ, MIKE. Linux and the Unix Philosophy. Boston: Digital Press, 2003.

SALUS, PETER H. The Daemon, the GNU & the Penguin: How Free and Open Soft-
ware is Changing the World. Reed Media Services, 2008.

This fascinating history of the open source movement by UNIX’s best-known his-
torian is also available at groklaw.com under the Creative Commons license. The 
URL for the book itself is quite long; look for a current link at groklaw.com or try 
this compressed equivalent: tinyurl.com/d6u7j.

RAYMOND, ERIC S. The Cathedral & The Bazaar: Musings on Linux and Open 
Source by an Accidental Revolutionary. Sebastopol, CA: O’Reilly Media, 2001.

System administration

LIMONCELLI, THOMAS A., CHRISTINA J. HOGAN, AND STRATA R. CHALUP. The 
Practice of System and Network Administration (Second Edition). Reading, MA: 
Addison-Wesley, 2008.

This is a good book with particularly strong coverage of the policy and procedural 
aspects of system administration. The authors maintain a system administration 
blog at everythingsysadmin.com.

FRISCH, ÆLEEN. Essential System Administration (3rd Edition). Sebastopol, CA: 
O’Reilly Media, 2002.

This is a classic all-around guide to UNIX system administration that is sadly 
somewhat out of date. We hope a new version is in the works!

Essential tools

ROBBINS, ARNOLD, ELBERT HANNAH, AND LINDA LAMB. Learning the vi and Vim 
Editors. Sebastopol, CA: O’Reilly Media, 2008.

POWERS, SHELLY, JERRY PEEK, TIM O’REILLY, AND MIKE LOUKIDES. UNIX Power 
Tools (3rd Edition). Sebastopol, CA: O’Reilly Media, 2003.

MICHAEL, RANDAL K. Mastering UNIX Shell Scripting: BASH, Bourne, and Korn 
Shell Scripting for Programmers, System Administrators, and UNIX Gurus. India-
napolis, IN: Wiley Publishing, Inc., 2008.

ROBBINS, ARNOLD AND NELSON H. F. BEEBE. Classic Shell Scripting. Sebastopol, 
CA: O’Reilly Media, 2005.

WALL, LARRY, TOM CHRISTIANSEN, AND JON ORWANT. Programming Perl (3rd 
Edition). Cambridge, MA: O’Reilly Media, 2000.

  



ptg

28 Chapter 1 Where to Start

CHRISTIANSEN, TOM, AND NATHAN TORKINGTON. Perl Cookbook (2nd Edition). 
Sebastopol, CA: O’Reilly Media, 2003.

BLANK-EDELMAN, DAVID N. Automating System Administration with Perl (2nd 
Edition). Sebastopol, CA: O’Reilly Media, 2009.

PILGRIM, MARK. Dive Into Python. Berkeley, CA: Apress, 2004.

This book is also available for free on the web at diveintopython.org.

FLANAGAN, DAVID, AND YUKIHIRO MATSUMOTO. The Ruby Programming Lan-
guage. Sebastopol, CA: O’Reilly Media, 2008.

This book, optimistically subtitled Everything You Need to Know, is unfortunately 
a bit on the dry side. However, it covers the Ruby 1.9 release and includes a wealth 
of detail that only the language designer is really in a position to know. Best for 
those who already have a working knowledge of Perl or Python.

1.15 EXERCISES

E1.1 What command would you use to read about the terminal driver, tty
(not the tty command)? How would you read a local tty man page that 
was kept in /usr/local/share/man?

E1.2 Does a system-wide config file control the behavior of the man com-
mand at your site? What lines would you add to this file if you wanted 
to store local material in /doc/man? What directory structure would 
you have to use in /doc/man to make it a full citizen of the man page 
hierarchy?

E1.3 What is the current status of Linux kernel development? What are the 
hot issues? Who are the key players? How is the project managed?

E1.4 Research several UNIX and Linux systems and recommend an operat-
ing system for each of the following applications. Explain your choices.

a) A single user working in a home office
b)A university computer science lab
c) A corporate web server
d) A server cluster that runs the database for a shipping company

E1.5 Suppose you discover that a certain feature of Apache httpd does not 
appear to work as documented on Ubuntu.

a) What should you do before reporting the bug?
b)If you decide that the bug is real, whom should you notify and how?
c) What information must be included to make the bug report useful?

E1.6 Linux has made dramatic inroads into production environments. Is 
UNIX doomed? Why or why not?

  



ptg

29

Sc
rip

tin
g/

Sh
el

l2 Scripting and the Shell

Good system administrators write scripts. Scripts standardize and automate the 
performance of administrative chores and free up admins’ time for more impor-
tant and more interesting tasks. In a sense, scripts are also a kind of low-rent doc-
umentation in that they act as an authoritative outline of the steps needed to com-
plete a particular task.

In terms of complexity, administrative scripts run the gamut from simple ones 
that encapsulate a few static commands to major software projects that manage 
host configurations and administrative data for an entire site. In this book we’re 
primarily interested in the smaller, day-to-day scripting projects that sysadmins 
normally encounter, so we don’t talk much about the support functions (e.g., bug 
tracking and design review) that are needed for larger projects.

Administrative scripts should emphasize programmer efficiency and code clarity 
rather than computational efficiency. This is not an excuse to be sloppy, but sim-
ply a recognition that it rarely matters whether a script runs in half a second or 
two seconds. Optimization can have an amazingly low return on investment, even 
for scripts that run regularly out of cron.

For a long time, the standard language for administrative scripts was the one de-
fined by the shell. Most systems’ default shell is bash (the “Bourne-again” shell), 

Scripting/Shell

  



ptg

30 Chapter 2 Scripting and the Shell

but sh (the original Bourne shell) and ksh (the Korn shell) are used on a few 
UNIX systems. Shell scripts are typically used for light tasks such as automating a 
sequence of commands or assembling several filters to process data.

The shell is always available, so shell scripts are relatively portable and have few 
dependencies other than the commands they invoke. Whether or not you choose 
the shell, the shell may choose you: most environments include a hefty comple-
ment of existing sh scripts, and those scripts frequently need to be read, under-
stood, and tweaked by administrators.

For more sophisticated scripts, it’s advisable to jump to a real programming lan-
guage such as Perl or Python, both of which are well suited for administrative 
work. These languages incorporate a couple of decades’ worth of language design 
advancements relative to the shell, and their text processing facilities (invaluable 
to administrators) are so powerful that sh can only weep and cower in shame.

The main drawback to Perl and Python is that their environments can be a bit 
fussy to set up, especially when you start to use third-party libraries that have 
compiled components. The shell skirts this particular issue by having no module 
structure and no third-party libraries.

This chapter takes a quick look at bash, Perl, and Python as languages for script-
ing, along with regular expressions as a general technology.

2.1 SHELL BASICS

Before we take up shell scripting, let’s review some of the basic features and syntax 
of the shell. The material in this section applies to all major shells in the sh lineage 
(including bash and ksh, but not csh or tcsh), regardless of the exact platform you 
are using. Try out the forms you’re not familiar with, and experiment!

Command editing

We’ve watched way too many people edit command lines with the arrow keys. You 
wouldn’t do that in your text editor, right?

If you like emacs, all the basic emacs commands are available to you when you’re 
editing history. <Control-E> goes to the end of the line and <Control-A> to the 
beginning. <Control-P> steps backward through recently executed commands 
and recalls them for editing. <Control-R> searches incrementally through your 
history to find old commands.

If you like vi, put your shell’s command-line editing into vi mode like this:
$ set -o vi

As in vi, editing is modal; however, you start in input mode. Type <Esc> to leave 
input mode and “i” to reenter it. In edit mode, “w” takes you forward a word, “fX” 

  



ptg

Pipes and redirection 31

Sc
rip

tin
g/

Sh
el

l

finds the next X in the line, and so on. You can walk through past command his-
tory entries with <Esc> k. Want emacs editing mode back again?

$ set -o emacs

Pipes and redirection

Every process has at least three communication channels available to it: “standard 
input” (STDIN), “standard output” (STDOUT), and “standard error” (STDERR). 
The kernel sets up these channels on the process’s behalf, so the process itself 
doesn’t necessarily know where they lead. They might connect to a terminal win-
dow, a file, a network connection, or a channel belonging to another process, to 
name a few possibilities.

UNIX has a unified I/O model in which each channel is named with a small inte-
ger called a file descriptor. The exact number assigned to a channel is not usually 
significant, but STDIN, STDOUT, and STDERR are guaranteed to correspond to 
file descriptors 0, 1, and 2, so it’s safe to refer to these channels by number. In the 
context of an interactive terminal window, STDIN normally reads from the key-
board and both STDOUT and STDERR write their output to the screen.

Most commands accept their input from STDIN and write their output to STD-
OUT. They write error messages to STDERR. This convention lets you string 
commands together like building blocks to create composite pipelines.

The shell interprets the symbols <, >, and >> as instructions to reroute a com-
mand’s input or output to or from a file. A < symbol connects the command’s 
STDIN to the contents of an existing file. The > and >> symbols redirect STD-
OUT; > replaces the file’s existing contents, and >> appends to them. For example, 
the command

$ echo "This is a test message." > /tmp/mymessage

stores a single line in the file /tmp/mymessage, creating the file if necessary. The 
command below emails the contents of that file to user johndoe.

$ mail -s "Mail test" johndoe < /tmp/mymessage

To redirect both STDOUT and STDERR to the same place, use the >& symbol. To 
redirect STDERR only, use 2>.

The find command illustrates why you might want to handle STDOUT and 
STDERR separately because it tends to produce output on both channels, espe-
cially when run as an unprivileged user. For example, a command such as

$ find / -name core

usually results in so many “permission denied” error messages that genuine hits 
get lost in the clutter. To discard all the error messages, you can use

$ find / -name core 2> /dev/null

  



ptg

32 Chapter 2 Scripting and the Shell

In this version, only real matches (where the user has read permission on the par-
ent directory) come to the terminal window. To save the list of matching paths to 
a file, try

$ find / -name core > /tmp/corefiles 2> /dev/null

This command line sends matching paths to /tmp/corefiles, discards errors, and 
sends nothing to the terminal window.

To connect the STDOUT of one command to the STDIN of another, use the |
symbol, commonly known as a pipe. Some examples:

$ ps -ef | grep httpd 
$ cut -d: -f7 < /etc/passwd | sort -u

The first example runs ps to generate a list of processes and pipes it through the 
grep command to select lines that contain the word httpd. The output of grep is 
not redirected, so the matching lines come to the terminal window.

The cut command in the second example picks out the path to each user’s shell 
from /etc/passwd. The list of shells is then sent through sort -u to produce a 
sorted list of unique values.

To execute a second command only if its precursor completes successfully, you 
can separate the commands with an && symbol. For example,

$ lpr /tmp/t2 && rm /tmp/t2

removes /tmp/t2 if and only if it is successfully queued for printing. Here, the 
success of the lpr command is defined as its yielding an exit code of zero, so the 
use of a symbol that suggests “logical AND” for this purpose may be confusing if 
you’re used to short-circuit evaluation in other programming languages. Don’t 
think about it too much; just accept it as a shell idiom.

Conversely, the || symbol executes the following command only if the preceding 
command fails (produces a nonzero exit status).

In a script, you can use a backslash to break a command onto multiple lines, help-
ing to distinguish the error-handling code from the rest of the command pipeline:

cp --preserve --recursive /etc/* /spare/backup \ 
|| echo "Did NOT make backup"

For the converse effect—multiple commands combined onto one line—you can 
use a semicolon as a statement separator.

Variables and quoting

Variable names are unmarked in assignments but prefixed with a dollar sign when 
their values are referenced. For example:

$ etcdir='/etc' 
$ echo $etcdir 
/etc

  



ptg

Common filter commands 33

Sc
rip

tin
g/

Sh
el

l

Do not put spaces around the = symbol or the shell will mistake your variable 
name for a command name.

When referencing a variable, you can surround its name with curly braces to clar-
ify to the parser and to human readers where the variable name stops and other 
text begins; for example, ${etcdir} instead of just $etcdir. The braces are not nor-
mally required, but they can be useful when you want to expand variables inside 
double-quoted strings. Often, you’ll want the contents of a variable to be followed 
by literal letters or punctuation. For example,

$ echo "Saved ${rev}th version of mdadm.conf." 
Saved 8th version of mdadm.conf.

There’s no standard convention for the naming of shell variables, but all-caps 
names typically suggest environment variables or variables read from global con-
figuration files. More often than not, local variables are all-lowercase with compo-
nents separated by underscores. Variable names are case sensitive. 

Environment variables are automatically imported into bash’s variable name-
space, so they can be set and read with the standard syntax. Use export varname
to promote a shell variable to an environment variable. Commands for environ-
ment variables that you want to set up at login time should be included in your 
~/.profile or ~/.bash_profile file. Other environment variables, such as PWD for 
the current working directory, are maintained automatically by the shell. 

The shell treats strings enclosed in single and double quotes similarly, except that 
double-quoted strings are subject to globbing (the expansion of filename-match-
ing metacharacters such as * and ?) and variable expansion. For example:

$ mylang="Pennsylvania Dutch" 
$ echo "I speak ${mylang}."
I speak Pennsylvania Dutch. 
$ echo 'I speak ${mylang}.'
I speak ${mylang}.

Back quotes, also known as back-ticks, are treated similarly to double quotes, but 
they have the additional effect of executing the contents of the string as a shell 
command and replacing the string with the command’s output. For example,

$ echo "There are `wc -l /etc/passwd` lines in the passwd file." 
There are 28 lines in the passwd file.

Common filter commands

Any well-behaved command that reads STDIN and writes STDOUT can be used 
as a filter (that is, a component of a pipeline) to process data. In this section we 
briefly review some of the more widely used filter commands (including some 
used in passing above), but the list is practically endless. Filter commands are so 
team oriented that it’s sometimes hard to show their use in isolation.

Most filter commands accept one or more filenames on the command line. Only 
if you fail to specify a file do they read their standard input.

  



ptg

34 Chapter 2 Scripting and the Shell

cut: separate lines into fields
The cut command prints selected portions of its input lines. It’s most commonly 
used to extract delimited fields, as in the example on page 32, but it can return 
segments defined by column boundaries as well. The default delimiter is <Tab>, 
but you can change delimiters with the -d option. The -f options specifies which 
fields to include in the output.

For an example of the use of cut, see the section on uniq, below.

sort: sort lines
sort sorts its input lines. Simple, right? Well, maybe not—there are a few potential 
subtleties regarding the exact parts of each line that are sorted (the “keys”) and the 
collation order to be imposed. Table 2.1 shows a few of the more common op-
tions, but check the man page for others.

The commands below illustrate the difference between numeric and dictionary 
sorting, which is the default. Both commands use the -t: and -k3,3 options to sort 
the /etc/group file by its third colon-separated field, the group ID. The first sorts 
numerically and the second alphabetically.

$ sort -t: -k3,3 -n /etc/group1

root:x:0: 
bin:x:1:daemon 
daemon:x:2: 
…

$ sort -t: -k3,3 /etc/group 
root:x:0: 
bin:x:1:daemon 
users:x:100: 
…

Table 2.1 sort options

Opt Meaning 

-b Ignore leading whitespace 
-f Case insensitive sorting 
-k Specify the columns that form the sort key 
-n Compare fields as integer numbers 
-r Reverse sort order 
-t Set field separator (the default is whitespace) 
-u Output unique records only

1. sort accepts the key specification -k3 (rather than -k3,3), but it probably doesn’t do what you expect. 
Without the terminating field number, the sort key continues to the end of the line.

  



ptg

tee: copy input to two places 35

Sc
rip

tin
g/

Sh
el

l

uniq: print unique lines
uniq is similar in spirit to sort -u, but it has some useful options that sort does not 
emulate: -c to count the number of instances of each line, -d to show only dupli-
cated lines, and -u to show only nonduplicated lines. The input must be presorted, 
usually by being run through sort.

For example, the command below shows that 20 users have /bin/bash as their 
login shell and that 12 have /bin/false. (The latter are either pseudo-users or users 
whose accounts have been disabled.)

$ cut -d: -f7 /etc/passwd | sort | uniq -c
   20 /bin/bash
   12 /bin/false 

wc: count lines, words, and characters
Counting the number of lines, words, and characters in a file is another common 
operation, and the wc (word count) command is a convenient way of doing this. 
Run without options, it displays all three counts:

$ wc /etc/passwd
 32  77 2003 /etc/passwd

In the context of scripting, it is more common to supply a -l, -w, or -c option to 
make wc’s output consist of a single number. This form is most commonly seen 
inside backquotes so that the result can be saved or acted upon.

tee: copy input to two places
A command pipeline is typically linear, but it’s often helpful to tap into the data 
stream and send a copy to a file or to the terminal window. You can do this with 
the tee command, which sends its standard input both to standard out and to a 
file that you specify on the command line. Think of it as a tee fixture in plumbing.

The device /dev/tty is a synonym for the current terminal. For example,
$ find / -name core | tee /dev/tty | wc -l

prints both the pathnames of files named core and a count of the number of core
files that were found.

A common idiom is to terminate a pipeline that will take a long time to run with a 
tee command so that output goes both to a file and to the terminal window for 
inspection. You can preview the initial results to make sure everything is working 
as you expected, then leave while the command runs, knowing that the results will 
be saved.

  



ptg

36 Chapter 2 Scripting and the Shell

head and tail: read the beginning or end of a file
Reviewing lines from the beginning or end of a file is a common administrative 
operation. These commands display ten lines by default, but you can include a 
command-line option to specify how many lines you want to see.

For interactive use, head is more or less obsoleted by the less command, which 
paginates files for display. But head still finds plenty of use within scripts.

tail also has a nifty -f option that’s particularly useful for sysadmins. Instead of 
exiting immediately after printing the requested number of lines, tail -f waits for 
new lines to be added to the end of the file and prints them as they appear— great 
for monitoring log files. Be aware, however, that the program writing the file may 
be buffering its output. Even if lines are being added at regular intervals from a 
logical perspective, they may only become visible in chunks of 1KiB or 4KiB.2

Type <Control-C> to stop monitoring.

grep: search text
grep searches its input text and prints the lines that match a given pattern. Its 
name is based on the g/regular-expression/p command from the old ed editor that 
came with the earliest versions of UNIX (and still does).

“Regular expressions” are text-matching patterns written in a standard and well-
characterized pattern matching language. They’re a universal standard used by 
most programs that do pattern matching, although there are minor variations 
among implementations. The odd name stems from regular expressions’ sordid 
origins in theory-of-computation studies. We discuss regular expression syntax in 
more detail starting on page 48.

Like most filters, grep has many options, including -c to print a count of matching 
lines, -i to ignore case when matching, and -v to print nonmatching (rather than 
matching) lines. Another useful option is -l (lowercase L), which makes grep
print only the names of matching files rather than printing each line that matches. 
For example, the command

$ sudo grep -l mdadm /var/log/* 
/var/log/auth.log 
/var/log/syslog.0

shows that log entries from mdadm have appeared in two different log files.

grep is traditionally a fairly basic regular expression engine, but some versions 
permit the selection of other dialects. For example, grep -p on Linux selects Perl-
style expressions, though the man page warns darkly that they are “highly experi-
mental.” If you need full power, just use Perl or Python.

2. See Units on page 14 for an introduction to these units.

  



ptg

bash scripting 37

Sc
rip

tin
g/

Sh
el

l

2.2 BASH SCRIPTING

bash is great for simple scripts that automate things you’d otherwise be typing on 
the command line. Your command-line skills carry over to bash scripting, and 
vice versa, which helps you extract maximum value from the learning time you 
invest in bash. But once a bash script gets above a hundred lines or you need 
features that bash doesn’t have, it’s time to move on to Perl or Python.

bash comments start with a hash mark (#) and continue to the end of the line. As 
on the command line, you can break a single logical line onto multiple physical 
lines by escaping the newline with a backslash. You can also put more than one 
statement on a line by separating the statements with semicolons.

A bash script may consist of nothing but a series of command lines. For example, 
the following helloworld script simply does an echo.

#!/bin/bash 
echo "Hello, world!"

The first line is known as the “shebang” statement and declares the text file to be a 
script for interpretation by /bin/bash. The kernel looks for this syntax when de-
ciding how to execute the file. From the perspective of the shell spawned to exe-
cute the script, the shebang line is just a comment. If bash were in a different 
location, you would need to adjust this line.

To prepare the file for running, just turn on its execute bit (see page 156).
$ chmod +x helloworld 
$ ./helloworld3 

Hello, world!

You can also invoke the shell as an interpreter directly:
$ bash helloworld 
Hello, world! 
$ source helloworld 
Hello, world!

The first command runs helloworld in a new instance of bash, and the second 
makes your existing login shell read and execute the contents of the file. The latter 
option is useful when the script sets up environment variables or makes other 
customizations that apply only to the current shell. It’s commonly used in script-
ing to incorporate the contents of a configuration file written as a series of bash
variable assignments.4

3. If your shell understands the command helloworld without the ./ prefix, that means the current direc-
tory (.) is in your search path. This is bad because it gives other users the opportunity to lay traps for 
you in the hope that you’ll try to execute certain commands while cd’ed to a directory on which they 
have write access.

4. The “dot” command is a synonym for source, e.g., . helloworld.

  



ptg

38 Chapter 2 Scripting and the Shell

See page 152 for more 
information about per-
mission bits.

If you come from the Windows world, you may be accustomed to a file’s extension 
indicating what type of file it is and whether it can be executed. In UNIX and 
Linux, the file permission bits indicate whether a file can be executed, and if so, by 
whom. If you wish, you can give your bash scripts a .sh suffix to remind you what 
they are, but you’ll then have to type out the .sh when you run the command, 
since UNIX doesn’t treat extensions specially.

From commands to scripts

Before we jump into bash’s scripting features, a note about methodology. Most 
people write bash scripts the same way they write Perl or Python scripts: with a 
text editor. However, it’s more productive to think of your regular shell command 
prompt as an interactive script development environment.

For example, suppose you have log files named with the suffixes .log and .LOG
scattered throughout a directory hierarchy and that you want to change them all 
to the uppercase form. First, let’s see if we can find all the files.

$ find . -name '*log ' 
.do-not-touch/important.log 
admin.com-log/ 
foo.log 
genius/spew.log 
leather_flog 
…

Oops, it looks like we need to include the dot in our pattern and to leave out 
directories as well. Type <Control-P> to recall the command and then modify it.

$ find . -type f -name '*.log ' 
.do-not-touch/important.log 
foo.log 
genius/spew.log 
…

OK, this looks better. That .do-not-touch directory looks dangerous, though; we 
probably shouldn’t mess around in there.

$ find . -type f -name '*.log ' | grep -v .do-not-touch 
foo.log 
genius/spew.log 
…

All right, that’s the exact list of files that need renaming. Let’s try generating some 
new names.

$ find . -type f -name '*.log ' | grep -v .do-not-touch | while read fname 
> do 
> echo mv $fname ${fname/.log/.LOG/} 
> done 
mv foo.log foo.LOG 
mv genius/spew.log genius/spew.LOG 
…

  



ptg

From commands to scripts 39

Sc
rip

tin
g/

Sh
el

l

Yup, those are the commands we want to run to perform the renaming. So how do 
we do it for real? We could recall the command and edit out the echo, which 
would make bash execute the mv commands instead of just printing them. How-
ever, piping the commands to a separate instance of bash is less error-prone and 
requires less editing of the previous command. 

When we type <Control-P>, we find that bash has thoughtfully collapsed our 
mini-script into a single line. To this condensed command line we simply add a 
pipe that sends the output to bash -x.

$ find . -type f -name '*.log ' | grep -v .do-not-touch | while read fname; do 
echo mv $fname ${fname/.log/.LOG/}; done | bash -x

+ mv foo.log foo.LOG 
+ mv genius/spew.log genius/spew.LOG 
…

The -x option to bash prints each command before executing it.

We’ve now completed the actual renaming, but we’d still like to save this script so 
that we can use it again. bash’s built-in command fc is a lot like <Control-P>, but 
instead of returning the last command to the command line, it transfers the com-
mand to your editor of choice. Add a shebang line and usage comment, write the 
file to a plausible location (~/bin or /usr/local/bin, perhaps), make the file exe-
cutable, and you have a script.

To summarize this approach:

• Develop the script (or script component) as a pipeline, one step at a time, 
entirely on the command line.

• Send output to standard output and check to be sure it looks right.

• At each step, use the shell’s command history to recall pipelines and the 
shell’s editing features to tweak them.

• Until the output looks right, you haven’t actually done anything, so 
there’s nothing to undo if the command is incorrect.

• Once the output is correct, execute the actual commands and verify that 
they worked as you intended.

• Use fc to capture your work, then clean it up and save it.

In the example above, we printed command lines and then piped them to a sub-
shell for execution. This technique isn’t universally applicable, but it’s often help-
ful. Alternatively, you can capture output by redirecting it to a file. No matter 
what, wait until you see the right stuff in the preview before doing anything that’s 
potentially destructive.

  



ptg

40 Chapter 2 Scripting and the Shell

Input and output

The echo command is crude but easy. For more control over your output, use 
printf. It is a bit less convenient because you must explicitly put newlines where 
you want them (use “\n”), but it gives you the option to use tabs and enhanced 
number formatting in your the output. Compare the output from the following 
two commands.

$ echo "\taa\tbb\tcc\n" 
\taa\tbb\tcc\n 
$ printf "\taa\tbb\tcc\n"
    aa   bb   cc

Some systems have OS-level echo and printf commands, usually in /bin and 
/usr/bin, respectively. Although the commands and the shell built-ins are similar, 
they may diverge subtly in their specifics, especially in the case of printf. Either 
adhere to bash’s syntax or call the external printf with a full pathname.

You can use the read command to prompt for input. Here’s an example:
#!/bin/bash

echo -n "Enter your name: " 
read user_name

if [ -n "$user_name" ]; then 
echo "Hello $user_name!" 
exit 0

else
echo "You did not tell me your name!" 
exit 1

fi

The -n in the echo command suppresses the usual newline, but you could also 
have used printf here. We cover the if statement’s syntax shortly, but its effect 
should be obvious here. The -n in the if statement evaluates to true if its string 
argument is not null. Here’s what the script looks like when run:

$ sh readexample
Enter your name: Ron 
Hello Ron!

Command-line arguments and functions

Command-line arguments to a script become variables whose names are num-
bers. $1 is the first command-line argument, $2 is the second, and so on. $0 is the 
name by which the script was invoked. That could be something strange such as 
../bin/example.sh, so it’s not a fixed value.

The variable $# contains the number of command-line arguments that were sup-
plied, and the variable $* contains all the arguments at once. Neither of these vari-
ables includes or counts $0.

  



ptg

Command-line arguments and functions 41

Sc
rip

tin
g/

Sh
el

l

If you call a script without arguments or with inappropriate arguments, the script 
should print a short usage message to remind you how to use it. The example 
script below accepts two arguments, validates that the arguments are both direc-
tories, and displays them. If the arguments are invalid, the script prints a usage 
message and exits with a nonzero return code. If the caller of the script checks the 
return code, it will know that this script failed to execute correctly.

#!/bin/bash

function show_usage { 
echo "Usage: $0 source_dir dest_dir" 
exit 1

}

# Main program starts here

if [ $# -ne 2 ]; then 
show_usage

else # There are two arguments 
if [ -d $1 ]; then

source_dir=$1 
else

echo 'Invalid source directory' 
show_usage

fi 
if [ -d $2 ]; then

dest_dir=$2
else 

echo 'Invalid destination directory' 
show_usage

fi 
fi

printf "Source directory is ${source_dir}\n" 
printf "Destination directory is ${dest_dir}\n"

We created a separate show_usage function to print the usage message. If the 
script were later updated to accept additional arguments, the usage message 
would only have to be changed in one place.5

$ mkdir aaa bbb 
$ sh showusage aaa bbb 
Source directory is aaa 
Destination directory is bbb 
$ sh showusage foo bar 
Invalid source directory 
Usage: showusage source_dir dest_dir

5. Note that the error messages and usage message go to standard output. Shouldn’t they go to standard 
error instead? That would in fact be more correct, but since this script isn’t intended for use as a filter, 
the distinction is less important.

  



ptg

42 Chapter 2 Scripting and the Shell

Arguments to bash functions are treated much like command-line arguments. 
The first argument becomes $1, and so on. As you can see in the example above, 
$0 remains the name of the script.

To make the previous example a bit more robust, we could make the show_usage
routine accept an error code as an argument. That would allow a more definitive 
code to be returned for each different type of failure. The next code excerpt shows 
how that might look.

function show_usage { 
echo "Usage: $0 source_dir dest_dir" 
if [ $# -eq 0 ]; then

exit 99 # Exit with arbitrary nonzero return code 
else

exit $1
fi

}

In this version of the routine, the argument is optional. Within a function, $# tells 
you how many arguments were passed in. The script exits with code 99 if no 
more-specific code is provided. But a specific value, for example,

show_usage 5

makes the script exit with that code after printing the usage message. (The shell 
variable $? contains the exit status of the last command executed, whether used 
inside a script or at the command line.)

The analogy between functions and commands is strong in bash. You can define 
useful functions in your ~/.bash_profile file and then use them on the command 
line as if they were commands. For example, if your site has standardized on net-
work port 7988 for the SSH protocol (a form of “security through obscurity”), you 
might define

function ssh { 
/usr/bin/ssh -p 7988 $*

}

in your ~/.bash_profile to make sure ssh is always run with the option -p 7988. 

Like many shells, bash has an alias mechanism that can reproduce this limited 
example even more concisely, but functions are more general and more powerful. 
Forget aliases and use functions.

Variable scope

Variables are global within a script, but functions can create their own local vari-
ables with a local declaration. Consider the following code.

  



ptg

Control flow 43

Sc
rip

tin
g/

Sh
el

l

#!/bin/bash

function localizer { 
echo "==> In function localizer, a starts as '$a'" 
local a 
echo "==> After local declaration, a is '$a'" 
a="localizer version" 
echo "==> Leaving localizer, a is '$a'"

}

a="test" 
echo "Before calling localizer, a is '$a'" 
localizer 
echo "After calling localizer, a is '$a'"

The log below demonstrates that the local version of $a within the localizer func-
tion shadows the global variable $a. The global $a is visible within localizer until 
the local declaration is encountered; local is in fact a command that creates the 
local variable at the point when it’s executed.

$ sh scopetest.sh
Before calling localizer, a is 'test' 
==> In function localizer, a starts as 'test' 
==> After local declaration, a is ' ' 
==> Leaving localizer, a is 'localizer version' 
After calling localizer, a is 'test'

Control flow

We’ve seen several if-then and if-then-else forms in this chapter already; they do 
exactly what you’d expect. The terminator for an if statement is fi. To chain your if
clauses, you can use the elif keyword to mean “else if.” For example:

if [ $base -eq 1 ] && [ $dm -eq 1 ]; then 
installDMBase

elif [ $base -ne 1 ] && [ $dm -eq 1 ]; then 
installBase

elif [ $base -eq 1 ] && [ $dm -ne 1 ]; then 
installDM

else
echo '==> Installing nothing'

fi

Both the peculiar [] syntax for comparisons and the command-line optionlike 
names of the integer comparison operators (e.g., -eq) are inherited from the orig-
inal Bourne shell’s channeling of /bin/test. The brackets are actually a shorthand 
way of invoking test and are not a syntactic requirement of the if statement.6 

6. In reality, these operations are now built into the shell and do not actually run /bin/test.

  



ptg

44 Chapter 2 Scripting and the Shell

Table 2.2 shows the bash comparison operators for numbers and strings. bash
uses textual operators for numbers and symbolic operators for strings, exactly the 
opposite of Perl.

bash shines in its options for evaluating the properties of files (again, courtesy of 
its /bin/test legacy). Table 2.3 shows a few of bash’s many file-testing and file-
comparison operators.

Although the elif form is useful, a case selection is often a better choice for clarity. 
Its syntax is shown below in a sample routine that centralizes logging for a script. 
Of particular note are the closing parenthesis after each condition and the two 
semicolons that follow the statement block to be executed when a condition is 
met. The case statement ends with esac.

# The log level is set in the global variable LOG_LEVEL. The choices 
# are, from most to least severe, Error, Warning, Info, and Debug.

function logMsg { 
message_level=$1 
message_itself=$2

Table 2.2 Elementary bash comparison operators

String Numeric True if

x = y x -eq y x is equal to y
x != y x -ne y x is not equal to y
x < y x -lt y x is less than y
x <= y x -le y x is less than or equal to y
x > y x -gt y x is greater than y 
x >= y x -ge y x is greater than or equal to y
-n x – x is not null
-z x – x is null

Table 2.3 bash file evaluation operators

Operator True if

-d file file exists and is a directory 
-e file file exists 
-f file file exists and is a regular file 
-r file You have read permission on file 
-s file file exists and is not empty 
-w file You have write permission on file 

file1 -nt file2 file1 is newer than file2 
file1 -ot file2 file1 is older than file2

  



ptg

Loops 45

Sc
rip

tin
g/

Sh
el

l

if [ $message_level -le $LOG_LEVEL ]; then 
case $message_level in

0) message_level_text="Error" ;;
1) message_level_text="Warning" ;;
2) message_level_text="Info" ;;
3) message_level_text="Debug" ;;
*) message_level_text="Other" 

esac 
echo "${message_level_text}: $message_itself"

fi 
}

This routine illustrates the common “log level” paradigm used by many adminis-
trative applications. The code of the script generates messages at many different 
levels of detail, but only the ones that pass a globally set threshold, $LOG_LEVEL, 
are actually logged or acted upon. To clarify the importance of each message, the 
message text is preceded by a label that denotes its associated log level.

Loops

bash’s for…in construct makes it easy to take some action for a group of values or 
files, especially when combined with filename globbing (the expansion of simple 
pattern-matching characters such as * and ? to form filenames or lists of file-
names). The *.sh pattern in the for loop below returns a list of matching filenames 
in the current directory. The for statement then iterates through that list, assign-
ing each filename in turn to the variable $file.

#!/bin/bash

suffix=BACKUP--`date +%Y%m%d-%H%M`

for script in *.sh; do 
newname=”$script.$suffix” 
echo "Copying $script to $newname..." 
cp $script $newname

done

The output looks like this:
$ sh forexample
Copying rhel.sh to rhel.sh.BACKUP--20091210-1708... 
Copying sles.sh to sles.sh.BACKUP--20091210-1708... 
…

The filename expansion is not magic in this context; it works exactly as it does on 
the command line. Which is to say, the expansion happens first and the line is 
then processed by the interpreter in its expanded form.7 You could just as well 
have entered the filenames statically, as in the line

for script in rhel.sh sles.sh; do

7. More accurately, the filename expansion is just a little bit magic in that it does maintain a notion of the 
atomicity of each filename. Filenames that contain spaces will go through the for loop in a single pass.

  



ptg

46 Chapter 2 Scripting and the Shell

In fact, any whitespace-separated list of things, including the contents of a vari-
able, works as a target of for…in. 

bash also has the more familiar for loop from traditional programming languages 
in which you specify starting, increment, and termination clauses. For example:

for (( i=0 ; i < $CPU_COUNT ; i++ )); do
CPU_LIST="$CPU_LIST $i" 

done

The next example illustrates bash’s while loop, which is useful for processing 
command-line arguments and for reading the lines of a file.

#!/bin/bash

exec 0<$1 
counter=1 
while read line; do

echo "$counter: $line" 
$((counter++))

done 

Here’s what the output looks like:
ubuntu$ sh whileexample /etc/passwd 
1: root:x:0:0:Superuser:/root:/bin/bash 
2: bin:x:1:1:bin:/bin:/bin/bash 
3: daemon:x:2:2:Daemon:/sbin:/bin/bash 
…

This scriptlet has a couple of interesting features. The exec statement redefines 
the script’s standard input to come from whatever file is named by the first com-
mand-line argument.8 The file must exist or the script generates an error. 

The read statement within the while clause is in fact a shell built-in, but it acts like 
an external command. You can put external commands in a while clause as well; 
in that form, the while loop terminates when the external command returns a 
nonzero exit status.

The $((counter++)) expression is an odd duck, indeed. The $((…)) notation forces 
numeric evaluation. It also makes optional the use of $ to mark variable names. 
The ++ is the familiar postincrement operator from C and other languages. It re-
turns the value of the variable to which it’s attached, but has the side effect of 
incrementing that variable’s value as well.

The $((…)) shenanigans work in the context of double quotes, so the body of the 
loop could be collapsed down to one line.

8. Depending on the invocation, exec can also have the more familiar meaning “stop this script and 
transfer control to another script or expression.” It’s yet another shell oddity that both functions are 
accessed through the same statement.

  



ptg

Arrays and arithmetic 47

Sc
rip

tin
g/

Sh
el

l

while read line; do 
echo "$((counter++)): $line"

done 

Arrays and arithmetic

Sophisticated data structures and calculations aren’t bash’s forte. But it does at 
least offer arrays and arithmetic.

All bash variables are string valued, so bash does not distinguish between the 
number 1 and the character string “1” in assignments. The difference lies in how 
the variables are used. The following code illustrates the distinction:

#!/bin/bash

a=1
b=$((2))

c=$a+$b
d=$(($a+$b))

echo "$a + $b = $c \t(plus sign as string literal)" 
echo "$a + $b = $d \t(plus sign as arithmetic addition)"

This script produces the output
1 + 2 = 1+2 (plus sign as string literal) 
1 + 2 = 3 (plus sign as arithmetic addition)

Note that the plus sign in the assignment to $c does not even act as a concatena-
tion operator for strings. It’s just a literal character. That line is equivalent to

c="$a+$b"

To force numeric evaluation, you enclose an expression in $((…)), as shown with 
the assignment to $d above. But even this precaution does not result in $d receiv-
ing a numeric value; the value is still stored as the string “3”.

bash has the usual assortment of arithmetic, logical, and relational operators; see 
the man page for details.

Arrays in bash are a bit strange, and they’re not often used. Nevertheless, they’re 
available if you need them. Literal arrays are delimited by parentheses, and the 
elements are separated by whitespace. You can use quoting to include literal 
spaces in an element.

example=(aa 'bb cc' dd)

Use ${array_name[subscript]} to access individual elements. Subscripting begins at 
zero. The subscripts * and @ refer to the array as a whole, and the special forms 
${#array_name[*]} and ${#array_name[@]} yield the number of elements in the ar-
ray. Don’t misremember these as the more logical-seeming ${#array_name}; that 
is in fact the length of the array’s first element (equivalent to ${#array_name[0]}).

  



ptg

48 Chapter 2 Scripting and the Shell

You might think that $example[1] would be an unambiguous reference to the 
second element of the array, but bash parses this string as $example (a shorthand 
reference to $example[0]) plus the literal string [1]. Always include the curly 
braces when referring to array variables—no exceptions.

Here’s a quick script that illustrates some of the features and pitfalls of array man-
agement in bash:

#!/bin/bash

example=(aa 'bb cc' dd) 
example[3]=ee

echo "example[@] = ${example[@]}" 
echo "example array contains ${#example[@]} elements"

for elt in "${example[@]}"; do 
echo "  Element = $elt"

done

Its output is
$ sh arrays 
example[@] = aa bb cc dd ee 
example array contains 4 elements

Element = aa
Element = bb cc 
Element = dd 
Element = ee

This example seems straightforward, but only because we’ve constructed it to be 
well behaved. Pitfalls await the unwary. For example, replacing the for line with

for elt in ${example[@]}; do

(without quotes around the array expression) also works fine, but instead of four 
array elements it yields five: aa, bb, cc, dd, and ee. 

The underlying issue is that all bash variables are still essentially strings, so the 
illusion of arrays is wobbly at best. Subtleties regarding when and how strings are 
separated into elements abound. You can use Perl or Python, or google for Mendel 
Cooper’s Advanced Bash-Scripting Guide to investigate the nuances.

2.3 REGULAR EXPRESSIONS

Regular expressions are supported by most modern languages, though some take 
them more to heart than others. They’re also used by UNIX commands such as 
grep and vi. They are so common that the name is usually shortened to “regex.” 
Entire books have been written about how to harness their power, and they have 
been the subject of numerous doctoral dissertations.

  



ptg

Literal characters 49

Sc
rip

tin
g/

Sh
el

l

The filename matching and expansion performed by the shell when it interprets 
command lines such as wc -l *.pl is not a form of regex matching. It’s a different 
system called “shell globbing,” and it uses a different and simpler syntax.

Regular expressions are powerful, but they cannot recognize all possible gram-
mars. Their most notable weakness is that they cannot recognize nested delimit-
ers. For example, it’s not possible to write a regular expression that recognizes 
valid arithmetic expressions when parentheses are allowed for grouping.

Regular expressions reached the apex of their power and perfection in Perl. In 
fact, Perl’s pattern matching features are so elaborate that it’s not really accurate to 
call them an implementation of regular expressions. Perl patterns can match 
nested delimiters, recognize palindromes, and match an arbitrary string of As fol-
lowed by the same number of Bs—all feats beyond the reach of regular expres-
sions. However, Perl can process vanilla regular expressions as well.

Perl’s pattern matching language remains the industry benchmark, and it has been 
widely adopted by other languages and tools. Philip Hazel’s PCRE (Perl-compati-
ble regular expression) library makes it relatively easy for developers to incorpo-
rate the language into their own projects. 

Regular expressions are not themselves a scripting language, but they’re so useful 
that they merit featured coverage in any discussion of scripting; hence, this sec-
tion.9 Here, we discuss them in their basic form with a few of Perl’s refinements.

The matching process

Code that evaluates a regular expression attempts to match a single given text 
string to a single given pattern. The “text string” to match can be very long and 
can contain embedded newlines. It’s often convenient to use a regex to match the 
contents of an entire file or HTML document.

For the matcher to declare success, the entire search pattern must match a contig-
uous section of the search text. However, the pattern can match at any position. 
After a successful match, the evaluator returns the text of the match along with a 
list of matches for any specially delimited subsections of the pattern.

Literal characters

In general, characters in a regular expression match themselves. So the pattern
I am the walrus

matches the string “I am the walrus” and that string only. Since it can match any-
where in the search text, the pattern can be successfully matched to the string “I 
am the egg man. I am the walrus. Koo koo ka-choo!” However, the actual match is 
limited to the “I am the walrus” portion. Matching is case sensitive.

9. Perl guru Tom Christiansen commented, “I don’t know what a ‘scripting language’ is, but I agree that 
regular expressions are neither procedural nor functional languages. Rather, they are a logic-based or 
declarative language, a class of languages that also includes Prolog and Makefiles. And BNFs. One 
might also call them rule-based languages. I prefer to call them declarative languages myself.”

  



ptg

50 Chapter 2 Scripting and the Shell

Special characters

Table 2.4 shows the meanings of some common special symbols that can appear 
in regular expressions. These are just the basics—there are many, many more.

Many special constructs, such as + and |, affect the matching of the “thing” to their 
left or right. In general, a “thing” is a single character, a subpattern enclosed in 
parentheses, or a character class enclosed in square brackets. For the | character, 
however, thingness extends indefinitely to both left and right. If you want to limit 
the scope of the vertical bar, enclose the bar and both things in their own set of 
parentheses. For example,

I am the (walrus|egg man)\.

matches either “I am the walrus.” or “I am the egg man.”. This example also dem-
onstrates escaping of special characters (here, the dot). The pattern

(I am the (walrus|egg man)\. ?){1,2}

matches any of the following:

• I am the walrus.
• I am the egg man.
• I am the walrus. I am the egg man. 
• I am the egg man. I am the walrus.

Table 2.4 Special characters in regular expressions (common ones)

Symbol What it matches or does

. Matches any character 
[chars] Matches any character from a given set 
[^chars] Matches any character not in a given set

^ Matches the beginning of a line 
$ Matches the end of a line 

\w Matches any “word” character (same as [A-Za-z0-9_]) 
\s Matches any whitespace character (same as [ \f\t\n\r])a

\d Matches any digit (same as [0-9])

| Matches either the element to its left or the one to its right 
(expr) Limits scope, groups elements, allows matches to be captured

? Allows zero or one match of the preceding element
* Allows zero, one, or many matches of the preceding element
+ Allows one or more matches of the preceding element 

{n} Matches exactly n instances of the preceding element 
{min,} Matches at least min instances (note the comma) 

{min,max } Matches any number of instances from min to max

a. That is, a space, a form feed, a tab, a newline, or a return

  



ptg

Example regular expressions 51

Sc
rip

tin
g/

Sh
el

l

Unfortunately, it also matches “I am the egg man. I am the egg man.”. (What kind 
of sense does that make?) More importantly, it also matches “I am the walrus. I 
am the egg man. I am the walrus.”, even though the number of repetitions is ex-
plicitly capped at two. That’s because the pattern need not match the entire search 
text. Here, the regex matches two sentences and terminates, declaring success. It 
simply doesn’t care that another repetition is available.

It is a common error to confuse the regular expression metacharacter * (the zero-
or-more quantifier) with the shell’s * globbing character. The regex version of the 
star needs something to modify; otherwise, it won’t do what you expect. Use .* if 
any sequence of characters (including no characters at all) is an acceptable match.

Example regular expressions

In the United States, postal (“zip”) codes have either five digits or five digits fol-
lowed by a dash and four more digits. To match a regular zip code, you must 
match a five-digit number. The following regular expression fits the bill:

^\d{5}$

The ^ and $ match the beginning and end of the search text but do not actually 
correspond to characters in the text; they are “zero-width assertions.” These char-
acters ensure that only texts consisting of exactly five digits match the regular 
expression—the regex will not match five digits within a larger string. The \d es-
cape matches a digit, and the quantifier {5} says that there must be exactly five 
digit matches.

To accommodate either a five-digit zip code or an extended zip+4, add an op-
tional dash and four additional digits:

^\d{5}(-\d{4})?$

The parentheses group the dash and extra digits together so that they are consid-
ered one optional unit. For example, the regex won’t match a five-digit zip code 
followed by a dash. If the dash is present, the four-digit extension must be present 
as well or there is no match.

A classic demonstration of regex matching is the following expression,
M[ou]'?am+[ae]r ([AEae]l[- ])?[GKQ]h?[aeu]+([dtz][dhz]?)+af[iy]

which matches most of the variant spellings of the name of Libyan head of state 
Moammar Gadhafi, including

• Muammar al-Kaddafi (BBC)
• Moammar Gadhafi (Associated Press)
• Muammar al-Qadhafi (Al-Jazeera)
• Mu’ammar Al-Qadhafi (U.S. Department of State)

Do you see how each of these would match the pattern?

  



ptg

52 Chapter 2 Scripting and the Shell

This regular expression also illustrates how quickly the limits of legibility can be 
reached. Many regex systems (including Perl’s) support an x option that ignores 
literal whitespace in the pattern and enables comments, allowing the pattern to be 
spaced out and split over multiple lines. You can then use whitespace to separate 
logical groups and clarify relationships, just as you would in a procedural lan-
guage. For example:

M [ou] '? a m+ [ae] r # First name: Mu’ammar, Moamar, etc. 
\s # Whitespace; can't use a literal space here
( # Group for optional last name prefix

[AEae] l # Al, El, al, or el
[-\s] # Followed by dash or space

)? 
[GKQ] h? [aeu]+ # Initial syllable of last name: Kha, Qua, etc.
( # Group for consonants at start of 2nd syllable 

[dtz] [dhz]? # dd, dh, etc.
)+ 
af [iy]

This helps a little bit, but it’s still pretty easy to torture later readers of your code. 
So be kind: if you can, use hierarchical matching and multiple small matches in-
stead of trying to cover every possible situation in one large regular expression.

Captures

When a match succeeds, every set of parentheses becomes a “capture group” that 
records the actual text that it matched. The exact manner in which these pieces 
are made available to you depends on the implementation and context. In Perl, 
you can access the results as a list or as a sequence of numbered variables.

Since parentheses can nest, how do you know which match is which? Easy—the 
matches arrive in the same order as the opening parentheses. There are as many 
captures as there are opening parentheses, regardless of the role (or lack of role) 
that each parenthesized group played in the actual matching. When a parenthe-
sized group is not used (e.g., Mu(')?ammar when matched against “Muammar”), 
its corresponding capture is empty. 

If a group is matched more than once, only the contents of the last match are 
returned. For example, with the pattern

(I am the (walrus|egg man)\. ?){1,2}

matching the text
I am the egg man. I am the walrus.

there are two results, one for each set of parentheses:
I am the walrus. 
walrus

  



ptg

Greediness, laziness, and catastrophic backtracking 53

Sc
rip

tin
g/

Sh
el

l

Note that both capture groups actually matched twice. However, only the last text 
to match each set of parentheses is actually captured.

Greediness, laziness, and catastrophic backtracking

Regular expressions match from left to right. Each component of the pattern 
matches the longest possible string before yielding to the next component, a char-
acteristic known as greediness.

If the regex evaluator reaches a state from which a match cannot be completed, it 
unwinds a bit of the candidate match and makes one of the greedy atoms give up 
some of its text. For example, consider the regex a*aa being matched against the 
input text “aaaaaa”.

At first, the regex evaluator assigns the entire input to the a* portion of the regex, 
because the a* is greedy. When there are no more a’s to match, the evaluator goes 
on to try to match the next part of the regex. But oops, it’s an a, and there is no 
more input text that can match an a; time to backtrack. The a* has to give up one 
of the a’s it has matched.

Now the evaluator can match a*a, but it still cannot match the last a in the pattern. 
So it backtracks again and takes away a second a from the a*. Now the second and 
third a’s in the pattern both have a’s to pair with, and the match is complete.

This simple example illustrates some important general points. First, greedy 
matching plus backtracking makes it expensive to match apparently simple pat-
terns such as <img.*></tr> when processing entire files.10 The .* portion starts by 
matching everything from the first <img to the end of the input, and only through 
repeated backtracking does it contract to fit the local tags.

Furthermore, the ></tr> that this pattern binds to is the last possible valid match 
in the input, which is probably not what you want. More likely, you meant to 
match an <img> followed by a </tr> tag. A better way to write this pattern is 
<img[^>]*></tr>, which allows the initial wild-card match to expand only to the 
end of the current tag because it cannot cross a right-angle-bracket boundary.

You can also use lazy (as opposed to greedy) wild card operators: *? instead of *, 
and +? instead of +. These versions match as few characters of the input as they 
can. If that fails, they match more. In many situations, these operators are more 
efficient and closer to what you want than the greedy versions.

Note, however, that they can produce different matches than the greedy operators; 
the difference is more than just one of implementation. In our HTML example, 
the lazy pattern would be <img.*?></tr>. But even here, the .*? could eventually 

10. Although this section shows HTML excerpts as examples of text to be matched, regular expressions 
are not really the right tool for this job. Our external reviewers were uniformly aghast. Perl and Python 
both have excellent add-ons that parse HTML documents the proper way. You can then access the 
portions you’re interested in with XPath selectors. See the Wikipedia page for XPath and the respective 
languages’ module repositories for details.

  



ptg

54 Chapter 2 Scripting and the Shell 

grow to include unwanted >’s because the next tag after an <img> might not be a 
</tr>. Again, probably not what you want.

Patterns with multiple wild-card sections can cause exponential behavior in the 
regex evaluator, especially if portions of the text can match several of the wild-
card expressions and especially if the search text does not in fact match the pat-
tern. This situation is not as unusual as it might sound, especially when pattern 
matching with HTML. Very often, you’ll want to match certain tags followed by 
other tags, possibly separated by even more tags, a recipe that may require the 
regex evaluator to try many possible combinations.

Regex guru Jan Goyvaerts calls this phenomenon “catastrophic backtracking” and 
writes about it in his blog; see regular-expressions.info/catastrophic.html for de-
tails and some good solutions.

A couple of take-home points from all this:

• If you can do pattern matching line-by-line rather than file-at-a-time, 
there is much less risk of poor performance.

• Even though regex notation makes greedy operators the default, they 
probably shouldn’t be. Use lazy operators.

• All instances of .* are inherently suspicious and should be scrutinized.

2.4 PERL PROGRAMMING

Perl, created by Larry Wall, was the first of the truly great scripting languages. It 
offers vastly more power than bash, and well-written Perl code is quite easy to 
read. On the other hand, Perl does not impose much stylistic discipline on devel-
opers, so Perl code written without regard for readability can be cryptic. Perl has 
been accused of being a write-only language. 

Here we describe Perl 5, the version that has been standard for the last decade. 
Perl 6 is a major revision that’s still in development. See perl6.org for details.

Either Perl or Python (discussed starting on page 66) is a better choice for system 
administration work than traditional programming languages such as C, C++, 
C#, and Java. They can do more, in fewer lines of code, with less painful debug-
ging, and without the hassle of compilation.

Language choice usually comes down to personal preference or to standards 
forced upon you by an employer. Both Perl and Python offer libraries of commu-
nity-written modules and language extensions. Perl has been around longer, so its 
offerings extend further into the long tail of possibilities. For common system 
administration tasks, however, the support libraries are roughly equivalent.

Perl’s catch phrase is that “there’s more than one way to do it.” So keep in mind 
that there are other ways of doing most of what you read in this section. 

  



ptg

Variables and arrays 55

Sc
rip

tin
g/

Sh
el

l

Perl statements are separated by semicolons.11 Comments start with a hash mark 
(#) and continue to the end of the line. Blocks of statements are enclosed in curly 
braces. Here’s a simple “hello, world!” program:

#!/usr/bin/perl 
print "Hello, world!\n";

As with bash programs, you must either chmod +x the executable file or invoke 
the Perl interpreter directly.

$ chmod +x helloworld 
$ ./helloworld 
Hello, world!

Lines in a Perl script are not shell commands; they’re Perl code. Unlike bash, 
which lets you assemble a series of commands and call it a script, Perl does not 
look outside itself unless you tell it to. That said, Perl provides many of the same 
conventions as bash, such as the use of back-ticks to capture the output from a 
command.

Variables and arrays

Perl has three fundamental data types: scalars (that is, unitary values such as 
numbers and strings), arrays, and hashes. Hashes are also known as associative 
arrays. The type of a variable is always obvious because it’s built into the variable 
name: scalar variables start with $, array variables start with @, and hash variables 
start with %.

In Perl, the terms “list” and “array” are often used interchangeably, but it’s perhaps 
more accurate to say that a list is a series of values and an array is a variable that 
can hold such a list. The individual elements of an array are scalars, so like ordi-
nary scalar variables, their names begin with $. Array subscripting begins at zero, 
and the index of the highest element in array @a is $#a. Add 1 to that to get the 
array’s size.

The array @ARGV contains the script’s command-line arguments. You can refer to 
it just like any other array.

The following script demonstrates the use of arrays:
#!/usr/bin/perl

@items = ("socks", "shoes", "shorts"); 
printf "There are %d articles of clothing.\n", $#items + 1; 
print "Put on ${items[2]} first, then ", join(" and ", @items[0,1]), ".\n";

The output:
$ perl clothes 
There are 3 articles of clothing.
Put on shorts first, then socks and shoes.

11. Since semicolons are separators and not terminators, the last one in a block is optional.

  



ptg

56 Chapter 2 Scripting and the Shell

There’s a lot to see in just these few lines. At the risk of blurring our laser-like 
focus, we include several common idioms in each of our Perl examples. We ex-
plain the tricky parts in the text following each example. If you read the examples 
carefully (don’t be a wimp, they’re short!), you’ll have a working knowledge of the 
most common Perl forms by the end of this chapter.

Array and string literals

In this example, notice first that (…) creates a literal list. Individual elements of the 
list are strings, and they’re separated by commas. Once the list has been created, it 
is assigned to the variable @items.

Perl does not strictly require that all strings be quoted. In this particular case, the 
initial assignment of @items works just as well without the quotes.

@items = (socks, shoes, shorts);

Perl calls these unquoted strings “barewords,” and they’re an interpretation of last 
resort. If something doesn’t make sense in any other way, Perl tries to interpret it 
as a string. In a few limited circumstances, this makes sense and keeps the code 
clean. However, this is probably not one of those cases. Even if you prefer to quote 
strings consistently, be prepared to decode other people’s quoteless code.

The more Perly way to initialize this array is with the qw (quote words) operator. 
It is in fact a form of string quotation, and like most quoted entities in Perl, you 
can choose your own delimiters. The form

@items = qw(socks shoes shorts);

is the most traditional, but it’s a bit misleading since the part after the qw is no 
longer a list. It is in fact a string to be split at whitespace to form a list. The version

@items = qw[socks shoes shorts];

works, too, and is perhaps a bit truer to the spirit of what’s going on. Note that the 
commas are gone since their function has been subsumed by qw.

Function calls

Both print and printf accept an arbitrary number of arguments, and the argu-
ments are separated by commas. But then there’s that join(…) thing that looks like 
some kind of function call; how is it different from print and printf?

In fact, it’s not; print, printf, and join are all plain-vanilla functions. Perl allows 
you to omit the parentheses in function calls when this does not cause ambiguity, 
so both forms are common. In the print line above, the parenthesized form dis-
tinguishes the arguments to join from those that go to print.

We can tell that the expression @items[0,1] must evaluate to some kind of list 
since it starts with @. This is in fact an “array slice” or subarray, and the 0,1 sub-
script lists the indexes of the elements to be included in the slice. Perl accepts a 
range of values here, too, as in the equivalent expression @items[0..1]. A single 

  



ptg

Hashes 57

Sc
rip

tin
g/

Sh
el

l

numeric subscript would be acceptable here as well: @items[0] is a list containing 
one scalar, the string “socks”. In this case, it’s equivalent to the literal ("socks").

Arrays are automatically expanded in function calls, so in the expression
join(" and ", @items[0,1])

join receives three string arguments: “ and ”, “socks”, and “shoes”. It concatenates 
its second and subsequent arguments, inserting a copy of the first argument be-
tween each pair. The result is “socks and shoes”.

Type conversions in expressions

In the printf line, $#items + 1 evaluates to the number 3. As it happens, $#items
is a numeric value, but that’s not why the expression is evaluated arithmetically; 
"2" + 1 works just as well. The magic is in the + operator, which always implies 
arithmetic. It converts its arguments to numbers and produces a numeric result. 
Similarly, the dot operator (.), which concatenates strings, converts its operands as 
needed: "2" . (12 ** 2) yields “2144”.

String expansions and disambiguation of variable references

As in bash, double-quoted strings are subject to variable expansion. Also as in 
bash, you can surround variable names with curly braces to disambiguate them if 
necessary, as with ${items[2]}. (Here, the braces are used only for illustration; they 
are not needed.) The $ clues you in that the expression is going to evaluate to a 
scalar. @items is the array, but any individual element is itself a scalar, and the 
naming conventions reflect this fact.

Hashes

A hash (also known as an associative array) represents a set of key/value pairs. 
You can think of a hash as an array whose subscripts (keys) are arbitrary scalar 
values; they do not have to be numbers. But in practice, numbers and strings are 
the usual keys.

Hash variables have % as their first character (e.g., %myhash), but as in the case 
of arrays, individual values are scalar and so begin with a $. Subscripting is indi-
cated with curly braces rather than square brackets, e.g., $myhash{'ron'}.

Hashes are an important tool for system administrators. Nearly every script you 
write will use them. In the code below, we read in the contents of a file, parse it 
according to the rules for /etc/passwd, and build a hash of the entries called 
%names_by_uid. The value of each entry in the hash is the username associated 
with that UID. 

#!/usr/bin/perl

while ($_ = <>) { 
($name, $pw, $uid, $gid, $gecos, $path, $sh) = split /:/; 
$names_by_uid{$uid} = $name;

}

  



ptg

58 Chapter 2 Scripting and the Shell

%uids_by_name = reverse %names_by_uid;

print "\$names_by_uid{0} is $names_by_uid{0}\n"; 
print "\$uids_by_name{'root'} is $uids_by_name{'root'}\n";

As in the previous script example, we’ve packed a couple of new ideas into these 
lines. Before we go over each of these nuances, here’s the output of the script:

$ perl hashexample /etc/passwd 
$names_by_uid{0} is root 
$uids_by_name{'root'} is 0

The while ($_ = <>) reads input one line at a time and assigns it to the variable 
named $_; the value of the entire assignment statement is the value of the right-
hand side, just as in C. When you reach the end of the input, the <> returns a false 
value and the loop terminates. 

To interpret <>, Perl checks the command line to see if you named any files there. 
If you did, it opens each file in sequence and runs the file’s contents through the 
loop. If you didn’t name any files on the command line, Perl takes the input to the 
loop from standard input.

Within the loop, a series of variables receive the values returned by split, a func-
tion that chops up its input string by using the regular expression passed to it as 
the field separator. Here, the regex is delimited by slashes; this is just another form 
of quoting, one that’s specialized for regular expressions but similar to the inter-
pretation of double quotes. We could just as easily have written split ':' or split ":".

The string that split is to divide at colons is never explicitly specified. When split’s 
second argument is missing, Perl assumes you want to split the value of $_. Clean! 
Truth be told, even the pattern is optional; the default is to split at whitespace but 
ignore any leading whitespace.

But wait, there’s more. Even the original assignment of $_, back at the top of the 
loop, is unnecessary. If you simply say 

while (<>) {

Perl automatically stores each line in $_. You can process lines without ever mak-
ing an explicit reference to the variable in which they’re stored. Using $_ as a de-
fault operand is common, and Perl allows it more or less wherever it makes sense.

In the multiple assignment that captures the contents of each passwd field,
($name, $pw, $uid, $gid, $gecos, $path, $sh) = split /:/;

the presence of a list on the left hand side creates a “list context” for split that tells 
it to return a list of all fields as its result. If the assignment were to a scalar vari-
able, for example,

$n_fields = split /:/;

  



ptg

References and autovivification 59

Sc
rip

tin
g/

Sh
el

l

split would run in “scalar context” and return only the number of fields that it 
found. Functions you write can distinguish between scalar and list contexts, too, 
by using the wantarray function. It returns a true value in list context, a false 
value in scalar context, and an undefined value in void context.

The line
%uids_by_name = reverse %names_by_uid;

has some hidden depths, too. A hash in list context (here, as an argument to the 
reverse function) evaluates to a list of the form (key1, value1, key2, value2, …). 
The reverse function reverses the order of the list, yielding (valueN, keyN, …, 
value1, key1). Finally, the assignment to the hash variable %uids_by_name con-
verts this list as if it were (key1, value1, …), thereby producing a permuted index.

References and autovivification

These are advanced topics, but we’d be remiss if we didn’t at least mention them. 
Here’s the executive summary. Arrays and hashes can only hold scalar values, but 
you will often want to store other arrays and hashes within them. For example, 
returning to our previous example of parsing the /etc/passwd file, you might want 
to store all the fields of each passwd line in a hash indexed by UID.

You can’t store arrays and hashes, but you can store references (that is, pointers) to 
arrays and hashes, which are themselves scalars. To create a reference to an array 
or hash, you precede the variable name with a backslash (e.g., \@array) or use 
reference-to-array or reference-to-hash literal syntax. For example, our passwd-
parsing loop would become something like this:

while (<>) { 
$array_ref = [ split /:/ ]; 
$passwd_by_uid{$array_ref->[2]} = $array_ref;

}

The square brackets return a reference to an array containing the results of the 
split. The notation $array_ref->[2] refers to the UID field, the third member of 
the array referenced by $array_ref.

$array_ref[2] won’t work here because we haven’t defined an @array_ref array; 
$array_ref and @array_ref are different variables. Furthermore, you won’t receive 
an error message if you mistakenly use $array_ref[2] here because @array_ref is a 
perfectly legitimate name for an array; you just haven’t assigned it any values.

This lack of warnings may seem like a problem, but it’s arguably one of Perl’s nic-
est features, a feature known as “autovivification.” Because variable names and ref-
erencing syntax always make clear the structure of the data you are trying to ac-
cess, you need never create any intermediate data structures by hand. Simply 
make an assignment at the lowest possible level, and the intervening structures 
materialize automatically. For example, you can create a hash of references to ar-
rays whose contents are references to hashes with a single assignment.

  



ptg

60 Chapter 2 Scripting and the Shell

Regular expressions in Perl

You use regular expressions in Perl by “binding” strings to regex operations with 
the =~ operator. For example, the line

if ($text =~ m/ab+c/) {

checks to see whether the string stored in $text matches the regular expression 
ab+c. To operate on the default string, $_, you can simply omit the variable name 
and binding operator. In fact, you can omit the m, too, since the operation de-
faults to matching:

if (/ab+c/) {

Substitutions work similarly:
$text =~ s/etc\./and so on/g; # Substitute text in $text, OR
s/etc\./and so on/g; # Apply to $_

We sneaked in a g option to replace all instances of “etc.” with “and so on”, rather 
than just replacing the first instance. Other common options are i to ignore case, s
to make dot (.) match newlines, and m to make the ^ and $ tokens match at the 
beginning and end of individual lines rather than only at the beginning and end of 
the search text.

A couple of additional points are illustrated in the following script:
#!/usr/bin/perl

$names = "huey dewey louie"; 
$regex = '(\w+)\s+(\w+)\s+(\w+)';

if ($names =~ m/$regex/) { 
print "1st name is $1.\n2nd name is $2.\n3rd name is $3.\n"; 
$names =~ s/$regex/\2 \1/; 
print "New names are \"${names}\".\n";

} else { 
print qq{"$names" did not match "$regex".\n};

}

The output:
$ perl testregex 
1st name is huey. 
2nd name is dewey. 
3rd name is louie.
New names are "dewey huey".

This example shows that variables expand in // quoting, so the regular expression 
need not be a fixed string. qq is another name for the double-quote operator.

After a match or substitution, the contents of the variables $1, $2, and so on corre-
spond to the text matched by the contents of the capturing parentheses in the 
regular expression. The contents of these variables are also available during the 
replacement itself, in which context they are referred to as \1, \2, etc.

  



ptg

Control flow 61

Sc
rip

tin
g/

Sh
el

l

Input and output

When you open a file for reading or writing, you define a “filehandle” to identify 
the channel. In the example below, INFILE is the filehandle for /etc/passwd and 
OUTFILE is the filehandle associated with /tmp/passwd. The while loop condi-
tion is <INFILE>, which is similar to the <> we have seen before but specific to a 
particular filehandle. It reads lines from the filehandle INFILE until the end of file, 
at which time the while loop ends. Each line is placed in the variable $_.

#!/usr/bin/perl

open(INFILE, "</etc/passwd") or die "Couldn’t open /etc/passwd"; 
open(OUTFILE, ">/tmp/passwd") or die "Couldn’t open /tmp/passwd";

while (<INFILE>) { 
($name, $pw, $uid, $gid, $gecos, $path, $sh) = split /:/; 
print OUTFILE "$uid\t$name\n";

}

open returns a true value if the file is successfully opened, short-circuiting (ren-
dering unnecessary) the evaluation of the die clauses. Perl’s or operator is similar 
to || (which Perl also has), but at lower precedence. or is a generally a better choice 
when you want to emphasize that everything on the left will be fully evaluated 
before Perl turns its attention to the consequences of failure.

Perl’s syntax for specifying how you want to use each file (read? write? append?) 
mirrors that of the shell. You can also use “filenames” such as "/bin/df|" to open 
pipes to and from shell commands.

Control flow

The example below is a Perl version of our earlier bash script that validated its 
command-line arguments. You might want to refer to the bash version on page 41 
for comparison. Note that Perl’s if construct has no then keyword or terminating 
word, just a block of statements enclosed in curly braces.

You can also add a postfix if clause (or its negated version, unless) to an individ-
ual statement to make that statement’s execution conditional. 

#!/usr/bin/perl

sub show_usage { 
print shift, "\n" if scalar(@_); 
print "Usage: $0 source_dir dest_dir\n"; 
exit scalar(@_) ? shift : 1;

} 
if (@ARGV != 2) {

show_usage; 
} else { # There are two arguments

($source_dir, $dest_dir) = @ARGV; 
show_usage "Invalid source directory" unless -d $source_dir; 
-d $dest_dir or show_usage "Invalid destination directory";

}

  



ptg

62 Chapter 2 Scripting and the Shell

Here, the two lines that use Perl’s unary -d operator to validate the directory-ness 
of $source_dir and $dest_dir are equivalent. The second form (with -d at the start 
of the line) has the advantage of putting the actual assertion at the beginning of 
the line, where it’s most noticeable. However, the use of or to mean “otherwise” is 
a bit tortured; some readers of the code may find it confusing.

Evaluating an array variable in scalar context (specified by the scalar operator in 
this example) returns the number of elements in the array. This is 1 more than the 
value of $#array; as always in Perl, there’s more than one way to do it.

Perl functions receive their arguments in the array named @_. It’s common prac-
tice to access them with the shift operator, which removes the first element of the 
argument array and returns its value.

This version of the show_usage function accepts an optional error message to be 
printed. If you provide an error message, you can also provide a specific exit code. 
The trinary ?: operator evaluates its first argument; if the result is true, the result 
of the entire expression is the second argument; otherwise, the third.

As in bash, Perl has a dedicated “else if ” condition, but its keyword is elsif rather 
than elif. (For you who use both languages, these fun, minute differences either 
keep you mentally nimble or drive you insane.)

As Table 2.5 shows, Perl’s comparison operators are the opposite of bash’s; strings 
use textual operators, and numbers use traditional algebraic notation. Compare 
with Table 2.2 on page 44.

In Perl, you get all the file-testing operators shown in Table 2.3 on page 44 except 
for the -nt and -ot operators, which are available in bash only.

Like bash, Perl has two types of for loops. The more common form iterates 
through an explicit list of arguments. For example, the code below iterates 
through a list of animals, printing one per line.

@animals = qw(lions tigers bears); 
foreach $animal (@animals) {
    print "$animal \n" ; 
}

Table 2.5 Elementary Perl comparison operators

String Numeric True if

x eq y x = y x is equal to y
x ne y x != y x is not equal to y
x lt y x < y x is less than y
x le y x <= y x is less than or equal to y
x gt y x > y x is greater than y
x ge y x >= y x is greater than or equal to y

  



ptg

Accepting and validating input 63

Sc
rip

tin
g/

Sh
el

l

The more traditional C-style for loop is also available:
for ($counter=1; $counter <= 10; $counter++) { 

printf "$counter ";
}

We’ve shown these with the traditional for and foreach labels, but those are in fact 
the same keyword in Perl and you can use whichever form you prefer.

Versions of Perl before 5.10 (2007) have no explicit case or switch statement, but 
there are several ways to accomplish the same thing. In addition to the obvious-
but-clunky option of cascading if statements, another possibility is to use a for
statement to set the value of $_ and provide a context from which last can escape:

for ($ARGV[0]) {

m/^websphere/ && do { print "Install for websphere\n"; last; }; 
m/^tomcat/ && do { print "Install for tomcat\n" ; last; }; 
m/^geronimo/ && do { print "Install for geronimo\n"; last; };

print "Invalid option supplied.\n"; exit 1; 
}

The regular expressions are compared with the argument stored in $_. Unsuccess-
ful matches short-circuit the && and fall through to the next test case. Once a 
regex matches, its corresponding do block is executed. The last statements escape 
from the for block immediately.

Accepting and validating input

The script below combines many of the Perl constructs we’ve reviewed over the 
last few pages, including a subroutine, some postfix if statements, and a for loop. 
The program itself is merely a wrapper around the main function get_string, a 
generic input validation routine. This routine prompts for a string, removes any 
trailing newline, and verifies that the string is not null. Null strings cause the 
prompt to be repeated up to three times, after which the script gives up.

#!/usr/bin/perl

$maxatt = 3; # Maximum tries to supply valid input

sub get_string { 
my ($prompt, $response) = shift; 
# Try to read input up to $maxatt times 
for (my $attempts = 0; $attempts < $maxatt; $attempts++) {

print "Please try again.\n" if $attempts; 
print "$prompt: "; 
$response = readline(*STDIN); 
chomp($response); 
return $response if $response;

} 
die "Too many failed input attempts";

}

  



ptg

64 Chapter 2 Scripting and the Shell

# Get names with get_string and convert to uppercase 
$fname = uc get_string "First name"; 
$lname = uc get_string "Last name"; 
printf "Whole name: $fname $lname\n";

The output:
$ perl validate 
First name: John Ball 
Last name: Park 
Whole name: JOHN BALL PARK

The get_string function and the for loop both illustrate the use of the my opera-
tor to create variables of local scope. By default, all variables are global in Perl.

The list of local variables for get_string is initialized with a single scalar drawn 
from the routine’s argument array. Variables in the initialization list that have no 
corresponding value (here, $response) remain undefined.

The *STDIN passed to the readline function is a “typeglob,” a festering wart of 
language design. It’s best not to inquire too deeply into what it really means, lest 
one’s head explode. The short explanation is that Perl filehandles are not first-class 
data types, so you must generally put a star in front of their names to pass them as 
arguments to functions.

In the assignments for $fname and $lname, the uc (convert to uppercase) and 
get_string functions are both called without parentheses. Since there is no possi-
bility of ambiguity given the single argument, this works fine.

Perl as a filter

You can use Perl without a script by putting isolated expressions on the command 
line. This is a great way to do quick text transformations and one that largely ob-
soletes older filter programs such as sed, awk, and tr. 

Use the -pe command-line option to loop through STDIN, run a simple expres-
sion on each line, and print the result. For example, the command

ubuntu$ perl -pe 's#/bin/sh$#/bin/bash#' /etc/passwd 
root:x:0:0:root:/root:/bin/bash 
daemon:x:1:1:daemon:/usr/sbin:/bin/bash 
…

replaces /bin/sh at the end of lines in /etc/passwd with /bin/bash, emitting the 
transformed passwd file to STDOUT. You may be more accustomed to seeing the 
text substitution operator with slashes as delimiters (e.g., s/foo/bar/), but Perl al-
lows any character. Here, the search text and replacement text both contain 
slashes, so it’s simpler to use # as the delimiter. If you use paired delimiters, you 
must use four of them instead of the normal three, e.g., s(foo)(bar).

  



ptg

Add-on modules for Perl 65

Sc
rip

tin
g/

Sh
el

l

Perl’s -a option turns on autosplit mode, which separates input lines into fields 
that are stored in the array named @F. Whitespace is the default field separator, 
but you can set another separator pattern with the -F option.

Autosplit is handy to use in conjunction with -p or its nonautoprinting variant, -n. 
For example, the commands below use perl -ane to slice and dice the output from 
two variations of df. The third line then runs join to combine the two sets of fields 
on the Filesystem field, producing a composite table that includes fields drawn 
from both versions of the df output. 

suse$ df -h | perl -ane 'print join("\t", @F[0..4]), "\n"' > tmp1 
suse$ df -i | perl -ane 'print join("\t", @F[0,1,4]), "\n"' > tmp2 
suse$ join tmp1 tmp2 
Filesystem Size Used Avail Use% Inodes IUse%
/dev/hda3 3.0G 1.9G 931M 68% 393216 27%
udev 126M 172K 126M 1% 32086 2%
/dev/hda1 92M 26M 61M 30% 24096 1%
/dev/hda6 479M 8.1M 446M 2% 126976 1%
…

A script version with no temporary files would look something like this:
#!/usr/bin/perl

for (split(/\n/, ‘df -h‘)) { 
@F = split; 
$h_part{$F[0]} = [ @F[0..4] ];

}

for (split(/\n/, ‘df -i‘) { 
@F = split; 
print join(“\t”, @{$h_part{$F[0]}}, $F[1], $F[4]), “\n”;

}

The truly intrepid can use -i in conjunction with -pe to edit files in place; Perl 
reads the files in, presents their lines for editing, and saves the results out to the 
original files. You can supply a pattern to -i that tells Perl how to back up the 
original version of each file. For example, -i.bak backs up passwd as passwd.bak. 
Beware—if you don’t supply a backup pattern, you don’t get backups at all. Note 
that there’s no space between the -i and the suffix.

Add-on modules for Perl

CPAN, the Comprehensive Perl Archive Network at cpan.org, is the warehouse 
for user-contributed Perl libraries. Installation of new modules is greatly facili-
tated by the cpan command, which acts much like a yum or APT package man-
ager dedicated to Perl modules. If you’re on a Linux system, check to see if your 
distribution packages the module you’re looking for as a standard feature—it’s 
much easier to install the system-level package once and then let the system take 
care of updating itself over time.

  



ptg

66 Chapter 2 Scripting and the Shell

On systems that don’t have a cpan command, try running perl -MCPAN -e shell 
as an alternate route to the same feature:

$ sudo perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.9205)
ReadLine support available (maybe install Bundle::CPAN or Bundle::CPANxxl?)

cpan[1]> install Class::Date 
CPAN: Storable loaded ok (v2.18)
CPAN: LWP::UserAgent loaded ok (v5.819) 
CPAN: Time::HiRes loaded ok (v1.9711) 
… several more pages of status updates …

It’s possible for users to install Perl modules in their home directories for personal 
use, but the process isn’t necessarily straightforward. We recommend a liberal 
policy regarding system-wide installation of third-party modules from CPAN; the 
community provides a central point of distribution, the code is open to inspec-
tion, and module contributors are identified by name. Perl modules are no more 
dangerous than any other open source software.

Many Perl modules use components written in C for better performance. Installa-
tion involves compiling these segments, so you need a complete development en-
vironment including the C compiler and a full set of libraries.

As with most languages, the most common error found in Perl programs is the 
reimplementation of features that are already provided by community-written 
modules.12 Get in the habit of visiting CPAN as the first step in tackling any Perl 
problem. It saves development and debugging time.

2.5 PYTHON SCRIPTING

As projects become larger and more complex, the benefits of object-oriented de-
sign and implementation become clearer. Perl missed the OO boat by about five 
years, and although it paddled furiously to keep up, Perl’s version of object-ori-
ented programming still feels a bit hackish.

This section describes Python 2. Python 3 is in the works and is likely to be re-
leased during the lifetime of this book. But unlike Perl 6, it appears likely to be a 
relatively incremental update.

Engineers with a strong OO background usually like Python and Ruby, both 
scripting languages with a pronounced OO inflection. Python seems to be well 
onto the downhill side of the adoption curve at this point, so it’s a relatively easy 
sale for management. Several operating systems, including OpenSolaris, are 

12. Tom Christiansen commented, “That wouldn’t be my own first choice, but it is a good one. My nomi-
nee for the most common error in programs is that they are usually never rewritten. When you take 
English composition, you are often asked to turn in an initial draft and then a final revision, separately. 
This process is just as important in programming. You’ve heard the adage ‘Never ship the prototype.’ 
Well, that’s what’s happening: people hack things out and never rewrite them for clarity and efficiency.”

  



ptg

Python quick start 67

Sc
rip

tin
g/

Sh
el

l

making major investments in Python scriptability. Ruby, by contrast, is still pri-
marily associated with web development and is rarely used for general scripting.

Python was created by Guido van Rossum. It’s easier to code and more readable 
than Perl. Python offers a simple-to-understand syntax that is easy to follow even 
if you didn’t develop the code. If you’re tired of remembering which comparison 
operators to use, you’ll appreciate Python’s unified approach. Python also offers 
additional data types that some system administrators find useful.

If Python is not already on your system, check your vendor’s or distributor’s list of 
available packages. It’s an extremely common package and should be universally 
available. Failing that, you can get Python source code from python.org. That is 
also a central location for finding add-in modules developed by others.

For a more thorough introduction to Python than we can give here, Mark Pil-
grim’s Dive Into Python is a great place to start. It’s available for reading or for 
download (without charge) at diveintopython.org, or as a printed book from 
Apress. A complete citation can be found on page 75.

Python quick start

As usual, we start with a quick “Hello, world!” script. As it happens, Python’s 
“Hello, world!” is almost identical to Perl’s.

#!/usr/bin/python 
print "Hello, world!"

To get it running, set the execute bit or invoke the python interpreter directly:
$ chmod +x helloworld 
$ ./helloworld 
Hello, world!

This one-liner fails to illustrate Python’s most scandalous break with tradition, 
namely, that indentation is logically significant. Python does not use braces, 
brackets, or begin and end to delineate blocks. Statements at the same level of 
indentation automatically form blocks. The exact indentation style (spaces or 
tabs, depth of indentation) does not matter. Python blocking is best shown by 
example, so here’s an if-then-else statement:

#!/usr/bin/python

import sys

a = sys.argv[1]

if a == "1": 
print 'a is one' 
print 'This is still the then clause of the if statement.'

else:
print 'a is', a 
print 'This is still the else clause of the if statement.'

print 'This is after the if statement.'

  



ptg

68 Chapter 2 Scripting and the Shell

The third line imports the sys module, which contains the argv array. The then 
and else clauses both have two lines, each indented to the same level. The final 
print statement is outside the context of the if statement. As in Perl, Python’s print
statement accepts an arbitrary number of arguments. But unlike Perl, Python in-
serts a space between each pair of arguments and supplies a newline automati-
cally. You can suppress the newline by including an extra comma at the end of the 
print line; the null argument tells print not to output the newline character.

Colons at the end of a line are normally a clue that the line introduces and is 
associated with an indented block that follows it. 

$ python blockexample 1 
a is one 
This is still the then clause of the if statement. 
This is after the if statement.

$ python blockexample 2 
a is 2 
This is still the else clause of the if statement. 
This is after the if statement.

Python’s indentation convention gives you less flexibility in the formatting of 
code, but it has the advantage of making code written by different people look the 
same, and it means that there is no need to sprinkle your code with pesky semico-
lons just to terminate statements.

Comments are introduced with a hash mark (#) and last until the end of the line, 
just as in bash and Perl.

You can split long lines by backslashing the end of line breaks. When you do this, 
only the indentation of the first line is significant. You can indent the continuation 
lines however you like. Lines with unbalanced parentheses, square brackets, or 
curly braces automatically signal continuation even in the absence of backslashes, 
but you can include the backslashes if doing so clarifies the structure of the code.

Some cut and paste operations convert tabs to spaces, and unless you know what 
you’re looking for, this can drive you nuts. The golden rule is never to mix tabs 
and spaces; use one or the other for indentation. A lot of software makes the tradi-
tional assumption that tabs should fall at 8-space intervals, which is really too 
much indentation for readable code. Most in the Python community seem to pre-
fer spaces and 4-character indentation.

However you decide to attack the indentation problem, most editors have options 
that can help save your sanity, either by outlawing tabs in favor of spaces or by 
displaying spaces and tabs differently. As a last resort, you can translate tabs to 
spaces with the expand command or use perl -pe to replace tabs with a more 
easily seen character string.

  



ptg

Objects, strings, numbers, lists, dictionaries, tuples, and files 69

Sc
rip

tin
g/

Sh
el

l

Objects, strings, numbers, lists, dictionaries, tuples, and files

All data types in Python are objects, and this gives them more power and flexibil-
ity than they have in Perl.

In Python, lists are enclosed in square brackets instead of parentheses. Arrays in-
dex from zero, which is one of the few concepts that doesn’t change among the 
three scripting languages covered in this chapter.

New with Python are “tuples,” which are essentially immutable lists. Tuples are 
faster than arrays and are helpful for representing data that should in fact be un-
modifiable. The syntax for tuples is the same as for lists, except that the delimiters 
are parentheses instead of square brackets. Because (thing) looks like a simple al-
gebraic expression, tuples that contain only a single element need an extra comma 
to disambiguate them: (thing, ).

Here’s some basic variable and data type wrangling in Python:
#!/usr/bin/python

name = 'Gwen' 
rating = 10 
characters = [ 'SpongeBob', 'Patrick', 'Squidward' ] 
elements = ( 'lithium', 'carbon', 'boron' )

print "name:\t%s\nrating:\t%d" % (name, rating) 
print "characters:\t%s" % characters 
print "elements:\t%s" % (elements, )

This example produces the following output:
$ python objects 
name: Gwen 
rating: 10 
characters: ['SpongeBob', 'Patrick', 'Squidward'] 
elements: ('lithium', 'carbon', 'boron')

Variables in Python are not syntactically marked or declared by type, but the ob-
jects to which they refer do have an underlying type. In most cases, Python does 
not automatically convert types for you, but individual functions or operators 
may do so. For example, you cannot concatenate a string and a number (with the 
+ operator) without explicitly converting the number to its string representation. 
However, formatting operators and statements do coerce everything to string 
form. Every object has a string representation.

The string formatting operator % is a lot like the sprintf function from C or Perl, 
but it can be used anywhere a string can appear. It’s a binary operator that takes 
the string on its left and the values to be inserted on its right. If there is more than 
one value to insert, the values must be presented as a tuple.

  



ptg

70 Chapter 2 Scripting and the Shell

A Python dictionary is the same thing as a Perl hash; that is, a list of key/value 
pairs. Dictionary literals are enclosed in curly braces, with each key/value pair 
being separated by a colon.

#!/usr/bin/python

ordinal = { 1 : 'first', 2 : 'second', 3 : 'third' } 
print "The ordinal array contains", ordinal 
print "The ordinal of 1 is", ordinal[1]

In use, Python dictionaries are a lot like arrays, except that the subscripts (keys) 
can be objects other than integers.

$ python dictionary 
The ordinal array contains {1: 'first', 2: 'second', 3: 'third'} 
The ordinal of 1 is first

Python handles open files as objects with associated methods. True to its name, 
the readline method reads a single line, so the example below reads and prints 
two lines from the /etc/passwd file.

#!/usr/bin/python

f = open('/etc/passwd', 'r') 
print f.readline(), 
print f.readline(),
f.close()

$ python fileio 
at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/true 
bin:x:1:1:bin:/bin:/bin/true

The trailing commas are in the print statements to suppress newlines because 
each line already includes a newline character as it is read from the original file.

Input validation example

The scriptlet below is the Python version of our by-now-familiar input validator. 
It demonstrates the use of subroutines and command-line arguments along with a 
couple of other Pythonisms.

#!/usr/bin/python

import sys 
import os

def show_usage(message, code = 1): 
print message 
print "%s: source_dir dest_dir" % sys.argv[0] 
sys.exit(code)

  



ptg

Loops 71

Sc
rip

tin
g/

Sh
el

l

if len(sys.argv) != 3: 
show_usage("2 arguments required; you supplied %d" % (len(sys.argv) - 1))

elif not os.path.isdir(sys.argv[1]): 
show_usage("Invalid source directory")

elif not os.path.isdir(sys.argv[2]): 
show_usage("Invalid destination directory")

source, dest = sys.argv[1:3]

print "Source Directory is", source 
print "Destination Directory is", dest

In addition to importing the sys module, we also import the os module to gain 
access to the os.path.isdir routine. Note that import doesn’t shortcut your access 
to any symbols defined by modules; you must use fully qualified names that start 
with the module name.

The definition of the show_usage routine supplies a default value for the exit 
code in case the caller does not specify this argument explicitly. Since all data 
types are objects, function arguments are passed by reference. 

The sys.argv array contains the script name in the 0 position, so its length is 1 
greater than the number of command-line arguments that were actually supplied. 
The form sys.argv[1:3] is an array slice. Curiously, slices do not include the ele-
ment at the far end of the specified range, so this slice includes only sys.argv[1]
and sys.argv[2]. You could simply say sys.argv[1:] to include the second and sub-
sequent arguments.

Like both bash and Perl, Python has a dedicated “else if ” condition; the keyword 
is elif. There is no explicit case or switch statement. 

The parallel assignment of the source and dest variables is a bit different from the 
Perl version in that the variables themselves are not in a list. Python allows paral-
lel assignments in either form.

Python uses the same comparison operators for numeric and string values. The 
“not equal” comparison operator is !=, but there is no unary ! operator; use not for 
this. The Boolean operators and and or are also spelled out.

Loops

The fragment below uses a for…in construct to iterate through the range 1 to 10. 
for counter in range(1, 10): 

print counter,

As with the array slice in the previous example, the right endpoint of the range is 
not actually included. The output includes only the numbers 1 through 9:

1 2 3 4 5 6 7 8 9

  



ptg

72 Chapter 2 Scripting and the Shell

This is Python’s only type of for loop, but it’s a powerhouse. Python’s for has sev-
eral features that distinguish it from for in other languages:

• There is nothing special about numeric ranges. Any object can support 
Python’s iteration model, and most common objects do. You can iterate 
through a string (by character), a list, a file (by character, line, or block), 
an array slice, etc.

• Iterators can yield multiple values, and you can have multiple loop vari-
ables. The assignment at the top of each iteration acts just like Python’s 
regular multiple assignments.

• Both for and while loops can have else clauses at the end. The else
clause is executed only if the loop terminates normally, as opposed to 
exiting through a break statement. This feature may initially seem coun-
terintuitive, but it handles certain use cases quite elegantly.

The example script below accepts a regular expression on the command line and 
matches it against a list of Snow White’s dwarves and the colors of their dwarf 
suits. The first match is printed with the portions that match the regex sur-
rounded by underscores.

#!/usr/bin/python

import sys 
import re

suits = { 'Bashful':'red', 'Sneezy':'green', 'Doc':'blue', 'Dopey':'orange', 
'Grumpy':'yellow', 'Happy':'taupe', 'Sleepy':'puce' }

pattern = re.compile("(%s)" % sys.argv[1])

for dwarf, color in suits.items(): 
if pattern.search(dwarf) or pattern.search(color):

print "%s's dwarf suit is %s." % \ 
(pattern.sub(r"_\1_", dwarf), pattern.sub(r"_\1_", color))

break 
else:

print "No dwarves or dwarf suits matched the pattern."

Here’s some sample output:
$ python dwarfsearch '[aeiou]{2}' 
Sn_ee_zy's dwarf suit is gr_ee_n.

$ python dwarfsearch go 
No dwarves or dwarf suits matched the pattern.

The assignment to suits demonstrates Python’s syntax for encoding literal dic-
tionaries. The suits.items() method is an iterator for key/value pairs—note that 
we’re extracting both a dwarf and a suit color on each iteration. If you only wanted 
to iterate through the keys, you could just say for dwarf in suits.

  



ptg

Scripting best practices 73

Sc
rip

tin
g/

Sh
el

l

Python implements regular expression handling through its re module. No regex 
features are built into the language itself, so regex-wrangling with Python is a bit 
clunkier than with Perl. Here, the regex pattern is initially compiled from the first 
command-line argument surrounded by parentheses to form a capture group. 
Strings are then tested and modified with the search and sub methods of the 
regex object. You can also call re.search et al. directly as functions, supplying the 
regex to use as the first argument. The \1 in the substitution string is a back-
reference to the contents of the first capture group.

2.6 SCRIPTING BEST PRACTICES

Although the code fragments in this chapter contain few comments and seldom 
print usage messages, that’s only because we’ve skeletonized each example to make 
specific points. Real scripts should behave better. There are whole books on best 
practices for coding, but here are a few basic guidelines:

• When run with inappropriate arguments, scripts should print a usage 
message and exit. For extra credit, implement --help this way, too.

• Validate inputs and sanity-check derived values. Before doing an rm -rf
on a calculated path, for example, you might have the script double-
check that the path conforms to the pattern you expect. You may find 
your scripting language’s “taint” feature helpful.

• Return an appropriate exit code: zero for success and nonzero for failure. 
Don’t feel compelled to give every failure mode a unique exit code, how-
ever; consider what callers will actually want to know.

• Use appropriate naming conventions for variables, scripts, and routines. 
Conform to the conventions of the language, the rest of your site’s code 
base, and most importantly, the other variables and functions defined in 
the current project. Use mixed case or underscores to make long names 
readable.13

• Use variable names that reflect the values they store, but keep them 
short. number_of_lines_of_input is way too long; try n_lines.

• Consider developing a style guide so that you and your colleagues can 
write code according to the same conventions. A guide makes it easier 
for you to read other people’s code and for them to read yours.

• Start every script with a comment block that tells what the script does 
and what parameters it takes. Include your name and the date. If the 
script requires nonstandard tools, libraries, or modules to be installed on 
the system, list those as well.

13. The naming of the scripts themselves is important, too. In this context, dashes are more common than 
underscores for simulating spaces, as in system-config-printer.

  



ptg

74 Chapter 2 Scripting and the Shell

• Comment at the level you yourself will find helpful when you return to 
the script after a month or two. Some useful points to comment on are 
the following: choices of algorithm, reasons for not doing things in a 
more obvious way, unusual paths through the code, anything that was a 
stumbling block during development. Don’t clutter code with useless 
comments; assume intelligence and language proficiency on the part of 
the reader.

• Code comments work best at the granularity of blocks or functions. 
Comments that describe the function of a variable should appear with 
the variable’s declaration or first use.

• It’s OK to run scripts as root, but avoid making them setuid; it’s tricky to 
make setuid scripts completely secure. Use sudo to implement appropri-
ate access control policies instead. 

• With bash, use -x to echo commands before they are executed and -n to 
check commands for syntax without executing them.

• Perl’s -w option warns you about suspicious behaviors such as variables 
used before their values are set. You can include this option on a script’s 
shebang line or turn it on in the program’s text with use warnings.

• In Python, you are in debug mode unless you explicitly turn it off with a 
-0 argument on the command line. That means you can test the special 
__debug__ variable before printing diagnostic output.

Tom Christiansen suggests the following five Golden Rules for producing useful 
error messages:

• Error messages should go to STDERR, not STDOUT.
• Include the name of the program that’s issuing the error.
• State what function or operation failed.
• If a system call fails, include the perror string ($! in Perl).
• Exit with some code other than 0.

Perl makes it easy to follow all five rules:
die "can’t open $filename: $!";

2.7 RECOMMENDED READING

BROOKS, FREDERICK P., JR. The Mythical Man-Month: Essays on Software Engineer-
ing. Reading, MA: Addison-Wesley, 1995.

Shell basics and bash scripting

ALBING, CARL, JP VOSSEN, AND CAMERON NEWHAM. Bash Cookbook. Sebastopol, 
CA: O’Reilly Media, 2007.

  



ptg

Python scripting 75

Sc
rip

tin
g/

Sh
el

l

KERNIGHAN, BRIAN W., AND ROB PIKE. The UNIX Programming Environment. En-
glewood Cliffs, NJ: Prentice-Hall, 1984.

NEWHAM, CAMERON, AND BILL ROSENBLATT. Learning the bash Shell (3rd Edi-
tion), Sebastopol, CA: O’Reilly Media, 2005.

POWERS, SHELLEY, JERRY PEEK, TIM O’REILLY, AND MIKE LOUKIDES. Unix Power 
Tools, (3rd Edition), Sebastopol, CA: O’Reilly Media, 2002.

Regular expressions

FRIEDL, JEFFREY. Mastering Regular Expressions (3rd Edition), Sebastopol, CA: 
O’Reilly Media, 2006.

GOYVAERTS, JAN, AND STEVEN LEVITHAN. Regular Expressions Cookbook. Sebasto-
pol, CA: O’Reilly Media, 2009.

Perl scripting

WALL, LARRY, TOM CHRISTIANSEN, AND JON ORWANT. Programming Perl (3rd 
Edition), Sebastopol, CA: O’Reilly Media, 2000.

SCHWARTZ, RANDAL L., TOM PHOENIX, AND BRIAN D FOY. Learning Perl (5th Edi-
tion), Sebastopol, CA: O’Reilly Media, 2008.

BLANK-EDELMAN, DAVID. Automating System Administration with Perl, Sebasto-
pol, CA: O’Reilly Media, 2009.

CHRISTIANSEN, TOM, AND NATHAN TORKINGTON. Perl Cookbook (2nd Edition). 
Sebastopol, CA: O’Reilly Media, 2003.

Python scripting

BEAZLEY, DAVID M. Python Essential Reference (4th Edition), Reading, MA: Addi-
son-Wesley, 2009.

GIFT, NOAH, AND JEREMY M. JONES. Python for Unix and Linux System Adminis-
trators, Sebastopol, CA: O’Reilly Media, 2008.

MARTELLI, ALEX, ANNA MARTELLI RAVENSCROFT, AND DAVID ASCHER. Python 
Cookbook (2nd Edition), Sebastopol, CA: O’Reilly Media, 2005.

PILGRIM, MARK. Dive Into Python. Berkeley, CA: Apress, 2004. This book is also 
available for free on the web at diveintopython.org.

  



ptg

76 Chapter 2 Scripting and the Shell

2.8 EXERCISES

E2.1 UNIX allows spaces in filenames. How do you find files whose names 
contain embedded spaces? How do you delete them? Do bash, Perl, and 
Python handle spaces in filenames gracefully, or do you need to take 
special precautions? Outline appropriate rules of thumb for scripting.

E2.2 Write a simple bash script (or pair of scripts) to back up and restore 
your system.

E2.3 Using regular expressions, write a Perl or Python script to parse a date 
in the form produced by the date command (e.g., Tue Oct 20 18:09:33 
PDT 2009) and determine whether it is valid (e.g., no February 30th, 
valid time zone, etc.). Is there an off-the-shelf library or module that 
lets you do this in one line? If so, explain how to install it and recode 
your script to use it.

E2.4 Write a script that enumerates the system’s users and groups from 
/etc/passwd and /etc/group (or their network database equivalents). 
For each user, print the user’s UID and the groups of which the user is a 
member.

E2.5 Refine the get_string example on page 63 to accept only integers. It 
should accept three parameters: the prompt string, a lower limit on the 
acceptable integers, and an upper limit on the acceptable integers.

E2.6 Find an undocumented script that’s used in your environment. Read it 
and make sure you understand its function. Add comments and write a 
man page for the script.

E2.7 Write a script that displays a one-screen summary of status data related 
to one of the following categories: CPU, memory, disk, or network. The 
script should leverage OS commands and files to build an easy-to-
understand dashboard that includes as much information as possible.

E2.8 Build a menu-driven interface that makes it easy to select command-
line options for top, sar, or the performance analysis tool of your 
choice.

E2.9 Write a script to test a server’s network connectivity and the upstream 
services on which it depends (e.g., DNS, file service, LDAP or other 
directory service). Have it send you email or a text message if problems 
are discovered.

  



ptg

77

Bo
ot

in
g

3 Booting and Shutting Down

Like most things UNIX, system startup and shutdown have matured into carefully 
engineered processes that accommodate many possible contingencies. As admin-
istrators, we negotiate the intricacies of the boot process to prevent and trouble-
shoot problems. An effective sysadmin understands the fundamentals first.

Bootstrapping has always been somewhat mysterious, but it was simpler in the 
days when manufacturers controlled every aspect of the system’s hardware and 
software. Now that we have Linux and Solaris running on PC hardware, the boot 
procedure has to play by PC rules and deal with many potential configurations. 
Although we discuss the boot procedure for all our example systems in this chap-
ter, you’ll see that we have quite a bit more to say about the PC-based versions of 
UNIX than about the “captive” systems.

This chapter appears early in the book, but it refers to material that is not dis-
cussed in detail until many hundreds of pages later. In particular, familiarity with 
the material in Chapter 6, The Filesystem, and Chapter 13, Drivers and the Kernel, 
will prove helpful.

Booting

  



ptg

78 Chapter 3 Booting and Shutting Down

3.1 BOOTSTRAPPING

Bootstrapping is the standard term for “starting up a computer.” The operating 
system’s normal facilities are not available during the startup process, so the com-
puter must “pull itself up by its own bootstraps.” During bootstrapping, the kernel 
is loaded into memory and begins to execute. A variety of initialization tasks are 
performed, and the system is then made available to users.

Boot time is a period of special vulnerability. Errors in configuration, missing or 
unreliable equipment, and damaged filesystems can all prevent a computer from 
coming up. Boot configuration is often one of the first tasks an administrator 
must perform on a new system, especially when adding new hardware. Unfortu-
nately, it is also one of the touchiest, and it requires some familiarity with many 
other aspects of the system.

When a computer is turned on, it first executes boot code that is stored in ROM. 
That code in turn attempts to figure out how to load and start the kernel. The 
kernel probes the system’s hardware and then spawns the system’s init process, 
which is always process number 1.

Before the system is fully booted, filesystems must be checked and mounted, and 
system daemons started. These procedures are managed by a series of shell scripts 
(sometimes called “init scripts”) that are run in sequence by init. The exact layout 
of the startup scripts and the manner in which they are executed vary among sys-
tems. We cover the details later in this chapter.

Recovery boot to a shell

In normal operation, systems boot themselves independently and are then ac-
cessed remotely by administrators and users. However, administrators need a re-
covery tool they can use if a disk crashes or a configuration problem prevents the 
system from completing the normal boot process. Instead of shooting for full sys-
tem operation, UNIX systems can boot just enough to run a shell on the system 
console. This option is traditionally known as booting to single-user mode, recov-
ery mode, or maintenance mode, all terms that we use interchangeably in this 
chapter. As its name implies, single-user mode does not allow network operation; 
you need physical access to the system console to use it.

On most systems, you request a boot to single-user mode by passing an argument 
to the kernel at boot time. If the system is already up and running, you can bring 
it down to single-user mode with the shutdown or telinit command.

Steps in the boot process

A typical bootstrapping process consists of six distinct phases:

• Reading of the boot loader from the master boot record
• Loading and initialization of the kernel
• Device detection and configuration

  



ptg

Creation of kernel processes 79

Bo
ot

in
g

• Creation of kernel processes
• Administrator intervention (single-user mode only)
• Execution of system startup scripts

Administrators have little interactive control over most of these steps. Instead, ad-
mins change most bootstrap configurations by editing config files for the system 
startup scripts or by changing the arguments the boot loader passes to the kernel.

Kernel initialization

See Chapter 13 for 
more information 
about the kernel.

The kernel is itself a program, and the first bootstrapping task is to get this pro-
gram into memory so that it can be executed. The pathname of the kernel is ven-
dor dependent, but it has traditionally been something like /unix or /vmunix. On 
Linux systems, the kernel is usually some variation of /boot/vmlinuz.

Most systems implement a two-stage loading process. During the first stage, the 
system ROM loads a small boot program into memory from disk. This program, 
called the boot loader, then arranges for the kernel to be loaded. This procedure 
occurs outside the domain of UNIX and so is not standardized among systems.

The kernel probes the system to learn how much RAM is available. Some of the 
kernel’s internal data structures are statically sized, so the kernel sets aside some 
memory for itself when it starts. This memory is reserved for the kernel and can-
not be used by user-level processes. The kernel prints a message on the console 
that reports the total amount of physical memory and the amount available to 
user processes.

Hardware configuration

One of the kernel’s first chores is to scrutinize the machine’s environment to see 
what hardware is present. As it probes the various system buses and inventories 
the hardware, the kernel prints out a line of cryptic information about each device 
it finds. In many cases, the kernel loads device drivers as independent kernel 
modules. For PC-based operating systems, vendors include kernels that work on 
most machine configurations and require minimal (if any) customization. 

Hardware configuration should be a relatively transparent process for administra-
tors, especially under Linux. Kernels distributed by vendors are extremely modu-
lar and will automatically detect most hardware. Nonetheless, you may encounter 
unrecognized hardware at some point. See Chapter 13, Drivers and the Kernel, for 
help with manual driver configuration.

Creation of kernel processes

Once basic initialization is complete, the kernel creates several “spontaneous” 
processes in user space. They’re called spontaneous processes because they are not 
created through the normal system fork mechanism; see page 123 for details.

  



ptg

80 Chapter 3 Booting and Shutting Down

The exact number of spontaneous processes varies, although init is always PID 1. 
Most UNIX systems have sched as process 0.

Under Linux, there is no visible PID 0. init is accompanied by several memory 
and kernel handler processes, including those shown in Table 3.1. These processes 
all have low-numbered PIDs and can be identified by the brackets around their 
names in ps listings (e.g., [kacpid]). Sometimes the process names have a slash 
and a digit at the end, such as [kblockd/0]. The number indicates the processor on 
which the thread is running, which may be of interest on a multiprocessor system.

Among these processes, only init is really a full-fledged user process. The others 
are actually portions of the kernel that have been dressed up to look like processes 
for scheduling or architectural reasons.

UNIX systems create similar kernel processes, but since these processes represent 
aspects of the kernel implementation, none of the names or functions are neces-
sarily common among systems. Fortunately, administrators never need to interact 
with these processes directly.

Once these processes have been created, the kernel’s role in bootstrapping is com-
plete. However, none of the processes that handle basic operations (such as ac-
cepting logins) have been created, nor have most system daemons been started. 
All of these tasks are taken care of (indirectly, in some cases) by init.

Operator intervention (recovery mode only)

See Chapter 4 for more 
information about the 
root account.

If the system is to be brought up in recovery mode, a command-line flag passed in 
by the kernel notifies init of this fact as it starts up. During a single-user boot on 
sane systems, you are prompted to enter the root password. If you enter the right 
password, the system spawns a root shell. You can type <Control-D> instead of a 
password to bypass single-user mode and continue with a normal boot. See page 
86 for more details.

See Chapter 6 for more 
information about file-
systems and mounting.

From the single-user shell, you can execute commands in much the same way as 
when logged in on a fully booted system. However, sometimes only the root parti-
tion is mounted; you must mount other filesystems by hand to use programs that 
don’t live in /bin, /sbin, or /etc. 

Table 3.1 Some common kernel processes on Linux systems

Thread What it does 

kjournald Commits filesystem journal updates to disk a 

kswapd Swaps processes when physical memory is low 
ksoftirqd Handles soft interrupts if they can’t be dealt with at context switch time 
khubd Configures USB devices

a. There is one kjournald for each mounted ext3 or ext4 filesystem.

  



ptg

Boot process completion 81

Bo
ot

in
g

In many single-user environments, the filesystem root directory starts off being 
mounted read-only. If /etc is part of the root filesystem (the usual case), it will be 
impossible to edit many important configuration files.1 To fix this problem, you’ll 
have to begin your single-user session by remounting / in read/write mode. In 
Linux, the command

# mount -o rw,remount /

usually does the trick. On most other systems, you can run mount / to make 
mount consult the fstab or vfstab file and determine how the filesystem should 
be mounted.

Red Hat’s single-user mode is a bit more aggressive than normal. By the time you 
reach the shell prompt, it has usually tried to mount all local filesystems. Al-
though this is usually helpful, it can be problematic if you have a sick filesystem.

The fsck command is run during a normal boot to check and repair filesystems. 
When you bring the system up in single-user mode, you may need to run fsck by 
hand. See page 259 for more information about fsck.

Once the single-user shell exits, the system attempts to continue booting in the 
normal fashion.

Execution of startup scripts

By the time the system is ready to run its startup scripts, it is recognizably UNIX. 
Even though it doesn’t quite look like a fully booted system yet, no more “magic” 
steps are left in the boot process. The startup scripts are just normal shell scripts, 
and they’re selected and run by init according to an algorithm that, though some-
times tortuous, is relatively comprehensible.

The care, feeding, and taxonomy of startup scripts merits a major section of its 
own. It’s taken up in more detail starting on page 97. For a quick course in shell 
scripting itself, see Chapter 2, Scripting and the Shell.

Boot process completion

See page 1171 for more 
information about the 
login process.

After the initialization scripts have run, the system is fully operational. System 
daemons, such as DNS and SMTP servers, are accepting and servicing connec-
tions. Keep in mind that init continues to perform an important role even after 
booting is complete.

init defines one single-user and several network-enabled “run levels” that deter-
mine which of the system’s resources are enabled. Run levels are described later in 
this chapter, starting on page 88.

1. For example, one common use of single-user mode is to reset a lost root password. This operation 
requires modification of the /etc/shadow file.

  



ptg

82 Chapter 3 Booting and Shutting Down

3.2 BOOTING PCS

At this point we’ve seen the general outline of the boot process. We now revisit 
several of the more important (and complicated) steps and discuss the details rel-
evant to Intel systems.

PC booting is a lengthy ordeal that requires quite a bit of background information 
to explain. When a machine boots, it begins by executing code stored in ROMs. 
The exact location and nature of this code varies, depending on the type of ma-
chine you have. On a machine designed explicitly for UNIX or another proprie-
tary operating system, the code is typically firmware that knows how to use the 
devices connected to the machine, how to talk to the network on a basic level, and 
how to understand disk-based filesystems. Such intelligent firmware is convenient 
for system administrators. For example, you can just type in the filename of a new 
kernel, and the firmware will know how to locate and read that file.

On PCs, the initial boot code is generally called a BIOS (Basic Input/Output Sys-
tem), and it is extremely simplistic compared to the firmware of a proprietary 
workstation. Actually, a PC has several levels of BIOS: one for the machine itself, 
one for the video card, one for the SCSI card if the system has one, and sometimes 
components for other peripherals such as network cards.

The built-in BIOS knows about some of the devices that live on the motherboard, 
typically the IDE and SATA controllers (and disks), network interfaces, power 
and temperature meters, and system hardware. SCSI cards are usually only aware 
of the devices that are connected to them. Thankfully, the complex interactions 
needed to make these devices work together have been standardized in the past 
few years, and little manual intervention is required on current systems.

The BIOS normally lets you select which devices you want the system to try to 
boot from. You can usually specify an ordered list of preferences such as “Try to 
boot from a DVD, then a USB drive, then the hard disk.” Network booting with 
PXE (see Netbooting PCs on page 363) is also a common option.

Once the BIOS has figured out what device to boot from, it tries to read the first 
block of the device. This 512-byte segment is known as the master boot record or 
MBR. The MBR contains a program that tells the computer from which partition 
to load a secondary boot program, the “boot loader.” For more information on 
PC-style disk partitions and the MBR, refer to Chapter 8, Storage.

The default MBR contains a simple program that tells the computer to get its boot 
loader from the first partition on the disk. Some systems offer a more sophisti-
cated MBR that knows how to deal with multiple operating systems and kernels. 
Once the MBR has chosen a partition to boot from, it tries to load the boot loader 
specific to that partition. This loader is then responsible for loading the kernel.

  



ptg

GRUB: The GRand Unified Boot loader 83

Bo
ot

in
g

3.3 GRUB: THE GRAND UNIFIED BOOT LOADER 

GRUB, developed by the GNU project, is the default boot loader for most UNIX 
and Linux systems with Intel processors. GRUB ships with most Linux distribu-
tions, and with x86-based Solaris systems since version 10. GRUB’s job is to 
choose a kernel from a previously assembled list and to load that kernel with op-
tions specified by the administrator.

There are two branches of the GRUB lineage: the original GRUB, now called 
“GRUB Legacy,” and the newer GRUB 2. The name GRUB 2 is a bit deceptive 
since GRUB 2 releases actually have version numbers between 1 and 2. All of our 
example systems currently use GRUB Legacy, and that’s the version we describe in 
this book. GRUB 2 is similar in concept but varies in its config file syntax.

By default, GRUB reads its default boot configuration from /boot/grub/menu.lst
or /boot/grub/grub.conf. GRUB reads the configuration file at startup time 
(which is a pretty impressive feat in itself), so it allows dynamic changes at each 
system boot. The menu.lst and grub.conf files are slightly different but have a 
similar syntax. Red Hat systems use grub.conf, and Solaris, SUSE, and Ubuntu 
still use menu.lst. Here’s a sample grub.conf file:

default=0 
timeout=10 
splashimage=(hd0,0)/boot/grub/splash.xpm.gz 
title Red Hat Enterprise Linux Server (2.6.18-92.1.10.el5)

root (hd0,0) 
kernel /vmlinuz-2.6.18-92.1.10.el5 ro root=LABEL=/

This example configures only a single operating system, which GRUB boots auto-
matically (default=0) if it doesn’t receive any keyboard input within 10 seconds 
(timeout=10). The root filesystem for the “Red Hat Enterprise Linux Server” con-
figuration is the GRUB device (hd0,0), which is GRUB-ese for the first partition 
on the system’s first hard disk (“first” being defined by the BIOS).

GRUB loads the kernel from /vmlinuz-2.6.18-92.1.10.el5 and displays a splash 
screen from the file /boot/grub/splash.xpm.gz when it is loaded. Kernel paths 
are relative to the boot partition, which is usually mounted in /boot.

GRUB supports a powerful command-line interface as well as facilities for editing 
configuration file entries on the fly. To enter command-line mode, type c from the 
GRUB boot screen. From the command line, you can boot operating systems that 
aren’t in grub.conf, display system information, and perform rudimentary filesys-
tem testing. You can also enjoy the command line’s shell-like features, including 
command completion and cursor movement. Anything that can be done through 
the grub.conf file can be done through the GRUB command line as well. 

  



ptg

84 Chapter 3 Booting and Shutting Down

Press the <Tab> key to obtain a quick list of possible commands. Table 3.2 lists 
some of the more useful ones.

For detailed information about GRUB and its command line-options, refer to the 
official manual at gnu.org/software/grub/manual.

Kernel options

GRUB lets you pass command-line options to the kernel. These options typically 
modify the values of kernel parameters, instruct the kernel to probe for particular 
devices, specify the path to init, or designate a specific root device. Table 3.3 
shows a few examples.

When edited at boot time, kernel options are not persistent. Edit the appropriate 
kernel line in grub.conf or menu.lst to make the change persist across reboots.

Security patches, bug fixes, and features are all regularly added to the Linux ker-
nel. Unlike other software packages, however, new kernel releases typically do not 
replace old ones. Instead, the new kernels are installed side by side with the old 
versions so that you can return to an older kernel in the event of problems. This 
convention helps administrators back out of an upgrade if a kernel patch breaks 
their system. As time goes by, the GRUB boot menus fill up with all the different 
versions of the kernel. It’s usually safe to use the default selection, but try choosing 
another kernel if your system doesn’t boot after patching.

Table 3.2 GRUB command-line options

Command Meaning 

reboot Reboots the system 
find Finds files on all mountable partitions 
root Specifies the root device (a partition) 
kernel Loads a kernel from the root device 
help Gets interactive help for a command 
boot Boots the system from the specified kernel image

Table 3.3 Examples of kernel boot-time options

Option Meaning 

acpi=off Disables Advanced Configuration and Power Interface components 
init=/bin/bash Starts only the bash shell; useful for emergency recovery 
root=/dev/foo Tells the kernel to use /dev/foo as the root device 
singlea Boots to single-user mode

a. Linux only. Use -s on Solaris—this is a carry-over for administrators who are familiar with OpenBoot on 
other CPU architectures.

  



ptg

Multibooting 85

Bo
ot

in
g

Multibooting

Since many operating systems run on PCs, it’s fairly common practice to set up a 
machine to boot several different operating systems. To make this work, you need 
to configure a boot loader to recognize all the different operating systems on your 
disks. In the next few sections, we cover some common multiboot stumbling 
blocks and then review some example configurations.

Each disk partition can have its own second-stage boot loader. However, the boot 
disk has only one MBR. When setting up a multiboot configuration, you must 
decide which boot loader is going to be the “master.” For better or worse, your 
choice will often be dictated by the vagaries of the operating systems involved. 
GRUB is really the only option for Intel-based UNIX and Linux systems. Always 
use GRUB over the Windows boot loader when dual booting a Windows system.

A multiboot GRUB system is much like its single-boot counterpart. Install all the 
desired operating systems before making changes to grub.conf or menu.lst.

A grub.conf configuration for booting Windows looks different from one for 
booting a UNIX or Linux system:

title Windows XP 
rootnoverify (hd0,0) 
chainloader +1

The chainloader option loads the boot loader from a the specified location (here, 
sector 1 on the first partition of the primary IDE drive). The rootnoverify option 
guarantees that GRUB will not try to mount the specified partition.

The grub.conf file below boots Windows XP from the first partition (the default), 
and Red Hat Enterprise Linux from the second:

default=0 
timeout=5 
splashimage=(hd0,2)/boot/grub/splash.xpm.gz 
hiddenmenu 
title Windows XP

rootnoverify (hd0,0) 
chainloader +1

title Red Hat 
root (hd0,1) 
kernel /vmlinuz

The fact that GRUB solves many potential multibooting problems doesn’t really 
alleviate our inherent skepticism of multiboot configurations. See page 1140 for 
some additional comments.

  



ptg

86 Chapter 3 Booting and Shutting Down

3.4 BOOTING TO SINGLE-USER MODE

The beginnings of the boot process are system dependent. Systems with non-Intel 
processors have custom boot loader software, while PCs are mostly standardized 
thanks to GRUB.

Single-user mode with GRUB

You don’t need to use the command line to boot single-user mode under GRUB. 
The GRUB authors realized that boot options should be easily modifiable and 
decided on the ‘a’ key as the appropriate tool. At the GRUB splash screen, high-
light the desired kernel and press ‘a’ to append to the boot options. To boot into 
single-user mode, add the single (or -s on Solaris) flag to the end of the existing 
kernel options. An example for a typical configuration might be

grub append> ro root=LABEL=/ rhgb quiet single

Single-user mode on SPARC 

To interrupt the boot procedure and enter the OpenBoot PROM on Sun hard-
ware, press the L1 and ‘a’ keys simultaneously. L1 is sometimes labeled STOP on 
modern Sun keyboards. From the boot PROM, you can type boot -s to boot to 
single-user mode.

To boot an alternative kernel under Solaris, you usually have to type the full So-
laris name of the device and the file. The Solaris device name is the long, bizarre 
string of characters you see when you do an ls -l on the /dev file:

% ls -l /dev/rdsk/c0t0d0s0 
lrwxrwxrwx   1 root     root          55 Jan 15  1998 /dev/rdsk/c0t0d0s0 -> 

../../devices/sbus@1f,0/SUNW,fas@e,8800000/sd@0,0:a,raw

To boot the kernel stored as /kernel/backup on this disk, you’d need to enter the 
following command at the boot PROM monitor:

boot /devices/sbus@1f,0/SUNW,fas@e,8800000/sd@0,0:a,raw/kernel/backup 

Table 3.4 lists some of the more useful commands you can enter from Sun’s boot 
PROM and a brief description of their functions.

Table 3.4 Boot PROM commands on Sun hardware

Command Function 

boot /path_to_kernel Boots an alternative kernel
boot -s Boots into single-user mode
boot -r Reconfigures the kernel and probes for new devices 
boot -a /etc/system.bak Makes kernel read /etc/system.bak instead of /etc/system 

probe-scsi Shows a list of all attached SCSI devices

  



ptg

Working with startup scripts 87

Bo
ot

in
g

HP-UX single-user mode

The procedure for booting single-user on an HP-UX machine seems to depend 
on the exact type of machine. The following example is from an HP 9000/735.

First, interrupt the boot process when prompted to do so. You’ll receive a prompt. 
At that prompt, type boot pri isl to get to a smarter prompt that will let you boot 
single-user. This prompt should look something like this:

ISL> prompt:

The following command selects a kernel and boots the system into single-user 
mode:

ISL> prompt: hpux -iS /stand/vmunix

AIX single-user mode

AIX refers to single-user mode as “maintenance” mode. Select maintenance mode 
from the boot menu before the system starts, or use telinit S from the command 
line if the system has already been booted.

3.5 WORKING WITH STARTUP SCRIPTS

After you exit from single-user mode (or, in the standard boot sequence, at the 
point at which the single-user shell would have run), init executes the system 
startup scripts. These scripts are really just garden-variety shell scripts that are 
interpreted by sh or bash. The exact location, content, and organization of the 
scripts vary enormously among vendors.

Most systems use an approach in which scripts are numbered and executed in 
order. Scripts are kept in /etc/init.d, and links to them are made in the directories 
/etc/rc0.d, /etc/rc1.d, and so on. This organization is clean, and because the 
scripts are executed in order, the system can accommodate dependencies among 
services. These “startup” scripts both start and stop services, so this architecture 
also allows the system to be shut down in an orderly manner. 

Some tasks that are often performed in the startup scripts are

• Setting the name of the computer 
• Setting the time zone 
• Checking the disks with fsck
• Mounting the system’s disks
• Removing old files from the /tmp directory
• Configuring network interfaces
• Starting up daemons and network services

Startup scripts are quite verbose and print a description of everything they are 
doing. These status messages can be a tremendous help if the system hangs mid-
way through booting or if you are trying to locate an error in one of the scripts.

  



ptg

88 Chapter 3 Booting and Shutting Down

Administrators should not modify startup scripts. The ones that accept configura-
tion information read it in the form of a separate and site-specific configuration 
file, usually itself a shell script. You can modify the accessory configuration script 
and have confidence that it won’t be overwritten by updates.

init scripts are used to some degree by all six of our example operating systems. 
Solaris 10’s startup process was rewritten from the ground up and is discussed 
starting on page 97. Ubuntu uses an init replacement known as Upstart, but we 
cover it in this section because of its similarities to the traditional init. 

In the sections below, we first describe the general idea of the system, then cover 
each OS’s individual quirks.

init and its run levels

init is the first process to run after the system boots, and in many ways it is the 
most important daemon. It always has a PID of 1 and is an ancestor of all user 
processes and all but a few system processes. init implementations vary slightly 
among systems. 

init defines at least seven run levels, each of which represents a particular comple-
ment of services that the system should be running. The exact definition of each 
run level varies among systems, but the following points are all generally true:

• At level 0, the system is completely shut down.
• Levels 1 and S represent single-user mode.
• Levels 2 through 5 include support for networking.
• Level 6 is a “reboot” level.

Levels 0 and 6 are special in that the system can’t actually remain in them; it shuts 
down or reboots as a side effect of entering them. On most systems, the general 
default run level is 2 or 3. Under Linux, run level 5 is often used for X Windows 
login processes. Run level 4 is rarely used.

Single-user mode was traditionally init level 1. It shut down all network and re-
mote login processes and made sure the system was running a minimal comple-
ment of software. Since single-user mode permits root access to the system, how-
ever, administrators wanted the system to prompt for the root password whenever 
it was booted into single-user mode.

The S run level was created to address this need. It spawns a process that prompts 
for the root password. On Solaris and AIX, S is the “real” single-user run level, but 
on Linux, it serves only to prompt for the root password and is not a destination 
in itself.

There seem to be more run levels defined than are strictly necessary or useful. 
The traditional explanation for this is that a phone switch had 7 run levels, so it 
was thought that a UNIX system should have at least that many. Linux and AIX 
actually support up to 10 run levels, but most of these are undefined. On AIX, 

  



ptg

Overview of startup scripts 89

Bo
ot

in
g

only run level 2 is meaningful in the default configuration. Levels 0 and 1 are 
reserved for the operating system, and levels 3–9 are open for use by admins.

The /etc/inittab file tells init what to do at each run level. Its format varies from 
system to system, but the basic idea is that inittab defines commands that are to 
be run (or kept running) when the system enters each level. 

As the machine boots, init ratchets its way up from run level 0 to the default run 
level, which is also set in /etc/inittab. To accomplish the transition between each 
pair of adjacent run levels, init runs the actions spelled out for that transition in 
/etc/inittab. The same progression is made in reverse order when the machine is 
shut down.

The telinit command changes init’s run level once the system is up. For example, 
telinit 3 forces init to go to run level 3. telinit’s most useful argument is -q, which 
causes init to reread the /etc/inittab file.

Unfortunately, the semantics of the inittab file are fairly crude, and they don’t 
mesh well with the way that services are actually started and stopped on UNIX 
systems. To map the facilities of the inittab file into something a bit more usable, 
init implements another layer of abstraction. This layer usually takes the form of a 
“change run levels” command that’s run out of inittab. This command in turn 
executes scripts from a run-level-dependent directory to bring the system to its 
new state. 

This second layer is not well developed in AIX. Instead, AIX systems rely heavily 
on the inittab file itself to manage services. AIX’s startup scripts are also slightly 
different from those of other systems. 

These days, most Linux distributions boot to run level 5 by default, which may 
not be appropriate for systems that don’t need to run a window server. The default 
run level is easy to change. This line from a SUSE machine’s inittab defaults to run 
level 5:

id:5:initdefault:

System administrators usually don’t have to deal directly with /etc/inittab because 
the script-based interface is adequate for most applications. In the following dis-
cussion, we mostly ignore the inittab file and the other glue that attaches init to 
the execution of startup scripts. Just keep in mind that when we say that init runs 
such-and-such a script, the connection may not be quite so direct.

Overview of startup scripts

The master copies of the startup scripts live in the /etc/init.d directory. Each 
script is responsible for one daemon or one particular aspect of the system. The 
scripts understand the arguments start and stop to mean that the service they 
deal with should be initialized or halted. Most also understand restart, which is 
typically the same as a stop followed by a start. As a system administrator, you 

  



ptg

90 Chapter 3 Booting and Shutting Down

can manually start and stop individual services by running their associated init.d
scripts by hand.

For example, here’s a simple startup script that can start, stop, or restart sshd:
#!/bin/sh 
test -f /usr/bin/sshd || exit 0 
case "$1" in

start) 
echo -n "Starting sshd: sshd" 
/usr/sbin/sshd 
echo "." 
;;

stop) 
echo -n "Stopping sshd: sshd" 
kill `cat /var/run/sshd.pid` 
echo "." 
;;

restart) 
echo -n "Stopping sshd: sshd" 
kill `cat /var/run/sshd.pid` 
echo "." 
echo -n "Starting sshd: sshd" 
/usr/sbin/sshd 
echo "." 
;;

*)
echo "Usage: /etc/init.d/sshd start|stop|restart" 
exit 1 
;;

esac

Although the scripts in /etc/init.d can start and stop individual services, the mas-
ter control script run by init needs additional information about which scripts to 
run (and with what arguments) to enter any given run level. Instead of looking 
directly at the init.d directory when it takes the system to a new run level, the 
master script looks at a directory called rclevel.d, where level is the run level to be 
entered (e.g., rc0.d, rc1.d, …).

These rclevel.d directories contain symbolic links that point back to the scripts in 
the init.d directory. The names of the links start with S or K followed by a se-
quence number and the name of the service the script controls (e.g., S34named).

When init transitions from a lower run level to a higher one, it runs all the scripts 
that start with S in ascending numerical order with the argument start. When init
transitions from a higher run level to a lower one, it runs all the scripts that start 
with K (for “kill”) in descending numerical order with the argument stop. 

This scheme gives administrators fine-grained control of the order in which ser-
vices are started. For example, it doesn’t make sense to start sshd before the net-
work interfaces are up. Although the network and sshd are both configured to 

  



ptg

Red Hat startup scripts 91

Bo
ot

in
g

start at run level 3 in Red Hat, the network script has sequence number 10 and 
the sshd script has sequence number 55, so network is certain to be run first. Be 
sure to consider this type of dependency when you add a new service.

To tell the system when to start a daemon, you must place symbolic links into the 
appropriate directory. For example, to start cupsd (the printing daemon) at run 
level 2 and to stop it nicely before shutting down, the following pair of links would 
suffice:

# ln -s /etc/init.d/cups /etc/rc2.d/S80cups 
# ln -s /etc/init.d/cups /etc/rc0.d/K80cups

The first line tells the system to run the /etc/init.d/cups startup script as one of 
the last things to do when entering run level 2 and to run the script with the start
argument. The second line tells the system to run /etc/init.d/cups relatively soon 
when shutting down the system and to run the script with the stop argument. 
Some systems treat shutdown and reboot differently, so we should really put a 
symbolic link in the /etc/rc6.d directory as well to make sure the daemon shuts 
down properly when the system is rebooted.

Red Hat startup scripts

Startup scripts are one of the areas in which Linux distributions are most distin-
guished from each other. Red Hat uses a primarily init-script-based approach, 
with a few twists thrown in just to make life difficult for everyone.

At each run level, init invokes the script /etc/rc.d/rc with the new run level as an 
argument. /etc/rc.d/rc usually runs in “normal” mode, in which it just runs con-
trol scripts, but it can also run in “confirmation” mode, where it prompts you for 
confirmation before running each individual startup script. 

Startup scripts store lock files in the /var/lock/subsys directory. The presence of a 
lock file with the same name as a startup script indicates that that service should 
already be running. Startup scripts create lock files when given a start command 
and remove them when performing a stop.

Red Hat supplies a chkconfig command to help you manage services. This com-
mand adds or removes startup scripts from the system, manages the run levels at 
which they operate, and lists the run levels for which a script is currently config-
ured. See the man page for usage information for this simple and handy tool.

Red Hat also has an /etc/rc.d/rc.local script (not directory) that runs at boot time. 
It’s the last script run as part of the startup process and is a good place to add site-
specific tweaks or post-boot tasks.

Once you see the “Welcome to Red Hat Enterprise Linux” message during the 
boot process, you can press the ‘i’ key to enter confirmation mode. Unfortunately, 
Red Hat gives you no confirmation that you have pressed the right key. It contin-
ues to mount local filesystems, activate swap partitions, load keymaps, and locate 

  



ptg

92 Chapter 3 Booting and Shutting Down

its kernel modules. Only after init switches to run level 3 does the system actually 
start to prompt you for confirmation.

Interactive startup and single-user mode both begin at the same spot in the boot 
process. When the startup process is so broken that you cannot reach this point 
safely, you can use a DVD or USB drive to boot. 

You can also pass the argument init=/bin/sh to the kernel to trick it into running 
a single-user shell before init even starts.2 If you take this tack, you will have to do 
all the normal startup housekeeping by hand, including manually fscking and 
mounting local filesystems.

Much configuration of Red Hat’s boot process can be achieved through manipula-
tion of the config files in the /etc/sysconfig directory. Table 3.5 summarizes the 
function of some important items in this directory.

Several of the items in Table 3.5 merit additional comments:

• The network file contains the system’s default gateway, hostname, and 
other important settings that apply to all network interfaces.

• The network-scripts directory contains additional material related to 
network configuration. The only things you might need to change are 
the files named ifcfg-interface. For example, network-scripts/ifcfg-eth0
contains the configuration parameters for the interface eth0. It sets the 
interface’s IP address and networking options. See page 478 for more 
information about configuring network interfaces.

2. We once had a corrupted keymap file, and since the keymap file is loaded even in single-user mode, 
single-user was useless. Setting init=/bin/sh was the only way to boot the system to a usable single-
user state to fix the problem. This can also be a useful trick in other situations.

Table 3.5 Files and subdirectories of Red Hat’s /etc/sysconfig directory

File/Dir Function or contents

clock Specifies the type of clock that the system has (almost always UTC)a

console Is a mysterious directory that is always empty
crond Lists arguments to pass to the cron daemon
i18n Contains the system’s locale settings (date formats, languages, etc.)
init Configures the way messages from startup scripts are displayed 
keyboard Sets keyboard type (use “us” for the standard 101-key U.S. keyboard) 
mouse Sets the mouse type; used by X and gpm 

network Sets global network options (hostname, gateway, forwarding, etc.) 
network-scripts Contains accessory scripts and network config files 
sendmail Sets options for sendmail

a. If you multiboot your PC, all bets are off as to how the clock’s time zone should be set.

  



ptg

SUSE startup scripts 93

Bo
ot

in
g

• The sendmail file contains two variables: DAEMON and QUEUE. If the 
DAEMON variable is set to yes, the system starts sendmail in daemon 
mode (-bd) when the system boots. QUEUE tells sendmail how long to 
wait between queue runs (-q); the default is one hour.

SUSE startup scripts

SUSE’s startup system resembles that of Red Hat, at least in terms of its general 
organization. However, SUSE’s scripts are well organized, robust, and well docu-
mented. The folks that maintain this part of the operating system get a gold star.

As in Red Hat, init invokes the script /etc/init.d/rc at each run level and provides 
the new run level as an argument. Package-specific scripts live in the /etc/init.d
directory, and their configuration files live in /etc/sysconfig. An excellent intro-
duction to the SUSE startup process can be found in /etc/init.d/README.

Although both SUSE and Red Hat concentrate their boot configuration files in 
/etc/sysconfig, the specific files within this directory are quite different. (For one 
thing, SUSE’s files are generally well commented.) You invoke options by setting 
shell environment variables, and these variables are then referenced by the scripts 
within /etc/init.d. Some subsystems require more configuration than others, and 
those that need multiple configuration files have private subdirectories, such as 
the sysconfig/network directory.

The windowmanager file is a typical example from the sysconfig directory:
## Path: Desktop/Window manager 
## Type: string(gnome,startkde,startkde3,startxfce4,twm) 
## Default: kde 
## Config: profiles,kde,susewm

# Here you can set the default window manager (kde, fvwm, ...) 
# changes here require at least a re-login

DEFAULT_WM="gnome"

## Type: yesno 
## Default: yes

# install the SuSE extension for new users 
# (theme and additional functions)

INSTALL_DESKTOP_EXTENSIONS="yes"

## Path: Desktop 
## Description: default mouse cursor theme 
## Type: string 
## Default:

# Name of mouse cursor theme for X11. Possible themes can be found 
# in /usr/share/icons/

X_MOUSE_CURSOR="DMZ" 
KDE_USE_IPV6="yes"

  



ptg

94 Chapter 3 Booting and Shutting Down

Each variable is preceded by YaST-readable3 configuration information and a ver-
bose description of the variable’s purpose. For example, in the windowmanager
file, the variable DEFAULT_WM sets the desktop window manager used by X.

SUSE also includes a chkconfig command for managing startup scripts. It’s en-
tirely different from the version provided by Red Hat, but it’s an effective tool 
nonetheless and should be used in favor of manual script management.

Ubuntu startup scripts and the Upstart daemon

Starting with Feisty Fawn in early 2007, Ubuntu replaced the traditional init with 
Upstart, an event-driven service management system that is also used by some 
other Linux distributions. Upstart handles transitions in system state—such as 
hardware changes—more elegantly than does init. It also significantly reduces 
boot times.

Upstart starts and stops services in response to system events such as the addition 
of a device or the disconnection of a network drive. For compatibility, it also emu-
lates the traditional run levels of init. However, startup and shutdown scripts are 
processed in a manner that is somewhat different from that used by init.

Upstart uses job definition files in the /etc/event.d directory instead of an inittab
file. A job is similar in concept to a startup script: it performs a series of com-
mands and then returns control to Upstart. The collection of jobs on an Ubuntu 
system looks like this:

ubuntu$ ls /etc/event.d 
control-alt-delete  last-good-boot  logd  rc0  rc1  rc2  rc3  rc4  rc5  rc6  

rc-default  rcS  rcS-sulogin  sulogin  tty1  tty2  tty3  tty4  tty5  tty6

Over time, more startup scripts will be converted into native Upstart jobs. For 
now, Upstart uses run-level emulation scripts to boot the system. For example, the 
rc2 script executes /etc/rc2.d/rc, which runs all the startup scripts for run level 2. 

Because of the need to maintain this compatibility, Ubuntu administrators should 
use Ubuntu’s update-rc.d command to maintain links to startup scripts within 
the rc directories. The syntax is

update-rc.d service { start | stop } sequence runlevels .

update-rc.d accepts a sequence number (the order in which the startup script 
should be run) and the applicable run levels as arguments. Use a terminating dot 
to end parsing.

Services that start later in a run-level transition should stop sooner when the sys-
tem exits that level. For example, if CUPS starts at a sequence value of 80 during 
boot, it should stop at a sequence value of around 20, early in the shutdown pro-
cess. The update-rc.d command to add the appropriate links would be

3. YaST is a SUSE-specific graphical configuration utility that maintains many aspects of a SUSE system.

  



ptg

AIX startup 95

Bo
ot

in
g

ubuntu$ sudo update-rc.d cups start 80 2 3 4 5 . stop 20 S 1 6 .
 Adding system startup for /etc/init.d/cups ...
   /etc/rc1.d/K20cups -> ../init.d/cups
   /etc/rc6.d/K20cups -> ../init.d/cups
   /etc/rcS.d/K20cups -> ../init.d/cups
   /etc/rc2.d/S80cups -> ../init.d/cups
   /etc/rc3.d/S80cups -> ../init.d/cups
   /etc/rc4.d/S80cups -> ../init.d/cups
   /etc/rc5.d/S80cups -> ../init.d/cups

This command adds “start” instances at sequence 80 in run levels 2, 3, 4, and 5, 
and “stop” instances at sequence 20 in run levels S, 1, and 6.

The default run level is controlled by two telinit 2 lines in /etc/event.d/rc-default. 
Change the run level by editing rc-default with a text editor. 

Upstart also controls logins on terminals through the jobs named tty*.

HP-UX startup scripts

Under HP-UX, the actual startup scripts are kept in /sbin/init.d. The run-level 
directories are also in /sbin. Config files related to startup scripts generally live in 
/etc/rc.config.d. Their names correspond to the names of the startup scripts in 
/sbin/init.d. For example, the script

/sbin/init.d/SnmpMaster 

gets its configuration information from
/etc/rc.config.d/SnmpMaster 

and is actually invoked from init by way of the links
/sbin/rc2.d/S560SnmpMaster
/sbin/rc1.d/K440SnmpMaster 

HP-UX saves the output of startup scripts in /etc/rc.log. If one of your startup 
scripts fails, check /etc/rc.log to see if it contains any relevant error messages or 
hints as to the source of the problem. This saving of startup script output is a most 
useful and excellent feature, and it’s simple to implement, too. It’s surprising that 
other vendors haven’t caught on to it.

The config files in /etc/rc.config.d can be rather confusing, although they are 
generally well commented. Table 3.6 on the next page gives a short explanation of 
some of the more commonly modified files.

The default values in these files are usually OK. The most common files you 
might need to touch are netconf, netdaemons, and perhaps nddconf.

AIX startup

AIX takes a cruder approach to the boot process than our other example systems. 
During startup, AIX runs the /sbin/rc.boot script, which is written in ksh. 

  



ptg

96 Chapter 3 Booting and Shutting Down

rc.boot is a poorly commented script that executes in three phases:

• Initialization of system hardware
• Mounting of filesystems
• Starting /etc/init, which processes entries in the /etc/inittab file

AIX relies more heavily on /etc/inittab than do its UNIX relatives. init reads each 
line of the inittab file and executes the lines in order. In some cases, inittab starts 
a daemon directly. For example, the following line starts or restarts cron at run 
levels 2 through 9:

cron:23456789:respawn:/usr/sbin/cron

Other inittab entries run a series of commands. For example, /etc/rc.tcpip (a bsh
script), starts network daemons:

rctcpip:23456789:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons

Here, output from the script is routed to the system console. init waits for the 
script to exit before processing the next line in the file.

AIX includes a series of four simple commands for managing the inittab file: 
mkitab, chitab, lsitab, and rmitab. Predictably, these commands add, change, list, 
and remove entries from the inittab. We don’t see the point and prefer to edit the 
file directly with a text editor such as vi.

Table 3.6 Commonly modified HP-UX config files in /etc/rc.config.d

File(s) Purpose

SnmpMaster A master switch that turns all SNMP support on or off
Snmp* Hold other SNMP-related options 
acct Turns process accounting on or off; see acct(1M) 
auditing Configures system auditing; see audsys and audevent 

cde Holds CDE (Common Desktop Environment) settings 
clean* Control various boot-time cleanup operations 
hpetherconf Configures Ethernet interfaces; see lanadmin 

lp Turns the print spooler on or off 
mailservs Starts sendmail or specifies a mail server 
nameservs Configures/starts the name server daemon 
nddconf Sets tunable kernel parameters at startup time using ndd 

netconf Specifies network device configuration (IP address, etc.) 
netdaemons Tells which networking daemons to start 
nettl Configures network tracing and logginga

nfsconf Sets NFS configuration options 
sshd Configures the SSH daemon
vt Starts vtdaemon; depends on ptydaemon

xfs Turns the X Windows font server on or off

a. See nettl(1M), nettlconf(1M), and nettlgen.conf(4) for more information.

  



ptg

The Solaris Service Management Facility 97

Bo
ot

in
g

3.6 BOOTING SOLARIS

With the introduction of its Service Management Facility, Sun revamped the boot 
process for Solaris 10 and OpenSolaris. SMF is a comprehensive and conceptually 
unique approach to managing services under UNIX. It wraps a new layer of logic 
around services to handle dependencies and automatically manage configuration 
errors and software failures. 

SMF changes the boot procedure quite a bit. The traditional tableau of init and its 
rc scripts is, in theory, gone. Sun claims that modern applications and their inter-
dependencies have become too complex for the standard scheme. They’re kind of 
right. On the other hand, the standard architecture is much simpler, and we face-
tiously wonder how Linux and other popular operating systems could possibly be 
managing to limp along under the old system. 

Before discussing the boot process, we need to take a general look at SMF.

The Solaris Service Management Facility

Sun defines a service as “an entity that provides a list of capabilities to applications 
and other services, local and remote.” For our purposes, a service is roughly 
equivalent to a daemon: a web server, the syslogd system logger, or even init. 
Multiple instances of the same SMF service can exist. For example, you might run 
several email servers with different configurations and IP addresses. A service can 
also be defined as a collection of other services. This feature lets SMF subsume the 
role of init’s traditional run levels.

Each instance of a service is uniquely identified by a “fault management resource 
identifier” or FMRI. For example, the following equivalent FMRIs refer to the 
SSH service:

svc:/network/ssh:default 
network/ssh:default

The ssh service is in the network category, and this particular FMRI describes the 
default instance. SMF includes several categories, such as application, device, 
network, and system. A special category called milestone encapsulates the con-
cept of run levels.

You examine the status of services with the svcs command. Use svcs -a to see all 
services that have been defined, or omit the -a flag to see only services that are 
currently running. svcs can also examine an individual service. For example, the 
following command reviews the status of the SSH service:

solaris$ svcs -l svc:/network/ssh:default 
fmri svc:/network/ssh:default 
name SSH server 
enabled true
state online 
next_state none 
state_time Mon Jul 13 15:56:19 2009

  



ptg

98 Chapter 3 Booting and Shutting Down

logfile /var/svc/log/network-ssh:default.log 
restarter svc:/system/svc/restarter:default 
contract_id 65 
dependency require_all/none svc:/system/filesystem/local (online) 
dependency optional_all/none svc:/system/filesystem/autofs (online) 
dependency require_all/none svc:/network/loopback (online) 
dependency require_all/none svc:/network/physical (online) 
dependency require_all/none svc:/system/cryptosvc (online) 
dependency require_all/none svc:/system/utmp (online) 
dependency require_all/restart file://localhost/etc/ssh/sshd_config (online)

This command line uses the full FMRI, but since there is only one instance of the 
service, svcs -l ssh would suffice. The state can assume the following values:

• online – enabled and successfully started
• disabled – not enabled and not running
• degraded – enabled but running with limitations
• legacy_run – running; used by the few services that haven’t yet been 

converted to SMF and that still use traditional init.d scripts
• uninitialized – starting up and reading configuration
• maintenance – reporting that an error requiring administrative atten-

tion has occurred
• offline – enabled but off-line because the service is waiting on an unsat-

isfied dependency or cannot start for some other reason

In addition to the current service status, svcs -l lists the service’s log file location, 
dependencies, and other essentials. 

Dependencies allow the specification of arbitrarily complex relationships among 
services. This facility essentially replaces the system of numbered startup scripts 
used by the traditional init system, where a script prefixed with S20 runs before 
one prefixed with S90. 

In the example above, SSH requires local filesystems, network interfaces, cryptog-
raphy services, utmp, and the existence of the sshd_config file. The filesystem 
automounter is marked as an optional dependency; SSH will run if the auto-
mounter is intentionally off-line (as set by the administrator) or if it is on-line and 
running.

The svcadm command changes the status of a service. To disable the SSH server 
(don’t try this remotely!), use

solaris$ sudo svcadm disable ssh

This example uses the short FMRI for SSH, since it’s unambiguous. The disabling 
is a persistent change; use svcsadm -t to disable SSH temporarily.

Under the hood, SMF configures services through XML files called manifests and 
profiles. A manifest describes the properties of a service, such as its dependencies 
and the instructions for starting and stopping it. Manifest files are stored in the 
/var/svc/manifest directory. Each instance of a service has its own manifest file.

  



ptg

A brave new world: booting with SMF 99

Bo
ot

in
g

The exec_method lines in a manifest file usually point to scripts that start and 
stop services, much like the scripts used in the init.d system. For instance, the 
startup process for the SSH daemon is defined in /var/svc/manifest/ssh.xml as

<exec_method 
type='method' 
name='start' 
exec='/lib/svc/method/sshd start' 
timeout_seconds='60'/>

The /lib/svc/method/sshd script that’s referred to is an sh script that starts the 
service. It looks suspiciously like a script that might formerly have lived in 
/etc/rc.d—the more things change, the more they stay the same.

The service’s profile file determines whether the instance is enabled or disabled. 
Profiles are kept in /var/svc/profile. 

The persistent configuration for services is actually stored as a SQLite database in 
/etc/svc/repository.db. Therefore, you shouldn’t directly modify the contents of 
the XML files. Instead, you can manage the manifests and profiles with the svccfg
command. Use inetadm for services controlled by the inetd daemon. See the man 
pages for svccfg, inetadm, and svc.configd for more information.

One of the most touted features of SMF is the concept of “restarters,” part of So-
laris’s much-hyped “predictive self-healing” technology. By contemplating the 
carefully defined dependency system, SMF can supposedly determine the reason 
that a service died and restart it if appropriate. The cause of a service failure might 
be a software bug, a hardware problem, an issue with a dependency, or even ad-
ministrator error. A designated SMF restarter process, closely tied to the kernel, 
automatically performs the appropriate recovery actions.

A brave new world: booting with SMF

The boot process on a Solaris 10 or later system is initially very similar to tradi-
tional bootstrapping. SPARC booting is slightly different from booting on Intel 
systems, but the general concept is that low-level firmware (PROM for SPARC, 
BIOS for Intel) reads in a boot record, which loads the appointed OS kernel.

The kernel scans /etc/system for loadable kernel modules, then spins up init, 
which immediately starts the svc.startd process. svc.startd is the master SMF re-
starter and is responsible for starting services in dependency order, as defined in 
the SMF configuration repository.

Unfortunately, the run-level system and the init scripts from previous versions of 
Solaris are not completely dead. Some services—the ones that show as legacy-run
in svcs -a output—still rely on scripts in the /etc/rc.d directories. The collision 
between SMF milestones and traditional run levels has left behind something of a 
pile of wreckage.

  



ptg

100 Chapter 3 Booting and Shutting Down

To avoid cutting your fingers on the sharp edges, keep in mind a few key points:

• Services in the legacy_run state were started from an rc script.
• Solaris defines eight run levels. See the man page for init for details.
• To change run levels, use init n, where n is the new run level. Do not try 

to use SMF to change milestones, which, according to Sun, “can be con-
fusing and can lead to unexpected behavior.”

• The init daemon is controlled through /etc/inittab, much as in Linux.

3.7 REBOOTING AND SHUTTING DOWN

Traditional UNIX and Linux machines were very touchy about how they were 
shut down. Modern systems have become less sensitive, especially when a robust 
filesystem is used, but it’s always a good idea to shut down the machine nicely 
when possible. Improper shutdown can result in anything from subtle, insidious 
problems to a major catastrophe. Databases that aren’t halted nicely are notorious 
for corruption and integrity issues.4

On consumer-oriented operating systems, rebooting the operating system is an 
appropriate first course of treatment for many problems. UNIX problems tend to 
be subtler and more complex, so blindly rebooting is effective in a smaller per-
centage of cases. 

Whenever you modify a startup script or make significant system changes, you 
should reboot just to make sure that the system comes up successfully. If you don’t 
discover a problem until several weeks later, you’re unlikely to remember the de-
tails of your most recent changes.

shutdown: the genteel way to halt the system 

The shutdown command is the safest, most considerate, and most thorough way 
to initiate a halt or reboot or to return the system to single-user mode. It dates 
back to the days of time-sharing systems, so its approach sometimes seems a bit 
anachronistic on desktop machines.

Unfortunately, almost every vendor has decided to tamper with shutdown’s argu-
ments. We discuss the command in general, then tabulate the syntax and argu-
ments you need on each platform.

You can ask shutdown to wait awhile before shutting down the system. During 
the waiting period, shutdown sends messages to logged-in users at progressively 
shorter intervals, warning them of the impending downtime. By default, the 
warnings simply say that the system is being shut down and give the time remain-
ing until the event; you can also supply a short message of your own. Your mes-
sage should explain why the system is being shut down and should estimate how 
long it will be before users can log in again (e.g., “back at 11:00 a.m.”). Users can 

4. In theory, databases should be particularly resistant to this form of corruption, but our experience in 
practice doesn’t necessarily support this theory.

  



ptg

halt and reboot: simpler ways to shut down 101

Bo
ot

in
g

not log in when a shutdown is imminent, but they will see your message if you 
specified one.

Most versions of shutdown let you specify whether the machine should halt, go to 
single-user mode, or reboot. Sometimes, you can also specify whether you want to 
fsck the disks after a reboot. On modern systems with large disks, a complete fsck
can take a long time; you can generally skip the checks if you shut the system 
down cleanly. (Most systems automatically skip the fsck checks whenever the file-
systems were properly unmounted.)

Table 3.7 outlines shutdown’s command-line arguments on our example systems.

For example, a Linux shutdown command that reminds users of scheduled main-
tenance and halts the system at 9:30 a.m. would look something like this:

$ sudo shutdown -h 09:30 "Going down for scheduled maintenance. 
Expected downtime is 1 hour."

It’s also possible to specify a relative shutdown time. For example, the following 
command shuts down the system 15 minutes from when it is run:

$ sudo shutdown -h +15 "Going down for emergency disk repair."

halt and reboot: simpler ways to shut down

The halt command performs the essential duties required to shut the system 
down. It is called by shutdown -h but can also be used by itself. halt logs the 
shutdown, kills nonessential processes, executes the sync system call (called by 
and equivalent to the sync command), waits for filesystem writes to complete, and 
then halts the kernel.

halt -n prevents the sync call. It’s used by fsck after it repairs the root partition. If 
fsck did not use -n, the kernel might overwrite fsck’s repairs with old versions of 
the superblock that were cached in memory. 

reboot is almost identical to halt, but it causes the machine to reboot instead of 
halting. reboot is called by shutdown -r.

Table 3.7 The many faces of shutdown

System Pathname Time Ra H S F

Linux /sbin/shutdown time -r -h – -f b

Solaris /usr/sbin/shutdown -gsecs -i6 -i0 -iS – 
HP-UX /etc/shutdown secs -r -h – –
AIX /sbin/shutdown +time -r -h -m –

a. R = Reboot, H = Halt, S = Enter single-user mode, F = Skip fsck

b. Red Hat and SUSE, but not Ubuntu

  



ptg

102 Chapter 3 Booting and Shutting Down

3.8 EXERCISES

E3.1 Is it really that bad to turn off a UNIX or Linux system with the power 
button on the computer case? What about unplugging the computer 
from the wall? Explain your answer. See if you can determine the likeli-
hood of a bad outcome by doing Internet research.

E3.2 Use the GRUB command line to boot a kernel that isn’t in grub.conf.

E3.3 Explain the concept of run levels. List the run levels defined on one of 
your local systems, and briefly describe each. Why is Ubuntu’s run-level 
concept different from that of other Linux distributions?

E3.4 Write a startup script to start the “foo” daemon (/usr/local/sbin/foo), a 
network service. Show how you would glue it into the system to start 
automatically at boot time.

E3.5 If a system is at run level 3 and you run the command telinit 1, what 
steps will be taken by init? What will be the final result of the com-
mand?

E3.6 Draw a dependency graph that shows which daemons must be started 
before other daemons on your system.

E3.7 List the steps used to create a working multiboot system that runs both 
Linux and Windows. Use GRUB.

  



ptg

103

Ac
ce

ss
 C

on
tr

ol

4 Access Control and 
Rootly Powers

Access control is an area of active research, and it has long been one of the major 
challenges of operating system design. Generically speaking, operating systems 
define accounts for individual users, and they offer those users a smorgasbord of 
possible operations: editing text files, logging into remote computers, setting the 
system’s hostname, installing new software, and so on. The access control system 
is the black box that considers potential actions (user/operation pairs) and issues 
rulings as to whether each action is permissible.

In the case of UNIX and Linux, there isn’t really a single black box that imple-
ments access control. In fact, it’s more like a warehouse full of black boxes—and 
the warehouse is running out of storage space. In this chapter, we first go back to 
the dawn of UNIX to understand how the access control situation got to be the 
way it is. We then look at modern UNIX and Linux access control systems in 
theory and in practice, then review some tools that help make the administration 
of access control (and especially, the management of the all-powerful root ac-
count) relatively painless.

Chapter 22, Security, describes how to avoid unwanted and embarrassing super-
user access by others. Chapter 32, Management, Policy, and Politics covers the rel-
evant political and administrative aspects.

Access Control

  



ptg

104 Chapter 4 Access Control and Rootly Powers

4.1 TRADITIONAL UNIX ACCESS CONTROL

Even in earliest and simplest versions of UNIX, there was never a single-point 
access control system. There were, however, some general rules that shaped the 
system’s design:

• Objects (e.g., files and processes) have owners. Owners have broad (but 
not necessarily unrestricted) control over their objects.

• You own new objects that you create.
• The special user account called “root” can act as the owner of any object.
• Only root can perform certain sensitive administrative operations.

There’s no single “black box” of access control because the code that makes access 
control decisions is scattered about the system. For example, certain system calls 
(e.g., settimeofday) are restricted to root; the system call implementation simply 
checks the identity of the current user and rejects the operation if the user is not 
root. Other system calls (e.g., kill) implement different calculations that involve 
both ownership matching and special provisions for root. Finally, the filesystem 
implements its own access control system, one that is more sophisticated than that 
found anywhere else in the kernel. Only the filesystem uses the concept of UNIX 
groups for access control, for example.

See page 150 for more 
information about 
device files.

Complicating the picture is the fact that the kernel and the filesystem are inter-
twined. For example, you control and communicate with most devices through 
files that represent them in /dev. Since these device files are filesystem objects, 
they are subject to filesystem access control semantics.

Filesystem access control

In the traditional model, every file has both an owner and a group, sometimes 
referred to as the “group owner.” The owner can set the permissions of the file. In 
particular, the owner can set them so restrictively that no one else can access it.1 
We talk more about file permissions in Chapter 6, The Filesystem (see page 152).

See page 181 for 
more information 
about groups.

Although the owner of a file is always a single person, many people can be group 
owners of the file, as long as they are all part of a single group. Groups are tradi-
tionally defined in the /etc/group file, but these days group information is more 
commonly stored on an NIS or LDAP server on the network; see Chapter 19, 
Sharing System Files, for details.

The owner of a file gets to specify what the group owners can do with it. This 
scheme allows files to be shared among members of the same project. For exam-
ple, we use a UNIX group to control access to the source files for the admin.com 
web site.

The ownerships of a file can be determined with ls -l filename.

1. In fact, the permissions can be set so restrictively that even the owner of a file cannot access it.

  



ptg

The root account 105

Ac
ce

ss
 C

on
tr

ol

For example:
aix$ ls -l /home/garth/todo 
-rw------- 1 garth staff 1258 Jun 4 18:15 /home/garth/todo

This file is owned by the user garth and the group staff. The letters and dashes in 
the first column symbolize the permissions on the file; see page 154 for details on 
how to read this information.

See page 176 for more 
information about the 
/etc/passwd file and 
page 186 for details on 
/etc/group.

Both the kernel and the filesystem track owners and groups as numbers rather 
than as text names. In the most basic case, user identification numbers (UIDs for 
short) are mapped to usernames in the /etc/passwd file, and group identification 
numbers (GIDs) are mapped to group names in /etc/group. The text names that 
correspond to UIDs and GIDs are defined only for the convenience of the system’s 
human users. When commands such as ls want to display ownership information 
in a human-readable format, they must look up each name in the appropriate file 
or database.

Process ownership

The owner of a process can send the process signals (see page 124) and can also 
reduce (degrade) the process’s scheduling priority. Processes actually have multi-
ple identities associated with them: a real, effective, and saved UID; a real, effec-
tive, and saved GID; and under Linux, a “filesystem UID” that is used only to 
determine file access permissions. Broadly speaking, the real numbers are used 
for accounting and the effective numbers are used for the determination of access 
permissions. The real and effective numbers are normally the same.

See page 690 for 
more information 
about NFS.

Saved IDs have no direct effect. They allow programs to park an inactive ID for 
later use, facilitating the parsimonious use of enhanced privileges. The filesystem 
UID is generally explained as an implementation detail of NFS and is usually the 
same as the effective UID.

The root account

The root account is UNIX’s omnipotent administrative user. It’s also known as the 
superuser account, although the actual username is “root”.

The defining characteristic of the root account is its UID of 0. Nothing prevents 
you from changing the username on this account or from creating additional ac-
counts whose UIDs are 0; however, these are both bad ideas. Such changes have a 
tendency to create inadvertent breaches of system security. They also create con-
fusion when other people have to deal with the strange way you’ve configured 
your system.

Traditional UNIX allows the superuser (that is, any process whose effective UID 
is 0) to perform any valid operation on any file or process.2

2. “Valid” is the operative word here. Certain operations (such as executing a file on which the execute 
permission bit is not set) are forbidden even to the superuser.

  



ptg

106 Chapter 4 Access Control and Rootly Powers

Examples of restricted operations are

• Changing the root directory of a process with chroot
• Creating device files
• Setting the system clock
• Raising resource usage limits and process priorities
• Setting the system’s hostname
• Configuring network interfaces
• Opening privileged network ports (those numbered below 1,024)
• Shutting down the system

An example of superuser powers is the ability of a process owned by root to 
change its UID and GID. The login program and its window system equivalents 
are a case in point; the process that prompts you for your password when you log 
in to the system initially runs as root. If the password and username that you enter 
are legitimate, the login program changes its UID and GID to your UID and GID 
and starts up your user environment. Once a root process has changed its owner-
ships to become a normal user process, it can’t recover its former privileged state.

Setuid and setgid execution

Traditional UNIX access control is complemented by an identity substitution sys-
tem that’s implemented by the kernel and the filesystem in collaboration. The sys-
tem is described in more detail on page 153; the short version is that it allows 
specially prepared executable files to run with elevated permissions, usually those 
of root. This mechanism lets developers and administrators set up structured 
ways for unprivileged users to perform privileged operations.

When the kernel runs an executable file that has its “setuid” or “setgid” permis-
sion bits set, it changes the effective UID or GID of the resulting process to the 
UID or GID of the file containing the program image rather than the UID and 
GID of the user that ran the command. The user’s privileges are thus promoted for 
the execution of that specific command only.

For example, users must be able to change their passwords. But since passwords 
are stored in the protected /etc/shadow file, users need a setuid passwd command 
to mediate their access. The passwd command checks to see who’s running it and 
customizes its behavior accordingly: users can only change their own passwords, 
but root can change any password. (This, incidentally, is yet another example of 
UNIX’s ad hoc access control—the rules are written into the code of the passwd
command.)

4.2 MODERN ACCESS CONTROL

The preceding discussion leaves out a few details, but no major concepts in the 
traditional UNIX model have been omitted. Even though the traditional access 
control system can be summarized in a couple of pages, it has stood the test of 
time because it’s simple, predictable, and capable of handling the majority of 

  



ptg

Modern access control 107

Ac
ce

ss
 C

on
tr

ol

access control requirements at the average site. All UNIX and Linux variants con-
tinue to support this model, and it remains the default approach and the one that’s 
most widely used today. And except when we discuss some specific alternatives, 
we assume throughout this book that it’s the approach you’re using. 

Nevertheless, it has some obvious shortcomings:

• From a security perspective, the root account represents a potential sin-
gle point of failure. If it’s compromised, the integrity of the whole system 
is violated. There is no limit to the damage an attacker can inflict.

• The only way to subdivide the special privileges of the root account is by 
writing setuid programs. Unfortunately, as the Internet’s steady stream 
of security updates demonstrates, it’s difficult to write truly secure soft-
ware. Besides, you shouldn’t have to write custom software to express 
something as basic as “I’d like these three people to be able to perform 
backups on the file server.”

• The security model isn’t strong enough for use on a network. No com-
puter to which an unprivileged user has physical access can be trusted to 
accurately represent the ownerships of the processes it’s running. Who’s 
to say that someone hasn’t reformatted the disk and installed their own 
hacked copy of Windows or Linux, with UIDs of their choosing?

• Many high-security environments enforce conventions that simply can’t 
be implemented with traditional UNIX security. For example, United 
States government standards require computer systems to forbid privi-
leged users (e.g., those with Top Secret security clearance) from repub-
lishing high-security documents at a lower security level. Traditional 
UNIX security depends on the good will and skill of individual users in 
this regard.

• Because many access-control-related rules are embedded in the code of 
individual commands and daemons, you cannot redefine the system’s 
behavior without modifying the source code and recompiling. But that’s 
not practical in the real world.

• There is minimal support for auditing. You can easily see which groups a 
user belongs to, but you can’t necessarily determine what those group 
memberships permit a user to do.

Because of these shortcomings, UNIX and Linux systems have undergone a vari-
ety of interventions over the years to enhance various aspects of the access control 
system and to help make UNIX systems more acceptable to sites with high secu-
rity requirements. Some of the adjustments, such as PAM (see page 109), now 
have nearly universal support. Others are relatively idiosyncratic. The following 
sections outline the most common extensions.

  



ptg

108 Chapter 4 Access Control and Rootly Powers

Role-based access control

Role-based access control, sometimes known as RBAC, is a theoretical model for-
malized in 1992 by David Ferraiolo and Rick Kuhn. The basic idea is to add a 
layer of indirection to access control calculations. Instead of permissions being 
assigned directly to users, they are assigned to intermediate constructs known as 
“roles,” and roles in turn are assigned to users. To make an access control decision, 
the access control library enumerates the roles of the current user and checks to 
see if any of those roles have the appropriate permissions.

You might detect some similarity between roles and UNIX groups, and in fact 
there is debate about whether these constructs are fully distinguishable. In prac-
tice, roles are more useful than groups because the systems that implement them 
allow them to be used outside the context of the filesystem. Roles can also have a 
hierarchical relationship to one another, a fact that greatly simplifies administra-
tion. For example, you might define a “senior administrator” role that has all the 
permissions of an “administrator” plus the additional permissions X, Y, and Z.

The RBAC model makes it practical to manage large collections of possible per-
missions. Most of the effort goes into defining the role hierarchy, but that is a one-
time project. Day-to-day administration of users is simple. Accordingly, systems 
that support RBAC normally take advantage of it to split the omnipotent powers 
of the root account into many different fragments that can be separately assigned.

Solaris uses groups (/etc/group), authorizations (/etc/security/auth_attr), pro-
files (/etc/security/prof_attr), and bindings among users, authorizations, and 
profiles (/etc/user_attr) to implement roles. Authorizations have names such as 
solaris.admin.diskmgr, solaris.admin.patchmgr, and solaris.admin.printer. Many 
authorizations have a specific .read or .write granularity, too. There are 158 of 
them defined in the auth_attr file. The Solaris commands to manipulate roles are 
roleadd, rolemod, and roledel.

Since build 99 of OpenSolaris in May 2008, Solaris’s RBAC system has been robust 
enough to allow the system to operate without a root account. 

HP-UX also uses authorizations to define fine-grained rootly privileges, which are 
then assigned to roles associated with individual users and groups. The authoriza-
tions have names like hpux.admin.process.kill, hpux.admin.network.config, and 
hpux.admin.device.install. There are 137 authorizations predefined in the file 
/etc/rbac/auths. You manage roles with the roleadm, authadm, cmdprivadm, 
privrun, and privedit commands.

In AIX, roles have names like DomainAdmin, BackupRestore, AccountAdmin, 
SysConfig, and SecPolicy. Authorizations are at a similar granularity to those in 
Solaris or HP-UX. Some examples of authorization names are aix.device, aix.proc, 
aix.fs.manage.export, and aix.system.config.cron. Roles are tied to screens in the 
AIX sysadmin tool SMIT. Users can assume up to eight roles at once. AIX’s role-
related commands are mkrole, chrole, rmrole, rolelist, and swrole.

  



ptg

PAM: Pluggable Authentication Modules 109

Ac
ce

ss
 C

on
tr

ol

SELinux: security-enhanced Linux

SELinux is an NSA project that has been freely available since late 2000. It has 
been integrated into the 2.6 series of the Linux kernel and so is available on most 
current distributions. Some distributions ship with it enabled (and often in a 
somewhat dysfunctional state).

The primary focus of SELinux is to enable “mandatory access control,” aka MAC, 
an access control system in which all permissions are assigned by administrators. 
Under MAC, users cannot delegate their access or set access control parameters 
on the objects they own. As such, it’s primarily of interest to sites with specialized 
requirements.3

SELinux can also be used to implement a form of role-based access control, al-
though this was not a primary objective of the system.

See page 923 for additional details.

POSIX capabilities (Linux)

Linux systems—even those that do not make use of the SELinux extensions—are 
theoretically capable of subdividing the privileges of the root account according to 
the POSIX standard for “capabilities.” Capability specifications can also be as-
signed to executable programs. The programs then acquire the specified capabili-
ties when they are executed. It’s essentially a lower-risk form of setuid execution.

For various reasons, including problems with the current implementation, the ca-
pabilities facility is not as helpful or as relevant to system administrators as it 
might initially appear. For more comments on capabilities, see the discussion on 
page 818.

PAM: Pluggable Authentication Modules

PAM is an authentication technology rather than an access control technology. 
That is, rather than addressing the question “Does user X have permission to per-
form operation Y?”, it helps answer the precursor question “How do I know this is 
really user X?” PAM is an important component of the access control chain on 
most systems.

In the past, user passwords were checked against the /etc/shadow file (or network 
equivalent) at login time so that an appropriate UID could be set for the user’s 
shell or window system. Programs run by the user had to take the UID on faith. In 
the modern world of networks, cryptography, and biometric identification de-
vices, a more flexible and open system is required. Hence, PAM.

3. One of our technical reviewers commented, “That’s certainly not the intent. In fact, it’s the average 
sites running basic DNS/web/email service that do best with SELinux. If you’re doing unusual stuff, 
you end up in policy hell and turn it off. SELinux has actually gotten a lot better in recent times. Of 
course, I still turn it off…”

  



ptg

110 Chapter 4 Access Control and Rootly Powers

PAM is a wrapper for a variety of method-specific authentication libraries. Ad-
ministrators specify the authentication methods they want the system to use, 
along with the appropriate contexts for each one. Programs that want to authenti-
cate a user simply call the PAM system rather than implementing their own forms 
of authentication. PAM in turn calls the specific authentication library specified 
by the system administrator.

More details on PAM can be found in the Security chapter starting on page 908.

Kerberos: third-party cryptographic authentication

Like PAM, Kerberos deals with authentication rather than access control per se. 
But whereas PAM is an authentication framework, Kerberos is a specific authenti-
cation method. They’re generally used together, PAM being the wrapper and Ker-
beros the actual implementation.

Kerberos uses a trusted third party (a server) to perform authentication for an 
entire network. Rather than authenticating yourself to the machine you are using, 
you provide your credentials to the Kerberos service, and it issues you crypto-
graphic credentials that you can present to other services as evidence of your 
identity. Read more about Kerberos starting on page 924.

Access control lists

Since filesystem access control is so central to UNIX and Linux, it was an early 
target for elaboration. The most common addition has been support for access 
control lists (ACLs), a generalization of the traditional user/group/other permis-
sion model that accommodates permissions for multiple users and groups at once. 

ACLs are part of the filesystem implementation, so they have to be explicitly sup-
ported by whatever filesystem you are using. Fortunately, all major UNIX and 
Linux filesystems now support them in one form or another.

See Chapter 18 for 
more information 
about NFS.

ACL support generally comes in one of two forms: an early POSIX draft standard 
that never quite made its way to formal adoption but was widely implemented 
anyway, and the system standardized by NFSv4, which is based on Microsoft Win-
dows’ ACLs. Both ACL standards are described in more detail in the filesystem 
chapter, starting on page 159.

4.3 REAL-WORLD ACCESS CONTROL

In spite of all the glamorous possibilities outlined in the last few sections, most 
sites still use the traditional root account for system administration. Many of the 
grievances lodged against the traditional system have some validity, but there tend 
to be equally compelling problems with the alternatives. In addition, add-on tools 
such as sudo (described on page 113) go a long way toward bridging the gap be-
tween simplicity and security.

  



ptg

Choosing a root password 111

Ac
ce

ss
 C

on
tr

ol

Often, you can use a light dusting of POSIX capabilities or role-based access con-
trol to handle special circumstances (e.g., a printer or daemon that needs to be 
resettable by everyone who works in a particular department) while your admin-
istrative team continues to rely on sudo and the root account for daily use. The 
heavy-duty, high-impact systems such as SELinux should be reserved for sites that 
are required to use them for regulatory or contractual reasons.

Since root access is the sine qua non of system administration and also the pivot 
point for system security, proper husbandry of the root account is a crucial skill.

Choosing a root password

If you use the procedures and tools described in this chapter, you’ll have surpris-
ingly little use for the actual root password. Most of your administrative team 
won’t need to know it at all.

Nevertheless, root does need a password. It should be something that’s secure but 
also memorable at the infrequent intervals when you might actually use it. You 
can use a password vault or escrow system to help you “remember” the password, 
too; see page 117.

See page 916 for more 
information about 
password cracking.

The most important characteristic of a good password is length. The root pass-
word should be at least eight characters long; seven-character passwords are sub-
stantially easier to crack. On systems that use DES passwords, it doesn’t help to 
use a password longer than eight characters because only the first eight are signif-
icant. See the section Encrypted password starting on page 179 for information 
about how to enable MD5 or Blowfish encryption for passwords. These can be 
longer and are more secure.

In theory, the most secure type of password consists of a random sequence of 
letters, punctuation, and digits. But because this type of password is hard to re-
member and usually difficult to type, it may not be optimally secure if administra-
tors write it down or type it slowly.

We like the “shocking nonsense” approach defined by Grady Ward in an earlier 
version of the PGP Passphrase FAQ:

“Shocking nonsense” means to make up a short phrase or sentence that is 
both nonsensical and shocking in the culture of the user. That is, it contains 
grossly obscene, racist, impossible or otherwise extreme juxtapositions of 
ideas. This technique is permissible because the passphrase, by its nature, is 
never revealed to anyone with sensibilities to offend.4

Shocking nonsense is unlikely to be duplicated anywhere because it does 
not describe a matter of fact that could be accidentally rediscovered by 
someone else. The emotional evocation makes it difficult for the creator to 

4. This FAQ was written for individual users of PGP. In the context of system administration, you should 
certainly consider the potential for offense. How will your shocking nonsense sound to the jury that’s 
adjudicating your sexual harassment case?

  



ptg

112 Chapter 4 Access Control and Rootly Powers

forget. A mild example of such shocking nonsense might be, “Mollusks peck 
my galloping genitals.” The reader can undoubtedly make up many far 
more shocking or entertaining examples for him or herself.

On systems that support passwords of arbitrary length, you can use the entire 
phrase as the password (it then becomes a “passphrase”). Or, you can reduce the 
phrase to a shorter password by recording only the second letter of each word or 
by some similar transformation. Password security is increased enormously if you 
include numbers, punctuation marks, and capital letters, and some systems now 
require this.

If your site has hundreds of computers, should you have hundreds of root pass-
words? It depends on your environment and risk tolerance, but probably not. A 
good rule of thumb is that machines that are clones (e.g., desktop workstations) 
should have the same root password. Servers should have unique passwords. In 
particular, every major piece of network and routing infrastructure should be sep-
arately protected.

Make sure you have accurate records that tell you which machines are sharing a 
root password. It’s also important that you have a structured way to change root 
passwords on the machines that share them. Left-behinds are a security risk and 
an administrative headache.

Change the root password

• At least every three months or so
• Every time someone who knows the password leaves your site
• Whenever you think security may have been compromised

It’s often said that passwords “should never be written down,” but it’s perhaps 
more accurate to say that they should never be left accessible to the wrong people. 
Root passwords and other important passwords probably should be written down 
or stored in a cryptographic vault so that there’s some way for administrators to 
get to them in the event of an emergency. See page 117.

Logging in to the root account

Since root is just another user, you can log in directly to the root account and 
work your will upon the system. However, this turns out to be a bad idea. To begin 
with, it leaves no record of what operations were performed as root. That’s bad 
enough when you realize that you broke something last night at 3:00 a.m. and 
can’t remember what you changed; it’s even worse when an access was unauthor-
ized and you are trying to figure out what an intruder has done to your system. 
Another disadvantage is that the log-in-as-root scenario leaves no record of who 
was really doing the work. If several people have access to the root account, you 
won’t be able to tell who used it and when.

For these reasons, most systems allow root logins to be disabled on terminals, 
through window systems, and across the network—everywhere but on the system 

  



ptg

sudo: limited su 113

Ac
ce

ss
 C

on
tr

ol

console.5 We suggest that you use these features. See PAM: cooking spray or au-
thentication wonder? on page 908 to see how to implement this policy on your 
particular system.

su: substitute user identity

A marginally better way to access the root account is to use the su command. If 
invoked without arguments, su prompts for the root password and then starts up 
a root shell. Root privileges remain in effect until you terminate the shell by typ-
ing <Control-D> or the exit command. su doesn’t record the commands executed 
as root, but it does create a log entry that states who became root and when.

The su command can also substitute identities other than root. Sometimes, the 
only way to reproduce or debug a user’s problem is to su to their account so that 
you reproduce the environment in which the problem occurs.

If you know someone’s password, you can access that person’s account directly by 
executing su - username. As with an su to root, you will be prompted for the pass-
word for username. The - (dash) option makes su spawn the shell in login mode. 
The exact implications of login mode vary by shell, but it normally changes the 
number or identity of the startup files that the shell reads. For example, bash
reads ~/.bash_profile in login mode and ~/.bashrc in nonlogin mode. When di-
agnosing other users’ problems, it helps to reproduce their login environments as 
closely as possible.

On some systems, the root password allows an su or login to any account. On 
others, you must first su explicitly to root before suing to another account; root 
can su to any account without entering a password.

Get in the habit of typing the full pathname to the su command (e.g., /bin/su or 
/usr/bin/su) rather than relying on the shell to find the command for you. This 
precaution gives you some protection against arbitrary programs called su that 
may have been sneaked into your search path with the intention of harvesting 
passwords.6

On some systems, you must be a member of the group “wheel” in order to use su.

We consider su to have been largely superseded by sudo, described in the next 
section. su is best reserved for emergencies.

sudo: limited su

Without RBAC or a system such as SELinux, it’s hard to give someone the ability 
to do one task (backups, for example) without giving that person free run of the 

5. Ubuntu Linux goes even further. By default, the system has no valid root password and requires the 
use of sudo, detailed later in this section.

6. For the same reason, do not include “.” (the current directory) in your shell’s search path. Although 
convenient, this configuration makes it easy to inadvertently run “special” versions of system com-
mands that a user or intruder has left lying around as a trap. Naturally, this advice goes double for root.

  



ptg

114 Chapter 4 Access Control and Rootly Powers

system. And if the root account is used by several administrators, you really have 
only a vague idea of who’s using it or what they’ve done.

The most widely used solution to these problems is a program called sudo that is 
currently maintained by Todd Miller. It runs on all of our example systems and is 
also available in source code form from sudo.ws.

Solaris’s pfexec command implements a facility similar to sudo that is based on 
Solaris’s own RBAC system. 

sudo takes as its argument a command line to be executed as root (or as another 
restricted user). sudo consults the file /etc/sudoers, which lists the people who 
are authorized to use sudo and the commands they are allowed to run on each 
host. If the proposed command is permitted, sudo prompts for the user’s own
password and executes the command.

Additional sudo commands can be executed without the “sudoer” having to type 
a password until a five-minute period (configurable) has elapsed with no further 
sudo activity. This timeout serves as a modest protection against users with sudo
privileges who leave terminals unattended.

See Chapter 11 for 
more information 
about syslog.

sudo keeps a log of the command lines that were executed, the hosts on which 
they were run, the people who requested them, the directory from which they 
were run, and the times at which they were invoked. This information can be 
logged by syslog or placed in the file of your choice. We recommend using syslog 
to forward the log entries to a secure central host. 

A log entry for randy’s executing sudo /bin/cat /etc/sudoers might look like this:
Dec 7 10:57:19 tigger sudo: randy: TTY=ttyp0 ; PWD=/tigger/users/randy; 

USER=root ; COMMAND=/bin/cat /etc/sudoers

The sudoers file is designed so that a single version can be used on many different 
hosts at once. Here’s a typical example:

# Define aliases for machines in CS & Physics departments 
Host_Alias CS = tigger, anchor, piper, moet, sigi 
Host_Alias PHYSICS = eprince, pprince, icarus

# Define collections of commands 
Cmnd_Alias DUMP = /sbin/dump, /sbin/restore 
Cmnd_Alias PRINTING = /usr/sbin/lpc, /usr/bin/lprm 
Cmnd_Alias SHELLS = /bin/sh, /bin/tcsh, /bin/bash, /bin/ksh, /bin/bsh

# Permissions 
mark, ed PHYSICS = ALL 
herb CS = /usr/sbin/tcpdump : PHYSICS = (operator) DUMP 
lynda ALL = (ALL) ALL, !SHELLS 
%wheel ALL, !PHYSICS = NOPASSWD: PRINTING

The first five noncomment lines define groups of hosts and commands that are 
referred to in the permission specifications later in the file. The lists could be 

  



ptg

sudo: limited su 115

Ac
ce

ss
 C

on
tr

ol

included literally in the specs, but the use of aliases makes the sudoers file easier 
to read and understand; it also makes the file easier to update in the future. It’s 
also possible to define aliases for sets of users and for sets of users as whom com-
mands may be run.

Each permission specification line includes information about

• The users to whom the line applies
• The hosts on which the line should be heeded
• The commands that the specified users can run
• The users as whom the commands can be executed

The first permission line applies to the users mark and ed on the machines in the 
PHYSICS group (eprince, pprince, and icarus). The built-in command alias ALL 
allows them to run any command. Since no list of users is specified in parenthe-
ses, sudo will only run commands as root. 

The second permission line allows herb to run tcpdump on CS machines and 
dump-related commands on PHYSICS machines. However, the dump commands 
can only be run as operator, not as root. The actual command line that herb would 
type would be something like

ubuntu$ sudo -u operator /usr/sbin/dump 0u /dev/sda1

The user lynda can run commands as any user on any machine, except that she 
can’t run several common shells. Does this mean that lynda really can’t get a root 
shell? Of course not:

aix$ cp -p /bin/sh /tmp/sh 
aix$ sudo /tmp/sh

Generally speaking, any attempt to allow “all commands except…” is doomed to 
failure, at least in a technical sense. However, it may still be worthwhile to set up 
the sudoers file this way as a reminder that root shells are frowned upon.

The final line allows users in group wheel to run lpc and lprm as root on all ma-
chines except eprince, pprince, and icarus. Furthermore, no password is required 
to run the commands.

Note that commands in /etc/sudoers are specified with full pathnames to prevent 
people from executing their own programs and scripts as root. Though no exam-
ples are shown above, it is possible to specify the arguments that are permissible 
for each command as well. In fact, this simple configuration only scratches the 
surface of the configuration options available in the sudoers file.

On AIX systems, you may find it helpful to include the following line in the de-
faults section of the sudoers file. It prevents sudo from removing the ODMDIR 
environment variable, which many administrative commands rely on to point 
them to the Object Data Manager configuration database.

Defaults env_keep = "ODMDIR"

  



ptg

116 Chapter 4 Access Control and Rootly Powers

To modify /etc/sudoers, you use the visudo command, which checks to be sure 
no one else is editing the file, invokes an editor on it, and then verifies the syntax 
of the edited file before installing it. This last step is particularly important be-
cause an invalid sudoers file might prevent you from sudoing again to fix it.

The use of sudo has the following advantages:

• Accountability is much improved because of command logging.
• Operators can do chores without unlimited root privileges.
• The real root password can be known to only one or two people.7
• It’s faster to use sudo than to use su or to log in as root.
• Privileges can be revoked without the need to change the root password.
• A canonical list of all users with root privileges is maintained.
• There is less chance of a root shell being left unattended.
• A single file can be used to control access for an entire network.

See page 916 for 
more information 
about password 
cracking.

There are a couple of disadvantages as well. The worst of these is that any breach 
in the security of a sudoer’s personal account can be equivalent to breaching the 
root account itself. There is not much you can do to counter this threat other than 
caution your sudoers to protect their own accounts as they would the root ac-
count. You can also run a password cracker regularly on sudoers’ passwords to 
ensure that they are making good password selections.

sudo’s command logging can be subverted by tricks such as shell escapes from 
within an allowed program or by sudo sh and sudo su if you allow them.

If you think of sudo as a way of subdividing the privileges of the root account, it is 
superior in some ways to the built-in role-based access control systems offered by 
many versions of UNIX:

• You decide exactly how privileges will be subdivided. Your division may 
be coarser or finer than the off-the-shelf privileges defined for you by an 
RBAC system.

• Simple configurations—by far, the most common—are simple to set up, 
maintain, and understand.

• sudo’s aliases for groups of hosts, users, and commands are functionally 
similar to the roles in an RBAC system. 

• sudo runs on all UNIX and Linux systems. You do not need to worry 
about using different RBAC systems on different platforms.

• You can share a single configuration file throughout your site.

• You get consistent, high-quality logging for free.

The major drawback of sudo-based access control is that the system remains vul-
nerable to catastrophic compromise if the root account is penetrated.

7. Or even zero people, if you have the right kind of password vault system in place.

  



ptg

Password vaults and password escrow 117

Ac
ce

ss
 C

on
tr

ol

Password vaults and password escrow

Five hundred miles north of the Norwegian mainland, on the island of Spitzber-
gen, a huge vault has been tunneled into the mountainside as a place for the 
world’s countries to store seed samples against the possibility of future catastro-
phe. System administrators don’t need a vault that large or that cold for pass-
words, but they do need a vault. 

A password vault is a piece of software (or a combination of software and hard-
ware) that stores passwords for your organization in a more secure fashion than 
“Would you like Windows to remember this password for you?” Several develop-
ments have made a password vault almost a necessity:

• The proliferation of passwords needed not just to log in to computers, 
but also to access web pages, configure routers and firewalls, and admin-
ister remote services

• The increasing need for strong (read “not very memorable”) passwords 
as computers get so fast that weak passwords are easily broken

• Regulations that require access to certain data to be traceable to a single 
person—no shared logins such as root

Password management systems are emerging in the wake of legislation in the 
United States that attempts to impose accountability and security on various busi-
ness sectors. In some cases, this legislation requires two-factor authentication; for 
example, a password or passphrase plus a challenge/response exchange. Password 
vaults are also a great boon for sysadmin support companies who must securely 
and traceably manage passwords not only for their own machines but also for 
their customers’ machines.

Several password vault implementations are available. Free ones for individuals 
(e.g., KeePass) store passwords locally, give all-or-nothing access to the password 
database, and do no logging. Appliances suitable for huge enterprises (e.g., Cyber-
Ark) can cost tens of thousands of dollars. Many of the commercial offerings 
charge either by the user or by the number of passwords they remember.

We use a home-grown web-based system that has several nice features. One of our 
favorites features is the “break the glass” option, named for the hotel fire alarm 
stations that tell you to break the glass and pull the big red lever in the event of an 
emergency. 

In this case, “breaking the glass” means obtaining a password that you wouldn’t 
normally have access to. In the event of an emergency, you can go ahead and re-
trieve the password anyway. The system then notifies a list of other sysadmins and 
logs what you do with the password. When you have finished dealing with the 
emergency, you change the password and put the new password back in the vault. 

A low-tech way to implement password escrow is to store passwords in tamper-
evident, serial-numbered baggies of the type used by police to hold crime scene 

  



ptg

118 Chapter 4 Access Control and Rootly Powers

evidence. These bags are readily available on the Internet. As long as a baggie is 
present and unopened, you know that no one has accessed the password inside.

4.4 PSEUDO-USERS OTHER THAN ROOT

Root is generally the only user that has special status in the eyes of the kernel, but 
several other pseudo-users are defined by the system. You can identify these sham 
accounts by their low UIDs, usually less than 100. Most often, UIDs under 10 are 
system accounts, and UIDs between 10 and 100 are pseudo-users associated with 
specific pieces of software.

It’s customary to replace the encrypted password field of these special users in 
/etc/shadow with a star so that their accounts cannot be logged in to. Set their 
shells to /bin/false or /bin/nologin as well, to protect against remote login ex-
ploits that use password alternatives such as SSH key files.

Files and processes that are part of the operating system but that need not be 
owned by root are sometimes given to the users bin or daemon. The theory was 
that this convention would help avoid the security hazards associated with owner-
ship by root. It’s not a very compelling argument, however, and current systems 
often just use the root account for this purpose.

On some systems, the user sys owns a number of special files such as the kernel’s 
memory image in /dev. Few programs access these files, but those that do can run 
setuid to sys rather than root if this ownership convention is in use. On some 
systems, a group called kmem or sys is used instead of a sys user account.

See page 697 for more 
information about the 
nobody account.

The Network File System (NFS) uses the nobody account to represent root on 
other systems. For remote roots to be stripped of their rootly powers, the remote 
UID 0 has to be mapped to something other than the local UID 0. The nobody 
account acts as a generic alter ego for these remote roots. In NFSv4, it can be 
applied to remote users with no valid local account as well.

Since the nobody account is supposed to represent a generic and relatively power-
less user, it shouldn’t own any files. If nobody does own files, remote roots will be 
able to take control of them. Nobody shouldn’t own no files!

A UID of -1 or -2 is traditional for nobody. The Linux kernel defaults to using 
UID 65,534, the 16-bit twos-complement version of -2. But really, the number is 
arbitrary: Red Hat uses 99, which makes more sense than 65,534 now that we have 
32-bit UIDs. Solaris uses 60,001, which doesn’t, but at least it’s easy to remember 
as the 16-bit twos-complement version of -2, truncated—not rounded—to one 
significant digit, plus one. 

The only snag with redefining nobody’s UID is that exportfs does not seem to pay 
attention to the passwd file. You must explicitly tell it with the anonuid option to 
use a different UID for nobody.

  



ptg

Exercises 119

Ac
ce

ss
 C

on
tr

ol

4.5 EXERCISES

E4.1 Use the find command with the -perm option to locate five setuid files 
on your system. For each file, explain why the setuid mechanism is nec-
essary for the command to function properly.

E4.2 Create two entries for the sudoers configuration file:

a) One entry that allows users matt and lisa to service the printer, un-
jam it, and restart printer daemons on the machine printserver

b)One entry that allows drew, smithgr, and jimlane to kill jobs and 
reboot the machines in a student lab

E4.3 Create three “shocking nonsense” passphrases but keep them to your-
self. Run your three passphrases through md5sum and report these re-
sults. Based on the current state of cryptographic technology, is it safe 
to share the MD5 results? Why or why not?

E4.4 Enumerate a sequence of commands that modify someone’s password 
entry, and show how you could cover your tracks. Assume you had only 
sudo power (all commands allowed, but no shells or su).

E4.5 Install sudo configured to send its mail tattling about misuse to you. 
Use it to test the sudo entries of the previous question with local user-
names and machine names; verify that sudo is logging to syslog prop-
erly. Look at the syslog entries produced by your testing. (Requires root 
access; you’ll most likely have to tweak /etc/syslog.conf, too.)

E4.6 On a Solaris, HP-UX, or AIX system, set up an RBAC role that allows 
members to mount and unmount filesystems. Assign this role to two 
users. (Root access required.)

a) What steps are required? Can you limit the permitted operations to 
certain filesystems or types of filesystems?

b) Reimplement your solution as a sudo configuration. Is it more or less 
complicated to set up than the RBAC solution? Can you limit the 
permitted operations to certain filesystems or types of filesystems? 

  



ptg

120

5 Controlling Processes

A process is the abstraction used by UNIX and Linux to represent a running pro-
gram. It’s the object through which a program’s use of memory, processor time, 
and I/O resources can be managed and monitored.

It is part of the UNIX philosophy that as much work as possible be done within 
the context of processes, rather than handled specially by the kernel. System and 
user processes all follow the same rules, so you can use a single set of tools to 
control them both.

5.1 COMPONENTS OF A PROCESS

A process consists of an address space and a set of data structures within the ker-
nel. The address space is a set of memory pages1 that the kernel has marked for 
the process’s use. It contains the code and libraries that the process is executing, 
the process’s variables, its stacks, and various extra information needed by the ker-
nel while the process is running. Because UNIX and Linux are virtual memory 
systems, there is no correlation between a page’s location within a process’s ad-
dress space and its location inside the machine’s physical memory or swap space.

1. Pages are the units in which memory is managed, usually between 1KiB and 8KiB in size.

Processes

  



ptg

PPID: parent PID 121

Pr
oc

es
se

s

The kernel’s internal data structures record various pieces of information about 
each process. Here are some of the more important of these:

• The process’s address space map
• The current status of the process (sleeping, stopped, runnable, etc.)
• The execution priority of the process
• Information about the resources the process has used
• Information about the files and network ports the process has opened
• The process’s signal mask (a record of which signals are blocked)
• The owner of the process

An execution thread, usually known simply as a thread, is the result of a fork in 
execution within a process. A thread inherits many of the attributes of the process 
that contains it (such as the process’s address space), and multiple threads can 
execute concurrently within a single process under a model called multithreading.

Concurrent execution is simulated by the kernel on old-style uniprocessor sys-
tems, but on multicore and multi-CPU architectures the threads can run simulta-
neously on different cores. Multithreaded applications such as BIND and Apache 
benefit the most from multicore systems since the applications can work on more 
than one request simultaneously. All our example operating systems support mul-
tithreading.

Many of the parameters associated with a process directly affect its execution: the 
amount of processor time it gets, the files it can access, and so on. In the following 
sections, we discuss the meaning and significance of the parameters that are most 
interesting from a system administrator’s point of view. These attributes are com-
mon to all versions of UNIX and Linux.

PID: process ID number

The kernel assigns a unique ID number to every process.2 Most commands and 
system calls that manipulate processes require you to specify a PID to identify the 
target of the operation. PIDs are assigned in order as processes are created.

PPID: parent PID

Neither UNIX nor Linux has a system call that initiates a new process running a 
particular program. Instead, an existing process must clone itself to create a new 
process. The clone can then exchange the program it’s running for a different one.

When a process is cloned, the original process is referred to as the parent, and the 
copy is called the child. The PPID attribute of a process is the PID of the parent 
from which it was cloned.3

2. As pointed out by our reviewer Jon Corbet, Linux kernel 2.6.24 introduced process ID namespaces, 
which allow multiple processes with the same PID to exist concurrently. This feature was implemented 
to support container-based virtualization.

3. At least initially. If the original parent dies, init (process 1) becomes the new parent. See page 124.

  



ptg

122 Chapter 5 Controlling Processes

The parent PID is a useful piece of information when you’re confronted with an 
unrecognized (and possibly misbehaving) process. Tracing the process back to its 
origin (whether a shell or another program) may give you a better idea of its pur-
pose and significance.

UID and EUID: real and effective user ID

See page 180 for 
more information 
about UIDs.

A process’s UID is the user identification number of the person who created it, or 
more accurately, it is a copy of the UID value of the parent process. Usually, only 
the creator (aka the “owner”) and the superuser can manipulate a process.

The EUID is the “effective” user ID, an extra UID used to determine what re-
sources and files a process has permission to access at any given moment. For 
most processes, the UID and EUID are the same, the usual exception being pro-
grams that are setuid.

Why have both a UID and an EUID? Simply because it’s useful to maintain a 
distinction between identity and permission, and because a setuid program may 
not wish to operate with expanded permissions all the time. On most systems, the 
effective UID can be set and reset to enable or restrict the additional permissions 
it grants.

Most systems also keep track of a “saved UID,” which is a copy of the process’s 
EUID at the point at which the process first begins to execute. Unless the process 
takes steps to obliterate this saved UID, it remains available for use as the real or 
effective UID. A conservatively written setuid program can therefore renounce its 
special privileges for the majority of its execution, accessing them only at the spe-
cific points at which extra privileges are needed.

Linux also defines a nonstandard FSUID process parameter that controls the de-
termination of filesystem permissions. It is infrequently used outside the kernel 
and is not portable to other UNIX systems.

GID and EGID: real and effective group ID

See page 181 for 
more information 
about groups.

The GID is the group identification number of a process. The EGID is related to 
the GID in the same way that the EUID is related to the UID in that it can be 
“upgraded” by the execution of a setgid program. A saved GID is maintained. It is 
similar in intent to the saved UID.

The GID attribute of a process is largely vestigial. For purposes of access determi-
nation, a process can be a member of many groups at once. The complete group 
list is stored separately from the distinguished GID and EGID. Determinations of 
access permissions normally take into account the EGID and the supplemental 
group list, but not the GID.

The only time at which the GID really gets to come out and play is when a process 
creates new files. Depending on how the filesystem permissions have been set, 
new files may adopt the GID of the creating process. See page 154 for details.

  



ptg

The life cycle of a process 123

Pr
oc

es
se

s

Niceness

A process’s scheduling priority determines how much CPU time it receives. The 
kernel uses a dynamic algorithm to compute priorities, allowing for the amount of 
CPU time that a process has recently consumed and the length of time it has been 
waiting to run. The kernel also pays attention to an administratively set value 
that’s usually called the “nice value” or “niceness,” so called because it tells how 
nice you are planning to be to other users of the system. We discuss niceness in 
detail on page 129.

In an effort to provide better support for low-latency applications, Linux has 
added “scheduling classes” to the traditional UNIX scheduling model. There are 
currently three classes, and each process is assigned to one class. Unfortunately, 
the real-time classes are neither widely used nor well supported from the com-
mand line. System processes use the traditional (niceness) scheduler, which is the 
only one we discuss in this book. See realtimelinuxfoundation.org for more dis-
cussion of issues related to real-time scheduling.

Control terminal

Most nondaemon processes have an associated control terminal. The control ter-
minal determines default linkages for the standard input, standard output, and 
standard error channels. When you start a command from the shell, your termi-
nal window normally becomes the process’s control terminal. The concept of a 
control terminal also affects the distribution of signals, which are discussed start-
ing on page 124.

5.2 THE LIFE CYCLE OF A PROCESS

To create a new process, a process copies itself with the fork system call. fork
creates a copy of the original process; that copy is largely identical to the parent. 
The new process has a distinct PID and has its own accounting information.

fork has the unique property of returning two different values. From the child’s 
point of view, it returns zero. The parent receives the PID of the newly created 
child. Since the two processes are otherwise identical, they must both examine the 
return value to figure out which role they are supposed to play.

After a fork, the child process will often use one of the exec family of system calls 
to begin the execution of a new program.4 These calls change the program that the 
process is executing and reset the memory segments to a predefined initial state. 
The various forms of exec differ only in the ways in which they specify the com-
mand-line arguments and environment to be given to the new program.

When the system boots, the kernel autonomously creates and installs several pro-
cesses. The most notable of these is init, which is always process number 1. init is 
responsible for executing the system’s startup scripts, although the exact manner 

4. Actually, all but one are library routines rather than system calls.

  



ptg

124 Chapter 5 Controlling Processes

in which this is done differs slightly between UNIX and Linux. All processes other 
than the ones the kernel creates are descendants of init. See Chapter 3 for more 
information about booting and the init daemon.

init also plays another important role in process management. When a process 
completes, it calls a routine named _exit to notify the kernel that it is ready to die. 
It supplies an exit code (an integer) that tells why it’s exiting. By convention, 0 is 
used to indicate a normal or “successful” termination.

Before a process can be allowed to disappear completely, the kernel requires that 
its death be acknowledged by the process’s parent, which the parent does with a 
call to wait. The parent receives a copy of the child’s exit code (or an indication of 
why the child was killed if the child did not exit voluntarily) and can also obtain a 
summary of the child’s use of resources if it wishes.

This scheme works fine if parents outlive their children and are conscientious 
about calling wait so that dead processes can be disposed of. If the parent dies 
first, however, the kernel recognizes that no wait will be forthcoming and adjusts 
the process to make the orphan a child of init. init politely accepts these orphaned 
processes and performs the wait needed to get rid of them when they die.

5.3 SIGNALS

Signals are process-level interrupt requests. About thirty different kinds are de-
fined, and they’re used in a variety of ways:

• They can be sent among processes as a means of communication.

• They can be sent by the terminal driver to kill, interrupt, or suspend 
processes when keys such as <Control-C> and <Control-Z> are typed.5

• They can be sent by an administrator (with kill) to achieve various ends.

• They can be sent by the kernel when a process commits an infraction 
such as division by zero.

• They can be sent by the kernel to notify a process of an “interesting” 
condition such as the death of a child process or the availability of data 
on an I/O channel.

A core dump is 
a process’s memory 
image. It can be used 
for debugging.

When a signal is received, one of two things can happen. If the receiving process 
has designated a handler routine for that particular signal, the handler is called 
with information about the context in which the signal was delivered. Otherwise, 
the kernel takes some default action on behalf of the process. The default action 
varies from signal to signal. Many signals terminate the process; some also gener-
ate a core dump.

5. The functions of <Control-Z> and <Control-C> can be reassigned to other keys with the stty com-
mand, but this is rare in practice. In this chapter we refer to them by their conventional bindings.

  



ptg

Signals 125

Pr
oc

es
se

s

Specifying a handler routine for a signal within a program is referred to as catch-
ing the signal. When the handler completes, execution restarts from the point at 
which the signal was received.

To prevent signals from arriving, programs can request that they be either ignored 
or blocked. A signal that is ignored is simply discarded and has no effect on the 
process. A blocked signal is queued for delivery, but the kernel doesn’t require the 
process to act on it until the signal has been explicitly unblocked. The handler for 
a newly unblocked signal is called only once, even if the signal was received sev-
eral times while reception was blocked.

Table 5.1 lists some signals with which all administrators should be familiar. The 
uppercase convention for the names derives from C language tradition. You might 
also see signal names written with a SIG prefix (e.g., SIGHUP) for similar reasons. 

Other signals, not shown in Table 5.1, mostly report obscure errors such as “illegal 
instruction.” The default handling for signals like that is to terminate with a core 
dump. Catching and blocking are generally allowed because some programs may 
be smart enough to try to clean up whatever problem caused the error before 
continuing.

The BUS and SEGV signals are also error signals. We’ve included them in the 
table because they’re so common: when a program crashes, it’s usually one of 
these two signals that finally brings it down. By themselves, the signals are of no 

Table 5.1 Signals every administrator should knowa

# Name Description Default 
Can 

catch?
Can 

block?
Dump 
core?

1 HUP Hangup Terminate Yes Yes No
2 INT Interrupt Terminate Yes Yes No
3 QUIT Quit Terminate Yes Yes Yes
9 KILL Kill Terminate No No No
–b BUS Bus error Terminate Yes Yes Yes
11 SEGV Segmentation fault Terminate Yes Yes Yes
15 TERM Software termination Terminate Yes Yes No
–b STOP Stop Stop No No No
–b TSTP Keyboard stop Stop Yes Yes No
–b CONT Continue after stop Ignore Yes No No
–b WINCH Window changed Ignore Yes Yes No
–b USR1 User-defined #1 Terminate Yes Yes No
–b USR2 User-defined #2 Terminate Yes Yes No

a. A list of signal names and numbers is also available from the bash built-in command kill -l.
b. Varies among systems. See /usr/include/signal.h or man signal for more specific information.

  



ptg

126 Chapter 5 Controlling Processes

specific diagnostic value. Both of them indicate an attempt to use or access mem-
ory improperly.6

The signals named KILL and STOP cannot be caught, blocked, or ignored. The 
KILL signal destroys the receiving process, and STOP suspends its execution until 
a CONT signal is received. CONT may be caught or ignored, but not blocked.

TSTP is a “soft” version of STOP that might be best described as a request to stop. 
It’s the signal generated by the terminal driver when <Control-Z> is typed on the 
keyboard. Programs that catch this signal usually clean up their state, then send 
themselves a STOP signal to complete the stop operation. Alternatively, programs 
can ignore TSTP to prevent themselves from being stopped from the keyboard.

Terminal emulators send a WINCH signal when their configuration parameters 
(such as the number of lines in the virtual terminal) change. This convention al-
lows emulator-savvy programs such as text editors to reconfigure themselves au-
tomatically in response to changes. If you can’t get windows to resize properly, 
make sure that WINCH is being generated and propagated correctly.7

The signals KILL, INT, TERM, HUP, and QUIT all sound as if they mean approx-
imately the same thing, but their uses are actually quite different. It’s unfortunate 
that such vague terminology was selected for them. Here’s a decoding guide:

• KILL is unblockable and terminates a process at the kernel level. A pro-
cess can never actually receive this signal.

• INT is sent by the terminal driver when you type <Control-C>. It’s a 
request to terminate the current operation. Simple programs should quit 
(if they catch the signal) or simply allow themselves to be killed, which is 
the default if the signal is not caught. Programs that have an interactive 
command line (such as a shell) should stop what they’re doing, clean up, 
and wait for user input again.

• TERM is a request to terminate execution completely. It’s expected that 
the receiving process will clean up its state and exit.

• HUP has two common interpretations. First, it’s understood as a reset 
request by many daemons. If a daemon is capable of rereading its config-
uration file and adjusting to changes without restarting, a HUP can gen-
erally be used to trigger this behavior.

6. More specifically, bus errors result from violations of alignment requirements or the use of nonsensi-
cal addresses. Segmentation violations represent protection violations such as attempts to write to 
read-only portions of the address space.

7. Which may be easier said than done. The terminal emulator (e.g., xterm), terminal driver, and user-
level commands may all have a role in propagating SIGWINCH. Common problems include sending 
the signal to a terminal’s foreground process only (rather than to all processes associated with the ter-
minal) and failing to propagate notification of a size change across the network to a remote computer. 
Protocols such as Telnet  and SSH explicitly recognize local terminal size changes and communicate 
this information to the remote host. Simpler protocols (e.g., direct serial lines) cannot do this.

  



ptg

kill: send signals 127

Pr
oc

es
se

s

Second, HUP signals are sometimes generated by the terminal driver in 
an attempt to “clean up” (i.e., kill) the processes attached to a particular 
terminal. This behavior is largely a holdover from the days of wired ter-
minals and modem connections, hence the name “hangup.”

Shells in the C shell family (tcsh et al.) usually make background pro-
cesses immune to HUP signals so that they can continue to run after the 
user logs out. Users of Bourne-ish shells (ksh, bash, etc.) can emulate 
this behavior with the nohup command.

• QUIT is similar to TERM, except that it defaults to producing a core 
dump if not caught. A few programs cannibalize this signal and interpret 
it to mean something else.

The signals USR1 and USR2 have no set meaning. They’re available for programs 
to use in whatever way they’d like. For example, the Apache web server interprets 
the USR1 signal as a request to gracefully restart.

5.4 KILL: SEND SIGNALS

As its name implies, the kill command is most often used to terminate a process. 
kill can send any signal, but by default it sends a TERM. kill can be used by nor-
mal users on their own processes or by root on any process. The syntax is

kill [-signal] pid

where signal is the number or symbolic name of the signal to be sent (as shown in 
Table 5.1) and pid is the process identification number of the target process.

A kill without a signal number does not guarantee that the process will die, be-
cause the TERM signal can be caught, blocked, or ignored. The command

kill -9 pid

“guarantees” that the process will die because signal 9, KILL, cannot be caught. 
Use kill -9 only if a polite request fails. We put quotes around “guarantees” be-
cause processes can occasionally become so wedged that even KILL does not af-
fect them (usually because of some degenerate I/O vapor lock such as waiting for 
a disk that has stopped spinning). Rebooting is usually the only way to get rid of 
these processes.

The killall command performs wildly different functions on UNIX and Linux. 
Under Linux, killall kills processes by name. For example, the following com-
mand kills all Apache web server processes:

ubuntu$ sudo killall httpd

The standard UNIX killall command that ships with Solaris, HP-UX, and AIX 
takes no arguments and simply kills all the current user’s processes. Running it as 
root kills init and shuts down the machine. Oops.

  



ptg

128 Chapter 5 Controlling Processes

The pgrep and pkill commands for Solaris, HP-UX, and Linux (but not AIX) 
search for processes by name (or other attributes, such as EUID) and display or 
signal them, respectively. For example, the following command sends a TERM 
signal to all processes running as the user ben:

$ sudo pkill -u ben

5.5 PROCESS STATES

A process is not automatically eligible to receive CPU time just because it exists. 
You need to be aware of the four execution states listed in Table 5.2.

A runnable process is ready to execute whenever CPU time is available. It has 
acquired all the resources it needs and is just waiting for CPU time to process its 
data. As soon as the process makes a system call that cannot be immediately com-
pleted (such as a request to read part of a file), the kernel puts it to sleep.

Sleeping processes are waiting for a specific event to occur. Interactive shells and 
system daemons spend most of their time sleeping, waiting for terminal input or 
network connections. Since a sleeping process is effectively blocked until its re-
quest has been satisfied, it will get no CPU time unless it receives a signal or a 
response to one of its I/O requests.

Some operations cause processes to enter an uninterruptible sleep state. This state 
is usually transient and not observed in ps output (indicated by a D in the STAT
column; see Table 5.4 on page 132). However, a few degenerate situations can 
cause it to persist. The most common cause involves server problems on an NFS 
filesystem mounted with the “hard” option. Since processes in the uninterruptible 
sleep state cannot be roused even to service a signal, they cannot be killed. To get 
rid of them, you must fix the underlying problem or reboot.

Zombies are processes that have finished execution but have not yet had their 
status collected. If you see zombies hanging around, check their PPIDs with ps to 
find out where they’re coming from.

Stopped processes are administratively forbidden to run. Processes are stopped on 
receipt of a STOP or TSTP signal and are restarted with CONT. Being stopped is 
similar to sleeping, but there’s no way for a process to get out of the stopped state 
other than having some other process wake it up (or kill it).

Table 5.2 Process states

State Meaning

Runnable The process can be executed. 
Sleeping The process is waiting for some resource. 
Zombie The process is trying to die. 
Stopped The process is suspended (not allowed to execute).

  



ptg

nice and renice: influence scheduling priority 129

Pr
oc

es
se

s

5.6 NICE AND RENICE: INFLUENCE SCHEDULING PRIORITY

The “niceness” of a process is a numeric hint to the kernel about how the process 
should be treated in relation to other processes contending for the CPU. The 
strange name is derived from the fact that it determines how nice you are going to 
be to other users of the system. A high nice value means a low priority for your 
process: you are going to be nice. A low or negative value means high priority: you 
are not very nice.

The range of allowable niceness values varies among systems. The most common 
range is -20 to +19. Some systems use a range of a similar size beginning at 0 
instead of a negative number (typically 0 to 39). The ranges used on our example 
systems are shown in Table 5.3 on the next page.

Despite their numeric differences, all systems handle nice values in much the 
same way. Unless the user takes special action, a newly created process inherits 
the nice value of its parent process. The owner of the process can increase its nice 
value but cannot lower it, even to return the process to the default niceness. This 
restriction prevents processes with low priority from bearing high-priority chil-
dren. The superuser may set nice values arbitrarily.

It’s rare to have occasion to set priorities by hand these days. On the puny systems 
of the 1970s and 80s, performance was significantly affected by which process was 
on the CPU. Today, with more than adequate CPU power on every desktop, the 
scheduler does a good job of servicing all processes. The addition of scheduling 
classes gives developers additional control when fast response is essential.

I/O performance has not kept up with increasingly fast CPUs, and the major bot-
tleneck on most systems has become the disk drives. Unfortunately, a process’s 
nice value has no effect on the kernel’s management of its memory or I/O; high-
nice processes can still monopolize a disproportionate share of these resources.

A process’s nice value can be set at the time of creation with the nice command 
and adjusted later with the renice command. nice takes a command line as an 
argument, and renice takes a PID or (sometimes) a username. 

Some examples:
$ nice -n 5 ~/bin/longtask // Lowers priority (raise nice) by 5 
$ sudo renice -5 8829 // Sets nice value to -5 
$ sudo renice 5 -u boggs // Sets nice value of boggs’s procs to 5

Unfortunately, there is little agreement among systems about how the desired pri-
orities should be specified; in fact, even nice and renice from the same system 
usually don’t agree. Some commands want a nice value increment, whereas others 
want an absolute nice value. Some want their nice values preceded by a dash. Oth-
ers want a flag (-n), and some just want a value.

To complicate things, a version of nice is built into the C shell and some other 
common shells (but not bash). If you don’t type the full path to nice, you’ll get the 

  



ptg

130 Chapter 5 Controlling Processes

shell’s version rather than the operating system’s. This duplication can be confus-
ing because shell-nice and command-nice use different syntax: the shell wants its 
priority increment expressed as +incr or -incr, but the stand-alone command 
wants an -n flag followed by the priority increment.8 

Table 5.3 summarizes all these variations. A prio is an absolute nice value, while 
an incr is relative to the niceness of the shell from which nice or renice is run. 
Wherever an -incr or a -prio is called for, you can use a double dash to enter nega-
tive values (e.g., --10). Only the shell nice understands plus signs (in fact, it re-
quires them); leave them out in all other circumstances.

The most commonly niced process in the modern world is ntpd, the clock syn-
chronization daemon. Since promptness is critical to its mission, it usually runs at 
a nice value about 12 below the default (that is, at a higher priority than normal).

If a problem drives the system’s load average to 65, you may need to use nice to 
start a high-priority shell before you can run commands to investigate the prob-
lem. Otherwise, you may have difficulty running even simple commands. 

5.7 PS: MONITOR PROCESSES

ps is the system administrator’s main tool for monitoring processes. While ver-
sions of ps differ in their arguments and display, they all deliver essentially the 
same information. Part of the enormous variation among versions of ps can be 
traced back to differences in the development history of UNIX. However, ps is 
also a command that vendors tend to customize for other reasons. It’s closely tied 
to the kernel’s handling of processes, so it tends to reflect all of a vendors’ underly-
ing kernel changes.

ps can show the PID, UID, priority, and control terminal of processes. It also gives 
information about how much memory a process is using, how much CPU time it 
has consumed, and its current status (running, stopped, sleeping, etc.). Zombies 
show up in a ps listing as <exiting> or <defunct>.

8. Actually, it’s worse than this: the stand-alone nice interprets nice -5 to mean a positive increment of 5, 
whereas the shell built-in nice interprets this same form to mean a negative increment of 5. 

Table 5.3 How to express priorities for various versions of nice and renice

System Range OS nice csh nice renice

Linux -20 to 19 -incr or -n incr +incr or -incr prio
Solaris 0 to 39 -incr or -n incr +incr or -incr incr or -n incr
HP-UX 0 to 39 -prio or -n prio +incr or -incr -n prioa

AIX -20 to 19 -incr or -n incr +incr or -incr -n incr

a. Uses absolute priority, but adds 20 to the value you specify.

  



ptg

ps: monitor processes 131

Pr
oc

es
se

s

Implementations of ps have become hopelessly complex over the last decade. Sev-
eral vendors have abandoned the attempt to define meaningful displays and made 
their pses completely configurable. With a little customization work, almost any 
desired output can be produced. As a case in point, the ps used by Linux is a 
trisexual and hermaphroditic version that understands multiple option sets and 
uses an environment variable to tell it what universe it’s living in.

Do not be alarmed by all this complexity: it’s there mainly for developers, not for 
system administrators. Although you will use ps frequently, you only need to 
know a few specific incantations.

On Linux and AIX, you can obtain a useful overview of all the processes running 
on the system with ps aux. The a option means to show all processes, x means to 
show even processes that don’t have a control terminal, and u selects the “user 
oriented” output format. Here’s an example of ps aux output on a machine run-
ning Red Hat (AIX output for the same command differs slightly):

redhat$ ps aux 
USER PID %CPU%MEM VSZ RSS TTY STAT TIME COMMAND 

root 1 0.1 0.2 3356 560 ? S 0:00 init [5]
root 2 0 0 0 0 ? SN 0:00 [ksoftirqd/0]
root 3 0 0 0 0 ? S< 0:00 [events/0]
root 4 0 0 0 0 ? S< 0:00 [khelper]
root 5 0 0 0 0 ? S< 0:00 [kacpid]
root 18 0 0 0 0 ? S< 0:00 [kblockd/0]
root 28 0 0 0 0 ? S 0:00 [pdflush]

…
root 196 0 0 0 0 ? S 0:00 [kjournald]
root 1050 0 0.1 2652 448 ? S<s 0:00 udevd
root 1472 0 0.3 3048 1008 ? S<s 0:00 /sbin/dhclient -1
root 1646 0 0.3 3012 1012 ? S<s 0:00 /sbin/dhclient -1
root 1733 0 0 0 0 ? S 0:00 [kjournald]
root 2124 0 0.3 3004 1008 ? Ss 0:00 /sbin/dhclient -1
root 2182 0 0.2 2264 596 ? Ss 0:00 syslogd -m 0
root 2186 0 0.1 2952 484 ? Ss 0:00 klogd -x
rpc 2207 0 0.2 2824 580 ? Ss 0:00 portmap

rpcuser 2227 0 0.2 2100 760 ? Ss 0:00 rpc.statd
root 2260 0 0.4 5668 1084 ? Ss 0:00 rpc.idmapd
root 2336 0 0.2 3268 556 ? Ss 0:00 /usr/sbin/acpid
root 2348 0 0.8 9100 2108 ? Ss 0:00 cupsd
root 2384 0 0.6 4080 1660 ? Ss 0:00 /usr/sbin/sshd
root 2399 0 0.3 2780 828 ? Ss 0:00 xinetd -stayalive
root 2419 0 1.1 7776 3004 ? Ss 0:00 sendmail: accept

…

Command names in brackets are not really commands at all but rather kernel 
threads scheduled as processes. The meaning of each field is shown in Table 5.4 
on the next page.

Another useful set of arguments for Linux and AIX is lax, which provides more 
technical information. The a and x options are as above (show every process), and 

  



ptg

132 Chapter 5 Controlling Processes

l selects the “long” output format. ps lax is also slightly faster to run than ps aux
because it doesn’t have to translate every UID to a username—efficiency can be 
important if the system is already bogged down.

Shown here in an abbreviated example, ps lax includes fields such as the parent 
process ID (PPID), nice value (NI), and the type of resource on which the process 
is waiting (WCHAN).

redhat$ ps lax 
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TIME COMMAND 
4 0 1 0 16 0 3356 560 select S 0:00 init [5]
1 0 2 1 34 19 0 0 ksofti SN 0:00 [ksoftirqd/0
1 0 3 1 5-10 0 0 worker S< 0:00 [events/0]
1 0 4 3 5-10 0 0 worker S< 0:00 [khelper]
5 0 2186 1 16 0 2952 484 syslog Ss 0:00 klogd -x
5 32 2207 1 15 0 2824 580 - Ss 0:00 portmap
5 29 2227 1 18 0 2100 760 select Ss 0:00 rpc.statd
1 0 2260 1 16 0 5668 1084 - Ss 0:00 rpc.idmapd
1 0 2336 1 21 0 3268 556 select Ss 0:00 acpid
5 0 2384 1 17 0 4080 1660 select Ss 0:00 sshd
1 0 2399 1 15 0 2780 828 select Ss 0:00 xinetd -sta
5 0 2419 1 16 0 7776 3004 select Ss 0:00 sendmail: a

…

Table 5.4 Explanation of ps aux output

Field Contents

USER Username of the process’s owner
PID Process ID 
%CPU Percentage of the CPU this process is using 
%MEM Percentage of real memory this process is using
VSZ Virtual size of the process
RSS Resident set size (number of pages in memory)
TTY Control terminal ID 
STAT Current process status:

R = Runnable D = In uninterruptible sleep 
S = Sleeping (< 20 sec) T = Traced or stopped
Z = Zombie

Additional flags:
W= Process is swapped out 
< = Process has higher than normal priority 
N= Process has lower than normal priority 
L = Some pages are locked in core
s = Process is a session leader

TIME CPU time the process has consumed 
COMMAND Command name and argumentsa

a. Programs can modify this info, so it’s not necessarily an accurate representation of the 
actual command line.

  



ptg

Dynamic monitoring with top, prstat, and topas 133

Pr
oc

es
se

s

Under Solaris and HP-UX, ps -ef is a good place to start. The e option selects all 
processes, and the f option sets the output format. (ps -ef also works on AIX and 
Linux systems; note the dash.)

solaris$ ps -ef
UID PID PPID C STIME TTY TIME COMD
root 0 0 80 Dec 21 ? 0:02 sched
root 1 0 2 Dec 21 ? 4:32 /etc/init-
root 2 0 8 Dec 21 ? 0:00 pageout
root 171 1 80 Dec 21 ? 0:02 /usr/lib/sendmail-bd

trent 8482 8444 35 14:34:10 pts/7 0:00 ps-ef
trent 8444 8442 203 14:32:50 pts/7 0:01 -csh
…

The columns in the ps -ef output are explained in Table 5.5.

Like ps lax in the Linux and AIX worlds, ps -elf shows additional gory details on 
Solaris and HP-UX systems:

% ps -elf
F S UID PID PPID C P NI ADDR SZ WCHAN TIME COMD

19 T root 0 0 80 0 SY f00c2fd8 0 0:02 sched
8 S root 1 0 65 1 20 ff26a800 88 ff2632c8 4:32 init-
8 S root 142 1 41 1 20 ff2e8000 176 f00cb69 0:00 syslogd

…

The STIME and TTY columns have been omitted to fit this page; they are identi-
cal to those produced with ps -ef. Nonobvious fields are described in Table 5.6 on 
the next page.

5.8 DYNAMIC MONITORING WITH TOP, PRSTAT, AND TOPAS

Since commands like ps offer only a one-time snapshot of your system, it is often 
difficult to grasp the big picture of what’s really happening. top is a free utility that 
runs on many systems and provides a regularly updated summary of active pro-
cesses and their use of resources. On AIX, an equivalent utility is topas, and on 
Solaris the analogous tool is prstat.

Table 5.5 Explanation of ps -ef output

Field Content Field Content

UID Username of the owner STIME Time the process was started
PID Process ID TTY Control terminal
PPID PID of the parent process TIME CPU time consumed 
C CPU use/scheduling info COMD Command and arguments

  



ptg

134 Chapter 5 Controlling Processes

For example:
ubuntu$ top 
top - 16:37:08 up  1:42,  2 users,  load average: 0.01, 0.02, 0.06 
Tasks:  76 total,   1 running,  74 sleeping,   1 stopped,   0 zombie 
Cpu(s):  1.1% us,  6.3% sy,  0.6% ni, 88.6% id,  2.1% wa,  0.1% hi,  1.3% si 
Mem: 256044k total, 254980k used, 1064k free, 15944k buffers
Swap: 524280k total, 0k used, 524280k free, 153192k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 
3175 root 15 0 35436 12m 4896 S 4.0 5.2 01:41.9 X 
3421 root 25 10 29916 15m 9808 S 2.0 6.2 01:10.5 rhn-applet-gui

1 root 16 0 3356 560 480 S 0.0 0.2 00:00.9 init
2 root 34 19 0 0 0 S 0.0 0 00:00.0 ksoftirqd/0
3 root 5 -10 0 0 0 S 0.0 0 00:00.7 events/0
4 root 5 -10 0 0 0 S 0.0 0 00:00.0 khelper
5 root 15 -10 0 0 0 S 0.0 0 00:00.0 kacpid

18 root 5 -10 0 0 0 S 0.0 0 00:00.0 kblockd/0
28 root 15 0 0 0 0 S 0.0 0 00:00.0 pdflush
29 root 15 0 0 0 0 S 0.0 0 00:00.3 pdflush
31 root 13 -10 0 0 0 S 0.0 0 00:00.0 aio/0
19 root 15 0 0 0 0 S 0.0 0 00:00.0 khubd
30 root 15 0 0 0 0 S 0.0 0 00:00.2 kswapd0

187 root 6 -10 0 0 0 S 0 0 00:00.0 kmirrord/0
196 root 15 0 0 0 0 S 0 0 00:01.3 kjournald

…

By default, the display updates every 10 seconds. The most CPU-consumptive 
processes appear at the top. top also accepts input from the keyboard and allows 
you to send signals and to renice processes, so you can observe how your actions 
affect the overall condition of the machine.

Table 5.6 Explanation of ps -elf output

Field Contents

F Process flags; possible values vary by system (rarely useful for sysadmins) 
S Process status:

O = Currently running S = Sleeping (waiting for event)
R = Eligible to run T = Stopped or being traced
Z = Zombie D = Uninterruptible sleep (disk, usually)

C Process CPU utilization/scheduling info 
P Scheduling priority (internal to the kernel, different from nice value) 
NI Nice value or SY for system processes 
ADDR Memory address of the process 
SZ Size (in pages) of the process in main memory 
WCHAN Address of the object the process is waiting for

  



ptg

The /proc filesystem 135

Pr
oc

es
se

s

Root can run top with the -q option to goose it up to the highest possible priority. 
This option can be very useful when you are trying to track down a process that 
has already brought the system to its knees.

5.9 THE /PROC FILESYSTEM

The Linux versions of ps and top read their process status information from the 
/proc directory, a pseudo-filesystem in which the kernel exposes a variety of in-
teresting information about the system’s state. Despite the name /proc (and the 
name of the underlying filesystem type, “proc”), the information is not limited to 
process information—a variety of status information and statistics generated by 
the kernel are represented here. You can even modify some parameters by writing 
to the appropriate /proc file. See page 421 for some examples.

Although some of the information is easier to access through front-end com-
mands such as vmstat and ps, some of the less popular information must be read 
directly from /proc. It’s worth poking around in this directory to familiarize your-
self with everything that’s there. man proc also lists some useful tips and tricks.

Because the kernel creates the contents of /proc files on the fly (as they are read), 
most appear to be empty when listed with ls -l. You’ll have to cat or more the 
contents to see what they actually contain. But be cautious—a few files contain or 
link to binary data that can confuse your terminal emulator if viewed directly.

Process-specific information is divided into subdirectories named by PID. For ex-
ample, /proc/1 is always the directory that contains information about init. Table 
5.7 lists the most useful per-process files.

Table 5.7 Process information files in Linux /proc (numbered subdirectories)

File Contents 

cmd Command or program the process is executing 
cmdline a Complete command line of the process (null-separated) 
cwd Symbolic link to the process’s current directory 
environ The process’s environment variables (null-separated) 
exe Symbolic link to the file being executed 
fd Subdirectory containing links for each open file descriptor 
maps Memory mapping information (shared segments, libraries, etc.) 
root Symbolic link to the process’s root directory (set with chroot) 
stat General process status information (best decoded with ps) 
statm Memory usage information

a. May be unavailable if the process is swapped out of memory.

  



ptg

136 Chapter 5 Controlling Processes

The individual components contained within the cmdline and environ files are 
separated by null characters rather than newlines. You can filter their contents 
through tr "\000" "\n" to make them more readable.

The fd subdirectory represents open files in the form of symbolic links. File de-
scriptors that are connected to pipes or network sockets don’t have an associated 
filename. The kernel supplies a generic description as the link target instead.

The maps file can be useful for determining what libraries a program is linked to 
or depends on.

Solaris and AIX also have a /proc filesystem, but it does not include the extra 
status and statistical information found on Linux. A group of tools known collec-
tively as the proc utilities display some useful information about running pro-
cesses. For instance, the procsig command in AIX and its Solaris equivalent psig
print the signal actions and handlers for a given process. Table 5.8 shows the most 
useful proc utilities and their functions.

HP-UX does not have a /proc filesystem or equivalent.

5.10 STRACE, TRUSS, AND TUSC: TRACE SIGNALS AND SYSTEM CALLS

It can sometimes be hard to figure out what a process is actually doing. You may 
have to make educated guesses based on indirect data from the filesystem and 
from tools such as ps.

Linux lets you directly observe a process with the strace command, which shows 
every system call the process makes and every signal it receives. A similar com-
mand for Solaris and AIX is truss. The HP-UX equivalent is tusc; however, tusc
must be separately installed.

You can even attach strace or truss to a running process, snoop for a while, and 
then detach from the process without disturbing it.9

Table 5.8 Commands for reading /proc information in AIX and Solaris

Solarisa AIX Description

pcred [pid | core] proccred [pid] Prints/sets real, effective, and saved UID/GID 
pldd [-F] [pid | core] procldd [pid] Shows library dependencies (like ldd)
psig [pid] procsig [pid] Lists signal actions and handlers
pfiles [pid] procfiles [pid] Prints open files
pwdx [pid] procwdx [pid] Prints the current working directory
pwait [pid] procwait [pid] Waits for a process to exit

a. Some of the Solaris proc tools accept a core file as input. This is primarily a debugging tool.

9. Well, usually. strace can interrupt system calls. The monitored process must then be prepared to 
restart them. This is a standard rule of UNIX software hygiene, but it’s not always observed.

  



ptg

strace, truss, and tusc: trace signals and system calls 137

Pr
oc

es
se

s

Although system calls occur at a relatively low level of abstraction, you can usually 
tell quite a bit about a process’s activity from the output. For example, the follow-
ing log was produced by strace run against an active copy of top:

redhat$ sudo strace -p 5810 
gettimeofday({1116193814, 213881}, {300, 0}) = 0 
open("/proc", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY) = 7 
fstat64(7, {st_mode=S_IFDIR|0555, st_size=0, ...}) = 0
fcntl64(7, F_SETFD, FD_CLOEXEC) = 0
getdents64(7, /* 36 entries */, 1024) = 1016
getdents64(7, /* 39 entries */, 1024) = 1016 
stat64("/proc/1", {st_mode=S_IFDIR|0555, st_size=0, ...}) = 0 
open("/proc/1/stat", O_RDONLY) = 8 
read(8, "1 (init) S 0 0 0 0 -1 4194560 73"..., 1023) = 191
close(8) = 0
…

Not only does strace show you the name of every system call made by the process, 
but it also decodes the arguments and shows the result code the kernel returns.

strace is packed with goodies, most of which are documented in the man page. 
For example, the -f flag follows forked processes, which is useful for tracing dae-
mons such as httpd that spawn many children. The -e file option displays only file 
operations, a feature that’s especially handy for discovering the location of evasive 
configuration files.

In this example, top starts by checking the current time. It then opens and stats 
the /proc directory and reads the directory’s contents, thereby obtaining a list of 
running processes. top goes on to stat the directory representing the init process 
and then opens /proc/1/stat to read the init’s status information.

Here’s an even simpler example (the date command) using truss on Solaris:
solaris$ truss date 
… 
time() = 1242507670
brk(0x00024D30) = 0
brk(0x00026D30) = 0 
open("/usr/share/lib/zoneinfo/US/Mountain", O_RDONLY) = 3 
fstat64(3, 0xFFBFFAF0) = 0 
read(3, " T Z i f\0\0\0\0\0\0\0\0".., 877) = 877
close(3) = 0
ioctl(1, TCGETA, 0xFFBFFA94) = 0
fstat64(1, 0xFFBFF9B0) = 0 
write(1, " S a t   M a y   1 6   1".., 29) = 29
Sat May 16 14:56:46 MDT 2009 
_exit(0)

Here, after allocating memory and opening library dependencies (not shown), 
date uses the time system call to read the system time, opens the appropriate time 
zone file to determine the appropriate offset, and prints the date and time stamp 
by calling the write system call.

  



ptg

138 Chapter 5 Controlling Processes

5.11 RUNAWAY PROCESSES

See page 1131 for more 
information about 
runaway processes.

Runaway processes come in two flavors: user processes that consume excessive 
amounts of a system resource, such as CPU time or disk space, and system pro-
cesses that suddenly go berserk and exhibit wild behavior. The first type of run-
away is not necessarily malfunctioning; it might simply be a resource hog. System 
processes are always supposed to behave reasonably. 

You can identify processes that use excessive CPU time by looking at the output of 
ps or top. If it’s obvious that a user process is consuming more CPU than is rea-
sonable, investigate the process. It can also be useful to look at the number of 
processes waiting to run. Use the uptime command to show the load averages 
(average numbers of runnable processes) over 1, 5, and 15-minute intervals.

There are two reasons to find out what a process is trying to do before tampering 
with it. First, the process may be both legitimate and important. It’s unreasonable 
to kill processes at random just because they happen to use a lot of CPU. Second, 
the process may be malicious or destructive. In this case, you’ve got to know what 
the process was doing (e.g., cracking passwords) so that you can fix the damage.

Processes that make excessive use of memory relative to the system’s physical 
RAM can cause serious performance problems. You can check the memory size of 
processes by using top. The VIRT column shows the total amount of virtual 
memory allocated by each process, and the RES column shows the portion of that 
memory that is currently mapped to specific memory pages (the “resident set”). 
On Linux systems, applications that use the video card (such as the X server) get a 
bad rap because video memory is included in the memory usage computations.

Both of these numbers can include shared resources such as libraries, and that 
makes them potentially misleading. A more direct measure of process-specific 
memory consumption is found in the DATA column, which is not shown by de-
fault. To add this column to top’s display, type the f key once top is running and 
select DATA from the list. The DATA value indicates the amount of memory in 
each process’s data and stack segments, so it’s relatively specific to individual pro-
cesses (modulo shared memory segments). Look for growth over time as well as 
absolute size.

Runaway processes that produce output can fill up an entire filesystem, causing 
numerous problems. When a filesystem fills up, lots of messages will be logged to 
the console and attempts to write to the filesystem will produce error messages.

The first thing to do in this situation is to determine which filesystem is full and 
which file is filling it up. The df -k command shows filesystem use. Look for a 
filesystem that’s 100% or more full.10 Use the du command on the identified file-
system to find which directory is using the most space. Rinse and repeat with du 

10. Most filesystem implementations reserve a portion (about 5%) of the storage space for “breathing 
room,” but processes running as root can encroach on this space, resulting in a reported usage that is 
greater than 100%.

  



ptg

Exercises 139

Pr
oc

es
se

s

until the large files are discovered. If you can’t determine which process is using 
the file, try using the fuser and lsof commands (covered in detail on page 144) for 
more information.

You may want to suspend all suspicious-looking processes until you find the one 
that’s causing the problem, but remember to restart the innocents when you are 
done. When you find the offending process, remove the files it was creating. 
Sometimes it’s smart to compress the file with gzip and rename it in case it con-
tains useful or important data.

5.12 RECOMMENDED READING

BOVET, DANIEL P., AND MARCO CESATI. Understanding the Linux Kernel (3rd Edi-
tion). Sebastopol, CA: O’Reilly Media, 2006.

MCKUSICK, MARSHALL KIRK, AND GEORGE V. NEVILLE-NEIL. The Design and Im-
plementation of the FreeBSD Operating System. Reading, MA: Addison-Wesley 
Professional, 2004.

5.13 EXERCISES

E5.1 Explain the relationship between a file’s UID and a running process’s 
real UID and effective UID. Besides file access control, what is the pur-
pose of a process’s effective UID?

E5.2 Suppose that a user at your site has started a long-running process that 
is consuming a significant fraction of a machine’s resources.

a) How would you recognize a process that is hogging resources?

b)Assume that the misbehaving process might be legitimate and 
doesn’t deserve to die. Show the commands you would use to sus-
pend the process temporarily while you investigate.

c) Later, you discover that the process belongs to your boss and must 
continue running. Show the commands you’d use to resume the task.

d)Alternatively, assume that the process needs to be killed. What signal 
would you send, and why? What if you needed to guarantee that the 
process died?

E5.3 Find a process with a memory leak (write your own program if you 
don’t have one handy). Use ps or top to monitor the program’s memory 
use as it runs.

E5.4 Write a simple Perl script that processes the output of ps to determine 
the total VSZ and RSS of the processes running on the system. How do 
these numbers relate to the system’s actual amount of physical memory 
and swap space?

  



ptg

140

6 The Filesystem

Quick: which of the following would you expect to find in a “filesystem”?

• Processes
• Audio devices
• Kernel data structures and tuning parameters
• Interprocess communication channels

If the system is UNIX or Linux, the answer is “all of the above, and more!” And 
yes, you might find some files in there, too.1

The basic purpose of a filesystem is to represent and organize the system’s storage 
resources, but programmers have been eager to avoid reinventing the wheel when 
it comes to managing other types of objects. It has often proved convenient to 
map these objects into the filesystem namespace. This unification has some ad-
vantages (consistent programming interface, easy access from the shell) and some 
disadvantages (filesystem implementations akin to Frankenstein’s monster), but 
like it or not, this is the UNIX (and hence, the Linux) way.

1. It’s perhaps more accurate to say that these entities are represented within the filesystem. In most cases, 
the filesystem is used as a rendezvous point to connect clients with the drivers they are seeking.

The Filesystem

  



ptg

The Filesystem 141

Th
e 

Fi
le

sy
st

em

The filesystem can be thought of as comprising four main components:

• A namespace – a way to name things and organize them in a hierarchy
• An API2 – a set of system calls for navigating and manipulating objects
• A security model – a scheme for protecting, hiding, and sharing things
• An implementation – software to tie the logical model to the hardware

NFS, the Network File 
System, is described in 
Chapter 18.

Modern kernels define an abstract interface that accommodates many different 
back-end filesystems. Some portions of the file tree are handled by traditional 
disk-based implementations. Others are fielded by separate drivers within the 
kernel. For example, NFS and CIFS filesystems are handled by a driver that for-
wards the requested operations to a server on another computer.

Unfortunately, the architectural boundaries are not clearly drawn, and quite a few 
special cases exist. For example, device files  furnish a way for programs to com-
municate with drivers inside the kernel. They are not really data files, but they’re 
handled through the filesystem and their characteristics are stored on disk.

Another complicating factor is that the kernel supports more than one type of 
disk-based filesystem. In the modern best-of-breed category are the ext3 and ext4 
filesystems that serve as many Linux distributions’ default, along with Sun’s ZFS, 
Veritas’s VxFS, ReiserFS, JFS from IBM, and the still-in-development Btrfs.

There are also many implementations of foreign filesystems, such as the FAT and 
NTFS filesystems used by Microsoft Windows and the ISO 9660 filesystem used 
on older CD-ROMs. (Linux supports more filesystem types than any other vari-
ant of UNIX. Its extensive menu of choices gives you lots of flexibility and makes 
it easy to share files with other systems.)

The filesystem is a rich topic that we approach from several different angles. This 
chapter tells where to find things on your system and describes the characteristics 
of files, the meanings of permission bits, and the use of some basic commands 
that view and set attributes. Chapter 8, Storage, is where you’ll find the more tech-
nical filesystem topics such as disk partitioning. Chapter 18, The Network File Sys-
tem, describes the file-sharing systems that are commonly used with Linux. You 
may also want to refer to Chapter 30, Cooperating with Windows, which discusses 
software you can use to share filesystems with computers running Windows.

With so many different filesystem implementations available, it may seem strange 
that this chapter reads as if there were only a single filesystem. We can be vague 
about the implementations because most modern filesystems either try to provide 
the traditional filesystem functionality in a faster and more reliable manner or 
they add extra features as a layer on top of the standard filesystem semantics. 
Some filesystems do both. For better or worse, too much existing software de-
pends on the model described in this chapter for that model to be discarded.

2. Application Programming Interface, a generic term for the set of routines that a library, operating sys-
tem, or software package provides for programmers to call.

  



ptg

142 Chapter 6 The Filesystem

6.1 PATHNAMES

The filesystem is presented as a single unified hierarchy that starts at the directory 
/ and continues downward through an arbitrary number of subdirectories. / is 
also called the root directory. This single-hierarchy system differs from the one 
used by Windows, which retains the concept of partition-specific namespaces.

Absolute and relative paths

The list of directories that must be traversed to locate a particular file plus that 
file’s filename form a pathname. Pathnames can be either absolute (/tmp/foo) or 
relative (book4/filesystem). Relative pathnames are interpreted starting at the 
current directory. You might be accustomed to thinking of the current directory 
as a feature of the shell, but every process has one. (Most processes never change 
their working directory, so they simply inherit the current directory of the process 
that started them.)

The terms filename, pathname, and path are more or less interchangeable—or at 
least, we use them interchangeably in this book. Filename and path can be used 
for both absolute and relative paths; pathname usually suggests an absolute path.

The filesystem can be arbitrarily deep. However, each component of a pathname 
(that is, each directory) must have a name no more than 255 characters long. 
There’s also a limit on the path length you can pass into the kernel as a system call 
argument (4,095 bytes on Linux, 1,023 bytes on some older systems). To access a 
file with a pathname longer than this, you must cd to an intermediate directory 
and use a relative pathname.

Spaces in filenames

The naming of files and directories is essentially unrestricted, except that names 
are limited in length and must not contain slash characters or nulls. In particular, 
spaces are permitted. Unfortunately, UNIX has a long tradition of separating 
command-line arguments at whitespace, so legacy software tends to break when 
spaces appear within filenames.

Spaces in filenames were once found primarily on filesystems shared with Macs 
and PCs, but they have now metastasized into UNIX culture and are found in 
some standard software packages as well. There are no two ways about it: admin-
istrative scripts must be prepared to deal with spaces in filenames (not to mention 
apostrophes, asterisks, and various other menacing punctuation marks).

In the shell and in scripts, spaceful filenames can be quoted to keep their pieces 
together. For example, the command

$ less "My excellent file.txt"

preserves My excellent file.txt as a single argument to less. You can also escape 
individual spaces with a backslash. The filename completion feature of the com-
mon shells (usually bound to the <Tab> key) does this for you.

  



ptg

Filesystem mounting and unmounting 143

Th
e 

Fi
le

sy
st

em

When you are writing scripts, a useful weapon to know about is find’s -print0
option. In combination with xargs -0, this option makes the find/xargs combina-
tion work correctly regardless of the whitespace contained within filenames. For 
example, the command

$ find /home -type f -size +1M -print0 | xargs -0 ls -l

prints a long ls listing of every file in /home over one megabyte in size.

Unfortunately, HP-UX supports find -print0 but not xargs -0, and AIX has nei-
ther option. However, you can install the GNU findutils package on either system 
to obtain current versions of both find and xargs. (Alternatively, you can use the 
-exec option to find instead of xargs, though it’s fussier and less efficient.)

6.2 FILESYSTEM MOUNTING AND UNMOUNTING

The filesystem is composed of smaller chunks—also called filesystems—each of 
which consists of one directory and its subdirectories and files. It’s normally ap-
parent from context which type of “filesystem” is being discussed, but for clarity 
in the following discussion, we use the term “file tree” to refer to the overall layout 
and reserve the word “filesystem” for the chunks attached to the tree.

Most filesystems are disk partitions or disk-based logical volumes, but as we men-
tioned earlier, they can be anything that obeys the proper API: network file serv-
ers, kernel components, memory-based disk emulators, etc. Linux and Solaris 
even have a nifty “loopback” filesystem that lets you mount individual files as if 
they were distinct devices. It’s great for developing filesystem images without hav-
ing to worry about repartitioning your disks.

In most situations, filesystems are attached to the tree with the mount command.3 
mount maps a directory within the existing file tree, called the mount point, to 
the root of the newly attached filesystem. The previous contents of the mount 
point become inaccessible as long as another filesystem is mounted there. Mount 
points are usually empty directories, however. 

For example,
$ sudo mount /dev/sda4 /users 

installs the filesystem stored on the disk partition represented by /dev/sda4 under 
the path /users. You could then use ls /users to see that filesystem’s contents. 

A list of the filesystems that are customarily mounted on a particular system is 
kept in the /etc/fstab, /etc/vfstab (Solaris), or /etc/filesystems (AIX) file. The 

3. We say “in most situations” because Solaris’s ZFS filesystem has adopted a rather different approach to 
mounting and unmounting, not to mention many other aspects of filesystem administration. Long-
time readers may be expecting a snippy comment about gratuitous incompatibility at this point, but 
the ZFS scheme is a clear improvement and we look forward to the day that it’s adopted by other sys-
tems. In the meantime, we must of necessity keep our ZFS coverage somewhat ghettoized. See page 
264 for more details. 

  



ptg

144 Chapter 6 The Filesystem

information contained in this file allows filesystems to be checked (with fsck) and 
mounted (with mount) automatically at boot time. It also serves as documenta-
tion for the layout of the filesystems on disk and enables short commands such as 
mount /usr. See page 260 for a discussion of the fstab file and its brethren.

You detach filesystems with the umount command. umount complains if you try 
to unmount a filesystem that is in use; the filesystem to be detached must not have 
open files or processes whose current directories are located there, and if the file-
system contains executable programs, they cannot be running.

Linux has a “lazy” unmount option (umount -l) that removes a filesystem from 
the naming hierarchy but does not truly unmount it until all existing file refer-
ences have been closed. It’s debatable whether this is a useful option. To begin 
with, there’s no guarantee that existing references will ever close on their own. In 
addition, the “semi-unmounted” state can present inconsistent filesystem seman-
tics to the programs that are using it; they can read and write through existing file 
handles but cannot open new files or perform other filesystem operations.

umount -f force-unmounts a busy filesystem and is supported on all our example 
systems. However, it’s almost always a bad idea to use it on non-NFS mounts, and 
it may not work on certain types of filesystems (e.g., those that keep journals, such 
as ext3 or ext4). 

Instead of reaching for umount -f when a filesystem you’re trying to unmount 
turns out to be busy, run the fuser command to find out which processes hold 
references to that filesystem. fuser -c mountpoint prints the PID of every process 
that’s using a file or directory on that filesystem, plus a series of letter codes that 
show the nature of the activity. For example,

$ fuser -c /usr 
/usr:    157tm    315ctom    474tom    5049tom    84tm    496ctom    490tm    

16938c    16902ctm    358ctom    484tm

The exact letter codes vary from system to system. Table 6.1 summarizes the 
meanings of the codes, but the details are usually unimportant; the PIDs are what 
you want.

To investigate the offending processes, just run ps with the list of PIDs returned 
by fuser. For example,

Table 6.1 Activity codes shown by fuser -c

Codes Meaning

f,o The process has a file open for reading or writing. 
c The process’s current directory is on the filesystem. 

e,t The process is currently executing a file. 
r The process’s root directory (set with chroot) is on the filesystem. 

m,s The process has mapped a file or shared library.

  



ptg

The organization of the file tree 145

Th
e 

Fi
le

sy
st

em

$ ps -fp "157 315 5049" 
UID PID PPID C STIME TTY TIME CMD
root 5049 490 0 Oct 14 ? 0:00 /usr/bin/X11/xdm
root 157 1 0 Jun 27 ? 5:26 /usr/sbin/named

lp 315 1 0 Jun 27 ? 0:00 /usr/lib/lpsched
…

Here, the quotation marks force the shell to pass the list of PIDs to ps as a single 
argument.

On Linux systems, you can avoid the need to launder PIDs through ps by running 
fuser with the -v flag. This option produces a more readable display that includes 
the command name.

$ fuser -cv /usr
USER PID ACCESS COMMAND 

/usr root 444 ....m atd
root 499 ....m sshd
root 520 ....m lpd
…

The letter codes in the ACCESS column are the same ones used in fuser’s nonver-
bose output. 

A more elaborate alternative to fuser is the lsof utility by Vic Abell. lsof is a more 
complex and sophisticated program than fuser, and its output is correspondingly 
verbose. lsof is available from people.freebsd.org/~abe and works on all of our 
example systems.

Under Linux, scripts in search of specific information about processes’ use of file-
systems can read the files in /proc directly. However, lsof -F, which formats lsof ’s 
output for easy parsing, is an easier and more portable solution. Use additional 
command-line flags to request just the information you need.

6.3 THE ORGANIZATION OF THE FILE TREE

Filesystems in the UNIX family have never been very well organized. Various in-
compatible naming conventions are used simultaneously, and different types of 
files are scattered randomly around the namespace. In many cases, files are di-
vided by function and not by how likely they are to change, making it difficult to 
upgrade the operating system. The /etc directory, for example, contains some files 
that are never customized and some that are entirely local. How do you know 
which files to preserve during the upgrade? Well, you just have to know…

Despite several incremental improvements over the years (such as the designation 
of /var as a place to store system-specific data), UNIX and Linux systems are still 
pretty much a disorganized mess. Nevertheless, there’s a culturally correct place 
for everything. Most software can be installed with little reconfiguration if your 

  



ptg

146 Chapter 6 The Filesystem

system is set up in a standard way. If you try to improve upon the default struc-
ture, you are asking for trouble. 

See Chapter 13 for 
more information 
about configuring 
the kernel.

The root filesystem includes the root directory and a minimal set of files and sub-
directories. The file that contains the OS kernel usually lives somewhere within 
the root filesystem, but it has no standard name or location; under Solaris, it is not 
really even a single file so much as a set of components.

Also part of the root filesystem are /etc for critical system and configuration files, 
/sbin and /bin for important utilities, and sometimes /tmp for temporary files. 
/dev is usually a real directory that’s included in the root filesystem, but some or 
all of it may be overlaid with other filesystems if your system has virtualized its 
device support. (See page 419 for more information about this topic.)

Some systems keep shared library files and a few other odd things such as the C 
preprocessor in the /lib directory. Others have moved these items into /usr/lib, 
sometimes leaving /lib as a symbolic link.

See page 231 for some 
reasons why partition-
ing might be desirable 
and some rules of 
thumb to guide it.

The directories /usr and /var are also of great importance. /usr is where most 
standard programs are kept, along with various other booty such as on-line man-
uals and most libraries. It is not strictly necessary that /usr be a separate filesys-
tem, but for convenience in administration it often is. Both /usr and /var must be 
available to enable the system to come up all the way to multiuser mode.

/var houses spool directories, log files, accounting information, and various other 
items that grow or change rapidly and that vary on each host. Since /var contains 
log files, which are apt to grow in times of trouble, it’s a good idea to put /var on 
its own filesystem if that is practical.

Home directories of users are often kept on a separate filesystem, usually one 
that’s mounted in the root directory. Dedicated filesystems can also be used to 
store bulky items such as source code libraries and databases.

Some of the more important standard directories are listed in Table 6.2. (Alternate 
rows have been shaded to improve readability.)

On many systems, a hier man page (filesystem man page on Solaris) outlines 
some general guidelines for the layout of the filesystem. Don’t expect the actual 
system to conform to the master plan in every respect, however. The Wikipedia 
page for “UNIX directory structure” is a good general reference as well.

For Linux systems, the Filesystem Hierarchy Standard (pathname.com/fhs) at-
tempts to codify, rationalize, and explain the standard directories. It’s an excellent 
resource to consult when you’re trying to figure out where to put something.

We discuss some additional rules and suggestions for the design of local hierar-
chies on page 407.

  



ptg

File types 147

Th
e 

Fi
le

sy
st

em

6.4 FILE TYPES

Most filesystem implementations define seven types of files. Even when develop-
ers add something new and wonderful to the file tree (such as the process infor-
mation under /proc), it must still be made to look like one of these seven types.

Table 6.2 Standard directories and their contents

Pathname OSa Contents

/bin All Core operating system commandsb

/boot LS Kernel and files needed to load the kernel
/dev All Device entries for disks, printers, pseudo-terminals, etc.
/etc All Critical startup and configuration files 
/home All Default home directories for users
/kernel S Kernel components
/lib All Libraries, shared libraries, and parts of the C compiler 
/media LS Mount points for filesystems on removable media
/mnt LSA Temporary mount points, mounts for removable media
/opt All Optional software packages (not consistently used)
/proc LSA Information about all running processes
/root LS Home directory of the superuser (often just /)
/sbin All Commands needed for minimal system operabilityc

/stand H Stand-alone utilities, disk formatters, diagnostics, etc.
/tmp All Temporary files that may disappear between reboots
/usr All Hierarchy of secondary files and commands

/usr/bin All Most commands and executable files 
/usr/include All Header files for compiling C programs
/usr/lib All Libraries; also, support files for standard programs 
/usr/lib64 L 64-bit libraries on 64-bit Linux distributions
/usr/local All Software you write or install; mirrors structure of /usr

/usr/sbin All Less essential commands for administration and repair 
/usr/share All Items that might be common to multiple systems 

/usr/share/man All On-line manual pages
/usr/src LSA Source code for nonlocal software (not widely used) 
/usr/tmp All More temporary space (preserved between reboots)

/var All System-specific data and configuration files 
/var/adm All Varies: logs, setup records, strange administrative bits
/var/log LSA Various system log files 
/var/spool All Spooling directories for printers, mail, etc.
/var/tmp All More temporary space (preserved between reboots)

a. L = Linux, S = Solaris, H = HP-UX, A = AIX.
b. On HP-UX and AIX, /bin is a symbolic link to /usr/bin.
c. The distinguishing characteristic of commands in /sbin is usually that they’re linked with “static” ver-

sions of the system libraries and therefore don’t have many dependencies on other parts of the system.

  



ptg

148 Chapter 6 The Filesystem

• Regular files
• Directories
• Character device files
• Block device files
• Local domain sockets
• Named pipes (FIFOs) 
• Symbolic links 

You can determine the type of an existing file with ls -ld. The first character of the 
ls output encodes the type. For example, the following command demonstrates 
that /usr/include is a directory:

$ ls -ld /usr/include 
drwxr-xr-x   27 root     root         4096  Jul 15 20:57  /usr/include

ls uses the codes shown in Table 6.3 to represent the various types of files.

As Table 6.3 shows, rm is the universal tool for deleting files. But how would you 
delete a file named, say, -f? It’s a legitimate filename under most filesystems, but 
rm -f doesn’t work because rm interprets the -f as a flag. The answer is either to 
refer to the file by a longer pathname (such as ./-f) or to use rm’s -- argument to 
tell it that everything that follows is a filename and not an option (i.e., rm -- -f).

Filenames that contain control characters present a similar problem since repro-
ducing these names from the keyboard can be difficult or impossible. In this situ-
ation, you can use shell globbing (pattern matching) to identify the files to delete. 
When you use pattern matching, it’s a good idea to get in the habit of using the -i
option to rm to make rm confirm the deletion of each file. This feature protects 
you against deleting any “good” files that your pattern inadvertently matches. For 
example, to delete a file named foo<Control-D>bar, you could use

$ ls 
foo?bar foose kde-root

$ rm -i foo* 
rm: remove 'foo\004bar'? y 
rm: remove 'foose'? n

Table 6.3 File-type encoding used by ls

File type Symbol Created by Removed by

Regular file - editors, cp, etc. rm

Directory d mkdir rmdir, rm -r

Character device file c mknod rm

Block device file b mknod rm

Local domain socket s socket(2) rm

Named pipe p mknod rm

Symbolic link l ln -s rm

  



ptg

Directories 149

Th
e 

Fi
le

sy
st

em

Note that ls shows the control character as a question mark, which can be a bit 
deceptive.4 If you don’t remember that ? is a shell pattern-matching character and 
try to rm foo?bar, you might potentially remove more than one file (although not 
in this example). -i is your friend!

To delete the most horribly named files, you may need to resort to rm -i *.

Another option for removing files with squirrely names is to use an alternative 
interface to the filesystem such as emacs’s dired mode or a visual tool such as 
Nautilus.

Regular files

Regular files consist of a series of bytes; filesystems impose no structure on their 
contents. Text files, data files, executable programs, and shared libraries are all 
stored as regular files. Both sequential access and random access are allowed.

Directories

A directory contains named references to other files. You can create directories 
with mkdir and delete them with rmdir if they are empty. You can delete non-
empty directories with rm -r.

The special entries “.” and “..” refer to the directory itself and to its parent direc-
tory; they may not be removed. Since the root directory has no parent directory, 
the path “/..” is equivalent to the path “/.” (and both are equivalent to /).

A file’s name is stored within its parent directory, not with the file itself. In fact, 
more than one directory (or more than one entry in a single directory) can refer 
to a file at one time, and the references can have different names. Such an arrange-
ment creates the illusion that a file exists in more than one place at the same time. 

These additional references (“links,” or “hard links” to distinguish them from 
symbolic links, discussed below) are synonymous with the original file; as far as 
the filesystem is concerned, all links to the file are equivalent. The filesystem 
maintains a count of the number of links that point to each file and does not 
release the file’s data blocks until its last link has been deleted. Hard links cannot 
cross filesystem boundaries. 

You create hard links with ln and remove them with rm. It’s easy to remember the 
syntax of ln if you keep in mind that it mirrors the syntax of cp. The command cp
oldfile newfile creates a copy of oldfile called newfile, and ln oldfile newfile
makes the name newfile an additional reference to oldfile. You can make hard 
links to directories as well as to flat files, but that’s less commonly done.

You can use ls -l to see how many links to a given file exist. See the ls example 
output on page 154 for some additional detail. 

4. ls -b shows the special characters as octal numbers, which can be helpful if you need to identify them 
specifically. <Control-A> is 1 (\001 in octal), <Control-B> is 2, and so on.

  



ptg

150 Chapter 6 The Filesystem

Hard links are not a distinct type of file. Instead of defining a separate “thing” 
called a hard link, the filesystem simply allows more than one directory entry to 
point to the same file. In addition to the file’s contents, the underlying attributes of 
the file (such as ownerships and permissions) are also shared.

Character and block device files

See Chapter 13 for 
more information 
about devices and 
drivers.

Device files let programs communicate with the system’s hardware and peripher-
als. The kernel includes (or loads) driver software for each of the system’s devices. 
This software takes care of the messy details of managing each device so that the 
kernel proper can remain relatively abstract and hardware independent.

Device drivers present a standard communication interface that looks like a regu-
lar file. When the filesystem is given a request that refers to a character or block 
device file, it simply passes the request to the appropriate device driver. It’s impor-
tant to distinguish device files from device drivers, however. The files are just ren-
dezvous points that communicate with drivers. They are not drivers themselves.

Character device files allow their associated drivers to do their own input and 
output buffering. Block device files are used by drivers that handle I/O in large 
chunks and want the kernel to perform buffering for them. In the past, a few types 
of hardware were represented by both block and character device files, but that 
configuration is unusual today. 

Device files are characterized by two numbers, called the major and minor device 
numbers. The major device number tells the kernel which driver the file refers to, 
and the minor device number typically tells the driver which physical unit to ad-
dress. For example, major device number 4 on a Linux system indicates the serial 
driver. The first serial port (/dev/tty0) would have major device number 4 and 
minor device number 0.

Drivers can interpret the minor device numbers that are passed to them in what-
ever way they please. For example, tape drivers use the minor device number to 
determine whether the tape should be rewound when the device file is closed.

In the distant past, /dev was a generic directory and the device files within it were 
created with mknod and removed with rm. A script called MAKEDEV helped 
standardize the work of creating device files for common pieces of equipment.

Unfortunately, this crude system was ill-equipped to deal with the endless sea of 
drivers and device types that have appeared over the last few decades. It also facil-
itated all sorts of potential configuration mismatches: device files that referred to 
no actual device, devices inaccessible because they had no device files, and so on. 

These days, most systems implement some form of automatic device file manage-
ment that lets the system take a more active role in the configuration of its own 
device files. In Solaris, for example, the /dev and /devices directories are fully 
virtualized. On Linux distributions, /dev is a standard directory, but the udevd
daemon manages the files within it. (udevd creates and deletes device files in 

  



ptg

Symbolic links 151

Th
e 

Fi
le

sy
st

em

response to hardware changes reported by the kernel.) See Chapter 13, Drivers 
and the Kernel, for more information about each system’s approach to this task.

Local domain sockets

Sockets are connections between processes that allow processes to communicate 
hygienically. UNIX defines several kinds of sockets, most of which involve the use 
of a network. Local domain sockets are accessible only from the local host and are 
referred to through a filesystem object rather than a network port. They are some-
times known as “UNIX domain sockets.”

See Chapter 11 for 
more information 
about syslog.

Although socket files are visible to other processes as directory entries, they can-
not be read from or written to by processes not involved in the connection. Syslog 
and the X Window System are examples of standard facilities that use local do-
main sockets.

Local domain sockets are created with the socket system call and removed with 
the rm command or the unlink system call once they have no more users.

Named pipes

Like local domain sockets, named pipes allow communication between two pro-
cesses running on the same host. They’re also known as “FIFO files” (FIFO is 
short for the phrase “first in, first out”). You can create named pipes with mknod
and remove them with rm.

As with local domain sockets, real-world instances of named pipes are few and far 
between. They rarely require administrative intervention.5

Named pipes and local domain sockets serve similar purposes, and the fact that 
both exist is essentially a historical artifact. Neither of them would exist if UNIX 
and Linux were designed today; network sockets would stand in for both.

Symbolic links

A symbolic or “soft” link points to a file by name. When the kernel comes upon a 
symbolic link in the course of looking up a pathname, it redirects its attention to 
the pathname stored as the contents of the link. The difference between hard links 
and symbolic links is that a hard link is a direct reference, whereas a symbolic link 
is a reference by name. Symbolic links are distinct from the files they point to. 

You create symbolic links with ln -s and remove them with rm. Since symbolic 
links can contain arbitrary paths, they can refer to files on other filesystems or to 
nonexistent files. Multiple symbolic links can also form a loop.

A symbolic link can contain either an absolute or a relative path. For example,
$ sudo ln -s archived/secure /var/log/secure

5. One reviewer commented, “Nagios (see page 887) uses them, and it sometimes needs help.”

  



ptg

152 Chapter 6 The Filesystem 

links /var/log/secure to /var/log/archived/secure with a relative path. It creates 
the symbolic link /var/log/secure with a target of “archived/secure”, as demon-
strated by this output from ls:

$ ls -l /var/log/secure 
lrwxrwxrwx 1 root root 18 2009-07-05 12:54 /var/log/secure -> archived/secure6

The entire /var/log directory could then be moved elsewhere without causing the 
symbolic link to stop working (not that moving this directory is advisable).

It is a common mistake to think that the first argument to ln -s is interpreted 
relative to your current working directory. However, it is not resolved as a file-
name by ln; it’s simply a literal string that becomes the target of the symbolic link.

6.5 FILE ATTRIBUTES

Under the traditional UNIX and Linux filesystem model, every file has a set of 
nine permission bits that control who can read, write, and execute the contents of 
the file. Together with three other bits that primarily affect the operation of exe-
cutable programs, these bits constitute the file’s “mode.”

The twelve mode bits are stored together with four bits of file-type information. 
The four file-type bits are set when the file is first created and cannot be changed, 
but the file’s owner and the superuser can modify the twelve mode bits with the 
chmod (change mode) command. Use ls -l (or ls -ld for a directory) to inspect the 
values of these bits. An example is given on page 154.

The permission bits

Nine permission bits determine what operations may be performed on a file and 
by whom. Traditional UNIX does not allow permissions to be set per-user (al-
though all systems now support access control lists of one sort or another; see 
page 159). Instead, three sets of permissions define access for the owner of the file, 
the group owners of the file, and everyone else (in that order).7 Each set has three 
bits: a read bit, a write bit, and an execute bit (also in that order).

It’s convenient to discuss file permissions in terms of octal (base 8) numbers be-
cause each digit of an octal number represents three bits and each group of per-
mission bits consists of three bits. The topmost three bits (with octal values of 400, 
200, and 100) control access for the owner. The second three (40, 20, and 10) 
control access for the group. The last three (4, 2, and 1) control access for every-
one else (“the world”). In each triplet, the high bit is the read bit, the middle bit is 
the write bit, and the low bit is the execute bit.

6. The file permissions that ls shows for a symbolic link, lrwxrwxrwx, are dummy values. Permission to 
create, remove, or follow the link is controlled by the containing directory, whereas read, write, and 
execute permission on the link target are granted by the target’s own permissions. Therefore, symbolic 
links do not need (and do not have) any permission information of their own.

7. If you think of the owner as “the user,” you can easily remember the order of the permission sets with 
the word Yugo (like the car). This is also the letter coding used by the mnemonic version of chmod.

  



ptg

The setuid and setgid bits 153

Th
e 

Fi
le

sy
st

em

Each user fits into only one of the three permission sets. The permissions used are 
those that are most specific. For example, the owner of a file always has access 
determined by the owner permission bits and never the group permission bits. It 
is possible for the “other” and “group” categories to have more access than the 
owner, although this configuration would be highly unusual.

On a regular file, the read bit allows the file to be opened and read. The write bit 
allows the contents of the file to be modified or truncated; however, the ability to 
delete or rename (or delete and then recreate!) the file is controlled by the permis-
sions on its parent directory because that is where the name-to-dataspace map-
ping is actually stored.

The execute bit allows the file to be executed. Two types of executable files exist: 
binaries, which the CPU runs directly, and scripts, which must be interpreted by a 
shell or some other program. By convention, scripts begin with a line similar to

#!/usr/bin/perl

that specifies an appropriate interpreter. Nonbinary executable files that do not 
specify an interpreter are assumed to be bash or sh scripts.8

For a directory, the execute bit (often called the “search” or “scan” bit in this con-
text) allows the directory to be entered or passed through while a pathname is 
evaluated, but not to have its contents listed. The combination of read and execute 
bits allows the contents of the directory to be listed. The combination of write and 
execute bits allows files to be created, deleted, and renamed within the directory.

A variety of extensions such as access control lists (see page 159), SELinux (see 
page 923), and “bonus” permission bits defined by individual filesystems (see 
page 158) complicate or override the traditional nine-bit permission model. If 
you’re having trouble explaining the system’s observed behavior, check to see 
whether one of these factors might be interfering.

The setuid and setgid bits

The bits with octal values 4000 and 2000 are the setuid and setgid bits. When set 
on executable files, these bits allow programs to access files and processes that 
would otherwise be off-limits to the user that runs them. The setuid/setgid mech-
anism for executables is described on page 105.

When set on a directory, the setgid bit causes newly created files within the direc-
tory to take on the group ownership of the directory rather than the default group 
of the user that created the file. This convention makes it easier to share a direc-
tory of files among several users, as long as they belong to a common group. This 
interpretation of the setgid bit is unrelated to its meaning when set on an execut-
able file, but no ambiguity can exist as to which meaning is appropriate.

8. The kernel understands the #! (“shebang”) syntax and acts on it directly. However, if the interpreter is 
not specified completely and correctly, the kernel will refuse to execute the file. The shell then makes a 
second attempt to execute the script by calling sh.

  



ptg

154 Chapter 6 The Filesystem

On some systems, you can also set the setgid bit on nonexecutable plain files to 
request special locking behavior when the file is opened. However, we are not 
aware of any common cases in which this feature is used.

The sticky bit

The bit with octal value 1000 is called the sticky bit. It was of historical impor-
tance as a modifier for executable files on early UNIX systems. However, that 
meaning of the sticky bit is now obsolete and modern systems silently ignore it.

If the sticky bit is set on a directory, the filesystem won’t allow you to delete or 
rename a file unless you are the owner of the directory, the owner of the file, or the 
superuser. Having write permission on the directory is not enough. This conven-
tion helps make directories like /tmp a little more private and secure.

Solaris and HP-UX are slightly less stringent in their handling of sticky directo-
ries: you can delete a file in a sticky directory if you have write permission on it, 
even if you aren’t the owner. This actually makes a lot of sense, though it makes 
little practical difference.

ls: list and inspect files

The filesystem maintains about forty separate pieces of information for each file, 
but most of them are useful only to the filesystem itself. As a system administra-
tor, you will be concerned mostly with the link count, owner, group, mode, size, 
last access time, last modification time, and type. You can inspect all of these with 
ls -l (or ls -ld for a directory; without the -d flag, ls lists the directory’s contents).

An attribute change time is also maintained for each file. The conventional name 
for this time (the “ctime,” short for “change time”) leads some people to believe 
that it is the file’s creation time. Unfortunately, it is not; it just records the time that 
the attributes of the file (owner, mode, etc.) were last changed (as opposed to the 
time at which the file’s contents were modified).

Consider the following example:
$ ls -l /bin/gzip 
-rwxr-xr-x 3 root root 62100 May 28 2010 /bin/gzip

The first field specifies the file’s type and mode. The first character is a dash, so 
the file is a regular file. (See Table 6.3 on page 148 for other codes.)

The next nine characters in this field are the three sets of permission bits. The 
order is owner-group-other, and the order of bits within each set is read-write-
execute. Although these bits have only binary values, ls shows them symbolically 
with the letters r, w, and x for read, write, and execute. In this case, the owner has 
all permissions on the file and everyone else has read and execute permission.

If the setuid bit had been set, the x representing the owner’s execute permission 
would have been replaced with an s, and if the setgid bit had been set, the x for the 

  



ptg

ls: list and inspect files 155

Th
e 

Fi
le

sy
st

em

group would also have been replaced with an s. The last character of the permis-
sions (execute permission for “other”) is shown as t if the sticky bit of the file is 
turned on. If either the setuid/setgid bit or the sticky bit is set but the correspond-
ing execute bit is not, these bits appear as S or T.

The next field in the listing is the file’s link count. In this case it is 3, indicating 
that /bin/gzip is just one of three names for this file (the others are /bin/gunzip
and /bin/zcat). Each time a hard link is made to a file, the file’s link count is incre-
mented by 1. Symbolic links do not affect the link count.

All directories have at least two hard links: the link from the parent directory and 
the link from the special file “.” inside the directory itself. 

The next two fields in the ls output are the owner and group owner of the file. In 
this example, the file’s owner is root, and the file also belongs to the group named 
root. The filesystem actually stores these as the user and group ID numbers rather 
than as names. If the text versions (names) can’t be determined, ls shows the fields 
as numbers. This might happen if the user or group that owns the file has been 
deleted from the /etc/passwd or /etc/group file. It could also indicate a problem 
with your NIS or LDAP database (if you use one); see Chapter 19.

The next field is the size of the file in bytes. This file is 62,100 bytes long. Next 
comes the date of last modification: May 28, 2010. The last field in the listing is 
the name of the file, /bin/gzip.

ls output is slightly different for a device file. For example:
$ ls -l /dev/tty0 
crw-rw---- 1 root root 4, 0 Jun 11 20:41 /dev/tty0

Most fields are the same, but instead of a size in bytes, ls shows the major and 
minor device numbers. /dev/tty0 is the first virtual console on this (Red Hat) sys-
tem and is controlled by device driver 4 (the terminal driver). 

One ls option that’s useful for scoping out hard links is -i, which makes ls show 
each file’s “inode number.” Without going into too much detail about filesystem 
implementations, we’ll just say that the inode number is an index into a table that 
enumerates all the files in the filesystem. Inodes are the “things” that are pointed 
to by directory entries; entries that are hard links to the same file have the same 
inode number. To figure out a complex web of links, you need both ls -li to show 
link counts and inode numbers and find to search for matches.9

Some other ls options that are important to know are -a to show all entries in a 
directory (even files whose names start with a dot), -t to sort files by modification 
time (or -tr to sort in reverse chronological order), -F to show the names of files 
in a way that distinguishes directories and executable files, -R to list recursively, 
and -h to show file sizes in human-readable form (e.g., 8K or 53M).

9. Try find mountpoint -xdev -inum inode -print.

  



ptg

156 Chapter 6 The Filesystem 

chmod: change permissions

The chmod command changes the permissions on a file. Only the owner of the 
file and the superuser can change its permissions. To use the command on early 
UNIX systems, you had to learn a bit of octal notation, but current versions accept 
both octal notation and a mnemonic syntax. The octal syntax is generally more 
convenient for administrators, but it can only be used to specify an absolute value 
for the permission bits. The mnemonic syntax can modify some bits while leaving 
others alone.

The first argument to chmod is a specification of the permissions to be assigned, 
and the second and subsequent arguments are names of files on which permis-
sions should be changed. In the octal case, the first octal digit of the specification 
is for the owner, the second is for the group, and the third is for everyone else. If 
you want to turn on the setuid, setgid, or sticky bits, you use four octal digits 
rather than three, with the three special bits forming the first digit.

Table 6.4 illustrates the eight possible combinations for each set of three bits, 
where r, w, and x stand for read, write, and execute.

For example, chmod 711 myprog gives all permissions to the owner and execute-
only permission to everyone else.10

For the mnemonic syntax, you combine a set of targets (u, g, or o for user, group, 
other) with an operator (+, -, = to add, remove, or set) and a set of permissions. 
The chmod man page gives the details, but the syntax is probably best learned by 
example. Table 6.5 exemplifies some mnemonic operations.

The hard part about using the mnemonic syntax is remembering whether o
stands for “owner” or “other”; “other” is correct. Just remember u and g by anal-
ogy to UID and GID; only one possibility is left.

On Linux and OpenSolaris systems, you can also specify the modes to be assigned 
by copying them from an existing file. For example, chmod --reference=filea 
fileb makes fileb’s mode the same as filea’s.

Table 6.4 Permission encoding for chmod

Octal Binary Perms Octal Binary Perms

0 000 – – – 4 100 r– –
1 001 – – x 5 101 r–x
2 010 –w– 6 110 rw–
3 011 –wx 7 111 rwx

10. If myprog were a shell script, it would need both read and execute permission turned on. For the 
script to be run by an interpreter, it must be opened and read like a text file. Binary files are executed 
directly by the kernel and therefore do not need read permission turned on.

  



ptg

chown and chgrp: change ownership and group 157

Th
e 

Fi
le

sy
st

em

With the -R option, chmod recursively updates the file permissions within a di-
rectory. However, this feat is trickier than it looks because the enclosed files and 
directories may not share the same attributes; for example, some might be execut-
able files while others are text files. Mnemonic syntax is particularly useful with 
-R because it preserves bits whose values you don’t set explicitly. For example, 

$ chmod -R g+w mydir

adds group write permission to mydir and all its contents without messing up the 
execute bits of directories and programs. 

If you want to adjust execute bits, be wary of chmod -R. It’s blind to the fact that 
the execute bit has a different interpretation on a directory than it does on a flat 
file. Therefore, chmod -R a-x probably won’t do what you intend.

chown and chgrp: change ownership and group

The chown command changes a file’s ownership, and the chgrp command 
changes its group ownership. The syntax of chown and chgrp mirrors that of 
chmod, except that the first argument is the new owner or group, respectively.

To change a file’s group, you must either be the owner of the file and belong to the 
group you’re changing to or be the superuser. The rules for changing ownership 
are more complex and vary among systems. Most systems define some sort of 
process-specific capability that fine-tunes the behavior of chown.

Like chmod, chown and chgrp offer the recursive -R flag to change the settings of 
a directory and all the files underneath it. For example, the sequence

$ sudo chown -R matt ~matt/restore 
$ sudo chgrp -R staff ~matt/restore

could be used to reset the owner and group of files restored from a backup for the 
user matt. If you’re setting up a user’s home directory, don’t try to chown dot files 
with a command such as

$ sudo chown -R matt ~matt/.*

since the pattern will match ~matt/.. and will therefore end up changing the own-
erships of the parent directory and probably the home directories of other users.

Table 6.5 Examples of chmod’s mnemonic syntax

Spec Meaning 

u+w Adds write permission for the owner of the file 
ug=rw,o=r Gives r/w permission to owner and group, and read permission to others 
a-x Removes execute permission for all categories (owner/group/other) 
ug=srx,o= Makes setuid/setgid and gives r/x permission to owner and group only 
g=u Makes the group permissions be the same as the owner permissions

  



ptg

158 Chapter 6 The Filesystem 

chown can change both the owner and group of a file at once with the syntax
chown user:group file …

For example,
$ sudo chown -R matt:staff ~matt/restore

Linux and Solaris take this syntax to its logical end and let you omit either user or 
group, thus making the chgrp command superfluous. If you include the colon but 
no group, chown uses the user’s default group.

umask: assign default permissions

You can use the built-in shell command umask to influence the default permis-
sions given to the files you create. Every process has its own umask attribute; the 
shell’s built-in umask command sets the shell’s own umask, which is then inher-
ited by commands that you run.

The umask is specified as a three-digit octal value that represents the permissions 
to take away. When a file is created, its permissions are set to whatever the creat-
ing program requests minus whatever the umask forbids. Thus, the individual 
digits of the umask allow the permissions shown in Table 6.6.

For example, umask 027 allows all permissions for the owner but forbids write 
permission to the group and allows no permissions for anyone else. The default 
umask value is often 022, which denies write permission to the group and world 
but allows read permission.

See Chapter 7 for 
more information 
about startup files.

You cannot force users to have a particular umask value because they can always 
reset it to whatever they want. However, you can put a suitable default in the sam-
ple .profile file that you give to new users.

Linux bonus flags

Linux’s ext2, ext3, and ext4 filesystems define some supplemental attributes you 
can turn on to request special semantics—“request” being the operative word, 
since many of the flags haven’t actually been implemented. For example, one flag 
makes a file append-only and another makes it immutable and undeletable. 

Table 6.6 Permission encoding for umask

Octal Binary Perms Octal Binary Perms

0 000 rwx 4 100 –wx
1 001 rw– 5 101 –w–
2 010 r–x 6 110 ––x
3 011 r–– 7 111 –––

  



ptg

Access control lists 159

Th
e 

Fi
le

sy
st

em

Since these flags don’t apply to filesystems other than the ext* series, Linux uses 
special commands, lsattr and chattr, to view and change them. Table 6.7 lists the 
flags that currently work (about 50% of those mentioned in the man page).

With the possible exception of the “no backup” flag, it’s not clear that any of these 
features offer much day-to-day value. The immutable and append-only flags were 
largely conceived as ways to make the system more resistant to tampering by 
hackers or hostile code. Unfortunately, they can confuse software and protect only 
against hackers that don’t know enough to use chattr -ia. Real-world experience 
has shown that these flags are more often used by hackers than against them.

The S and D options for synchronous writes also merit a special caution. Since 
they force all filesystem pages associated with a file or directory to be written out 
immediately on changes, they might seem to offer additional protection against 
data loss in the event of a crash. However, the order of operations for synchronous 
updates is unusual and has been known to confuse fsck; recovery of a damaged 
filesystem might therefore be made more difficult rather than more reliable. File-
system journaling, as supported by ext3 and ext4, is usually a better option. The j
option can force data journaling for specific files, albeit at some performance cost.

6.6 ACCESS CONTROL LISTS

The traditional 9-bit owner/group/other access control system is powerful 
enough to accommodate most administrative needs. Although the system has 
clear limitations, it’s very much in keeping with the UNIX traditions (some might 
say, “former traditions”) of simplicity and predictability.

Virtually all non-UNIX operating systems use a more complicated way of regulat-
ing access to files: access control lists, aka ACLs. Each file or directory can have an 
associated ACL that lists the permission rules to be applied to it. Each of the rules 
within an ACL is called an access control entry, or ACE. 

Table 6.7 Ext2 and ext3 bonus flags

Flag Meaning

A Never update access time (st_atime; for performance) 
a Allow writing only in append mode (only root can set) 
D Force directory updates to be written synchronously 
d No backup—make dump ignore this file 
i Make file immutable and undeletable (only root can set) 
j Keep a journal for data changes as well as metadata
S Force changes to be written synchronously (no buffering)

  



ptg

160 Chapter 6 The Filesystem

In general, an access control entry identifies the user or group to which it applies 
and specifies a set of permissions to be applied to those users. ACLs have no set 
length and can include permission specifications for multiple users or groups. 
Most OSes limit the length of an individual ACL, but the limit is high enough 
(usually at least 32 entries) that it rarely comes into play.

The more sophisticated ACL systems let administrators specify partial sets of per-
missions or negative permissions; some also have inheritance features that allow 
access specifications to propagate to newly created filesystem entities. 

ACL systems are more powerful than the traditional UNIX model, but they are 
also an order of magnitude more complex, both for administrators and for soft-
ware developers. Use them only with a degree of trepidation. Not only are ACLs 
complicated and tiresome to use, but they can also cause problematic interactions 
with ACL-unaware backup systems, network file service peers, and even simple 
programs such as text editors. 

ACLs are entropy magnets. Over time, they tend to become increasingly complex 
and unmaintainable. 

A short and brutal history of UNIX ACLs

The next few sections describe the various ACL systems supported by UNIX and 
Linux and the multiple sets of commands that manipulate them. Before we dive 
into those details, however, we should answer the underlying question those de-
tails are sure to provoke: “How did this ACL stuff get to be such a train wreck?”

As usual, the culprit is a tortured history of politics, money, and code forks. In this 
case, a basic understanding of the history helps impose some structure on the 
current reality.

A POSIX subcommittee first started work on an ACL facility for UNIX in the 
mid-1990s. To a first approximation, the POSIX ACL model simply extended the 
traditional UNIX rwx permission system to accommodate permissions for multi-
ple groups and users.

Unfortunately, the POSIX draft never became a formal standard, and the working 
group was defunded in 1998. Several vendors implemented POSIX ACLs anyway. 
Other vendors created their own ACL systems. Since there was no clear leader, 
every implementation looked different.

Meanwhile, it became increasingly common for UNIX and Linux systems to share 
filesystems with Windows, which has its own ACL conventions. Here the plot 
thickens, because Windows makes a variety of distinctions that are not found in 
either the traditional UNIX model or its POSIX ACL equivalent. Windows ACLs 
are semantically more complex, too; for example, they allow negative permissions 
(“deny” entries) and have a complicated inheritance scheme.

  



ptg

ACL implementation 161

Th
e 

Fi
le

sy
st

em

See Chapter 18 for 
more information 
about NFS.

The architects of version 4 of the NFS protocol—the standard file-sharing proto-
col used by UNIX—wanted to incorporate ACLs as a first-class entity. Because of 
the UNIX/Windows split and the inconsistencies among UNIX ACL implementa-
tions, it was clear that the systems on the ends of an NFSv4 connection might 
often be of different types. Each system might understand NFSv4 ACLs, POSIX 
ACLs, Windows ACLs, or no ACLs at all. The NFSv4 standard would have to be 
interoperable with these various worlds without causing too many surprises or 
security problems.

Given this constraint, it’s perhaps not surprising that NFSv4 ACLs are essentially a 
union of all preexisting systems. They are a strict superset of POSIX ACLs, so any 
POSIX ACL can be represented as an NFSv4 ACL without loss of information. At 
the same time, NFSv4 ACLs accommodate all the permission bits found on Win-
dows systems, and they have most of Windows’ semantic features as well.

ACL implementation

In theory, responsibility for maintaining and enforcing ACLs could be turned 
over to several different components of the operating system. ACLs could be im-
plemented by the kernel on behalf of all the system’s filesystems, by individual 
filesystems, or perhaps by higher-level software such as NFS and CIFS servers. 

In practice, only filesystems can implement ACLs cleanly, reliably, and with ac-
ceptable performance. Hence, ACL support is both OS dependent and filesystem 
dependent. A filesystem that supports ACLs on one system may not support them 
on another, or it may feature a somewhat different implementation managed by 
different commands.

The standard UNIX system calls that manipulate files (open, read, unlink, and so 
on) make no provision for ACLs. However, they continue to work just fine on 
systems that have ACLs because the underlying filesystems do their own permis-
sion checking. Operations that are not allowed by the relevant ACL simply fail 
and return a generic “permission denied” error code.

ACL-aware programs use a separate system call or library routine to read or set 
files’ ACLs. When an operating system first adds support for ACLs, it usually up-
grades common utilities such as ls and cp to be at least minimally ACL-aware (for 
example, by making cp -p preserve ACLs if they are present). In addition, the 
system must add new commands or command extensions to let users read and set 
ACLs from the command line. Unfortunately, these commands are not standard-
ized among operating systems, either.

Because ACL implementations are filesystem specific and because systems sup-
port multiple filesystem implementations, many systems end up supporting mul-
tiple types of ACLs. Even a given filesystem may offer several ACL options, as in 
IBM’s JFS2. If multiple ACL systems are available, the commands to manipulate 
them might be the same or different; it depends on the system.

  



ptg

162 Chapter 6 The Filesystem

ACL support by system

In general, ACL support under UNIX and Linux is currently something of an 
ad hoc mess. Here are some particulars:

• As of this writing (2010), POSIX-based ACL systems have the lead in 
implementation and deployment, but NFSv4 ACLs are rapidly gaining 
ground and will likely become the de facto standard. Currently, only 
Sun’s ZFS and IBM’s JFS2 have native support for NFS4v4 ACLs. 

• Under Linux, POSIX-style ACLs are supported by ReiserFS, XFS, JFS, 
Btrfs, and the ext* family of filesystems. They are usually disabled by 
default; use the -o acl option to mount to turn them on. The getfacl and 
setfacl commands read and manipulate POSIX ACL entries.

• Solaris supports POSIX ACLs on the older UFS filesystem and NFSv4 
ACLs on ZFS. The Solaris versions of ls and chmod have been modified 
to display and edit both types of ACLs.11 Solaris has setfacl and getfacl
commands that are vaguely similar to those found on Linux distribu-
tions, but they’re really just there for compatibility and work only for 
POSIX ACLs.

• HP-UX designed its own ACL system for its High-performance File Sys-
tem (HFS). When HP adopted Veritas’s VxFS as its primary filesystem, it 
also incorporated support for POSIX-style ACLs.12 Unfortunately, the 
two ACL systems are controlled by different sets of commands. HFS is 
now deprecated, but the HFS ACL commands remain behind for com-
patibility. We do not discuss the HFS ACLs in this book.

• AIX’s JFS2 filesystem supports a proprietary ACL system known as 
AIXC. As of AIX 5.3.0, JFS2 also supports NFSv4-style ACLs. AIX uses 
the same commands (aclget, aclput, and acledit) to manipulate both 
types of ACLs, and it provides an aclconvert utility to facilitate migra-
tion from one format to another. We do not discuss AIXC in this book.

POSIX ACLs

POSIX ACLs are supported on many Linux filesystems and on HP-UX’s VxFS 
filesystem port (known as JFS). They are also available under Solaris for the dep-
recated UFS filesystem only. 

11. Make sure that your PATH environment variable puts /bin before /usr/gnu/bin so that you get the 
Solaris-specific versions of ls and chown instead of the GNU versions.

12. In an effort to keep customers disoriented and docile, HP has adopted a strategy of abducting the 
names of existing filesystems and applying them to proprietary products. For example, HP’s HFS was 
so called to facilitate confusion with Apple’s Hierarchical File System, also known as HFS. HP calls its 
VxFS port “JFS” to forestall the possibility that users might distinguish it from IBM’s own unrelated 
JFS filesystem.

  



ptg

Interaction between traditional modes and ACLs 163

Th
e 

Fi
le

sy
st

em

POSIX ACLs are a mostly straightforward extension of the standard 9-bit UNIX 
permission model. Read, write, and execute permission are the only capabilities 
that the ACL system deals with. Embellishments such as the setuid and sticky bits 
are handled exclusively through the traditional mode bits.

ACLs allow the rwx bits to be set independently for any combination of users and 
groups. Table 6.8 shows what the individual entries in an ACL can look like.

Users and groups can be identified by name or by UID/GID. The exact number of 
entries that an ACL can contain varies with the filesystem implementation and 
ranges from a low of 25 with XFS to a virtually unlimited number with ReiserFS 
and JFS. The ext* filesystems allow 32 entries, which is probably a reasonable limit 
for manageability in any case.

Interaction between traditional modes and ACLs
Files with ACLs retain their original mode bits, but consistency is automatically 
enforced and the two sets of permissions can never conflict. The following exam-
ple (which uses the Linux command syntax) demonstrates that the ACL entries 
update automatically in response to changes made with old-style chmod:

$ touch /tmp/example 
$ ls -l /tmp/example 
-rw-rw-r--  1 garth  garth     0 Jun 14 15:57 /tmp/example 
$ getfacl /tmp/example 
getfacl: Removing leading '/' from absolute path names 
# file: tmp/example 
# owner: garth 
# group: garth 
user::rw-
group::rw-
other::r--
$ chmod 640 /tmp/example 
$ getfacl --omit-header /tmp/example 
user::rw-
group::r--
other::---

Table 6.8 Entries that can appear in an access control list

Format Example Sets permissions for

user : :perms user::rw- The file’s owner
user :username: perms user:trent:rw- A specific user
group::perms group::r-x The group that owns the file 
group:groupname :perms group:staff:rw- A specific group 
other : :perms other::--- All others
mask: :perms mask::rwx All but owner and othera

a. Masks are somewhat tricky and are explained later in this section.

  



ptg

164 Chapter 6 The Filesystem

This enforced consistency allows older software with no awareness of ACLs to 
play reasonably well in the ACL world. However, there’s a twist. Even though the 
group:: ACL entry in the example above appears to be tracking the middle set of 
traditional mode bits, that will not always be the case. 

To understand why, suppose that a legacy program clears the write bits within all 
three permission sets of the traditional mode (e.g., chmod ugo-w file). The inten-
tion is clearly to make the file unwritable by anyone. But what if the resulting ACL 
were to look like this?

user::r--
group::r--
group:staff:rw-
other::r--

From the perspective of legacy programs, the file appears to be unmodifiable, yet 
it is actually writable by anyone in group staff. Not good. To reduce the chance of 
ambiguity and misunderstandings, the following rules are enforced:

• The user:: and other:: ACL entries are by definition identical to the 
“owner” and “other” permission bits from the traditional mode. Chang-
ing the mode changes the corresponding ACL entries, and vice versa.

• In all cases, the effective access permission afforded to the file’s owner 
and to users not mentioned in another way are those specified in the 
user:: and other:: ACL entries, respectively.

• If a file has no explicitly defined ACL or has an ACL that consists only of 
one user::, one group::, and one other:: entry, these ACL entries are 
identical to the three sets of traditional permission bits. This is the case 
illustrated in the getfacl example above. (Such an ACL is termed “mini-
mal” and need not actually be implemented as a logically separate ACL.)

• In more complex ACLs, the traditional group permission bits corre-
spond to a special ACL entry called mask rather than the group:: ACL 
entry. The mask limits the access that the ACL can confer upon all
named users, all named groups, and the default group.

In other words, the mask specifies an upper bound on the access that the ACL can 
assign to individual groups and users. It is conceptually similar to the umask, 
except that the ACL mask is always in effect and specifies the allowed permissions 
rather than the permissions to be denied. ACL entries for named users, named 
groups, and the default group can include permission bits that are not present in 
the mask, but the kernel simply ignores them.

As a result, the traditional mode bits can never understate the access allowed by 
the ACL as a whole. Furthermore, clearing a bit from the group portion of the 
traditional mode clears the corresponding bit in the ACL mask and thereby for-
bids this permission to everyone but the file’s owner and those who fall in the 
category of “other.”

  



ptg

Access determination 165

Th
e 

Fi
le

sy
st

em

When the ACL shown in the previous example is expanded to include entries for 
a specific user and group, setfacl automatically supplies an appropriate mask:

$ ls -l /tmp/example 
-rw-r----- 1 garth  garth 0 Jun 14 15:57 /tmp/example 
$ setfacl -m user::r,user:trent:rw,group:admin:rw /tmp/example 
$ ls -l /tmp/example 
-r--rw----+ 1 garth  garth 0 Jun 14 15:57 /tmp/example 
$ getfacl --omit-header /tmp/example 
user::r--
user:trent:rw-
group::r--
group:admin:rw-
mask::rw-
other::---

As seen here, the Linux version of setfacl generates a mask that allows all the 
permissions granted in the ACL to take effect. If you want to set the mask by 
hand, include it in the ACL entry list given to setfacl or use the -n option to pre-
vent setfacl from regenerating it. (The Solaris setfacl defaults to not recalculating 
the mask entry; use the -r flag to regenerate it.)

Note that after the setfacl command, ls -l shows a + sign at the end of the file’s 
mode to indicate that it now has a real ACL associated with it. The first ls -l shows 
no + because at that point the ACL is “minimal.” That is, it is entirely described by 
the 9-bit mode and so does not need to be stored separately.

If you use the traditional chmod command to manipulate the group permissions 
on an ACL-bearing file, be aware that your changes affect only the mask. To con-
tinue the previous example:

$ chmod 770 /tmp/example 
$ ls -l /tmp/example 
-rwxrwx---+ 1 garth  staff    0 Jun 14 15:57 /tmp/example 
$ getfacl --omit-header /tmp/example 
user::rwx 
user:trent:rw-
group::r--
group:admin:rw-
mask::rwx 
other::---

The ls output in this case is misleading. Despite the apparently generous group 
permissions, no one actually has permission to execute the file by reason of group 
membership. To grant such permission, you must edit the ACL itself.

Access determination
When a process attempts to access a file, its effective UID is compared to the UID 
that owns the file. If they are the same, access is determined by the ACL’s user:: 

  



ptg

166 Chapter 6 The Filesystem 

permissions. Otherwise, if a matching user-specific ACL entry exists, permissions 
are determined by that entry in combination with the ACL mask.

If no user-specific entry is available, the filesystem tries to locate a valid group-
related entry that provides the requested access; these entries are processed in 
conjunction with the ACL mask. If no matching entry can be found, the other::
entry prevails.

ACL inheritance
In addition to the ACL entry types listed in Table 6.8, the ACLs for directories can 
include default entries that are propagated to the ACLs of newly created files and 
subdirectories created within them. Subdirectories receive these entries both in 
the form of active ACL entries and in the form of copies of the default entries. 
Therefore, the original default entries may eventually propagate down through 
several layers of the directory hierarchy. 

The connection between the parent and child ACLs does not continue once the 
default entries have been copied. If the parent’s default entries change, the 
changes are not reflected in the ACLs of existing subdirectories.

NFSv4 ACLs

In this section, we discuss the characteristics of NFSv4 ACLs and briefly review 
the Solaris command syntax used to set and inspect them. AIX also supports 
NFSv4 ACLs, but it uses different commands (aclget, aclput, acledit, et al.) for 
this purpose. Rather than belaboring the details of any particular command set, 
we concentrate here on the theory behind the system. Once you understand basic 
principles, the system-specific commands are easy to pick up.

From a structural perspective, NFSv4 ACLs are similar to Windows ACLs. The 
main difference between them lies in the specification of the entity to which an 
access control entry refers. 

In both systems, the ACL stores this entity as a string. For Windows ACLs, the 
string typically contains a Windows security identifier (SID), whereas for NFSv4, 
the string is typically of the form user:username or group:groupname. It can also 
be one of the special tokens owner@, group@, or everyone@. In fact, these latter 
entries are the most common because they correspond to the mode bits found on 
every file.

Systems such as Samba that share files between UNIX and Windows systems must 
provide some way of mapping between Windows and NFSv4 principals.

The Windows and NFSv4 permission model is more granular than the traditional 
UNIX read-write-execute model. The main refinements are as follows:

• NFSv4 distinguishes permission to create files within a directory from 
permission to create subdirectories.

• NFSv4 has a separate “append” permission bit.

  



ptg

NFSv4 ACLs 167

Th
e 

Fi
le

sy
st

em

• NFSv4 has separate read and write permissions for data, file attributes, 
extended attributes, and ACLs.

• NFSv4 controls a user’s ability to change the ownership of a file through 
the standard ACL system. In traditional UNIX, the ability to change the 
ownership of files is usually reserved for root.

Table 6.9 shows the various permissions that can be assigned in the NFSv4 system. 
It also shows the one-letter codes used to represent them and the more verbose 
names displayed and accepted by Solaris’s ls and chmod commands.

Some permissions have multiple names because they are represented by the same 
flag value but are interpreted differently for files and directories. This kind of 
overloading should be familiar from the traditional UNIX permission system. 
(For example, an x in the traditional system indicates execute permission on a 
plain file and “traverse” permission on a directory.)

Although the NFSv4 permission model is fairly detailed, the individual permis-
sions should mostly be self-explanatory. The “synchronize” permission allows a 
client to specify that its modifications to a file should be synchronous—that is, 
calls to write should not return until the data has actually been saved on disk. 

An extended attribute is a named chunk of data that is stored along with a file; 
most modern filesystems support such attributes, although they are not yet widely 
used in the real world. At this point, the predominant use of extended attributes is 

Table 6.9 NFSv4 file permissions

Code Verbose name Permission

r read_data Read data (file) or list directory contents (directory) 
list_directory

w write_data Write data (file) or create file (directory)
add_file

p append_data Append data (file) or create subdirectory (directory) 
add_subdirectory

R read_xattr Read named (“extended”) attributes 
W write_xattr Write named (“extended”) attributes
x execute Execute as a program
D delete_child Delete child within a directory
a read_attributes Read nonextended attributes
A write_attributes Write nonextended attributes
d delete Delete
c read_acl Read access control list
C write_acl Write access control list
o write_owner Change ownership
s synchronize Force writes to complete synchronously

  



ptg

168 Chapter 6 The Filesystem 

to store ACLs themselves. However, the NFSv4 permission model treats ACLs 
separately from other extended attributes.

NFSv4 entities for which permissions can be specified
In addition to the garden-variety user:username and group:groupname specifiers, 
NFSv4 defines several special entities that may be assigned permissions in an 
ACL. Most important among these are owner@, group@, and everyone@, which 
correspond to the traditional categories in the 9-bit permission model.

The NFSv4 specification (RFC3530) defines a few more special entities such as 
dialup@ and batch@. From a UNIX perspective, they’re all a bit peculiar. We are 
not aware of any actual real-world application for these entities; most likely, they 
exist to facilitate compatibility with Windows.

NFSv4 has several differences from POSIX. For one thing, it has no default entity, 
used in POSIX to control ACL inheritance. Instead, any individual access control 
entry (ACE) can be flagged as inheritable (see ACL inheritance, below). NFSv4 
also does not use a mask to reconcile the permissions specified in a file’s mode 
with its ACL. The mode is required to be consistent with the settings specified for 
owner@, group@, and everyone@, and filesystems that implement NFSv4 ACLs 
must preserve this consistency when either the mode or the ACL is updated.

Access determination
In the POSIX ACL system, the filesystem attempts to match the user’s identity to 
the single most appropriate access control entry. That ACE then provides a com-
plete set of controlling permissions for the file. 

The NFSv4 system differs in that an ACE may specify only a partial set of permis-
sions. Each NFSv4 ACE is either an “allow” ACE or a “deny” ACE; it acts more like 
a mask than an authoritative specification of all possible permissions.13 Multiple 
ACEs can apply to any given situation.

When deciding whether to allow a particular operation, the filesystem reads the 
ACL in order, processing ACEs until either all requested permissions have been 
allowed or some requested permission has been denied. Only ACEs whose entity 
strings are compatible with the current user’s identity are considered.

It’s possible for the filesystem to reach the end of an NFSv4 ACL without having 
obtained a definitive answer to a permission query. The NFSv4 standard consid-
ers the result to be undefined, but most real-world implementations will choose to 
deny access, both because this is the convention used by Windows and because it’s 
the only option that makes sense.

13. In addition to “allow” and “deny”, the NFSv4 specification also allows “audit” and “alarm” entries that 
do not affect permission calculations but are potentially useful for logging and security control. The 
exact meaning of these entries is implementation dependent.

  



ptg

NFSv4 ACL viewing in Solaris 169

Th
e 

Fi
le

sy
st

em

ACL inheritance
Like POSIX ACLs, NFSv4 ACLs allow newly created objects to inherit access con-
trol entries from their enclosing directory. However, the NFSv4 system is a bit 
more powerful and a lot more confusing. Here are the important points:

• Any ACE can be flagged as inheritable. Inheritance for newly created 
subdirectories (dir_inherit or d) and newly created files (file_inherit or 
f) are flagged separately. 

• You can apply different access control entries to new files and new direc-
tories by creating separate access control entries on the parent directory 
and flagging them appropriately. You can also apply a single ACE to all 
new child entities (of whatever type) by turning on both the d and f flags.

• From the perspective of access determination, access control entries 
have the same effect on the parent (source) directory whether or not 
they are inheritable. If you want an entry to apply to children but not to 
the parent directory itself, turn on the ACE’s inherit_only (i) flag.

• New subdirectories normally inherit two copies of each ACE: one with 
the inheritance flags turned off, which applies to the subdirectory itself; 
and one with the inherit_only flag turned on, which sets up the new 
subdirectory to propagate its inherited ACEs. You can suppress the cre-
ation of this second ACE by turning on the no_propagate (n) flag on the 
parent directory’s copy of the ACE. The end result is that the ACE prop-
agates only to immediate children of the original directory.

• Don’t confuse the propagation of access control entries with true inheri-
tance. Your setting an inheritance-related flag on an ACE simply means 
that the ACE will be copied to new entities. It does not create any ongo-
ing relationship between the parent and its children. If you later change 
the ACE entries on the parent directory, the children are not updated.

Table 6.10 summarizes these various inheritance flags.

NFSv4 ACL viewing in Solaris
Solaris has integrated its ACL support into ls and chmod, which is a nice ap-
proach and a straightforward extension of the commands’ usual functions. Both 

Table 6.10 NFSv4 ACE inheritance flags

Code Verbose name Meaning

f file_inherit Propagate this ACE to newly created files
d dir_inherit Propagate this ACE to newly created subdirectories
i inherit_only Propagate, but don’t apply to the current directory
n no_propagate Propagate to new subdirectories, but not their children

  



ptg

170 Chapter 6 The Filesystem

POSIX and NFSv4 ACLs are supported in this manner, although here we show 
only NFSv4 examples. The specific flavor of ACLs that you see or set depends on 
the underlying filesystem.

ls -v shows ACL information for filesystem objects. As with -l, you must include 
the -d option if you want to see the ACL for a directory; otherwise ls -v shows the 
ACL of every child of the directory. Here’s a simple (!) example:

solaris$ mkdir /var/tmp/example 
solaris$ ls -dv /var/tmp/example 
drwxr-xr-x 2 garth staff 2 Jan 11 07:19 /var/tmp/example

0:owner@::deny
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory 

/append_data/write_xattr/execute/write_attributes/write_acl 
/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny
3:group@:list_directory/read_data/execute:allow
4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny 
5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

This newly created directory seems to have a complex ACL, but in fact it’s a fake— 
this ACL is just the nine-bit mode shown on the first line of output translated into 
ACLese. It is not necessary for the filesystem to store an actual ACL because the 
ACL and the mode are equivalent. (Such ACLs are termed “trivial.”) If the direc-
tory had an actual ACL, ls would show the mode bits with a + on the end (i.e., 
drwxr-xr-x+) to indicate the presence of the ACL.

Each numbered clause represents one access control entry. The format is
index:entity:permissions:inheritance_flags:type

The index numbers are added by ls for clarity and are not part of the actual ACL. 
They can be used in later chmod commands to identify a specific ACE to be re-
placed or deleted.

The entity can be the keywords owner@, group@, or everyone@, or a form such 
as user:username or group:groupname. 

The type of an ACE is either allow or deny. Theoretically, alarm and audit are 
allowed as well, but ZFS doesn’t implement these features.

Both the permissions and the inheritance_flags are slash-separated lists of options. 
Strangely, ls omits the inheritance_flags field (and one of the colon delimiters) if 
the flags are all turned off, but it does not do the same with the permissions.

For added confusion, ls displays multiple names for the r (read data/list direc-
tory), w (write data/add file), and p (append data/add subdirectory) permission 
bits, as if they were separate permissions. In fact, they are file- and directory-spe-
cific interpretations of the same bits and will always be present or absent together.

  



ptg

Interactions between ACLs and modes 171

Th
e 

Fi
le

sy
st

em

These quirks, together with the use of a colon as a subdivider within the entity
field, make it tricky for scripts to parse ls -v output. If you need to process ACLs 
programmatically, look first for an existing library (such as the Solaris::ACL Perl 
module from the Comprehensive Perl Archive Network (CPAN) that facilitates 
the process. As a last resort, you can use the output of ls -V (described next), since 
this format is more amenable to parsing.

You can obtain a tabular display of ACL entries with ls -V. In this mode, permis-
sions are represented by their one-letter codes as shown in Table 6.9 on page 167. 
All possible bits are displayed for each access control entry; those that are turned 
off are represented by dashes (just as ls displays a file’s traditional mode).

solaris$ ls -dV /var/tmp/example 
drwxr-xr-x 2 garth staff 2 Jan 11 07:19 /var/tmp/example

owner@: ---–----------:-------:deny 
owner@: rwxp---A-W-Co-:-------:allow 
group@: -w-p----------:-------:deny 
group@: r-x-----------:-------:allow

everyone@: -w-p---A-W-Co-:-------:deny 
everyone@: r-x---a-R-c--s:-------:allow

Interactions between ACLs and modes
Several aspects of the translation of modes to ACLs merit further discussion. 
First, note that the group@ and everyone@ ACEs in the example above differ de-
spite the fact that the corresponding clusters in the mode are both r-x. That’s not 
because the translation rules are different for the group@ and everyone@ catego-
ries; rather, it’s because certain permissions can’t really be extrapolated from the 
traditional mode.

These “unspecified” permission bits receive default values through additions to 
the everyone@ ACEs only. The write_xattr, write_attributes, write_acl, and 
write_owner permissions are always denied, and the read_xattr, read_attributes, 
read_acl, and synchronize permissions are always allowed. If you factor out these 
permissions from the everyone@ set, you can see that the remaining ACEs for 
everyone@ are in fact the same as those for group@.

Of course, these “constant” permissions apply only to trivial ACLs. By editing the 
ACL directly, you can set the bits in any combination.

The mode and the ACL must remain consistent, so whenever you adjust one of 
these entities, the other updates automatically to conform to it. ZFS does a good 
job of determining the appropriate mode for a given ACL, but its algorithm for 
generating and updating ACLs in response to mode changes is rudimentary. The 
results aren’t functionally incorrect, but they are often verbose, unreadable, and 
unmaintainable. In particular, the system may generate multiple and seemingly 
inconsistent sets of entries for owner@, group@, and everyone@ that depend on 
evaluation order for their aggregate effect. 

  



ptg

172 Chapter 6 The Filesystem

As a general rule, never touch a file or directory’s mode once you’ve applied an 
ACL. If worse comes to worst, remove the ACL with chmod A- file and start over.

Modifying NFSv4 ACLs in Solaris
Because ZFS enforces consistency between a file’s mode and its ACL, all files have 
at least a trivial ACL (virtual or not). Ergo, ACL changes are always updates. You 
make ACL changes with chmod. The basic syntax is the same as always:

chmod [-R] acl_operation file …

Table 6.11 shows the various types of ACL operations understood by chmod. Un-
fortunately, there is no ACL analog of chmod’s incremental, symbolic syntax for 
manipulating traditional modes. You cannot add or remove individual permis-
sions from an ACE; you must replace the entire entry.

The index numbers referred to in Table 6.11 are those shown by ls -v; they are the 
ordinals of the access control entries, starting at zero. You can encode the ace
fields with either the verbose or one-letter permission names. For example, the 
command

solaris$ chmod A+user:ben:C:allow /var/tmp/example

gives the user ben permission to edit the ACL on the /var/tmp/example directory. 
Remember that access determination is an iterative process that works its way 
down the ACL, so ben retains any rights he had under the previous version of the 
ACL. The new access control entry goes at the start of the ACL (at index zero), so 
the command

solaris$ chmod A0- /var/tmp/example

removes the ACE that was just added and reverts the ACL to its original state.

Table 6.11 ACL operations understood by Solaris’s chmod

Operation Function

A- Replaces the entire ACL with its trivial version from the mode
Aindex- Deletes a single access control entry by position
A-ace Deletes a given access control entry wherever it appears 
Aindex=ace[,ace…] Replaces one or more entire access control entries 
A+ace Adds an access control entry to the top of the ACL 
Aindex+ace[,ace…] Adds access control entries in front of index

  



ptg

Exercises 173

Th
e 

Fi
le

sy
st

em

6.7 EXERCISES

E6.1 What is a umask? Create a umask that would give no permissions to 
the group or the world.

E6.2 What is the difference between hard links and symbolic (soft) links? 
When is it appropriate to use one or the other?

E6.3 What steps would be needed on your system for a Windows NTFS par-
tition to be automatically mounted from a local hard disk? What’s the 
most appropriate mount point for such a partition according to your 
system’s conventions and the conventions in use at your site?

E6.4 When installing a new system, it’s important to set up the system vol-
umes such that each filesystem (/var, /usr, etc.) has adequate space for 
both current and future needs. The Foobar Linux distribution uses the 
following defaults:

/ 2GB 
/var 100MB 
/boot 100MB 
<swap> 2GB 
/usr remaining space

What are some potential problems with this arrangement on a busy 
server box?

E6.5 Why is it a good idea to put some partitions (such as /var, /home, and 
swap) on a separate drive from other data files and programs? What 
about /tmp? Give specific reasons for each of the filesystems listed.

E6.6 Write a script that finds all the hard links on a filesystem.

E6.7 Give commands to accomplish the following tasks.

a) Set the permissions on the file README to read/write for the owner 
and read for everyone else.

b)Turn on a file’s setuid bit without changing (or knowing) the current 
permissions.

c) List the contents of the current directory, sorting by modification 
time and listing the most recently modified file last.

d)Change the group of a file called shared from “user” to “friends”.

E6.8 By convention, the /tmp directory is available to all users who care to 
create files there. What prevents one user from reading or deleting an-
other’s temporary files? What’s to prevent a disgruntled user from fill-
ing up /tmp with junk files? What would be the consequences of such 
an attack?

  



ptg

174

7 Adding New Users

Adding and removing users is a routine chore on most systems. These tasks are 
simple, but they are also boring; most administrators tweak the tools provided 
with the operating system to automate the process and then delegate the actual 
work to an assistant or operator. 

These days we are seeing a resurgence of centralized servers with login accounts 
for hundreds of people in addition to the distributed server with as few as two 
users. Administrators need a thorough understanding of the user account system 
in order to manage network services and to configure accounts appropriately for 
the local computing environment. Often, account management on servers is just 
one piece of the account-provisioning puzzle for an entire enterprise.

Today’s enterprise environments need not just a tool for adding users to specific 
machines, but also a tool for managing users and their myriad accounts and pass-
words across the entire computing environment—an identity management sys-
tem. Directory services such as Microsoft’s Active Directory, OpenLDAP, and Fe-
dora Directory Server are in widespread use, so we’ll detail how these systems 
affect account management tasks. (As usual, myopic Microsoft does not play well 
with others unless you let Active Directory be in charge. Sigh.)

Adding Users

  



ptg

Adding New Users 175

Ad
di

ng
 U

se
rs

Some sites’ needs may exceed the capabilities of even these systems. We do not 
cover the commercial identity management systems but will point you to a few 
candidates. They are probably the right solution for a very large site, especially 
where compliance with regulatory regimes such as HIPAA or Sarbanes-Oxley (in 
the United States) is required. See page 203.

Account hygiene is a key determinant of system security. Infrequently used ac-
counts are prime targets for attackers, as are accounts with easily guessed pass-
words. Even if you use your system’s automated tools to add and remove users, it’s 
important to understand the changes the tools are making. For this reason, we 
start our discussion of account management with the flat files you must modify to 
add users to a single machine.

We then examine the automated tools distributed with each of our example oper-
ating systems and the configuration files that control their behavior. Surprisingly 
(or perhaps, confusingly), the user management tools are called useradd, userdel, 
and usermod on each of our example systems, even though the programs are not 
necessarily the same. (In addition, AIX achieves this naming conformity by wrap-
ping its native mkuser, rmuser, and chuser tools with driver scripts.)

The default useradd tool is actually quite good and should be sufficient for most 
sites’ needs. Unfortunately, userdel is not always as thorough as we would like. 

Most systems also have simple GUI tools for adding and removing users, although 
these tools usually don’t implement a batch mode or advanced localization. They 
are straightforward enough that we don’t think it’s helpful to review their opera-
tion in detail, but we’ll point you to the vendors’ documentation for each tool.

In this chapter, we focus specifically on adding and removing users. Many topics 
associated with user management actually live in other chapters and are only ref-
erenced here. For example, 

• Pluggable authentication modules (PAM) for password encryption and 
the enforcement of strong passwords are covered in Chapter 22, Security. 
See the material on page 908.

• Password vaults for managing passwords are described in Chapter 4, 
Access Control and Rootly Powers (see page 117).

• Directory services such as NIS and OpenLDAP are outlined in Chapter 
19, Sharing System Files, starting on page 728. Some comments on Active 
Directory can also be found in Chapter 30, Cooperating with Windows, 
on page 1154.

• Finally, policy and regulatory issues are major topics of Chapter 32, 
Management, Policy, and Politics.

That said, the next three sections present an overview of the primary files in-
volved in user management.

  



ptg

176 Chapter 7 Adding New Users

7.1 THE /ETC/PASSWD FILE

The /etc/passwd file is a list of users recognized by the system. It can be extended 
or replaced by a directory service, so it’s complete and authoritative only on stand-
alone systems.

The system consults /etc/passwd at login time to determine a user’s UID and 
home directory, among other things. Each line in the file represents one user and 
contains seven fields separated by colons:

• Login name
• Encrypted password placeholder (see page 179)
• UID (user ID) number
• Default GID (group ID) number
• “GECOS” information: full name, office, extension, home phone
• Home directory
• Login shell

For example, the following lines are all valid /etc/passwd entries:
root:x:0:0:The System,,x6096,:/:/bin/sh 
jl:!:100:0:Jim Lane,ECOT8-3,,:/staff/jl:/bin/sh 
dotty:x:101:20::/home/dotty:/bin/tcsh

Encrypted passwords used to live in the second field, but that is no longer safe; 
with fast hardware, they can be cracked (decrypted) in minutes. All versions of 
UNIX and Linux now hide the encrypted passwords by placing them in a separate 
file that is not world-readable. The passwd file contains an x in the encrypted 
password field on Linux, Solaris, and HP-UX and an ! or a * on AIX. (On AIX 
systems, * as a placeholder disables the account.)

The actual encrypted passwords are stored in /etc/shadow on Linux, Solaris, and 
HP-UX and in /etc/security/passwd on AIX. The formats vary.

See page 739 for more 
information about the 
nsswitch.conf file.

If user accounts are shared through a directory service such as NIS or LDAP, you 
might see special entries in the passwd file that begin with + or -. These entries 
tell the system how to integrate the directory service’s data with the contents of 
/etc/passwd. This integration can also be set up in the /etc/nsswitch.conf file 
(/etc/nscontrol.conf on AIX).

The following sections discuss the /etc/passwd fields in more detail.

Login name

See page 728 for 
more information 
about NIS.

Login names (also known as usernames) must be unique and, depending on the 
operating system, may have length and character set restrictions. Table 7.1 shows 
the rules for our example systems. Login names can never contain colons or new-
lines because these characters are used as field separators and entry separators, 

  



ptg

Login name 177

Ad
di

ng
 U

se
rs

respectively. If you use NIS or NIS+, login names are limited to eight characters, 
regardless of the operating system.

Originally, UNIX systems limited the permissible characters to alphanumerics 
and imposed an eight-character length limit. Since the rules for each system tend 
to be different, you should heed the most restrictive limits among your systems to 
avert potential conflicts. Such conservatism will guarantee that users can have the 
same login name on every machine. A combination of eight or fewer lowercase 
letters, numbers, and underscores is universally acceptable.

Login names are case sensitive; however, RFC822 calls for case to be ignored in 
email addresses. We are not aware of any problems caused by mixed-case login 
names, but lowercase names are traditional and also easier to type. Mail problems 
would likely ensue if the login names john and John were different people.

Login names should be easy to remember, so random sequences of letters do not 
make good login names. Avoid nicknames, even if your organization is informal. 
Names like DarkLord and QTPie belong in front of @hotmail.com. Even if your 
users have no self-respect, at least consider your site’s overall credibility.

Since login names are often used as email addresses, it’s useful to establish a stan-
dard way of forming them. It should be possible for users to make educated 
guesses about each other’s login names. First names, last names, initials, or some 
combination of these all make reasonable naming schemes.

Any fixed scheme for choosing login names eventually results in duplicate names 
or names that are too long, so you will sometimes have to make exceptions. 
Choose a standard way of dealing with conflicts, such as adding a number to the 
end. In the case of a long name, you can use your mail system’s aliasing features to 
equate two versions of the name, at least as far as mail is concerned.

It’s common for large sites to implement a full-name email addressing scheme 
(e.g., John.Q.Public@mysite.com) that hides login names from the outside world. 
This is a good idea, but it doesn’t obviate any of the naming advice given above. If 

Table 7.1 Rules for forming login names

System Len Character set First Special rules

Linux 32a a-z0-9_- a-z_ Some distros are more generous
Solaris 8b A-Za-z0-9+.-_ A-Za-z At least one lowercase letter
HP-UX 8 A-Za-z0-9_ A-Za-z
AIX 8c POSIX; no spaces, 

quotes, or #,=/?\
not -@~ Not all uppercase letters

Not “default” or “ALL”

a. Although Linux allows 32 characters, legacy software (e.g., top and rsh) expects 8 or fewer.
b. Is being increased.
c. Can be changed in AIX 5.3 and later, see opposite page.

  



ptg

178 Chapter 7 Adding New Users

for no other reason than the sanity of administrators, it’s best if login names have 
a clear and predictable correspondence to users’ actual names.

Login names should be unique in two senses. First, a user should have the same 
login name on every machine. This rule is mostly for convenience, both yours and 
the user’s. 

Second, a particular login name should always refer to the same person. Com-
mands such as ssh can be set up to validate remote users according to their login 
names. If scott@boulder.colorado.edu and scott@refuge.colorado.edu are two dif-
ferent people, one Scott might be able to log in to the other’s account without 
providing a password if the accounts are set up with relaxed security.

Experience also shows that duplicate names lead to email confusion. The mail 
system might be perfectly clear about which scott is which, but users will often 
send mail to the wrong address.

See page 756 for more 
information about 
mail aliases.

If your site has a global mail alias file, each new login name must be distinct from 
any alias in this file. If it is not, mail will be delivered to the alias rather than the 
new user.

AIX lets you change the maximum login name length with the chdev command. 
The relevant device is called sys0. You can run lsattr -D -l sys0 to list the device’s 
default attributes. Among them is the attribute max_logname, which controls the 
maximum length of login names. The following command shows you only that 
particular attribute:

aix$ lsattr -El sys0 -a max_logname 
max_logname 9 Maximum login name length at boot time True

To adjust the limit, use the following commands. The change takes effect after the 
next reboot.1

aix$ sudo su -
aix# chdev -l sys0 -a max_logname=16

The default length is advertised as nine characters, but AIX’s length specification 
is the size of the buffer and so must accommodate a null character to terminate 
the string. Hence, the actual default limit is eight characters, and our chdev com-
mand sets the limit to 15 characters.

AIX supports multibyte characters (for Asian languages, for example) but recom-
mends against their use. The POSIX portable filename character set is the sug-
gested alternative.

1. At first we could not make this work because we were using sudo (see page 113), and the environment 
variables set up by sudo command are usually different from those resulting from sudo su - and then 
running the command in a separate step. The chdev command cares. New versions (1.70 or later) of 
sudo have the -i flag to address this situation.

  



ptg

Encrypted password 179

Ad
di

ng
 U

se
rs

Encrypted password

Modern systems put a placeholder for the encrypted password in the /etc/passwd
file and then prompt the user for a real password on first login. They also support 
several encryption schemes in addition to the standard UNIX crypt algorithm. 
The encrypted password is tagged to identify the form of encryption used to gen-
erate it. Our example systems support a variety of encryption algorithms: tradi-
tional crypt (based on DES), MD5, Blowfish, and an iterative version of MD5 
inherited from the Apache web server project.

Password length is another important issue and is often determined by the algo-
rithm used for encryption. Table 7.2 shows the default maximum and minimum 
password lengths and the encryption systems available on our example systems. 
Some systems let you type in arbitrarily long passwords but silently truncate them 
to the limit shown in the table.

If you choose to bypass your system’s tools for adding users and edit /etc/passwd
by hand (with vipw, of course—see page 188) to create a new account, put a star 
or an x in the encrypted password field. This measure prevents unauthorized use 
of the account until you or the user has set a real password. Never, ever leave this 
field empty. That introduces a jumbo-sized security hole because no password is 
required to access the account.

MD5 is slightly cryptographically better than the former DES standard used by 
crypt, and the MD5 scheme allows passwords of arbitrary length. Longer pass-
words are more secure—if you actually use them. Some cryptographic weaknesses 
have been demonstrated in MD5, but successful brute-force attacks have been 
mounted against DES. SHA256 and Blowfish are the current cryptographic 
strongmen in this arena. See page 906 for some hints on choosing passwords.

Encrypted passwords are of constant length (34 characters for MD5, 13 for DES) 
regardless of the length of the unencrypted password. Passwords are encrypted in 
combination with a random “salt” so that a given password can correspond to 
many different encrypted forms. If two users happen to select the same password, 

Table 7.2 Password encryption algorithms and length limits

System Min Max Algorithms Where set

Linux 5 8 crypt, MD5, Blowfisha /etc/login.defs

Solaris 6 8b crypt, MD5, Blowfish, SHA256 /etc/security/policy.conf 
/etc/security/crypt.conf

HP-UX 6c 8 crypt /usr/include/limits.hd

AIX 0 8 crypt, MD5 (BSD), Apache Argument to passwd command

a. Blowfish is the default on SUSE and openSUSE systems; most others use MD5.
b. Maximum length depends on the algorithm chosen.
c. Root can set a user’s password to any length.
d. This file contains many, many #ifdef constructs and so is not easy to read and understand.

  



ptg

180 Chapter 7 Adding New Users

this fact usually cannot be discovered by inspection of the encrypted passwords. 
MD5 passwords are easy to spot because they always start with $1$ or $md5$.2

Blowfish passwords start with $2a$ and SHA256 passwords with $5$.

SUSE defaults to Blowfish encryption for new passwords, which is a very reason-
able default. Look for the $2a$ prefix.

OpenSolaris now defaults to SHA256 (prefix $5$), although previous versions 
used MD5 by default. 

UID (user ID) number

The UID identifies the user to the system. Login names are provided for the con-
venience of users, but software and the filesystem use UIDs internally. UIDs are 
usually unsigned 32-bit integers.

See page 105 for a 
description of the 
root account.

By definition, root has UID 0. Most systems also define pseudo-users such as bin 
and daemon to be the owners of commands or configuration files. It’s customary 
to put such fake logins at the beginning of the /etc/passwd file and to give them 
low UIDs and a fake shell (e.g., /bin/false) to prevent anyone from logging in as 
those users. To allow plenty of room for nonhuman users you might want to add 
in the future, we recommend that you assign UIDs to real users starting at 500 or 
higher. (The desired range for new UIDs can be specified in the configuration 
files for useradd.)

See page 697 for more 
information about the 
nobody account.

Another special UID is that of the pseudo-user “nobody”; it is usually assigned a 
high value such as -1 or -2, which as unsigned integers in the UID field are the 
highest and next-highest possible UIDs. The “nobody” login is used when the 
root user on one machine tries to access files that are NFS-mounted from another 
machine that doesn’t trust the first machine.

It’s not a good idea to have multiple accounts with UID 0. While it might seem 
convenient to have multiple root logins with different shells or passwords, this 
setup just creates more potential security holes and gives you multiple logins to 
secure. If people need to have alternate ways to log in as root, you are better off if 
they use a program such as sudo.

Do not recycle UIDs, even when users leave your organization and you delete 
their accounts. This precaution prevents confusion if files are later restored from 
backups, where users may be identified by UID rather than by login name.

UIDs should be kept unique across your entire organization. That is, a particular 
UID should refer to the same login name and the same person on every machine 
that person is authorized to use. Failure to maintain distinct UIDs can result in 
security problems with systems such as NFS and can also result in confusion 
when a user moves from one workgroup to another.

2. $1$ is the tag for the BSD MD5 algorithm; Sun uses its own MD5 implementation and tags it $md5$.

  



ptg

GECOS field 181

Ad
di

ng
 U

se
rs

It can be hard to maintain unique UIDs when groups of machines are adminis-
tered by different people or organizations. The problems are both technical and 
political. The best solution is to have a central database or directory server that 
contains a record for each user and enforces uniqueness. A simpler scheme is to 
assign each group within an organization a range of UIDs and let each group 
manage its own set. This solution keeps the UID spaces separate but does not 
address the parallel issue of unique login names.

LDAP is becoming a popular management tool for UIDs and user account infor-
mation. It is briefly outlined in this chapter starting on page 202 and is covered 
more thoroughly in Chapter 19, Sharing System Files, starting on page 728.

Default GID number

Like a UID, a group ID number is a 32-bit integer. GID 0 is reserved for the group 
called root or system. As with UIDs, the system uses several predefined groups for 
its own housekeeping. Alas, there is no consistency among vendors. For example, 
the group bin has GID 1 on Red Hat and SUSE and GID 2 on Ubuntu, Solaris, 
HP-UX, and AIX.

In ancient times, when computing power was expensive, groups were used for 
accounting purposes so that the right department could be charged for your sec-
onds of CPU time, minutes of login time, and kilobytes of disk used. Today, 
groups are used primarily to share access to files.

See page 153 for more 
information about set-
gid directories.

The /etc/group file defines the groups, with the GID field in /etc/passwd provid-
ing a default (or “effective”) GID at login time. The default GID is not treated 
specially when access is determined; it is relevant only to the creation of new files 
and directories. New files are normally owned by your effective group, but if you 
want to share files with others in a project group, you must then remember to 
manually change the files’ group owner.

To facilitate collaboration, you can set the setgid bit (02000) on a directory or 
mount filesystems with the grpid option. Both of these measures make newly cre-
ated files default to the group of their parent directory.

GECOS field

The GECOS field is sometimes used to record personal information about each 
user. It has no well-defined syntax. Although you can use any formatting conven-
tions you like, the finger command interprets comma-separated GECOS entries 
in the following order:

• Full name (often the only field used)
• Office number and building
• Office telephone extension
• Home phone number

  



ptg

182 Chapter 7 Adding New Users

See page 728 for 
more information 
about LDAP.

The chfn command lets users change their own GECOS information.3 chfn is 
useful for keeping things like phone numbers up to date, but it can be misused. 
For example, a user can change the information to be either obscene or incorrect. 
Some systems can be configured to restrict which fields chfn can modify; most 
college campuses disable it entirely. On most systems chfn understands only the 
/etc/passwd file, so if you use LDAP or some other directory service for login 
information, chfn may not work at all. 

On AIX, chfn accepts a -R module flag which loads the specified module to per-
form the actual update. The available modules are in /usr/lib/security and in-
clude one that deals with LDAP.

Home directory

A user’s home directory is his or her default directory at login time. Be aware that 
if home directories are mounted over a network filesystem, they may be unavail-
able in the event of server or network problems. If the home directory is missing 
at login time, the system prints a message such as “no home directory”4 and puts 
the user in /. On Linux, if /etc/login.defs sets DEFAULT_HOME to no, the login is 
not allowed to continue.

Login shell

The login shell is normally a command interpreter such as the Bourne shell or the 
C shell (/bin/sh or /bin/csh), but it can be any program. sh is the traditional de-
fault for UNIX, and bash (the GNU “Bourne again” shell) is the default for Linux 
and Solaris. AIX defaults to ksh, the Korn shell. tcsh is an enhanced C shell with 
command editing. On Linux systems, sh and csh are really just links to bash and 
tcsh, respectively.

Some systems permit users to change their shell with the chsh command, but as 
with chfn, this command may not work if you are using LDAP or some other 
directory service to manage login information. If you use the /etc/passwd file, a 
sysadmin can always change a user’s shell by editing the passwd file with vipw.

Linux supports the chsh command and limits changes to shells listed in the file 
/etc/shells. SUSE enforces the /etc/shells list, but Red Hat just warns you if the 
selected shell is not on the list. If you add entries to the shells file, be sure to use 
absolute paths since chsh and other programs expect them.

On AIX systems, users can change their shells with chsh and are given a long list 
of shells to choose from.5 The file /etc/security/login.cfg is the authoritative list 

3. Except on Solaris, where chfn does not exist. The superuser can change a user’s finger information 
with passwd -g.

4. This message appears when you log in on the console or on a terminal, but not when you log in 
through a display manager such as xdm, gdm, or kdm. Not only will you not see the message, but you 
will generally be logged out immediately because of the display manager’s inability to write to the 
proper directory (e.g., ~/.gnome).

5. Use the chsec command to change files in /etc/security rather than editing them directly.

  



ptg

The /etc/shadow and /etc/security/passwd files 183

Ad
di

ng
 U

se
rs

of vetted shells. /etc/shells contains just a subset of these and is used only by the 
FTP daemon, in.ftpd. Many of the shells in the long list are just hard links to a 
single binary. For example sh, ksh, rksh, psh, and tsh (both in /bin and /usr/bin) 
are all the same program—it changes its behavior depending on the name it was 
called with. As with chfn, chsh takes an -R module flag to accommodate LDAP 
and other directory service systems. 

On Solaris, only the superuser can change a user’s shell (using passwd -e). The file 
/etc/shells (which doesn’t exist by default, although its man page does) contains a 
list of permitted shells.

7.2 THE /ETC/SHADOW AND /ETC/SECURITY/PASSWD FILES

A shadow password file is readable only by the superuser and serves to keep en-
crypted passwords safe from prying eyes and password cracking programs. It also 
includes some additional account information that wasn’t provided for in the 
original /etc/passwd format. These days, shadow passwords are the default on 
nearly all systems.

IBM calls the file that stores the encrypted passwords /etc/security/passwd, while 
the rest of the world calls it /etc/shadow. The formats and contents are, of course, 
different. We’ll look at /etc/shadow first.

The shadow file is not a superset of the passwd file, and the passwd file is not 
generated from it. You must maintain both files or use tools such as useradd that 
maintain both files on your behalf. Like /etc/passwd, /etc/shadow contains one 
line for each user. Each line contains nine fields, separated by colons:

• Login name
• Encrypted password
• Date of last password change
• Minimum number of days between password changes
• Maximum number of days between password changes
• Number of days in advance to warn users about password expiration
• Linux: Days after password expiration that account is disabled 

Solaris/HP-UX: Days before account automatically expires
• Account expiration date
• A reserved field that is currently always empty, except on Solaris

Only the values for the username and password are required. Absolute date fields 
in /etc/shadow are specified in terms of days (not seconds) since Jan 1, 1970, 
which is not a standard way of reckoning time on UNIX or Linux systems. How-
ever, you can convert from seconds to days since the UNIX epoch with

solaris$ expr ‘date +%s‘ / 864006

6. There are 86,400 seconds in a day: 60 * 60 * 24.

  



ptg

184 Chapter 7 Adding New Users

A typical shadow entry looks like this:
millert:$md5$em5J8hL$a$iQ3pXe0sakdRaRFyy7Ppj.:14469:0:180:14: : :

Here is a more complete description of each field:

• The login name is the same as in /etc/passwd. This field connects a 
user’s passwd and shadow entries.

• The encrypted password is identical in concept and execution to the one 
previously stored in /etc/passwd; a fake Solaris MD5 password is shown.

• The last change field records the time at which the user’s password was 
last changed. This field is filled in by the passwd command.

• The fourth field sets the number of days that must elapse between pass-
word changes. The idea is to force authentic changes by preventing users 
from immediately reverting to a familiar password after a required 
change. However, we think this feature could be somewhat dangerous 
when a security intrusion has occurred. We suggest setting this field to 0.

• The fifth field sets the maximum number of days allowed between pass-
word changes. This feature allows the administrator to enforce password 
aging; see page 906 for more information. Under Linux, the actual 
enforced maximum number of days is the sum of this field and the sev-
enth (grace period) field.

• The sixth field sets the number of days before password expiration that 
login should begin to warn the user of the impending expiration.

• Solaris and HP-UX differ from Linux in their interpretation of the sev-
enth field. Under Linux, the seventh field specifies how many days after 
the maximum password age has been reached to wait before treating the 
login as expired. 

The Solaris/HP-UX behavior is as follows: If a user has not logged in 
within the number of days specified in the seventh field, the account is 
disabled. Disused accounts are a favorite target of hackers, and this fea-
ture attempts to give you a way to take such accounts “off the market.” 
However, it only works if the user can be found in the /var/adm/lastlog
file; users that have never logged in will not be automatically disabled. 
Ergo, this feature does not really work in a networked environment 
because each host has its own lastlog file.

• The eighth field specifies the day (in days since Jan 1, 1970) on which the 
user’s account will expire. The user may not log in after this date until 
the field has been reset by an administrator. If the field is left blank, the 
account will never expire.

On Linux you can use usermod to set the expiration field; it takes dates 
in the format yyyy-mm-dd. Solaris’s usermod also computes days since 

  



ptg

The /etc/shadow and /etc/security/passwd files 185

Ad
di

ng
 U

se
rs

the epoch. It accepts dates in about 30 formats specified in /etc/datemsk, 
but alas, not in the yyyy-mm-dd format used by Linux.

• The ninth field is reserved for future use. Linux and HP-UX honor this 
use, but Solaris uses the last 4 bits to count failed login attempts.

Let’s look again at our example shadow line:
millert:$md5$em5J8hL$a$iQ3pXe0sakdRaRFyy7Ppj.:14469:0:180:14: : :

In this example, the user millert last changed his password on August 13, 2009. 
The password must be changed again within 180 days, and millert will receive 
warnings that the password needs to be changed for the last two weeks of this 
period. The account does not have an expiration date.

On Solaris, HP-UX, and Linux you can use the pwconv utility to reconcile the 
contents of the shadow file to those of the passwd file, picking up any new addi-
tions and deleting users that are no longer listed in passwd. On Linux, pwconv
fills in most of the shadow parameters from defaults specified in /etc/login.defs.

Root on Solaris can use the command passwd -f username to force a user to 
change his or her password at the time of next login. This feature is useful if you 
regularly run crack to discover poorly-chosen (insecure) passwords. (Under Li-
nux, that same -f flag lets users change their finger information.)

AIX does not use the term shadow passwords, but it does use the same concept. 
AIX’s encrypted passwords are stored in the /etc/security/passwd file in a totally 
different format from that of the /etc/passwd file. Here’s an example from a virgin 
AIX install, where the password algorithm defaults to crypt:7

trent: 
password = u10.OaYxRx4qI 
lastupdate = 1224876639 
flags = ADMCHG

evi:
password = PiIr2qOPabZ.Q 
lastupdate = 1235785246 
flags =

The format should be self-explanatory. One or more blank lines separates entries. 
This same format is used for most AIX configuration files in /etc/security, with 
the username generalized to whatever object is being controlled or logged.

AIX provides a zillion knobs to control all aspects of logins and passwords. Some 
options are user oriented and some are port oriented (to control the TTY ports on 
which a given user can log in). See the comments in /etc/security/login.cfg and 
/etc/security/user for details. One handy command is pwdadm, which lets you 
force a user to change his or her password at next login.

7. Changing to a stronger encryption algorithm should be high on your to-do list for new AIX boxes.

  



ptg

186 Chapter 7 Adding New Users

7.3 THE /ETC/GROUP FILE

The /etc/group file contains the names of UNIX groups and a list of each group’s 
members. Here’s a portion of the group file from an AIX system:

system:!:0:root,pconsole,esaadmin 
staff:!:1:ipsec,esaadmin,trent,ben,garth,evi 
bin:!:2:root,bin 
sys:!:3:root,bin,sys 
adm:!:4:bin,adm 
nobody:!:4294967294:nobody,lpd

Each line represents one group and contains four fields:

• Group name
• Encrypted password or a placeholder 
• GID number
• List of members, separated by commas (be careful not to add spaces)

As in /etc/passwd, fields are separated by colons. Group names should be limited 
to eight characters for compatibility, although many systems do not actually re-
quire this. It is possible to enter a group password to allow users not belonging to 
a group to enter it with the newgrp command, but this is rarely done. Only Linux 
has real support for group passwords.8 A password can be set with the gpasswd
command; the encrypted form is stored in the /etc/gshadow file. Group pass-
words are rarely, if ever, used.

As with usernames and UIDs, group names and GIDs should be kept consistent 
among machines that share files through a network filesystem. Consistency can 
be hard to maintain in a heterogeneous environment since different operating 
systems use different GIDs for the same group names.

We’ve found that the best way to deal with this issue is to avoid using a system 
group as the default login group for a user. Some systems use group ownership 
together with the permission bits to control the execution of commands. GID in-
consistencies among systems play havoc with site-wide systems for updating and 
installing software.

If a user defaults to a particular group in /etc/passwd but does not appear to be in 
that group according to /etc/group, /etc/passwd wins the argument. The group 
memberships granted at login time are really the union of those found in the 
passwd and group files.

Some systems limit the number of groups a user can belong to. Eight groups used 
to be a common limit, but it is now 16 on Solaris, 20 on HP-UX, and seemingly 
unlimited on AIX and Linux.

8. To set a group password under Solaris, you have to use passwd and cut and paste into /etc/group. 
There is no /etc/gshadow or equivalent file.

  



ptg

Adding users: the basic steps 187

Ad
di

ng
 U

se
rs

To minimize the potential for collisions with vendor-supplied GIDs, we suggest 
starting local groups at GID 500 or higher.

The UNIX tradition was originally to add new users to a group that represents 
their general category such as “students” or “finance.” However, this convention 
increases the likelihood that users will be able to read one another’s files because 
of slipshod permission setting, even if that is not really the intention of the files’ 
owner. To avoid this problem, we prefer to create a unique group for each user. 
You can use the same name for both the user and the group. You can also make 
the GID the same as the UID.

The useradd utilities on all of our Linux distributions except SUSE default to 
placing users in their own personal groups. The UNIX systems default to putting 
all new users in the same group, but their useradds can be configured to support 
personal groups, too.

A user’s personal group should contain only that user. If you want to let users 
share files by way of the group mechanism, create separate groups for that pur-
pose. The idea behind personal groups is not to discourage the use of groups per 
se—it’s simply to establish a more restrictive default group for each user so that 
files are not shared inadvertently. You can also approach this goal through the 
shell’s umask command (see page 158).

Linux, Solaris, and HP-UX all supply commands that create, modify, and delete 
groups: groupadd, groupmod, groupdel. AIX instead expects you to modify the 
/etc/group file with a text editor. However, it does provide the grpck command to 
check the file’s syntax.

7.4 ADDING USERS: THE BASIC STEPS

Before you create an account for a new user at a corporate, government, or educa-
tional site, it’s important that the user sign and date a copy of your local user 
agreement and policy statement. (What?! You don’t have a user agreement and 
policy statement? See page 1215 for more information about why you need one 
and what to put in it.)

Users have no particular reason to want to sign a policy agreement, so it’s to your 
advantage to secure their signatures while you still have some leverage. We find 
that it takes more effort to secure a signed agreement after an account has been 
released. If your process allows for it, have the paperwork precede the creation of 
the account. 

Mechanically, the process of adding a new user consists of several steps required 
by the system, two steps that establish a useful environment for the new user, and 
several extra steps for your own convenience as an administrator.

  



ptg

188 Chapter 7 Adding New Users

Required:

• Have the new user sign your policy agreement.
• Edit the passwd and shadow files to define the user’s account.
• Add the user to the /etc/group file (not really necessary, but nice).
• Set an initial password.
• Create, chown, and chmod the user’s home directory.
• Configure roles and permissions (if you use RBAC; see page 190).

For the user:

• Copy default startup files to the user’s home directory.
• Set the user’s mail home and establish mail aliases.

For you:

• Verify that the account is set up correctly.
• Add the user’s contact information and account status to your database.

This list cries out for a script or tool, and fortunately each of our example systems 
provides one in the form of a useradd command.

You must be root to add a user, or on AIX, you must have UserAdmin privileges. 
This is a perfect place to use sudo; see page 113.

Editing the passwd and group files

If you have to add a user by hand, use vipw to edit the passwd and shadow files. 
Although it sounds vi-centric, it actually uses your favorite editor as defined in 
the EDITOR environment variable. More importantly, it locks the file so that your 
editing and a user’s password change operations do not collide. 

On Solaris, and Red Hat systems, vipw automatically asks if you would like to edit 
the shadow file after you have edited the passwd file. SUSE and Ubuntu systems 
use vipw -s for this function. 

Both HP-UX and AIX recommend that you not edit the password file by hand, 
with or without vipw (it is not even installed on AIX), but rather use useradd or 
their do-it-all sysadmin tools smh and SMIT, respectively. Our detailed coverage 
of useradd starts on page 191.

If the new user should be a member of more groups than just the default group 
specified in the passwd file, you must edit the /etc/group file and add the user’s 
login name to each of the additional groups.

Setting a password

Rules for selecting 
good passwords are 
given on page 111.

Never leave a new account—or any account that has access to a shell—without a 
password. Password complexity can be enforced with configuration files; see the 
vendor-specific sections toward the end of this chapter to see which files and vari-
ables apply to your operating systems. Set a password for the new user with

  



ptg

Creating the home directory and installing startup files 189

Ad
di

ng
 U

se
rs

$ sudo passwd newusername

You’ll be prompted for the actual password. Some automated systems for adding 
new users do not require you to provide an initial password. Instead, they force 
the user to set a password on first login. Although this feature is convenient, it’s a 
giant security hole: anyone who can guess new login names (or look them up in 
/etc/passwd) can swoop down and hijack the accounts before the intended users 
have had a chance to log in.

Creating the home directory and installing startup files

You can create the new user’s home directory with a simple mkdir. You’ll need to 
set ownerships and permissions on the new directory as well, but this is best done 
after you’ve installed any local startup files.

Startup files traditionally begin with a dot and end with the letters rc, short for 
“run command,” a relic of the CTSS operating system. The initial dot causes ls to 
hide these “uninteresting” files from directory listings unless the -a option is used.

We recommend that you provide default startup files for each shell that is popular 
on your systems so that users continue to have a reasonable default environment if 
they change shells. Table 7.3 lists some common startup files.

Table 7.3 Common startup files and their uses

Command Filename Typical uses

sh .profile Sets search path, terminal type and environment

basha .bashrc Sets the terminal type (if needed) 
Sets biff and mesg switches

.bash_profile Sets up environment variables 
Sets command aliases 
Sets the search path 
Sets the umask value to control permissions 
Sets CDPATH for filename searches 
Sets the PS1 (prompt) and HISTCONTROL variables

csh/tcsh .login Similar to .bashrc for csh 

.cshrc Similar to .login for csh

vi/vim .exrc/.vimrc Sets vi/vim editor options

emacs .emacs Sets emacs editor options and key bindings

mail/mailx .mailrc Defines personal mail aliases 
Sets mail reader options (original UNIX mail client)

GNOME .gconf GNOME environment: user configuration via gconf 

.gconfpath Path for additional user configuration via gconf

KDE .kde/ KDE environment: directory of configuration files

a. bash also reads .profile or /etc/profile in emulation of sh.

  



ptg

190 Chapter 7 Adding New Users

Sample startup files are traditionally kept in /etc/skel (Linux, Solaris, HP-UX) or 
/etc (all systems). AIX, always a bit different, stashes them in /etc/security. If you 
customize your vendor’s startup file examples, /usr/local/etc/skel is a reasonable 
place to put the modified copies. Linux also keeps tidbits of startup files in the 
/etc/profile.d directory, where shells look for pointers on coloring the output of ls
to make it unreadable on a dark background, or the path to Kerberos binaries.

Depending on the user’s shell, /etc may contain system-wide startup files that are 
processed before the user’s own startup files. For example, bash and sh read 
/etc/profile before processing ~/.profile and ~/.bash_profile. These files are a 
good place in which to put site-wide defaults, but bear in mind that users can 
override your settings in their own startup files. For details on other shells, see the 
man page for the shell in question.

Be sure to set a reasonable default value for umask; we suggest 077, 027, or 022, 
depending on the friendliness and size of your site. If you do not use individual 
groups, we recommend umask 077 because it gives the owner full access but the 
group and the rest of the world no access. See page 158 for details on umask.

The startup files and directories listed for the GNOME and KDE desktop environ-
ments are just the tip of the iceberg. gconf is a tool that stores application prefer-
ences for programs run under GNOME, much like the Windows registry.

Setting permissions and ownerships

Now that the home directory is set up, turn it over to the user and make sure that 
the permissions on it are appropriate. The command

$ sudo chown -R newuser:newgroup ~newuser

should set ownerships properly. Note that you cannot use
$ sudo chown newuser:newgroup ~newuser/.* 

to chown the dot files because newuser would then own not only his own files but 
also the parent directory “..” (e.g., /home) as well. This is a common and danger-
ous mistake.

Setting a mail home

It is convenient for each user to receive email on only one machine. This scheme 
is often implemented with an entry in the global aliases file /etc/mail/aliases or 
the sendmail userDB on the central mail server. See Chapter 20 for general infor-
mation about email.

Configuring roles and administrative privileges

Role-based access control (RBAC) allows system privileges to be tailored for indi-
vidual users and is available on many of our example systems. RBAC is not a tra-
ditional part of the UNIX or Linux access control model, but if your site uses it, 

  



ptg

Adding users with useradd 191

Ad
di

ng
 U

se
rs

role configuration must be a part of the process of adding users. RBAC is covered 
in detail starting on page 108 in the Access Control and Rootly Powers chapter.

See Chapter 32 for 
more information 
about SOX and GLBA

Legislation such as the Sarbanes-Oxley Act and the Gramm-Leach-Bliley Act in 
the United States has complicated many aspects of system administration in the 
corporate arena, including user management. Roles may be your only viable op-
tion for fulfilling some of the SOX/GLBA requirements. 

Final steps

To verify that a new account has been properly configured, first log out, then log 
in as the new user and execute the following commands:

$ pwd /* To verify the home directory */ 
$ ls -la /* To check owner/group of startup files */

You will need to notify new users of their login names and initial passwords. 
Many sites send this information by email, but for security reasons that’s usually 
not a good idea. Do it in person or over the phone, unless you are adding 500 new 
freshmen to the campus’s CS-1 machines. Then, punt the problem to the instruc-
tor! This is also a good time to point users toward additional documentation on 
local customs if you have any.

See page 1227 for more 
information about 
written user contracts.

If your site requires users to sign a written policy agreement or appropriate use 
policy, be sure this step has been completed before releasing the account. This 
check will prevent oversights and strengthen the legal basis of any sanctions you 
might later need to impose.

Remind new users to change their passwords immediately. If you wish, you can 
enforce this by setting the password to expire within a short time. Another option 
is to have a script check up on new users and be sure their encrypted passwords in 
the shadow file have changed.9

In an environment in which you know the users personally, it’s relatively easy to 
keep track of who’s using a system and why. If you manage a large and dynamic 
user base, however, you’ll need a more formal way to keep track of accounts. 
Maintaining a database of contact information and account statuses will help you 
figure out who someone is and why they have an account once the act of creating 
the account has faded from memory.

7.5 ADDING USERS WITH USERADD

Each system’s useradd implements the same basic procedure outlined above. 
However, it is configurable, and you will probably want to customize it to fit your 
environment. Since each system has its own idea of what you should customize, 
where you should implement the customizations, and what the default behavior 
should be, we cover these details in vendor-specific sections.

9. Because the same password can have many encrypted representations, this method verifies only that 
the user has reset the password, not that it has actually been changed to a different password.

  



ptg

192 Chapter 7 Adding New Users

Table 7.4 is a handy summary of commands and configuration files related to 
managing users. Each of our example systems has a suite of commands for manip-
ulating users, usually at least useradd, usermod, and userdel. Since the com-
mands are all configured similarly, we show useradd as representative of all three 
and supplement its entry with other system-specific commands.

Please note that although each vendor has named its tools useradd, etc., the tools 
themselves are different from system to system.

useradd on Ubuntu

Ubuntu provides two ways to add users: adduser and useradd. adduser is a Perl 
wrapper for useradd that is a bit more helpful (makes home directories, copies in 
startup files, etc.).

Table 7.4 Commands and configuration files for user management

System Cmds Configuration files Comments

Ubuntu useradd /etc/login.defs 
/etc/default/useradd

adduser /etc/adduser.conf Friendlier Perl version

SUSE useradd /etc/login.defs 
/etc/default/useradd 
/etc/default/passwd 
/usr/sbin/useradd.local 
/usr/sbin/userdel.local 
/usr/sbin/userdel-pre.local 
/usr/sbin/userdel-post.local 

For local customizations 
For local customizations 
For local customizations 
For local customizations

Red Hat useradd /etc/login.defs 
/etc/default/useradd

Solaris useradd /etc/default/{login,passwd} 
/etc/security/policy.conf 

HP-UX useradd /etc/default/useradd 
/etc/default/security

smh GUI tool, also called sam

AIX useradd /etc/security/user 
/etc/security/login.cfg 
/etc/security/mkuser.defaulta 

mkuser Called by useradd

chuser Called by usermod

rmuser Called by userdel

SMIT GUI tool

a. This file is in /usr/lib/security on older AIX systems.

  



ptg

useradd on Red Hat 193

Ad
di

ng
 U

se
rs

adduser is configured in /etc/adduser.conf, which includes options such as these: 

• Rules for locating home directories: by group, by username, etc.
• Permission settings for new home directories
• UID and GID ranges for system users and general users
• An option to create individual groups for each user
• Disk quotas (Boolean only, unfortunately)
• Regex-based matching of usernames and group names

Other typical useradd parameters, such as rules for passwords, are set as parame-
ters to the PAM module that does regular password authentication. (See page 908 
for a discussion of PAM, aka Pluggable Authentication Modules.) adduser has a 
twin addgroup and cousins deluser and delgroup.

useradd on SUSE

SUSE’s useradd does not create a new user’s home directory or copy in startup 
files by default. You must request these niceties with the -m flag. (The startup files 
come from /etc/skel.) Nor does useradd create a mail spool file for new users.

SUSE’s useradd also does not create user-specific groups; the default GID in the 
passwd file is set by the variable GROUP in /etc/default/useradd. New users are 
also added to the groups specified by the GROUPS variable. By default, these are 
the groups video and dialout, which allow access to the system’s frame buffer and 
the dialup IP software pppd. 

To make up for these deficiencies, SUSE’s useradd calls /usr/sbin/useradd.local, 
a bash script to which you can add whatever customizations you wish.

The /etc/login.defs file on SUSE controls the following types of issues:

• Whether to allow logins if a user’s home directory does not exist
• Degree of tolerance (delay and lockout) for failed login attempts
• Location of the “message of the day” and ttytype (terminal type) files
• Restrictions on the use of chsh and chfn
• Password aging
• Ranges of system and user UIDs and GIDs
• Rules for forming valid user and group names
• Users’ umasks (the default is 022)
• Local scripts that piggyback on the useradd and userdel commands

Both the man page for login.defs and the comments in the file itself do a good job 
of describing the various parameters and their meanings.

useradd on Red Hat

The useradd program on Red Hat Enterprise Linux takes its configuration pa-
rameters from /etc/login.defs, where issues such as password aging controls, en-
cryption algorithms, mail spool files, and UID/GID ranges are addressed. The 
comments in the file do a good job of explaining the various parameters.

  



ptg

194 Chapter 7 Adding New Users

useradd -D displays the defaults that useradd will use for new logins. Those de-
faults are set in the file /etc/default/useradd. On Red Hat, new users are placed in 
their own individual groups. The passwd file entry uses “x” as a password place-
holder, and the shadow file uses “!!”, a code that disables the login and requires a 
sysadmin to set a password for the new user. MD5 encryption is the default. A 
new user’s home directory is populated with startup files from /etc/skel.

useradd on Solaris

On Solaris, some of the default parameters related to logins and passwords are 
stored in /etc/default/login and /etc/default/passwd; others are built into the 
useradd command itself. useradd -D shows the default values for several param-
eters. With additional flags, it can be used to reset some of those defaults.

The format of the default/login and default/passwd files is similar to that of Li-
nux’s login.defs file in that blank lines and lines beginning with # are ignored, and 
each noncomment line assigns a value to a variable. However, the syntax is 

NAME=value

rather than
NAME <white-space> value

The /etc/default/passwd file controls the following:

• Minimum password length
• Password aging
• Required password complexity
• Checking for crackable passwords

/etc/default/login controls issues such as these:

• The time zone
• Limits on the size of files a user can create
• Whether root can log in only on the console
• Whether a password is required for each user
• Handling of failed login attempts
• Users’ initial search path
• Users’ default umask (defaults to 022)
• Whether to log root and failed logins through syslog

The files /etc/security/policy.conf and /etc/security/crypt.conf determine the 
encryption algorithms that can be used for passwords.

useradd on HP-UX

By default, HP-UX’s useradd command does not create home directories or put 
the user in an individual group. However, with the -m option, useradd does cre-
ate home directories and populate them with startup files from /etc/skel. 

  



ptg

useradd on AIX 195

Ad
di

ng
 U

se
rs

Configuration parameters for useradd are set in the files /etc/default/useradd
and /etc/default/security, with the useradd file adopting the Linux-style format 
of NAME <white-space> value and the security using the Solaris NAME=value
style. Geez, HP, make up your mind! The syntax should be clear from other en-
tries in each file, but if you use the wrong form, the variable you tried to set will be 
silently ignored. No syntax error message is generated.

The /etc/default/useradd file controls options such as:

• Default group and shell
• Root of the home directory tree
• Account expiration
• Whether to create home directories
• Whether to allow duplicate UIDs

The file /etc/default/security contains additional configuration parameters, some 
of which relate to user management:

• Whether to allow logins with a missing home directory
• Whether to allow null passwords
• Minimum password length
• Handling of failed login attempts
• Handling of inactive accounts
• Default umask for new users (default 027)

The variable names in this file are long and well-chosen to explain exactly what 
each variable controls.

useradd on AIX

AIX’s useradd is really just a ksh wrapper for its native AIX equivalent, mkuser. 
Likewise, usermod invokes chuser, and userdel calls rmuser. Man pages exist for 
these commands under both their original names and their rest-of-the-world-
compliant names.

Configuration files control numerous aspects of logins and passwords and are 
kept in the /etc/security directory. There are three relevant files: login.cfg, user,
and mkuser.default. The first two use the * as a comment character; the third has 
no comments. These files are organized in stanzas of the following form:

label: 
attribute = value 
next-attribute = value

next-label: 
attribute = value

For example, in the /etc/security/user file, the labels are usernames (or the word 
default); the possible attributes are shown in Table 7.5 on the next page.

  



ptg

196 Chapter 7 Adding New Users

Whew, what a list! Comments in the file often give the default values, which are 
fairly reasonable for a low-security installation. We recommend changing a few:

• Change umask from 022 to 077.
• Change loginretries from 0 (unlimited) to a small integer, say 5.
• Change minlen from 0 (no password OK) to at least 6 or 7.
• Change expires from 0 (never) to a year (only if you have a tool to 

refresh the expiration dates on valid users periodically).
See page 908 for 
more information 
about PAM.

Unfortunately, that’s just one of the configuration files that controls a new user’s 
login. The file /etc/security/login.cfg contains parameters to control bad logins 
(the delay inserted between prompts for the login and password, the number of 
bad logins allowed before disabling the account, how long to disable the account, 
when to reinstate it, etc.), the times at which logins are allowed, the prompt to 
print when requesting the user’s password, a list of valid shells, the maximum per-
missible number of simultaneous logins, the length of time to wait for a user pass-
word, the type of login authorization to use (here is where you would specify 

Table 7.5 User account options in /etc/security/user (AIX)

Option Type Meaning

account_locked Boolean Prevents login if true
admin Boolean Gives admin privileges if true
auth1 Method list Primary authentication method
auth2 Method list Secondary authentication method
dictionlist Filenames Dictionaries that must exclude passwords
expires Date Expiration date of the user account
histexpire Weeks Period when a user cannot reuse a pwd
histsize Number # of previous pwds that can’t be reused
login Boolean Can log in? Good for logins like bin
loginretries Number # of login tries before account is locked
logintimes Time range Limits when the user can log in
maxexpired Weeks Grace period for expired pwds
maxrepeats Number # of times a character can appear in pwd 
minage, maxage Weeks Minimum and maximum age of a pwd
minalpha Number Minimum # of alpha characters in pwd
mindiff Chars # of old pwd chars allowed in new pwd
minlen Number Minimum length of pwd (don’t set to 0)
minother Number Minimum # of nonalpha character in pwd
pwdchecks Filenames Functions to call to check for safe pwds
pwdwarntime Days Grace period warning user to change pwd
rlogin Boolean Can user rlogin or telnet to this account?
su Boolean Can other users su to this account?
ttys Device list Terminals on which this user can log in
umask Octal Default permissions for user-created files

  



ptg

Adding users in bulk with newusers (Linux) 197

Ad
di

ng
 U

se
rs

PAM10 if you were to use it), and the password encryption algorithm (the default 
is crypt). Infinitely, perhaps pathologically, configurable. And to confuse you fur-
ther, some parameters appear in both files, sometimes with the same name (e.g., 
logintimes) and sometimes with different names (loginretries vs. logindisable). 
Yikes! Clutter and complexity galore.

useradd on AIX does not provide a -D option to show the default values for new 
users. It puts new users in a single group and does not create their home directo-
ries unless invoked with the -m flag (in which case it also copies in a .profile file 
from the /etc/security directory).

useradd example

To create a new user “hilbert” using the system defaults on a Linux system, you 
could simply run

$ sudo useradd hilbert

This command would create the following entry in /etc/passwd:
hilbert:x:1005:20::/home/hilbert:/bin/sh

useradd disables the account by putting an x in the password field. You must as-
sign a real password to make the account usable.

A more realistic example is shown below. We specify that hilbert’s primary group 
should be “faculty” and that he should also be added to the “famous” group. We 
override the default home directory location and shell, and ask useradd to create 
the home directory if it does not already exist:

$ sudo useradd -c "David Hilbert" -d /home/math/hilbert -g faculty -G 
famous -m -s /bin/tcsh hilbert

This command creates the following passwd entry:
hilbert:x:1005:30:David Hilbert:/home/math/hilbert:/bin/tcsh

The assigned UID is one higher than the highest UID on the system, and the 
corresponding shadow entry is

hilbert:!:14322:0:99999:7:0::

The password placeholder character(s) in the passwd and shadow file vary de-
pending on the operating system. useradd also adds hilbert to the appropriate 
groups in /etc/group, creates the directory /home/math/hilbert, and populates it 
from the /etc/skel directory.

7.6 ADDING USERS IN BULK WITH NEWUSERS (LINUX)

Linux’s newusers creates multiple accounts at one time from the contents of a text 
file. It’s pretty gimpy, but it can be handy when you need to add a lot of users at 

10. PAM is a relatively recent addition to AIX; it should be fully functional in versions 5.3 and later.

  



ptg

198 Chapter 7 Adding New Users

once, such as when creating class-specific accounts. newusers expects an input 
file of lines just like the /etc/passwd file, except that the password field contains 
the initial password in clear text. Oops… better protect that file.

newusers honors the password aging parameters set in the /etc/login.defs file, 
but it does not copy in the default startup files as useradd does. The only startup 
file it provides is .xauth.

At a university, what’s really needed is a batch adduser script that can use a list of 
students from enrollment or registration data to generate the input for newusers, 
with usernames formed according to local rules and guaranteed to be locally 
unique, with strong passwords randomly generated, and with UIDs and GIDs in-
creasing for each user. You’re probably better off writing your own wrapper for 
useradd in Perl or Python than in trying to get newusers to do what you need.

7.7 REMOVING USERS

When a user leaves your organization, that user’s login account and files should be 
removed from the system. This procedure involves the removal of all references to 
the login name that were added by you or your useradd program. If you remove a 
user by hand, you may want to use the following checklist:

• Remove the user from any local user databases or phone lists.
• Remove the user from the aliases file or add a forwarding address.
• Remove the user’s crontab file and any pending at jobs or print jobs.
• Kill any of the user’s processes that are still running.
• Remove the user from the passwd, shadow,11 group, and gshadow files.
• Remove the user’s home directory.
• Remove the user’s mail spool.
• Clean up entries on shared calendars, room reservation systems, etc.
• Delete or transfer ownership of any mailing lists run by the deleted user.

Before you remove someone’s home directory, be sure to relocate any files that are 
needed by other users. You usually can’t be sure which files those might be, so it’s 
always a good idea to make an extra backup of the user’s home directory and mail 
spool before deleting them.

Once you have removed a user, you may want to verify that the user’s old UID no 
longer owns files on the system. To find the paths of orphaned files, you can use 
the find command with the -nouser argument. Because find has a way of “escap-
ing” onto network servers if you’re not careful, it’s usually best to check filesystems 
individually with -xdev:

$ sudo find filesystem -xdev -nouser

Killing the deleted user’s running processes can be tricky in a distributed environ-
ment. Shared calendars and room reservation systems may have ongoing items 

11. /etc/security/{passwd,group} on AIX

  



ptg

Removing users 199

Ad
di

ng
 U

se
rs

scheduled by the now-defunct user that are suddenly orphaned and need to be 
cleaned up. There are probably several more places in your environment where 
the user needs to be removed—make your own list, perhaps in the form of a 
cleanup script.

If your organization assigns individual workstations to users, it’s generally sim-
plest and most efficient to reimage the entire system from a master template be-
fore turning the system over to a new user. Before you do the reinstallation, how-
ever, it’s a good idea to back up any local files on the system’s hard disk in case they 
are needed in the future.

Each of our example systems has a userdel command that automates the process 
of removing a user. It will probably not do quite as thorough a job as you might 
like, unless you have religiously added functionality to it as you expanded the 
number of places where user-related information is stored.

Ubuntu’s deluser is a Perl script that calls the usual userdel; it undoes all the 
things adduser does. It calls deluser.local, if it exists, to provide for easy localiza-
tion. The configuration file /etc/deluser.conf lets you set options such as these:

• Whether to remove the user’s home directory and mail spool
• Whether to back up the user’s files, and where to put the backup
• Whether to remove all files owned by the user
• Whether to delete a group if it now has no members

SUSE supports a set of pre- and postexecution scripts as well as a userdel.local
script that assists userdel and helps you make the default tools aware of your local 
customs. Configure it in /etc/login.defs.

Red Hat has the userdel.local script but no pre- and postexecution scripts to au-
tomate things like backing up the about-to-be-removed user’s files. 

Solaris and AIX have some extra crevices in which they stash user info, primarily 
in the files that control roles and authorization classes. Therefore, these systems’ 
userdel commands have a bit more work to do to remove all references to a de-
leted user. 

For example, in addition to the /etc/passwd and /etc/group file, Solaris’ userdel
updates /etc/shadow, /etc/project, and /etc/user_attr. AIX’s userdel touches the 
following files in the /etc/security directory: user, user.roles, lastlog, environ, 
audit/config, limits, passwd, and group. Solaris is not as thorough as one might 
like: its userdel left a test login with a profile configured in user_attr that should 
have been cleaned up.

HP-UX’s userdel is a ho-hum, run-of-the-mill-type guy who removes the changes 
made by useradd. It touches only the passwd, shadow, and group files.

  



ptg

200 Chapter 7 Adding New Users

7.8 DISABLING LOGINS

On occasion, a user’s login must be temporarily disabled. A straightforward way 
to do this is to put a star or some other character in front of the user’s encrypted 
password in the /etc/security/passwd (AIX) or /etc/shadow file. This measure 
prevents most types of password-regulated access because the password no longer 
decrypts to anything sensible. Commands such as ssh that do not necessarily 
check the system password may continue to function, however. 

On all our Linux distributions, the usermod -L user and usermod -U user com-
mands provide an easy way to lock and unlock passwords. They are just shortcuts 
for the password twiddling described above: the -L puts an ! in front of the en-
crypted password in the /etc/shadow file, and the -U removes it.

Root on Solaris can lock an account with passwd -l loginname, force a user to 
change his or her password with the -f flag, or unlock the account with -u. Lock-
ing an account adds *LK* to the password field of /etc/shadow. This is also the 
value set by useradd for new users.

HP-UX supports only crypt-encoded passwords. The * character can never be-
long to a crypt-generated password field, so adding a * to the encrypted password 
prevents the user from logging in.

On AIX, if the password placeholder field of /etc/passwd contains a * instead of 
an !, the account is locked. AIX’s pwdadm command can force a user to change 
his or her password, or it can lock the account so that only an administrator can 
change the password.

Unfortunately, modifying a user’s password simply makes logins fail. It does not 
notify the user of the account suspension or explain why the account no longer 
works. An alternative way to disable logins is to replace the user’s shell with a 
program that prints an explanatory message and supplies instructions for rectify-
ing the situation. The program then exits, terminating the login session.

This approach has both advantages and disadvantages. Any forms of access that 
check the password but do not pay attention to the shell will not be disabled. To 
facilitate the “disabled shell” trick, many daemons that provide nonlogin access to 
the system (e.g., ftpd) check to see if a user’s login shell is listed in /etc/shells and 
deny access if it is not. This is the behavior you want. Unfortunately, it’s not uni-
versal, so you may have to do some fairly comprehensive testing if you decide to 
use shell modification as a way of disabling accounts.

Another issue is that your carefully written explanation of the suspended account 
might never be seen if the user tries to log in through a window system or through 
a terminal emulator that does not leave output visible after a logout.

By default, sendmail will not deliver mail to a user whose shell does not appear in 
/etc/shells. It’s a bad idea to interfere with the flow of mail, even if the recipient is 

  



ptg

Centralizing account management 201

Ad
di

ng
 U

se
rs

not able to read it immediately. You can defeat sendmail’s default behavior by 
adding a fake shell named /SENDMAIL/ANY/SHELL/ to the /etc/shells file.

7.9 MANAGING USERS WITH SYSTEM-SPECIFIC TOOLS

HP-UX and AIX provide a comprehensive system administration tool that knows 
how to manage users, at least in a rudimentary fashion. In AIX it’s SMIT, the Sys-
tem Management Interface Tool, and in HP-UX it’s now called smh, the System 
Management Homepage. (It was called sam, the System Administration Manager, 
in earlier HP-UX releases.) Each of these tools has screens for adding and manag-
ing users, either with a windows-based GUI or with a terminal interface based on 
the curses library. If you are a brand new sysadmin or an old hand on a new and 
different operating system, these tools are a reasonable place to start for many of 
the common sysadmin tasks.

AIX’s smitty has a handy feature: if you hit F6, it shows you the command and 
arguments that it is planning to execute. It also logs all interactions and keeps a 
script file of the commands it executed on your behalf. This can be a good learn-
ing tool as you become familiar with AIX’s quirks. HP-UX’s smh has nice single-
character shortcuts for its curses interface. They are shown on each menu page so 
you can quickly get to the command you need.

7.10 REDUCING RISK WITH PAM

Pluggable Authentication Modules (PAM), are covered in the Security chapter 
starting on page 908. They centralize the management of the system’s authentica-
tion facilities through standard library routines so that programs like login, sudo, 
passwd, and su do not have to supply their own tricky authentication code. PAM 
reduces the risk inherent in writing secured software, allows administrators to set 
site-wide security policies, and defines an easy way to add new authentication 
methods to the system.

Adding and removing users doesn’t involve twiddling the PAM configuration, but 
the tools involved operate under PAM’s rules and constraints. In addition, many 
of the PAM configuration parameters are similar to those used by useradd or 
usermod. If you change a parameter as described in this chapter and useradd
doesn’t seem to be paying attention to it, check to see if the system’s PAM configu-
ration is overriding your new value.

7.11 CENTRALIZING ACCOUNT MANAGEMENT

Some form of centralized account management is essential for medium-to-large 
enterprises of all types, be they corporate, academic, or governmental. Users need 
the convenience and security of a single login name, UID, and password across 
the site. Administrators need a centralized system that allows changes (such as 
account revocations) to be instantly propagated everywhere.

  



ptg

202 Chapter 7 Adding New Users

Such centralization can be achieved in a variety of ways, most of which (including 
Microsoft’s Active Directory system) involve LDAP, the Lightweight Directory 
Access Protocol, in some capacity. Options range from bare-bones LDAP installa-
tions based on open source software to elaborate commercial identity manage-
ment systems that come with a hefty price tag.

LDAP and Active Directory

See the section starting 
on page 728 for more 
information about 
LDAP and LDAP 
implementations.

LDAP is a generalized, database-like repository that can store user management 
data as well as other types of data. It uses a hierarchical client/server model that 
supports multiple servers as well as multiple simultaneous clients. One of LDAP’s 
big advantages as a site-wide repository for login data is that it can enforce unique 
UIDs and GIDs across systems. It also plays well with Windows, although the 
reverse is only marginally true.

Microsoft’s Active Directory uses LDAP and Kerberos and can manage lots of 
kinds of data including user information. It’s a bit egotistical and wants to be the 
boss if it is interacting with UNIX or Linux LDAP repositories. If you need a sin-
gle authentication system for a site that includes Windows desktops as well as 
UNIX and Linux systems, it is probably easiest to let Active Directory be in con-
trol and to use your UNIX LDAP databases as secondary servers. 

To implement this configuration, you will need Active Directory and Microsoft’s 
Services for UNIX, or a commercial Active Directory integration platform such as 
Quest Authentication Services (formerly Vintela Authorization Services). Sun’s 
Virtual Directory can help to glue together several different authorization/authen-
tication systems.

Each of our example systems has LDAP support built in, although sometimes just 
the client side (HP-UX, for example). LDAP is often coupled with PAM for per-
forming authentication.

LDAP is a database, so the information stored there must fit a well-defined 
schema. Schemas are expressed as XML files, with the field names coming from 
the relevant RFCs, primarily RFC2307 for user management data. See Chapter 19, 
Sharing System Files, for the nitty-gritty details.

Single sign-on systems

Single sign-on (SSO) systems balance user convenience with security issues. The 
idea is that a user can sign on once (to a login prompt, web page, or Windows box) 
and be authenticated at that time. The user then obtains authentication creden-
tials (usually implicitly, so that no active management is required), which can 
then be used to access other machines and applications. The user only has to re-
member one login and password sequence instead of many.

This scheme allows credentials to be more complex (since the user does not need 
to remember or even deal with them), which theoretically increases security. 
However, the impact of a compromised account is greater because one login gives 

  



ptg

Identity management systems 203

Ad
di

ng
 U

se
rs

an attacker access to multiple machines and applications. SSO systems make 
walking away from a desktop machine while you are still logged in a significant 
vulnerability. In addition, the authentication server becomes a critical bottleneck. 
If it’s down, all useful work grinds to a halt across the enterprise.

Although SSO is a simple idea, it implies a lot of back-end complexity because the 
various applications and machines that a user might want to access must under-
stand the authentication process and SSO credentials. Kerberos manages users’ 
credentials in some SSO systems; it is covered in more detail in the Security chap-
ter, starting on page 924.

Several open source SSO systems exist:

• JOSSO, an open source SSO server written in Java
• CAS, the Central Authentication Service, from Yale (also Java)
• Likewise Open, an integration tool that makes Microsoft Active Direc-

tory play nice with Linux and UNIX systems

A host of commercial systems are also available, most of them integrated with 
identity management suites, which are covered in the next section.

Identity management systems

“Identity management” is the latest buzzword in user management. In plain lan-
guage, it means identifying the users of your systems, authenticating their identi-
ties, and granting privileges based on those authenticated identities. The stan-
dardization efforts in this realm are led by the World Wide Web Consortium and 
by The Open Group.

Commercial identity management systems combine several key UNIX concepts 
into a warm and fuzzy GUI replete with marketing jargon. Fundamental to all 
such systems is a database of user authentication and authorization data, often 
stored in LDAP format. Control is achieved with concepts such as UNIX groups, 
and limited administrative privileges are enforced through tools such as sudo. 
Most such systems have been designed with an eye toward regulatory require-
ments of accountability, tracking, and audit trails.

There are many commercial systems in this space: Oracle’s Identity Management, 
Sun Identity Management Suite,12 Courion, Avatier Identity Management Suite 
(AIMS), and BMC Identity Management Suite, to name a few. In evaluating iden-
tity management systems, look for the following features:

• Generation of globally unique user IDs

• The ability to create, change, and delete user accounts across the enter-
prise, on all types of hardware and operating systems

12. Now that Oracle has purchased Sun, it’s unclear if this system will survive as a product after the 
merger is complete.

  



ptg

204 Chapter 7 Adding New Users

• A secure web interface for management that’s accessible both inside and 
outside the enterprise

• The ability to easily display all users who have a certain set of privileges

• An easy way to see all the privileges granted to a particular user

• The ability to let users change (and reset) their own passwords, with 
enforcement of rules for picking strong passwords

• The ability for users to change their passwords globally in one operation

• A workflow engine; for example, tiered approvals before a user is given 
certain privileges

• The ability to coordinate with a personnel database to automatically 
delete access for employees who are terminated or laid off

• Configurable logging of all changes and administrative actions

• Configurable reports based on logging data (by user, by day, etc.)

• Role-based access control, including user account provisioning by role

• An interface through which hiring managers can request that accounts 
be provisioned according to role

• Exceptions to role-based provisioning, including a workflow for the 
approval of exceptions

Consider also how the system is implemented at the point at which authorizations 
and authentications actually take place. Does the system require a custom agent to 
be installed everywhere, or does it conform itself to the underlying systems?

7.12 RECOMMENDED READING

“The Complete Buyer’s Guide for Identity Management.” Sun Microsystems white 
paper. 2008. sun.systemnews.com/articles/129/4/sec/20930.

  



ptg

Exercises 205

Ad
di

ng
 U

se
rs

7.13 EXERCISES

E7.1 How is a user’s default group determined? How would you change it?

E7.2 Explain the differences among the following umask values: 077, 027, 
022, and 755. How would you set one of these values as a site-wide de-
fault for new users? Can you impose a umask standard on your users?

E7.3 What is the purpose of the shadow password file?

E7.4 Determine what authentication system the login program on your sys-
tem uses. If it uses PAM, determine what other programs on the system 
also use PAM.

E7.5 List the steps needed to add a user to a system without using useradd. 
What extra steps are needed for your local environment?

E7.6 Determine the naming convention for new users at your site. What are 
the rules? How is uniqueness preserved? Can you think of any draw-
backs? How are users removed?

E7.7 Find a list of names (from a local on-line telephone directory, perhaps) 
and use it as the input to a script that forms login names according to 
the naming convention at your site. How many users can you accom-
modate before you have a collision? How many collisions are there 
overall? Use the data to evaluate your site’s naming convention, and 
suggest improvements.

E7.8 Write a script to help monitor the health of your /etc/passwd file. (Parts 
b and e require root access unless you’re clever.)

a) Find any entries that have UID 0.
b)Find any entries that have no password (needs /etc/shadow).
c) Find any sets of entries that have duplicate UIDs.
d)Find any entries that have duplicate login names.
e) Find any entries that have no expiration date (needs /etc/shadow).

E7.9 Write a PAM module to perform authentication by randomly generat-
ing a PIN code, sending it to the user’s cell phone as an SMS message, 
and prompting the user to enter the PIN code for verification. Install 
your module and configure it into the PAM login stack to achieve two-
factor authentication.

  



ptg

206

8 Storage

UNIX storage is looking more and more like a giant set of Lego blocks that you 
can put together in an infinite variety of configurations. What will you build? A 
fighter jet? A dump truck? An advanced technology helicopter with air bags and a 
night-vision camera?

Traditional hard disks remain the dominant medium for on-line storage, but 
they’re increasingly being joined by solid state drives (SSDs) for performance-
sensitive applications. Running on top of this hardware are a variety of software 
components that mediate between the raw storage devices and the filesystem hier-
archy seen by users. These components include device drivers, partitioning con-
ventions, RAID implementations, logical volume managers, systems for virtualiz-
ing disks over a network, and the filesystem implementations themselves.

In this chapter, we discuss the administrative tasks and decisions that occur at 
each of these layers. We begin with “fast path” instructions for adding a basic disk 
to each of our example systems. We then review storage-related hardware technol-
ogies and look at the general architecture of storage software. We then work our 
way up the storage stack from low-level formatting up to the filesystem level. 
Along the way, we cover disk partitioning, RAID systems, logical volume manag-
ers, and systems for implementing storage area networks (SANs).

Storage

  



ptg

Linux recipe 207

St
or

ag
e

Although vendors all use standardized disk hardware, there’s a lot of variation 
among systems in the software domain. Accordingly, you’ll see a lot of vendor-
specific details in this chapter. We try to cover each system in enough detail that 
you can at least identify the commands and systems that are used and can locate 
the necessary documentation.

8.1 I JUST WANT TO ADD A DISK!

Before we launch into many pages of storage architecture and theory, let’s first 
address the most common scenario: you want to install a hard disk and make it 
accessible through the filesystem. Nothing fancy: no RAID, all the drive’s space in 
a single logical volume, and the default filesystem type.

Step one is to attach the drive and reboot. Some systems allow hot-addition of 
disk drives, but we don’t address that case here. Beyond that, the recipes differ 
slightly among systems.

Regardless of your OS, it’s critically important to identify and format the right disk 
drive. A newly added drive is not necessarily represented by the highest-num-
bered device file, and on some systems, the addition of a new drive can change the 
device names of existing drives. Double-check the identity of the new drive by 
reviewing its manufacturer, size, and model number before you do anything that’s 
potentially destructive.

Linux recipe

Run sudo fdisk -l to list the system’s disks and identify the new drive. Then run 
any convenient partitioning utility to create a partition table for the drive. For 
drives 2TB and below, install a Windows MBR partition table. cfdisk is the easiest 
utility for this, but you can also use fdisk, sfdisk, parted, or gparted. Larger disks 
require a GPT partition table, so you must partition with parted or its GNOME 
GUI, gparted. gparted is a lot easier to use but isn’t usually installed by default.

Put all the drive’s space into one partition of unspecified or “unformatted” type. 
Do not install a filesystem. Note the device name of the new partition before you 
leave the partitioning utility; let’s say it’s /dev/sdc1.

Next, run the following command sequence, selecting appropriate names for the 
volume group (vgname), logical volume (volname), and mount point. (Examples 
of reasonable choices: homevg, home, and /home.)

$ sudo pvcreate /dev/sdc1 # Prepare for use w/LVM
$ sudo vgcreate vgname /dev/sdc1 # Create volume group 
$ sudo lvcreate -l 100%FREE -n volname vgname # Create logical volume 
$ sudo mkfs -t ext4 /dev/vgname/volname # Create filesystem
$ sudo mkdir mountpoint # Create mount point
$ sudo vi /etc/fstab # Set mount opts, mntpoint

  



ptg

208 Chapter 8 Storage

In the /etc/fstab file, copy the line for an existing filesystem and adjust it. The 
device to be mounted is /dev/vgname/volname. If your existing fstab file identifies 
volumes by UUID, replace the UUID=xxx clause with the device file; UUID iden-
tification is not necessary for LVM volumes. 

Finally, run sudo mount mountpoint to mount the filesystem.

See page 224 for more details on Linux device files for disks. See page 236 for 
partitioning information and page 251 for logical volume management. The ext4 
filesystem family is discussed starting on page 255.

Solaris recipe

Run sudo format and inspect the menu of known disks to identify the name of 
the new device. Let’s say it’s c9t0d0. Type <Control-C> to abort.

Run zpool create poolname c9t0d0. Choose a simple poolname such as “home” or 
“extra.” ZFS creates a filesystem and mounts it under /poolname.

See page 225 for more details on disk devices in Solaris. See page 264 for a general 
overview of ZFS.

HP-UX recipe

Run sudo ioscan -fNn -C disk to identify the device files for the new disk; let’s say 
they are /dev/disk/disk4 and /dev/rdisk/disk4.

Next, run the following command sequence, selecting appropriate names for the 
volume group (vgname), logical volume (volname), and mount point. (An exam-
ple of reasonable choices: homevg, home, and /home.)

$ sudo pvcreate /dev/rdisk/disk4 # Prepare for use w/LVM
$ sudo vgcreate vgname /dev/disk/disk4 # Create volume group
$ vgdisplay vgname # View VG stats
…
Free PE freespace # Note this value
… 
$ sudo lvcreate -l freespace -n volname vgname # Create logical volume
$ sudo mkfs /dev/vgname/volname # Create filesystem
$ sudo mkdir mountpoint # Create mount point dir
$ sudo vi /etc/fstab # Set mounting options

In the /etc/fstab file, copy the line for an existing filesystem and adjust it. The 
device to be mounted is /dev/vgname/volname. 

Finally, run sudo mount mountpoint to mount the filesystem.

See page 225 for more details on HP-UX disk device files. See page 251 for logical 
volume management information. The VxFS filesystem is discussed starting on 
page 256.

  



ptg

Storage hardware 209

St
or

ag
e

AIX recipe

Run lsdev -C -c disk to see a list of the disks the system is aware of, then run lspv
to see which disks are already set up for volume management. The device that 
appears in the first list but not the second is your new disk. Let’s say it’s hdisk1.

Next, run the following command sequence, selecting appropriate names for the 
volume group (vgname), logical volume (volname), and mount point. (Examples 
of reasonable choices: homevg, home, and /home.)

$ sudo mkvg -y vgname hdisk1 # Create volume group
$ lsvg vgname # Note freespace value
…
MAX LVs: 256 FREE PPs: 325 (freespace megabytes)
… 
$ sudo crfs -v jfs2 -g vgname -m mountpoint -a size=freespaceM 
$ sudo mkdir mountpoint 
$ sudo mount mountpoint

See page 226 for more details on AIX disk device files, and see page 253 for AIX 
logical volume management information. The JFS2 filesystem is discussed start-
ing on page 257.

8.2 STORAGE HARDWARE

See page 301 for a 
summary of current 
tape technologies.

Even in today’s post-Internet world, there are only a few basic ways to store com-
puter data: hard disks, flash memory, magnetic tapes, and optical media. The last 
two technologies have significant limitations that disqualify them from use as a 
system’s primary filesystem. However, they’re still commonly used for backups 
and for “near-line” storage—cases in which instant access and rewritability are not 
of primary concern.

After 40 years of hard disk technology, system builders are finally getting a practi-
cal alternative in the form of solid state disks (SSDs). These flash-memory-based 
devices offer a different set of tradeoffs from a standard disk, and they’re sure to 
exert a strong influence over the architectures of databases, filesystems, and oper-
ating systems in the years to come. 

At the same time, traditional hard disks are continuing their exponential increases 
in capacity. Twenty years ago, a 60MB hard disk cost $1,000. Today, a garden-
variety 1TB drive runs $80 or so. That’s 200,000 times more storage for the money, 
or double the MB/$ every 1.15 years—nearly twice the rate predicted by Moore’s 
Law. During that same period, the sequential throughput of mass-market drives 
has increased from 500 kB/s to 100 MB/s, a comparatively paltry factor of 200. 
And random-access seek times have hardly budged. The more things change, the 
more they stay the same.

A third—hybrid—category, hard disks with large flash-memory buffers, was 
widely touted a few years ago but never actually materialized in the marketplace. 
It’s not clear to us whether the drives were delayed by technical, manufacturing, or 

  



ptg

210 Chapter 8 Storage

marketing concerns. They may yet appear on the scene, but the implications for 
system administrators remain unclear.

See page 14 for more 
information on IEC 
units (gibibytes, etc.).

Disk sizes are specified in gigabytes that are billions of bytes, as opposed to mem-
ory, which is specified in gigabytes (gibibytes, really) of 230 (1,073,741,824) bytes. 
The difference is about 7%. Be sure to check your units when estimating and com-
paring capacities.

Hard disks and SSDs are enough alike that they can act as drop-in replacements 
for each other, at least at the hardware level. They use the same hardware inter-
faces and interface protocols. And yet they have different strengths, as summa-
rized in Table 8.1. Performance and cost values are as of mid-2010.

In the next sections, we take a closer look at each of these technologies.

Hard disks

A typical hard drive contains several rotating platters coated with magnetic film. 
They are read and written by tiny skating heads that are mounted on a metal arm 
that swings back and forth to position them. The heads float close to the surface 
of the platters but do not actually touch.

Reading from a platter is quick; it’s the mechanical maneuvering needed to ad-
dress a particular sector that drives down random-access throughput. There are 
two main sources of delay.

First, the head armature must swing into position over the appropriate track. This 
part is called seek delay. Then, the system must wait for the right sector to pass 
underneath the head as the platter rotates. That part is rotational latency. Disks 
can stream data at tens of MB/s if reads are optimally sequenced, but random 
reads are fortunate to achieve more than a few MB/s.

A set of tracks on different platters that are all the same distance from the spindle 
is called a cylinder. The cylinder’s data can be read without any additional move-
ment of the arm. Although heads move amazingly fast, they still move much 

Table 8.1 Comparison of hard disk and SSD technology

Characteristic HD SSD

Size Terabytes Gigabytes 
Random access time 8ms 0.25ms
Sequential read 100 MB/s 250 MB/s
Random read 2 MB/s 250 MB/s
Cost $0.10/GB $3/GB
Reliability Moderate Unknown
Limited writes No Yes

  



ptg

Hard disks 211

St
or

ag
e

slower than the disks spin around. Therefore, any disk access that does not require 
the heads to seek to a new position will be faster.

Rotational speeds have increased over time. Currently, 7,200 RPM is the mass-
market standard for performance-oriented drives, and 10,000 RPM and 15,000 
RPM drives are popular at the high end. Higher rotational speeds decrease latency 
and increase the bandwidth of data transfers, but the drives tend to run hot.

Hard disks fail frequently. A 2007 Google Labs study of 100,000 drives surprised 
the tech world with the news that hard disks more than two years old had an 
average annual failure rate (AFR) of more than 6%, much higher than the failure 
rates manufacturers predicted based on their extrapolation of short-term testing. 
The overall pattern was a few months of infant mortality, a two-year honeymoon 
of annual failure rates of a few percent, and then a jump up to the 6%–8% AFR 
range. Overall, hard disks in the Google study had less than a 75% chance of sur-
viving a five-year tour of duty.

Interestingly, Google found no correlation between failure rate and two environ-
mental factors that were formerly thought to be important: operating temperature 
and drive activity. The complete paper can be found at tinyurl.com/fail-pdf.

Disk failures tend to involve either platter surfaces (bad blocks) or the mechanical 
components. The firmware and hardware interface usually remain operable after 
a failure, so you can query the disk for details (see page 230).

Drive reliability is often quoted by manufacturers in terms of mean time between 
failures (MTBF), denominated in hours. A typical value for an enterprise drive is 
around 1.2 million hours. However, MTBF is a statistical measure and should not 
be read to imply that an individual drive will run for 140 years before failing.

MTBF is the inverse of AFR in the drive’s steady-state period—that is, after break-
in but before wear-out. A manufacturer’s MTBF of 1.2 million hours corresponds 
to an AFR of 0.7% per year. This value is almost, but not quite, concordant with 
the AFR range observed by Google (1%–2%) during the first two years of their 
sample drives’ lives. 

Manufacturers’ MTBF values are probably accurate, but they are cherry-picked 
from the most reliable phase of each drive’s life. MTBF values should therefore be 
regarded as an upper bound on reliability; they do not predict your actual ex-
pected failure rate over the long term. Based on the limited data quoted above, 
you might consider dividing manufacturers’ MTBFs by a factor of 7.5 or so to 
arrive at a more realistic estimate of five-year failure rates.

Hard disks are commodity products, and one manufacturer’s model is much like 
another’s, given similar specifications for spindle speed, hardware interface, and 
reliability. These days, you need a dedicated qualification laboratory to make fine 
distinctions among competing drives.

  



ptg

212 Chapter 8 Storage

Solid state disks

SSDs spread reads and writes across banks of flash memory cells, which are indi-
vidually rather slow in comparison to modern hard disks. But because of parallel-
ism, the SSD as a whole meets or exceeds the bandwidth of a traditional disk. The 
great strength of SSDs is that they continue to perform well when data is read or 
written at random, an access pattern that’s predominant in real-world use. 

Storage device manufacturers like to quote sequential transfer rates for their prod-
ucts because the numbers are impressively high. But for traditional hard disks, 
these sequential numbers have almost no relationship to the throughput observed 
with random reads and writes. For example, Western Digital’s high-performance 
Velociraptor drives can achieve nearly 120 MB/s in sequential transfers, but their 
random read results are more on the order of 2 MB/s. By contrast, Intel’s current-
generation SSDs stay above 30 MB/s for all access patterns. 

This performance comes at a cost, however. Not only are SSDs more expensive 
per gigabyte of storage than are hard disks, but they also introduce several new 
wrinkles and uncertainties into the storage equation.

Each page of flash memory in an SSD (typically 4KiB on current products) can be 
rewritten only a limited number of times (usually about 100,000, depending on 
the underlying technology). To limit the wear on any given page, the SSD firm-
ware maintains a mapping table and distributes writes across all the drive’s pages. 
This remapping is invisible to the operating system, which sees the drive as a lin-
ear series of blocks. Think of it as virtual memory for storage.

A further complication is that flash memory pages must be erased before they can 
be rewritten. Erasing is a separate operation that is slower than writing. It’s also 
impossible to erase individual pages—clusters of adjacent pages (typically 128 
pages or 512KiB) must be erased together. The write performance of an SSD can 
drop substantially when the pool of pre-erased pages is exhausted and the drive 
must recover pages on the fly to service ongoing writes.

Rebuilding a buffer of erased pages is harder than it might seem because filesys-
tems typically do not mark or erase data blocks they are no longer using. A storage 
device doesn’t know that the filesystem now considers a given block to be free; it 
only knows that long ago someone gave it data to store there. In order for an SSD 
to maintain its cache of pre-erased pages (and thus, its write performance), the 
filesystem has to be capable of informing the SSD that certain pages are no longer 
needed. As of this writing, ext4 and Windows 7’s NTFS are the only common 
filesystems that offers this feature. But given the enormous interest in SSDs, other 
filesystems are sure to become more SSD-aware in the near future.

Another touchy subject is alignment. The standard size for a disk block is 512 
bytes, but that size is too small for filesystems to deal with efficiently.1 Filesystems 

1. The 512-byte standard for hard disks may not hold out much longer; see lwn.net/Articles/377895.

  



ptg

Storage hardware interfaces 213

St
or

ag
e

manage the disk in terms of clusters of 1KiB to 8KiB in size, and a translation layer 
maps filesystem clusters into ranges of disk blocks for reads and writes. 

On a hard disk, it makes no difference where a cluster begins or ends. But because 
SSDs can only read or write data in 4KiB pages (despite their emulation of a hard 
disk’s traditional 512-byte blocks), filesystem cluster boundaries and SSD page 
boundaries should coincide. You wouldn’t want a 4KiB logical cluster to corre-
spond to half of one 4KiB SSD cluster and half of another—with that layout, the 
SSD might have to read or write twice as many physical pages as it should to ser-
vice a given number of logical clusters.

Since filesystems usually count off their clusters starting at the beginning of what-
ever storage is allocated to them, the alignment issue can be finessed by aligning 
disk partitions to a power-of-2 boundary that is large in comparison with the 
likely size of SSD and filesystem pages (e.g., 64KiB). Unfortunately, the Windows 
MBR partitioning scheme that Linux has inherited does not make such alignment 
automatic. Check the block ranges that your partitioning tool assigns to make 
sure they are aligned, keeping in mind that the MBR itself consumes a block. 
(Windows 7 aligns partitions suitably for SSDs by default.)

The theoretical limits on the rewritability of flash memory are probably less of an 
issue than they might initially seem. Just as a matter of arithmetic, you would have 
to stream 100 MB/s of data to a 150GB SSD for more than four continuous years 
to start running up against the rewrite limit. The more general question of long-
term SSD reliability is as yet unanswered, however. SSDs are an immature product 
category, and early adopters should expect quirks.

The controllers used inside SSDs are rapidly evolving, and there are currently 
marked differences in performance among manufacturers. The market should 
eventually converge to a standard architecture for these devices, but that day is 
still a year or two off. In the short term, careful shopping is essential.

Anand Shimpi’s March 2009 article on SSD technology is a superb introduction to 
the promise and perils of the SSD. It can be found at tinyurl.com/dexnbt.

8.3 STORAGE HARDWARE INTERFACES

These days, only a few interface standards are in common use. If a system sup-
ports several different interfaces, use the one that best meets your requirements 
for speed, redundancy, mobility, and price.

• ATA (Advanced Technology Attachment), known in earlier revisions as 
IDE, was developed as a simple, low-cost interface for PCs. It was origi-
nally called Integrated Drive Electronics because it put the hardware 
controller in the same box as the disk platters and used a relatively high-
level protocol for communication between the computer and the disks. 
This is now the way that all hard disks work, but at the time it was some-
thing of an innovation.

  



ptg

214 Chapter 8 Storage

The traditional parallel ATA interface (PATA) connected disks to the 
motherboard with a 40- or 80-conductor ribbon cable. This style of disk 
is nearly obsolete, but the installed base is enormous. PATA disks are 
often labeled as “IDE” to distinguish them from SATA drives (below), 
but they are true ATA drives. PATA disks are medium to fast in speed, 
generous in capacity, and unbelievably cheap.

• Serial ATA, SATA, is the successor to PATA. In addition to supporting 
much higher transfer rates (currently 3 Gb/s, with 6 Gb/s soon to arrive), 
SATA simplifies connectivity with tidier cabling and a longer maximum 
cable length. SATA has native support for hot-swapping and (optional) 
command queueing, two features that finally make ATA a viable alterna-
tive to SCSI in server environments.

• Though not as common as it once was, SCSI is one of the most widely 
supported disk interfaces. It comes in several flavors, all of which sup-
port multiple disks on a bus and various speeds and communication 
styles. SCSI is described in more detail on page 216.

Hard drive manufacturers typically reserve SCSI interfaces for their 
highest-performing and most rugged drives. You’ll pay more for these 
drives, but mostly because of the drive features rather than the interface.

• Fibre Channel is a serial interface that is popular in the enterprise envi-
ronment thanks to its high bandwidth and to the large number of stor-
age devices that can be attached to it at once. Fibre Channel devices 
connect with a fiber optic or twinaxial copper cable. Speeds range from 
roughly 1–40 Gb/s depending on the protocol revision.

Common topologies include loops, called Fibre Channel Arbitrated 
Loops (FC-AL), and fabrics, which are constructed with Fibre Channel 
switches. Fibre Channel can speak several different protocols, including 
SCSI and even IP. Devices are identified by a hardwired, 8-byte ID num-
ber (a “World Wide Name”) that’s similar to an Ethernet MAC address.

• The Universal Serial Bus (USB) and FireWire (IEEE1394) serial commu-
nication systems have become popular for connecting external hard 
disks. Current speeds are 480 Mb/s for USB and 800 Mb/s for FireWire; 
both systems are too slow to accommodate a fast disk streaming data at 
full speed. Upcoming revisions of both standards will offer more com-
petitive speeds (up to 5 Gb/s with USB 3.0).

Hard disks never provide native USB or FireWire interfaces—SATA con-
verters are built into the disk enclosures that feature these ports.

ATA and SCSI are by far the dominant players in the disk drive arena. They are 
the only interfaces we discuss in detail.

  



ptg

The SATA interface 215

St
or

ag
e

The PATA interface

PATA (Parallel Advanced Technology Attachment), also called IDE, was designed 
to be simple and inexpensive. It is most often found on PCs or low-cost worksta-
tions. The original IDE became popular in the late 1980s. A succession of protocol 
revisions culminating in the current ATA-7 (also known as Ultra ATA/133) added 
direct memory access (DMA) modes, plug and play features, logical block ad-
dressing (LBA), power management, self-monitoring capabilities, and bus speeds 
up to 133 MB/s. Around the time of ATA-4, the ATA standard also merged with 
the ATA Packet Interface (ATAPI) protocol, which allows CD-ROM and tape 
drives to work on an IDE bus. 

The PATA connector is a 40-pin header that connects the drive to the interface 
card with a clumsy ribbon cable. ATA standards beyond Ultra DMA/66 use an 80-
conductor cable with more ground pins and therefore less electrical noise. Some 
nicer cables that are available bundle up the ribbon into a thick cable sleeve, tidy-
ing up the chassis and improving air flow. Power cabling for PATA uses a chunky 
4-conductor Molex plug. 

If a cable or drive is not keyed, be sure that pin 1 on the drive goes to pin 1 on the 
interface jack. Pin 1 is usually marked with a small “1” on one side of the connec-
tor. If it is not marked, a rule of thumb is that pin 1 is usually the one closest to the 
power connector. Pin 1 on a ribbon cable is usually marked in red. If there is no 
red stripe on one edge of your cable, just make sure you have the cable oriented so 
that pin 1 is connected to pin 1 and mark the cable with a red sharpie.

Most PCs have two PATA buses, each of which can host two devices. If you have 
more than one device on a PATA bus, you must designate one as the master and 
the other as the slave. A “cable select” jumper setting on modern drives (which is 
usually the default) lets the devices work out master vs. slave on their own. Occa-
sionally, it does not work correctly and you must explicitly assign the master and 
slave roles.

No performance advantage accrues from being the master. Some older PATA 
drives do not like to be slaves, so if you are having trouble getting one configura-
tion to work, try reversing the disks’ roles. If things are still not working out, try 
making each device the master of its own PATA bus.

Arbitration between master and slave devices on a PATA bus can be relatively 
slow. If possible, put each PATA drive on its own bus.

The SATA interface

As data transfer rates for PATA drives increased, the standard’s disadvantages 
started to become obvious. Electromagnetic interference and other electrical is-
sues caused reliability concerns at high speeds. Serial ATA, SATA, was invented to 
address these problems. It is now the predominant hardware interface for storage. 

  



ptg

216 Chapter 8 Storage

SATA smooths many of PATA’s sharp edges. It improves transfer rates (potentially 
to 750 MB/s with the upcoming 6 Gb/s SATA) and includes superior error check-
ing. The standard supports hot-swapping, native command queuing, and sundry 
performance enhancements. SATA eliminates the need for master and slave des-
ignations because only a single device can be connected to each channel.

SATA overcomes the 18-inch cable limitation of PATA and introduces new data 
and power cable standards of 7 and 15 conductors, respectively.2 These cables are 
infinitely more flexible and easier to work with than their ribbon cable predeces-
sors—no more curving and twisting to fit drives on the same cable. They do seem 
to be a bit more quality-sensitive than the old PATA ribbon cables, however. We 
have seen several of the cheap pack-in SATA cables that come with motherboards 
fail in actual use.3

SATA cables slide easily onto their mating connectors, but they can just as easily 
slide off. Cables with locking catches are available, but they’re a mixed blessing. 
On motherboards with six or eight SATA connectors packed together, it can be 
hard to disengage the locking connectors without a pair of needle-nosed pliers.

SATA also introduces an external cabling standard called eSATA. The cables are 
electrically identical to standard SATA, but the connectors are slightly different. 
You can add an eSATA port to a system that has only internal SATA connectors by 
installing an inexpensive converter bracket.

Be leery of external multidrive enclosures that have only a single eSATA port— 
some of these are smart (RAID) enclosures that require a proprietary driver. (The 
drivers rarely support UNIX or Linux.) Others are dumb enclosures that have a 
SATA port multiplier built in. These are potentially usable on UNIX systems, but 
since not all SATA host adapters support port expanders, pay close attention to 
the compatibility information. Enclosures with multiple eSATA ports—one per 
drive bay—are always safe.

Parallel SCSI

SCSI, the Small Computer System Interface, defines a generic data pipe that can 
be used by all kinds of peripherals. In the past it was used for disks, tape drives, 
scanners, and printers, but these days most peripherals have abandoned SCSI in 
favor of USB.

Many flavors of SCSI interface have been defined since 1986, when SCSI-1 was 
first adopted as an ANSI standard. Traditional SCSI uses parallel cabling with 8 or 
16 conductors.

Unfortunately, there has been no real rhyme or reason to the naming conventions 
for parallel SCSI. The terms “fast,” “wide,” and “ultra” were introduced at various 
times to mark significant developments, but as those features became standard, 
the descriptors vanished from the names. The nimble-sounding Ultra SCSI is in 

2. That’s right: for some reason, the power cable is more complicated than the data cable.
3. In the United States, an excellent source for good quality but cheap SATA cables is monoprice.com.

  



ptg

Parallel SCSI 217

St
or

ag
e

fact a 20 MB/s standard that no one would dream of using today, so it has had to 
give way to Ultra2, Ultra3, Ultra-320, and Ultra-640 SCSI. For the curious, the 
following regular expression matches all the various flavors of parallel SCSI:

(Fast(-Wide)?|Ultra(( Wide)?|2 (Wide )?|3|-320|-640)?) SCSI|SCSI-[1-3]

Many different connectors have been used as well. They vary depending on the 
version of SCSI, the type of connection (internal or external), and the number of 
data bits sent at once. Exhibit A shows pictures of some common ones. Each con-
nector is shown from the front, as if you were about to plug it into your forehead.

Exhibit A Parallel SCSI connectors (front view, male except where noted)

The only one of these connectors still being manufactured today is the SCA-2, 
which is an 80-pin connector that includes both power and bus connections. 

Each end of a parallel SCSI bus must have a terminating resistor (“terminator”). 
These resistors absorb signals as they reach the end of the bus and prevent noise 
from reflecting back onto the bus. Terminators take several forms, from small ex-
ternal plugs that you snap onto a regular port to sets of tiny resistor packs that 
install onto a device’s circuit boards. Most modern devices are autoterminating.

If you experience seemingly random hardware problems on your SCSI bus, first 
check that both ends of the bus are properly terminated. Improper termination is 
one of the most common SCSI configuration mistakes on old SCSI systems, and 
the errors it produces can be obscure and intermittent.

Parallel SCSI buses use a daisy chain configuration, so most external devices have 
two SCSI ports.4 The ports are identical and interchangeable—either one can be 

Centronics

50 pins, SCSI-1/2, external

Ribbon connector (female)

50 pins, SCSI-1/2, internal

Mini-micro, aka HD50

50 pins, SCSI-2, external

Wide mini-micro, aka HD68

68 pins, SCSI-2/3, int/ext

SCA-2

80 pins, SCSI-3, internal

1

1

1

1

1
68

80

50

50

50

4. “Daisy chaining” is the common description, but it’s perhaps a bit misleading. Parallel SCSI is physi-
cally wired as a chain, but it is electrically a single bus.

  



ptg

218 Chapter 8 Storage

the input. Internal SCSI devices (including those with SCA-2 connectors) are at-
tached to a ribbon cable, so only one port is needed on the device.

Each device has a SCSI address or “target number” that distinguishes it from the 
other devices on the bus. Target numbers start at 0 and go up to 7 or 15, depend-
ing on whether the bus is narrow or wide. The SCSI controller itself counts as a 
device and is usually target 7. All other devices must have their target numbers set 
to unique values. It is a common error to forget that the SCSI controller has a 
target number and to set a device to the same target number as the controller.

If you’re lucky, a device will have an external thumbwheel with which the target 
number can be set. Other common ways of setting the target number are DIP 
switches and jumpers. If it is not obvious how to set the target number on a de-
vice, look up the hardware manual on the web.

The SCSI standard supports a form of subaddressing called a “logical unit num-
ber.” Each target can have several logical units inside it. A plausible example is a 
drive array with several disks but only one SCSI controller. If a SCSI device con-
tains only one logical unit, the LUN usually defaults to 0.

The use of logical unit numbers is generally confined to large drive arrays. When 
you hear “SCSI unit number,” you should assume that it is really a target number 
that’s being discussed until proven otherwise.

From the perspective of a sysadmin dealing with legacy SCSI hardware, here are 
the important points to keep in mind:

• Don’t worry about the exact SCSI versions a device claims to support; 
look at the connectors. If two SCSI devices have the same connectors, 
they are compatible. That doesn’t necessarily mean that they can achieve 
the same speeds, however. Communication will occur at the speed of the 
slower device.

• Even if the connectors are different, the devices can still be made com-
patible with an adapter if both connectors have the same number of pins.

• Many older workstations have internal SCSI devices such as tape and 
floppy drives. Check the listing of current devices before you reboot to 
add a new device.

• After you have added a new SCSI device, check the listing of devices 
discovered by the kernel when it reboots to make sure that everything 
you expect is there. Most SCSI drivers do not detect multiple devices 
that have the same SCSI address (an illegal configuration). SCSI address 
conflicts lead to strange behavior.

• If you see flaky behavior, check for a target number conflict or a problem 
with bus termination.

• Remember that your SCSI controller uses one of the SCSI addresses.

  



ptg

Which is better, SCSI or SATA? 219

St
or

ag
e

Serial SCSI

As in the PATA world, parallel SCSI is giving way to Serial Attached SCSI (SAS), 
the SCSI analog of SATA. From the hardware perspective, SAS improves just 
about every aspect of traditional parallel SCSI.

• Chained buses are passé. Like SATA, SAS is a point-to-point system. SAS 
allows the use of “expanders” to connect multiple devices to a single host 
port. They’re analogous to SATA port multipliers, but whereas support 
for port multipliers is hit or miss, expanders are always supported.

• SAS does not use terminators.

• SCSI target IDs are no longer used. Instead, each SAS device has a Fibre-
Channel-style 64-bit World Wide Name (WWN) assigned by the manu-
facturer. It’s analogous to an Ethernet MAC address.

• The number of devices in a SCSI bus (“SAS domain,” really) is no longer 
limited to 8 or 16. Up to 16,384 devices can be connected.

SAS currently operates at 3 Gb/s, but speeds are scheduled to increase to 6 Gb/s 
and then to 12 Gb/s by 2012. 

Which is better, SCSI or SATA?

In past editions of this book, SCSI was the obvious interface choice for server 
applications. It offered the highest available bandwidth, out-of-order command 
execution (aka tagged command queueing), lower CPU utilization, easier han-
dling of large numbers of storage devices, and access to the market’s most ad-
vanced hard drives.

The advent of SATA has removed or minimized most of these advantages, so SCSI 
simply does not deliver the bang for the buck that it used to. SATA drives compete 
with (and in some cases, outperform) equivalent SCSI disks in nearly every cate-
gory. At the same time, both SATA devices and the interfaces and cabling used to 
connect them are cheaper and far more widely available.

SCSI still holds a few trump cards:

• Manufacturers continue to use the SATA/SCSI divide to stratify the stor-
age market. To help justify premium pricing, the fastest and most reli-
able drives are still available with only SCSI interfaces.

• SATA is limited to a queue depth of 32 pending operations. SCSI can 
handle thousands.

• SAS can handle many storage devices (hundreds or thousands) on a sin-
gle host interface. But keep in mind that all those devices share a single 
pipe to the host; you are still limited to 3 Gb/s of aggregate bandwidth.

The SAS vs. SATA debate may ultimately be moot because the SAS standard in-
cludes support for SATA drives. SAS and SATA connectors are similar enough 

  



ptg

220 Chapter 8 Storage

that a single SAS backplane can accommodate drives of either type. At the logical 
layer, SATA commands are simply tunneled over the SAS bus.

This convergence is an amazing technical feat, but the economic argument for it is 
less clear. The expense of a SAS installation is mostly in the host adapter, back-
plane, and infrastructure; the SAS drives themselves aren’t outrageously priced. 
Once you’ve invested in a SAS setup, you might as well stick with SAS from end to 
end. (On the other hand, perhaps the modest price premiums for SAS drives are a 
result of the fact that SATA drives can easily be substituted for them.)

8.4 PEELING THE ONION: THE SOFTWARE SIDE OF STORAGE

If you’re used to plugging in a disk and having your Windows system ask if you 
want to format it, you may be a bit taken aback by the apparent complexity of 
storage management on UNIX and Linux systems. Why is it all so complicated?

To begin with, much of the complexity is optional. On some systems, you can log 
in to your system’s desktop, connect that same USB drive, and have much the 
same experience as on Windows. You’ll get a simple setup for personal data stor-
age. If that’s all you need, you’re good to go.

As usual in this book, we’re primarily interested in enterprise-class storage sys-
tems: filesystems that are accessed by many users (both local and remote) and that 
are reliable, high-performance, easy to back up, and easy to adapt to future needs. 
These systems require a bit more thought, and UNIX and Linux give you plenty to 
think about.

Exhibit B shows a typical set of software components that can mediate between a 
raw storage device and its end users. The specific architecture shown in Exhibit B 
is for Linux, but our other example systems include similar features, although not 
necessarily in the same packages.

The arrows in Exhibit B mean “can be built on.” For example, a Linux filesystem 
can be built on top of a partition, a RAID array, or a logical volume. It’s up to the 
administrator to construct a stack of modules that connect each storage device to 
its final application. 

Sharp-eyed readers will note that the graph has a cycle, but real-world configura-
tions do not loop. Linux allows RAID and logical volumes to be stacked in either 
order, but neither component should be used more than once (though it is techni-
cally possible to do this). 

Here’s what the pieces in Exhibit B represent:

• A storage device is anything that looks like a disk. It can be a hard disk, 
a flash drive, an SSD, an external RAID array implemented in hardware, 
or even a network service that provides block-level access to a remote 
device. The exact hardware doesn’t matter, as long as the device allows 
random access, handles block I/O, and is represented by a device file.

  



ptg

Peeling the onion: the software side of storage 221

St
or

ag
e

Exhibit B Storage management layers

• A partition is a fixed-size subsection of a storage device. Each partition 
has its own device file and acts much like an independent storage device. 
For efficiency, the same driver that handles the underlying device usu-
ally implements partitioning. Most partitioning schemes consume a few 
blocks at the start of the device to record the ranges of blocks that make 
up each partition. 

Partitioning is becoming something of a vestigial feature. Linux and 
Solaris drag it along primarily for compatibility with Windows-parti-
tioned disks. HP-UX and AIX have largely done away with it in favor of 
logical volume management, though it’s still needed on Itanium-based 
HP-UX systems.

• A RAID array (a redundant array of inexpensive/independent disks) 
combines multiple storage devices into one virtualized device. Depend-
ing on how you set up the array, this configuration can increase perfor-
mance (by reading or writing disks in parallel), increase reliability (by 
duplicating or parity-checking data across multiple disks), or both. 
RAID can be implemented by the operating system or by various types 
of hardware.

As the name suggests, RAID is typically conceived of as an aggregation 
of bare drives, but modern implementations let you use as a component 
of a RAID array anything that acts like a disk.

• Volume groups and logical volumes are associated with logical volume 
managers (LVMs). These systems aggregate physical devices to form 
pools of storage called volume groups. The administrator can then sub-
divide this pool into logical volumes in much the same way that disks of 
yore were divided into partitions. For example, a 750GB disk and a 
250GB disk could be aggregated into a 1TB volume group and then split 
into two 500GB logical volumes. At least one volume would include data 
blocks from both hard disks.

Filesystems, swap areas, database storage

Logical volumes

Partitions RAID arrays Volume groups 

Storage devices

  



ptg

222 Chapter 8 Storage

Since the LVM adds a layer of indirection between logical and physical 
blocks, it can freeze the logical state of a volume simply by making a 
copy of the mapping table. Therefore, logical volume managers often 
provide some kind of a “snapshot” feature. Writes to the volume are then 
directed to new blocks, and the LVM keeps both the old and new map-
ping tables. Of course, the LVM has to store both the original image and 
all modified blocks, so it can eventually run out of space if a snapshot is 
never deleted.

• A filesystem mediates between the raw bag of blocks presented by a par-
tition, RAID array, or logical volume and the standard filesystem inter-
face expected by programs: paths such as /var/spool/mail, UNIX file 
types, UNIX permissions, etc. The filesystem determines where and how 
the contents of files are stored, how the filesystem namespace is repre-
sented and searched on disk, and how the system is made resistant to (or 
recoverable from) corruption.

Most storage space ends up as part of a filesystem, but swap space and 
database storage can potentially be slightly more efficient without “help” 
from a filesystem. The kernel or database imposes its own structure on 
the storage, rendering the filesystem unnecessary.

If it seems to you that this system has a few too many little components that sim-
ply implement one block storage device in terms of another, you’re in good com-
pany. The trend over the last few years has been toward consolidating these com-
ponents to increase efficiency and remove duplication. Although logical volume 
managers did not originally function as RAID controllers, most have absorbed 
some RAID-like features (notably, striping and mirroring). As administrators get 
comfortable with logical volume management, partitions are disappearing, too.

On the cutting edge today are systems that combine a filesystem, a RAID control-
ler, and an LVM system all in one tightly integrated package. Sun’s ZFS filesystem 
is the leading example, but the Btrfs filesystem in development for Linux has sim-
ilar design goals. We have more to say about ZFS on page 264.

Most setups are relatively simple. Exhibit C illustrates a traditional partitions-and-
filesystems schema as it might be found on a couple of data disks on a Linux sys-
tem. (The boot disk is not shown.) Substitute logical volumes for partitions and 
the setup is similar on other systems.

In the next sections, we look in more detail at the steps involved in various phases 
of storage configuration: device wrangling, partitioning, RAID, logical volume 
management, and the installation of a filesystem. Finally, we double back to cover 
ZFS and storage area networking.

  



ptg

Installation verification at the hardware level 223

St
or

ag
e

Exhibit C Traditional data disk partitioning scheme (Linux device names)

8.5 ATTACHMENT AND LOW-LEVEL MANAGEMENT OF DRIVES

The way a disk is attached to the system depends on the interface that is used. The 
rest is all mounting brackets and cabling. Fortunately, SAS and SATA connections 
are virtually idiot-proof.

For parallel SCSI, double-check that you have terminated both ends of the SCSI 
bus, that the cable length is less than the maximum appropriate for the SCSI vari-
ant you are using, and that the new SCSI target number does not conflict with the 
controller or another device on the bus.

Even on hot-pluggable interfaces, it’s conservative to shut the system down before 
making hardware changes. Some older systems such as AIX default to doing de-
vice configuration only at boot time, so the fact that the hardware is hot-pluggable 
may not translate into immediate visibility at the OS level. In the case of SATA 
interfaces, hot-pluggability is an implementation option. Some host adapters don’t 
support it.

Installation verification at the hardware level

After you install a new disk, check to make sure that the system acknowledges its 
existence at the lowest possible level. On a PC this is easy: the BIOS shows you 
IDE and SATA disks, and most SCSI cards have their own setup screen that you 
can invoke before the system boots.

On other types of hardware, you may have to let the system boot and check the 
diagnostic output from the kernel as it probes for devices. For example, one of our 
test systems showed the following messages for an older SCSI disk attached to a 
BusLogic SCSI host adapter.

scsi0 : BusLogic BT-948 
scsi : 1 host.
  Vendor: SEAGATE   Model: ST446452W         Rev: 0001
  Type:   Direct-Access                      ANSI SCSI revision: 02 
Detected scsi disk sda at scsi0, channel 0, id 3, lun 0 
scsi0: Target 3: Queue Depth 28, Asynchronous 
SCSI device sda: hdwr sector=512 bytes. Sectors=91923356 [44884 MB] [44.9 GB]

Physical
layer

Partition
layer

Filesystem
layer

/dev/sda1

/home

/dev/sda2

/opt

/dev/sda

la
b

e
l

/dev/sdb1

/spare

Hard disk 2

/dev/sdb

la
b

e
l

Hard disk 1

  



ptg

224 Chapter 8 Storage

You may be able to review this information after the system has finished booting 
by looking in your system log files. See the material starting on page 352 for more 
information about the handling of boot-time messages from the kernel.

Disk device files

A newly added disk is represented by device files in /dev. See page 150 for general 
information about device files.

All our example systems create these files for you automatically, but you still need 
to know where to look for the device files and how to identify the ones that corre-
spond to your new device. Formatting the wrong disk device file is a rapid route to 
disaster. Table 8.2 summarizes the device naming conventions for disks on our 
example systems. Instead of showing the abstract pattern according to which de-
vices are named, Table 8.2 simply shows a typical example for the name of the 
system’s first disk.

The block and raw device columns show the path for the disk as a whole, and the 
partition column shows the path for an example partition.

Disk devices for Linux
Linux disk names are assigned in sequence as the kernel enumerates the various 
interfaces and devices on the system. Adding a disk can cause existing disks to 
change their names. In fact, even rebooting the system can cause name changes.5 
Never make changes without verifying the identity of the disk you’re working on, 
even on a stable system. 

Linux provides a couple of ways around the “dancing names” issue. Subdirectories 
under /dev/disk list disks by various stable characteristics such as their manufac-
turer ID or connection information. These device names (which are really just 
links back to /dev/sd*) are stable, but they’re long and awkward.

At the level of filesystems and disk arrays, Linux uses unique ID strings to persis-
tently identify objects. In many cases, the existence of these long IDs is cleverly 
concealed so that you don’t have to deal with them directly.

Table 8.2 Device naming standards for disks

System Block device Raw device Partition

Linux /dev/sda not used /dev/sda1

Solaris /dev/dsk/c0t0d0s2 /dev/rdsk/c0t0d0s2 /dev/dsk/c0t0d0s0

HP-UXa /dev/disk/disk0 /dev/rdisk/disk0 /dev/disk/disk0_p1b

AIX /dev/hdisk0 /dev/rhdisk0 not used

a. HP-UX also uses Solaris-style device names for legacy compatibility.
b. Itanium-based systems only; non-Itanium systems do not have partitions.

5. To deal with this issue, Linux uses UUIDs in the /etc/fstab file instead of device names; see page 262.

  



ptg

Disk devices for HP-UX 225

St
or

ag
e

Linux doesn’t have raw device files for disks or disk partitions, so just use the 
block device wherever you might be accustomed to specifying a raw device.

parted -l lists the sizes, partition tables, model numbers, and manufacturers of 
every disk on the system.

Disk devices for Solaris
Solaris disk device names are of the form /dev/[r]dsk/cWtXdYsZ, where W is the 
controller number, X is the SCSI target number, Y is the SCSI logical unit number 
(or LUN, almost always 0), and Z is the partition (slice) number. There are a cou-
ple of subtleties: ATA drives show up as cWdYsZ (with no t clause), and disks can 
have a series of DOS-style partitions, signified by pZ, as well as the Solaris-style 
slices denoted by sZ.

These device files are actually just symbolic links into the /devices tree, where the 
real device files live. More generally, Solaris makes an effort to give continuity to 
device names, even in the face of hardware changes. Once a disk has shown up 
under a given name, it can generally be found at that name in the future unless 
you switch controllers or SCSI target IDs.

By convention, slice 2 represents the complete, unpartitioned disk. Unlike Linux, 
Solaris gives you device files for every possible slice and partition, whether or not 
those slices and partitions actually exist. Solaris also supports overlapping parti-
tions, but that’s just crazy talk. Oracle may as well ship every Solaris system with a 
loaded gun.

Hot-plugging should work fine on Solaris. When you add a new disk, devfsadmd
should detect it and create the appropriate device files for you. If need be, you can 
run devfsadm by hand.

Disk devices for HP-UX
HP-UX has traditionally used disk device names patterned after those of Solaris, 
which record a lot of hardware-specific information in the device path. As of HP-
UX 11i v3, however, those pathnames have been deprecated in favor of “agile ad-
dresses” of the form /dev/disk/disk1. The latter paths are stable and do not 
change with the details of the system’s hardware configuration.

Before you boot UNIX, you can obtain a listing of the system’s SCSI devices from 
the PROM monitor. Unfortunately, the exact way in which this is done varies 
among machines. After you boot, you can list disks by running ioscan.

$ sudo ioscan -fNn -C disk
Class I H/W Path Driver S/W State H/W TypeDescription 
============================================================== 
disk 3 64000/0xfa00/0x0 esdisk CLAIMED DEVICE TEACDV-28E-B

/dev/disk/disk3 /dev/rdisk/disk3 
disk 4 64000/0xfa00/0x1 esdisk CLAIMED DEVICE HP 73.4GMAS3735NC

/dev/disk/disk4 /dev/rdisk/disk4 
/dev/disk/disk4_p1 /dev/rdisk/disk4_p1

  



ptg

226 Chapter 8 Storage

/dev/disk/disk4_p2 /dev/rdisk/disk4_p2 
/dev/disk/disk4_p3 /dev/rdisk/disk4_p3

disk 5 64000/0xfa00/0x2 esdisk CLAIMED DEVICE HP 73.4GMAS3735NC 
/dev/disk/disk5 /dev/rdisk/disk5 
/dev/disk/disk5_p1 /dev/rdisk/disk5_p1 
/dev/disk/disk5_p2 /dev/rdisk/disk5_p2 
/dev/disk/disk5_p3 /dev/rdisk/disk5_p3

The old-style device names are still around in the /dsk and /rdsk directories, and 
you can continue to use them if you wish—at least for now. Run ioscan -m dsf to 
see the current mapping between old- and new-style device names.

hp-ux$ ioscan -m dsf
Persistent DSF6 Legacy DSF(s) 
======================================== 
/dev/rdisk/disk3 /dev/rdsk/c0t0d0 
/dev/rdisk/disk4 /dev/rdsk/c2t1d0 
/dev/rdisk/disk4_p1 /dev/rdsk/c2t1d0s1 
/dev/rdisk/disk4_p2 /dev/rdsk/c2t1d0s2 
/dev/rdisk/disk4_p3 /dev/rdsk/c2t1d0s3 
/dev/rdisk/disk5 /dev/rdsk/c2t0d0 
/dev/rdisk/disk5_p1 /dev/rdsk/c2t0d0s1 
/dev/rdisk/disk5_p2 /dev/rdsk/c2t0d0s2 
/dev/rdisk/disk5_p3 /dev/rdsk/c2t0d0s3

Note that partitions are now abbreviated p instead of s in the Solaris manner (for 
“slice”). Unlike Solaris, HP-UX uses names such as disk3 with no partition suffix 
to represent the entire disk. On Solaris systems, partition 2 represents the whole 
disk; on HP-UX, it’s just another partition.

The system from which this example comes is Itanium-based and so has disk par-
titions. Other HP systems use logical volume management instead of partitioning.

Disk devices for AIX
AIX’s /dev/hdiskX and /dev/rhdiskX paths are refreshingly simple. Disk names 
are unfortunately subject to change when the hardware configuration changes. 
However, most AIX disks will be under logical volume management, so the hard-
ware device names are not that important. The logical volume manager writes a 
unique ID to each disk as part of the process of inducting it into a volume group. 
This labeling allows the system to sort out the disks automatically, so changes in 
device names are less troublesome than they might be on other systems.

You can run lsdev -C -c disk to see a list of the disks the system is aware of.

Formatting and bad block management

All hard disks come preformatted, and the factory formatting is at least as good as 
any formatting you can do in the field. It is best to avoid doing a low-level format 
if it’s not required. Don’t reformat new drives as a matter of course.

6. DSF = device special file

  



ptg

ATA secure erase 227

St
or

ag
e

If you encounter read or write errors on a disk, first check for cabling, termina-
tion, and address problems, all of which can cause symptoms similar to those of a 
bad block. If after this procedure you are still convinced that the disk has defects, 
you might be better off replacing it with a new one rather than waiting long hours 
for a format to complete and hoping the problem doesn’t come back.

The formatting process writes address information and timing marks on the plat-
ters to delineate each sector. It also identifies bad blocks, imperfections in the me-
dia that result in areas that cannot be reliably read or written. All modern disks 
have bad block management built in, so neither you nor the driver need to worry 
about managing defects. The drive firmware substitutes known-good blocks from 
an area of backup storage on the disk that is reserved for this purpose.

Bad blocks that manifest themselves after a disk has been formatted may or may 
not be handled automatically. If the drive believes that the affected data can be 
reliably reconstructed, the newly discovered defect may be mapped out on the fly 
and the data rewritten to a new location. For more serious or less clearly recover-
able errors, the drive aborts the read or write operation and reports the error back 
to the host operating system.

ATA disks are usually not designed to be formatted outside the factory. However, 
you may be able to obtain formatting software from the manufacturer, usually for 
Windows. Make sure the software matches the drive you plan to format and fol-
low the manufacturer’s directions carefully.7

SCSI disks format themselves in response to a standard command that you send 
from the host computer. The procedure for sending this command varies from 
system to system. On PCs, you can often send the command from the SCSI con-
troller’s BIOS. To issue the SCSI format command from within the operating sys-
tem, use the sg_format command on Linux, the format command on Solaris, and 
the mediainit command on HP-UX.

Various utilities let you verify the integrity of a disk by writing random patterns to 
it and then reading them back. Thorough tests take a long time (hours) and un-
fortunately seem to be of little prognostic value. Unless you suspect that a disk is 
bad and are unable to simply replace it (or you bill by the hour), you should skip 
these tests. Barring that, let the tests run overnight. Don’t be concerned about 
“wearing out” a disk with overuse or aggressive testing. Enterprise-class disks are 
designed for constant activity.

ATA secure erase

Since 2000, PATA and SATA disks have implemented a “secure erase” command 
that overwrites the data on the disk by using a method the manufacturer has de-
termined to be secure against recovery efforts. Secure erase is NIST-certified for 

7. On the other hand, at $80 for a 1TB drive, why bother?

  



ptg

228 Chapter 8 Storage

most needs. Under the U.S. Department of Defense categorization, it’s approved 
for use at security levels less than “secret.”

Why is this feature even needed? First, filesystems generally do no erasing of their 
own, so an rm -rf * of a disk’s data leaves everything intact and recoverable with 
software tools. It’s critically important to remember this fact when disposing of 
disks, whether their destination is eBay or the trash. 

Second, even a manual rewrite of every sector on a disk may leave magnetic traces 
that are recoverable by a determined attacker with access to a laboratory. Secure 
erase performs as many overwrites as are needed to eliminate these shadow sig-
nals. Magnetic remnants won’t be a serious concern for most sites, but it’s always 
nice to know that you’re not exporting your organization’s confidential data to the 
world at large.

Finally, secure erase has the effect of resetting SSDs to their fully erased state. This 
reset may improve performance in cases in which the ATA TRIM command (the 
command to erase a block) cannot be issued, either because the filesystem used 
on the SSD does not know to issue it or because the SSD is connected through a 
host adapter or RAID interface that does not propagate TRIM.

Unfortunately, UNIX support for sending the secure erase command remains elu-
sive. At this point, your best bet is to reconnect drives to a Windows or Linux 
system for erasure. DOS software for secure erasing can be found at the Center of 
Magnetic Recording Research at tinyurl.com/2xoqqw. The MHDD utility also 
supports secure erase through its fasterase command—see tinyurl.com/2g6r98.

Under Linux, you can use the hdparm command:
$ sudo hdparm --user-master u --security-set-pass password /dev/sda 8

$ sudo hdparm --user-master u --security-erase password /dev/sda

There is no analog in the SCSI world to ATA’s secure erase command, but the 
SCSI “format unit” command described under Formatting and bad block manage-
ment on page 226 is a reasonable alternative. Another option is to zero-out a 
drive’s sectors with dd if=/dev/zero of=diskdevice bs=8k.

Many systems have a shred utility that attempts to securely erase the contents of 
individual files. Unfortunately, it relies on the assumption that a file’s blocks can 
be overwritten in place. This assumption is invalid in so many circumstances (any 
filesystem on any SSD, any logical volume that has snapshots, perhaps generally 
on ZFS) that shred’s general utility is questionable.

For sanitizing an entire PC system at once, another option is Darik’s Boot and 
Nuke (dban.org). This tool runs from its own boot disk, so it’s not a tool you’ll use 
every day. It is quite handy for decommissioning old hardware, however.

8. The ATA secure erase command is password-protected to make it more difficult to access. Therefore, 
you must set the drive password before invoking the command. Don’t bother to record the password, 
however; you can reset it at will. There is no danger of locking the drive.

  



ptg

hdparm: set disk and interface parameters (Linux) 229

St
or

ag
e

hdparm: set disk and interface parameters (Linux)

Linux’s hdparm command can do more than just send secure erase commands. 
It’s a general way to interact with the firmware of SATA, IDE, and SAS hard disks. 
Among other things, hdparm can set drive power options, enable or disable noise 
reduction options, set the read-only flag, and print detailed drive information. A 
few of the options work on SCSI drives, too (under current Linux kernels).

The syntax is

hdparm [options] device

Scores of options are available, but most are of interest only to driver and kernel 
developers. Table 8.3 shows a few that are relevant to administrators.

Use hdparm -I to verify that each drive is using the fastest possible DMA transfer 
mode. hdparm lists all the disk’s supported modes and marks the currently active 
mode with a star, as shown in the example below.

linux$ sudo hdparm -I /dev/sdf

/dev/sdf:

ATA device, with non-removable media 
Model Number: WDC WD1001FALS-00J7B0 
Serial Number: WD-WMATV0998277 
Firmware Revision: 05.00K05 
Transport: Serial, SATA 1.0a, SATA II Extensions, SATA Rev 2.5

…
Capabilities:

LBA, IORDY(can be disabled)
Queue depth: 32 
Standby timer values: spec'd by Standard, with device specific minimum 
R/W multiple sector transfer: Max = 16  Current = 16 
Recommended acoustic management value: 128, current value: 254 
DMA: mdma0 mdma1 mdma2 udma0 udma1 udma2 udma3 udma4 

udma5 *udma6

Table 8.3 Useful hdparm options for system administrators

Option Function 

-I a Dumps lots of identifying and status information 
-M value Sets acoustic management options 
-S value Sets time delay for automatic standby (spin-down) mode

-y Puts drive into standby mode immediately 
-C Queries the drive’s current power management state 
-T Quick-tests interface bandwidth (no actual disk reads) 
-t Quick-tests overall platter-to-host sequential reads

a. This is an uppercase letter “eye” as in India.

  



ptg

230 Chapter 8 Storage

Cycle time: min=120ns recommended=120ns 
PIO: pio0 pio1 pio2 pio3 pio4

Cycle time: no flow control=120ns  IORDY flow control=120ns 
…

On any modern system, the optimal DMA mode should be selected by default; if 
this is not the case, check the BIOS and kernel logs for relevant information to 
determine why not.

Many drives offer acoustic management, which slows down the motion of the 
read/write head to attenuate the ticking or pinging sounds it makes. Drives that 
support acoustic management usually come with the feature turned on, but that’s 
probably not what you want for production drives that live in a server room. Dis-
able this feature with hdparm -M 254. 

Most power consumed by hard disks goes to keep the platters spinning. If you 
have disks that see only occasional use and you can afford to delay access by 20 
seconds or so as the motors are restarted, run hdparm -S to turn on the disks’ 
internal power management feature. The argument to -S sets the idle time after 
which the drive enters standby mode and turns off the motor. It’s a one-byte value, 
so the encoding is somewhat nonlinear. For example, values between 1 and 240 
are in multiples of 5 seconds, and values from 241 to 251 are in units of 30 min-
utes. hdparm shows you its interpretation of the value when you run it; it’s faster 
to guess, adjust, and repeat than to look up the detailed coding rules.

hdparm includes a simple drive performance test to help evaluate the impact of 
configuration changes. The -T option reads from the drive’s cache and indicates 
the speed of data transfer on the bus, independent of throughput from the physi-
cal disk media. The -t option reads from the physical platters. As you might ex-
pect, physical reads are a lot slower.

$ sudo /sbin/hdparm -Tt /dev/hdb 

/dev/sdf: 
Timing cached reads:   2092 MB in  2.00 seconds = 1046.41 MB/sec 
Timing buffered disk reads:  304 MB in  3.00 seconds = 101.30 MB/sec

100 MB/s or so is about the limit of today’s mass-market 1TB drives, so these 
results (and the information shown by hdparm -I above) confirm that the drive is 
correctly configured.

Hard disk monitoring with SMART

Hard disks are fault-tolerant systems that use error-correction coding and intelli-
gent firmware to hide their imperfections from the host operating system. In 
some cases, an uncorrectable error that the drive is forced to report to the OS is 
merely the latest event in a long crescendo of correctable but inauspicious prob-
lems. It would be nice to know about those omens before the crisis occurs.

ATA devices, including SATA drives, implement a detailed form of status report-
ing that is sometimes predictive of drive failures. This standard, called SMART for 

  



ptg

Disk partitioning 231

St
or

ag
e

“self-monitoring, analysis, and reporting technology,” exposes more than 50 oper-
ational parameters for investigation by the host computer.

The Google disk drive study mentioned on page 211 has been widely summarized 
in media reports as concluding that SMART data is not predictive of drive failure. 
That summary is not accurate. In fact, Google found that four SMART parame-
ters were highly predictive of failure but that failure was not consistently preceded 
by changes in SMART values. Of failed drives in the study, 56% showed no change 
in the four most predictive parameters. On the other hand, predicting nearly half 
of failures sounds pretty good to us!

Those four sensitive SMART parameters are scan error count, reallocation count, 
off-line reallocation count, and number of sectors “on probation.” Those values 
should all be zero. A nonzero value in these fields raises the likelihood of failure 
within 60 days by a factor of 39, 14, 21, or 16, respectively.

To take advantage of SMART data, you need software that queries your drives to 
obtain it and then judges whether the current readings are sufficiently ominous to 
warrant administrator notification. Unfortunately, reporting standards vary by 
drive manufacturer, so decoding isn’t necessarily straightforward. Most SMART 
monitors collect baseline data and then look for sudden changes in the “bad” di-
rection rather than interpreting absolute values. (According to the Google study, 
taking account of these “soft” SMART indicators in addition to the Big Four pre-
dicts 64% of all failures.)

The standard software for SMART wrangling on UNIX and Linux systems is the 
smartmontools package from smartmontools.sourceforge.net. It’s installed by de-
fault on SUSE and Red Hat systems; on Ubuntu, you’ll have to run apt-get install 
smartmontools. The package does run on Solaris systems if you build it from the 
source code.

The smartmontools package consists of a smartd daemon that monitors drives 
continuously and a smartctl command you can use for interactive queries or for 
scripting. The daemon has a single configuration file, normally /etc/smartd.conf, 
which is extensively commented and includes plenty of examples.

SCSI has its own system for out-of-band status reporting, but unfortunately the 
standard is much less granular in this respect than is SMART. The smartmontools 
attempt to include SCSI devices in their schema, but the predictive value of the 
SCSI data is less clear.

8.6 DISK PARTITIONING

Partitioning and logical volume management are both ways of dividing up a disk 
(or pool of disks, in the case of LVM) into separate chunks of known size. All our 
example systems support logical volume management, but only Linux, Solaris, 
and sometimes HP-UX allow traditional partitioning.

  



ptg

232 Chapter 8 Storage

You can put individual partitions under the control of a logical volume manager, 
but you can’t partition a logical volume. Partitioning is the lowest possible level of 
disk management.

On Solaris, partitioning is required but essentially vestigial; ZFS hides it well 
enough that you may not even be aware that it’s occurring. This section contains 
some general background information that may be useful to Solaris administra-
tors, but from a procedural standpoint, the Solaris path diverges rather sharply 
from that of Linux, HP-UX, and AIX. Skip ahead to ZFS: all your storage problems 
solved on page 264 for details. (Or don’t: zpool create newpool newdevice pretty 
much covers basic configuration.)

Both partitions and logical volumes make backups easier, prevent users from 
poaching each other’s disk space, and confine potential damage from runaway 
programs. All systems have a root “partition” that includes / and most of the local 
host’s configuration data. In theory, everything needed to bring the system up to 
single-user mode is part of the root partition. Various subdirectories (most com-
monly /var, /usr, /tmp, /share, and /home) may be broken out into their own 
partitions or volumes. Most systems also have at least one swap area.

Opinions differ on the best way to divide up disks, as do the defaults used by 
various systems. Here are some general points to guide you:

• It’s a good idea to have a backup root device that you can boot to if some-
thing goes wrong with the normal root partition. Ideally, the backup root 
lives on a different disk from the normal root so that it can protect 
against both hardware problems and corruption. However, even a 
backup root on the same disk has some value.9

• Verify that you can boot from your backup root. The procedure is often 
nontrivial. You may need special boot-time arguments to the kernel and 
minor configuration tweaks within the alternate root itself to get every-
thing working smoothly.

• Since the root partition is often duplicated, it should also be small so that 
having two copies doesn’t consume an unreasonable amount of disk 
space. This is the major reason that /usr is often a separate volume; it 
holds the bulk of the system’s libraries and data.

• Putting /tmp on a separate filesystem limits temporary files to a finite 
size and saves you from having to back them up. Some systems use a 
memory-based filesystem to hold /tmp for performance reasons. The 
memory-based filesystems are still backed by swap space, so they work 
well in a broad range of situations.

9. Solaris and HP-UX even have “dynamic root disk” systems to facilitate the maintenance and use of 
multiple roots. See the man pages for beadm or lucreate for Solaris and drd for HP-UX.

  



ptg

Traditional partitioning 233

St
or

ag
e

• Since log files are kept in /var, it’s a good idea for /var to be a separate 
disk partition. Leaving /var as part of a small root partition makes it easy 
to fill the root and bring the machine to a halt.

• It’s useful to put users’ home directories on a separate partition or vol-
ume. Even if the root partition is corrupted or destroyed, user data has a 
good chance of remaining intact. Conversely, the system can continue to 
operate even after a user’s misguided shell script fills up /home.

• Splitting swap space among several physical disks increases perfor-
mance. This technique works for filesystems, too; put the busy ones on 
different disks. See page 1129 for notes on this subject.

• As you add memory to your machine, you should also add swap space. 
See page 1124 for more information about virtual memory. 

• Backups of a partition may be simplified if the entire partition can fit on 
one piece of media. See page 294.

• Try to cluster quickly-changing information on a few partitions that are 
backed up frequently.

Traditional partitioning

Systems that allow partitions implement them by writing a “label” at the begin-
ning of the disk to define the range of blocks included in each partition. The exact 
details vary; the label must often coexist with other startup information (such as a 
boot block), and it often contains extra information such as a name or unique ID 
that identifies the disk as a whole. Under Windows, the label is known as the 
MBR, or master boot record.

The device driver responsible for representing the disk reads the label and uses 
the partition table to calculate the physical location of each partition. Typically, 
one or two device files represent each partition (one block device and one charac-
ter device; Linux has only block devices). Also, a separate set of device files repre-
sents the disk as a whole.

Solaris calls partitions “slices,” or more accurately, it calls them slices when they 
are implemented with a Solaris-style label and partitions when they are imple-
mented with a Windows-style MBR. Slice 2 includes the entire expanse of the 
disk, illustrating the rather frightening truth that more than one slice can claim a 
given disk block. Perhaps the word “slices” was selected because “partition” sug-
gests a simple division, whereas slices can overlap. The terms are otherwise inter-
changeable.

Despite the universal availability of logical volume managers, some situations still 
require or benefit from traditional partitioning.

• On PC hardware, the boot disk must have a partition table. Most systems 
require MBR partitioning (see Windows-style partitioning, next), but 

  



ptg

234 Chapter 8 Storage

Itanium systems require GPT partitions (page 235). Data disks may 
remain unpartitioned.

See page 85 for more 
information about 
dual booting with 
Windows.

• Installing a Windows-style MBR makes the disk comprehensible to Win-
dows, even if the contents of the individual partitions are not. If you 
want to interoperate with Windows (say, by dual booting), you’ll need to 
install a Windows MBR. But even if you have no particular ambitions 
along those lines, it may be helpful to consider the ubiquity of Windows 
and the likelihood that your disk will one day come in contact with it.

Current versions of Windows are well behaved and would never dream
of writing randomly to a disk they can’t decipher. However, they will 
certainly suggest this course of action to any administrator who logs in. 
The dialog box even sports a helpful “OK, mess up this disk!” button.10 
Nothing bad will happen unless someone makes a mistake, but safety is 
a structural and organizational process.

• Partitions have a defined location on the disk, and they guarantee local-
ity of reference. Logical volumes do not (at least, not by default). In most 
cases, this fact isn’t terribly important. However, short seeks are faster 
than long seeks, and the throughput of a disk’s outer cylinders (those 
containing the lowest-numbered blocks) can exceed the throughput of 
its inner cylinders by 30% or more.11 For situations in which every ounce 
of performance counts, you can use partitioning to gain an extra edge. 
(You can always use logical volume management inside partitions to 
regain some of the lost flexibility.)

• RAID systems (see page 237) use disks or partitions of matched size. A 
given RAID implementation may accept entities of different sizes, but it 
will probably only use the block ranges that all devices have in common. 
Rather than letting extra space go to waste, you can isolate it in a sepa-
rate partition. If you do this, however, you should use the spare partition 
for data that is infrequently accessed; otherwise, use of the partition will 
degrade the performance of the RAID array.

Windows-style partitioning

The Windows MBR occupies a single 512-byte disk block, most of which is con-
sumed by boot code. Only enough space remains to define four partitions. These 
are termed “primary” partitions because they are defined directly in the MBR.

You can define one of the primary partitions to be an “extended” partition, which 
means that it contains its own subsidiary partition table. The extended partition is 
a true partition, and it occupies a defined physical extent on the disk. The subsid-
iary partition table is stored at the beginning of that partition’s data.

10. OK, OK, it probably just says “Format” or “OK,” but this is what it should say.
11. Using only the outer cylinders of a disk to improve performance is known as “short stroking,” the 

stroke in question being the travel of the head armature.

  



ptg

GPT: GUID partition tables 235

St
or

ag
e

Partitions that you create within the extended partition are called secondary par-
titions. They are proper subsets of the extended partition.

Keep the following rules of thumb in mind when setting up Windows-partitioned 
disks. The first is an actual rule. The others exist only because certain BIOSes, 
boot blocks, or operating systems may require them.

• There can be only one extended partition on a disk.

• The extended partition should be the last of the partitions defined in the 
MBR; no primary partitions should come after it.

• Some older operating systems don’t like to be installed in secondary par-
titions. To avoid trouble, stick to primary partitions for OS installations.

The Windows partitioning system lets one partition be marked “active.” Boot 
loaders look for the active partition and try to load the operating system from it. 

Each partition also has a one-byte type attribute that is supposed to indicate the 
partition’s contents. Generally, the codes represent either filesystem types or oper-
ating systems. These codes are not centrally assigned, but over time some com-
mon conventions have evolved. They are summarized by Andries E. Brouwer at 
tinyurl.com/part-types.

The MS-DOS command that partitioned hard disks was called fdisk. Most oper-
ating systems that support Windows-style partitions have adopted this name for 
their own partitioning commands, but there are many variations among fdisks. 
Windows itself has moved on: the command-line tool in recent versions is called 
diskpart. Windows also has a partitioning GUI that’s available through the Disk 
Management plug-in of mmc.

It does not matter whether you partition a disk with Windows or some other op-
erating system. The end result is the same.

GPT: GUID partition tables

Intel’s extensible firmware interface (EFI) project aims to replace the rickety con-
ventions of PC BIOSes with a more modern and functional architecture.12 Al-
though systems that use full EFI firmware are still uncommon, EFI’s partitioning 
scheme has gained widespread support among operating systems. The main rea-
son for this success is that MBR does not support disks larger than 2TB in size. 
Since 2TB disks are already widely available, this problem has become a matter of 
some urgency.

The EFI partitioning scheme, known as a “GUID partition table” or GPT, removes 
the obvious weaknesses of MBR. It defines only one type of partition, and you can 
create arbitrarily many of them. Each partition has a type specified by a 16-byte 
ID code (the globally unique ID, or GUID) that requires no central arbitration.

12. EFI has more recently become UEFI, a “unified” EFI effort supported by multiple vendors. However, 
EFI remains the more common term in general use. UEFI and EFI are essentially interchangeable.

  



ptg

236 Chapter 8 Storage

Significantly, GPT retains primitive compatibility with MBR-based systems by 
dragging along an MBR as the first block of the partition table. This “fakie” MBR 
makes the disk look like it’s occupied by one large MBR partition (at least, up to 
the 2TB limit of MBR). It isn’t useful per se, but the hope is that the decoy MBR 
may at least prevent naïve systems from attempting to reformat the disk.

Versions of Windows from the Vista era forward support GPT disks for data, but 
only systems with EFI firmware can boot from them. Linux and its GRUB boot 
loader have fared better: GPT disks are supported by the OS and bootable on any 
system. Intel-based Mac OS systems use both EFI and GPT partitioning. Solaris 
understands GPT partitioning, and ZFS uses it by default. However, Solaris boot 
disks cannot use GPT partitioning.

Although GPT has already been well accepted by operating system kernels, its 
support among disk management utilities is still spotty. GPT remains a “bleeding 
edge” format. There is no compelling reason to use it on disks that don’t require it 
(that is, disks 2TB in size or smaller).

Linux partitioning

Linux systems give you several options for partitioning. fdisk is a basic command-
line partitioning tool. GNU’s parted is a fancier command-line tool that under-
stands several label formats (including Solaris’s native one) and can move and re-
size partitions in addition to simply creating and deleting them. A GUI version, 
gparted, runs under GNOME. Another possibility is cfdisk, which is a nice, ter-
minal-based alternative to fdisk.

parted and gparted can theoretically resize several types of filesystems along with 
the partitions that contain them, but the project home page describes this feature 
as “buggy and unreliable.” Filesystem-specific utilities are likely to do a better job 
of adjusting filesystems, but unfortunately, parted does not have a “resize the par-
tition but not the filesystem” command. Go back to fdisk if this is what you need.

In general, we recommend gparted over parted. Both are simple, but gparted lets 
you specify the size of the partitions you want instead of specifying the starting 
and ending block ranges. For partitioning the boot disk, most distributions’ 
graphical installers are the best option since they typically suggest a partitioning 
plan that works well with that particular distribution’s layout.

Solaris partitioning

ZFS automatically labels disks for you, applying a GPT partition table. However, 
you can also partition disks manually with the format command. On x86 systems, 
an fdisk command is also available. Both interfaces are menu driven and relatively 
straightforward.

format gives you a nice list of disks to choose from, while fdisk requires you to 
specify the disk on the command line. Fortunately, format has an fdisk command 

  



ptg

Software vs. hardware RAID 237

St
or

ag
e

that runs fdisk as a subprocess, so you can use format as a kind of wrapper to help 
you pick the right disk.

Solaris understands three partitioning schemes: Windows MBR, GPT, and old-
style Solaris partition tables, known as SMI. You must use MBR or SMI for the 
boot disk, depending on the hardware and whether you are running Solaris or 
OpenSolaris. For now, it’s probably best to stick to these options for all manually 
partitioned disks under 2TB.

HP-UX partitioning

HP uses disk partitioning only on Itanium (Integrity) boot disks, on which a GPT 
partition table and an EFI boot partition are required. The idisk command prints 
and creates partition tables. Rather than being an interactive partitioning utility, it 
reads a partitioning plan from a file or from standard input and uses that to con-
struct the partition table.

An idisk partitioning specification is mercifully straightforward. The first line 
contains only a number that specifies the number of partitions to create. Each 
following line contains a partition type (EFI, HPUX, HPDUMP, or HPSP for 
swap), a space character, and a size specification such as 128MB or 100%. If a 
percentage is used, it is interpreted relative to the space remaining on the drive 
after the preceding partitions have been allocated.

8.7 RAID: REDUNDANT ARRAYS OF INEXPENSIVE DISKS

Even with backups, the consequences of a disk failure on a server can be disas-
trous. RAID, “redundant arrays of inexpensive disks,” is a system that distributes 
or replicates data across multiple disks.13 RAID not only helps avoid data loss but 
also minimizes the downtime associated with hardware failures (often to zero) 
and potentially increases performance.

RAID can be implemented by dedicated hardware that presents a group of hard 
disks to the operating system as a single composite drive. It can also be imple-
mented simply by the operating system’s reading or writing multiple disks accord-
ing to the rules of RAID.

Software vs. hardware RAID

Because the disks themselves are always the most significant bottleneck in a RAID 
implementation, there is no reason to assume that a hardware-based implementa-
tion of RAID will necessarily be faster than a software- or OS-based implementa-
tion. Hardware RAID has been predominant in the past for two main reasons: 
lack of software alternatives (no direct OS support for RAID) and hardware’s abil-
ity to buffer writes in some form of nonvolatile memory.

13. RAID is sometimes glossed as “redundant arrays of independent disks,” too. Both versions are histori-
cally accurate.

  



ptg

238 Chapter 8 Storage

The latter feature does improve performance because it makes writes appear to 
complete instantaneously. It also protects against a potential corruption issue 
called the “RAID 5 write hole,” which we describe in more detail starting on page 
241. But beware: many of the common “RAID cards” sold for PCs have no non-
volatile memory at all; they are really just glorified SATA interfaces with some 
RAID software onboard. RAID implementations on PC motherboards fall into 
this category as well. You’re really much better off using the RAID features in Li-
nux or OpenSolaris on these systems.

We recently experienced a disk controller failure on an important production 
server. Although the data was replicated across several physical drives, a faulty 
hardware RAID controller destroyed the data on all disks. A lengthy and ugly tape 
restore process ensued, and it was more than two months before the server had 
completely recovered. The rebuilt server now relies on the kernel’s software to 
manage its RAID environment, removing the possibility of another RAID con-
troller failure.

RAID levels

RAID can do two basic things. First, it can improve performance by “striping” 
data across multiple drives, thus allowing several drives to work simultaneously to 
supply or absorb a single data stream. Second, it can replicate data across multiple 
drives, decreasing the risk associated with a single failed disk.

Replication assumes two basic forms: mirroring, in which data blocks are repro-
duced bit-for-bit on several different drives, and parity schemes, in which one or 
more drives contain an error-correcting checksum of the blocks on the remaining 
data drives. Mirroring is faster but consumes more disk space. Parity schemes are 
more disk-space-efficient but have lower performance.

RAID is traditionally described in terms of “levels” that specify the exact details of 
the parallelism and redundancy implemented by an array. The term is perhaps 
misleading because “higher” levels are not necessarily “better.” The levels are sim-
ply different configurations; use whichever versions suit your needs.

In the following illustrations, numbers identify stripes and the letters a, b, and c 
identify data blocks within a stripe. Blocks marked p and q are parity blocks.

• “Linear mode,” also known as JBOD (for “just a bunch of disks”) is not 
even a real RAID level. And yet, every RAID controller seems to imple-
ment it. JBOD concatenates the block addresses of multiple drives to cre-
ate a single, larger virtual drive. It provides no data redundancy or 
performance benefit. These days, JBOD functionality is best achieved 
through a logical volume manager rather than a RAID controller.

  



ptg

RAID levels 239

St
or

ag
e

• RAID level 0 is used strictly to increase 
performance. It combines two or more 
drives of equal size, but instead of stack-
ing them end-to-end, it stripes data alter-
nately among the disks in the pool. 
Sequential reads and writes are therefore 
spread among several disks, decreasing 
write and access times.

Note that RAID 0 has reliability characteristics that are significantly infe-
rior to separate disks. A two-drive array has roughly double the annual 
failure rate of a single drive, and so on.

• RAID level 1 is colloquially known as 
mirroring. Writes are duplicated to two or 
more drives simultaneously. This arrange-
ment makes writes slightly slower than 
they would be on a single drive. However, 
it offers read speeds comparable to RAID 
0 because reads can be farmed out among 
the several duplicate disk drives.

• RAID levels 1+0 and 0+1 are stripes of mirror sets or mirrors of stripe 
sets. Logically, they are concatenations of RAID 0 and RAID 1, but many 
controllers and software implementations provide direct support for 
them. The goal of both modes is to simultaneously obtain the perfor-
mance of RAID 0 and the redundancy of RAID 1.

2a
3a
4a

1a
2b
3b
4b

1b

RAID 0

2
3
4

1
2
3
4

1

RAID 1

2a
3a
4a

1a
2a
3a
4a

1a

RAID 1

2b
3b
4b

1b
2b
3b
4b

1b

RAID 1
RAID 0

2a
3a
4a

1a
2b
3b
4b

1b

RAID 0

2a
3a
4a

1a
2b
3b
4b

1b

RAID 0
RAID 1

RAID 0+1:
Mirror of 

stripes

RAID 1+0:
Stripe of 
mirrors

  



ptg

240 Chapter 8 Storage

• RAID level 5 stripes both data and parity information, adding redun-
dancy while simultaneously improving read performance. In addition,
RAID 5 is more efficient in its use of disk space than is RAID 1. If there 
are N drives in an array (at least three are required), N–1 of them can 
store data. The space-efficiency of RAID 5 is therefore at least 67%, 
whereas that of mirroring cannot be higher than 50%.

• RAID level 6 is similar to RAID 5 with two parity disks. A RAID 6 array 
can withstand the complete failure of two drives without losing data.

RAID levels 2, 3, and 4 are defined but are rarely deployed. Logical volume man-
agers usually include both striping (RAID 0) and mirroring (RAID 1) features.

For simple striped and mirrored configurations, Linux gives you a choice of using 
a dedicated RAID system (md; see page 242) or the logical volume manager. The 
LVM approach is perhaps more flexible, while the md approach may be a bit more 
rigorously predictable. If you opt for md, you can still use LVM to manage the 
space on the RAID volume. For RAID 5 and RAID 6, you must use md to imple-
ment software RAID.

As a RAID system, logical volume manager, and filesystem all rolled into one, 
Solaris’s ZFS system supports striping, mirroring, and configurations similar to 
RAID 5 and RAID 6. The ZFS architecture puts mirroring and parity arrange-
ments on the lowest level, whereas striping is done per storage pool (one level up) 
and is automatic. This is a nice way to arrange the features because it preserves the 
clarity of the RAID configuration. See page 264 for more details on ZFS.

Logical volume management is the extent of OS-level support for RAID on HP-
UX and AIX. (HP even makes you purchase the mirroring feature separately, al-
though it is bundled in certain enterprise configurations.) If you want a parity-
based system, you’ll need some additional hardware. AIX does come with tools 

2a
3a
4p

1a
2b
3p
4a

1b
2p
3b
4b

1c
2c
3c
4c

1p

RAID 5

2a
3a
4p

1a
2b
3p
4q

1b
2p
3q
4a

1c
2q
3b
4b

1p
2c
3c
4c

1q

RAID 6

  



ptg

Drawbacks of RAID 5 241

St
or

ag
e

for administering RAID hardware already integrated, however: see Disk Array 
under Devices in SMIT.

Disk failure recovery 

The Google disk failure study cited on page 211 should be pretty convincing evi-
dence of the need for some form of storage redundancy in most production envi-
ronments. At an 8% annual failure rate, your organization needs only 150 hard 
disks in service to expect an average of one failure per month. 

JBOD and RAID 0 modes are of no help when hardware problems occur; you 
must recover your data manually from backups. Other forms of RAID enter a 
degraded mode in which the offending devices are marked as faulty. The RAID 
arrays continue to function normally from the perspective of storage clients, al-
though perhaps at reduced performance.

Bad disks must be swapped out for new ones as soon as possible to restore redun-
dancy to the array. A RAID 5 array or two-disk RAID 1 array can only tolerate the 
failure of a single device. Once that failure has occurred, the array is vulnerable to 
a second failure.

The specifics of the process are usually pretty simple. You replace the failed disk 
with another of similar or greater size, then tell the RAID implementation to re-
place the old disk with the new one. What follows is an extended period during 
which the parity or mirror information is rewritten to the new, blank disk. Often, 
this is an overnight operation. The array remains available to clients during this 
phase, but performance is likely to be very poor.

To limit downtime and the vulnerability of the array to a second failure, most 
RAID implementations let you designate one or more disks as “hot” spares. When 
a failure occurs, the faulted disk is automatically swapped for a spare, and the 
process of resynchronizing the array begins immediately. Where supported, hot 
spares should be used as a matter of course.

Drawbacks of RAID 5

RAID 5 is a popular configuration, but it has some weaknesses, too. The following 
issues apply to RAID 6 also, but for simplicity we frame the discussion in terms of 
RAID 5.

See Chapter 10, Back-
ups, for general advice 
about backing up the 
system.

First, it’s critically important to note that RAID 5 does not replace regular off-line 
backups. It protects the system against the failure of one disk—that’s it. It does not 
protect against the accidental deletion of files. It does not protect against control-
ler failures, fires, hackers, or any number of other hazards.

Second, RAID 5 isn’t known for its great write performance. RAID 5 writes data 
blocks to N–1 disks and parity blocks to the Nth disk.14 Whenever a random block 

14. Parity data is distributed among all the drives in the array; each stripe has its parity stored on a differ-
ent drive. Since there’s no dedicated parity disk, it’s unlikely that any single disk will act as a bottleneck.

  



ptg

242 Chapter 8 Storage

is written, at least one data block and the parity block for that stripe must be up-
dated. Furthermore, the RAID system doesn’t know what the new parity block 
should contain until it has read the old parity block and the old data. Each ran-
dom write therefore expands into four operations: two reads and two writes. (Se-
quential writes may fare better if the implementation is smart.)

Finally, RAID 5 is vulnerable to corruption in certain circumstances. Its incre-
mental updating of parity data is more efficient than reading the entire stripe and 
recalculating the stripe’s parity based on the original data. On the other hand, it 
means that at no point is parity data ever validated or recalculated. If any block in 
a stripe should fall out of sync with the parity block, that fact will never become 
evident in normal use; reads of the data blocks will still return the correct data.

Only when a disk fails does the problem become apparent. The parity block will 
likely have been rewritten many times since the occurrence of the original desyn-
chronization. Therefore, the reconstructed data block on the replacement disk 
will consist of essentially random data.

This kind of desynchronization between data and parity blocks isn’t all that un-
likely, either. Disk drives are not transactional devices. Without an additional 
layer of safeguards, there is no simple way to guarantee that either two blocks or 
zero blocks on two different disks will be properly updated. It’s quite possible for a 
crash, power failure, or communication problem at the wrong moment to create 
data/parity skew.

This problem is known as the RAID 5 “write hole,” and it has received increasing 
attention over the last five years or so. One helpful resource is the web site of the 
Battle Against Any Raid Five,15 baarf.org, which points to a variety of editorials on 
the subject. You’ll have to decide for yourself whether the problem is significant or 
overblown. (We lean more toward “significant.”)

The implementors of Solaris’s ZFS filesystem claim that because ZFS uses vari-
able-width stripes, it is immune to the RAID 5 write hole. That’s also why ZFS 
calls its RAID implementation RAID-Z instead of RAID 5, though in practice the 
concept is similar.

Another potential solution is “scrubbing,” validating parity blocks one by one 
while the array is relatively idle. Many RAID implementations include some form 
of scrubbing function.

mdadm: Linux software RAID

The standard software RAID implementation for Linux is called md, the “multi-
ple disks” driver. It’s front-ended by the mdadm command. md supports all the 
RAID configurations listed above as well as RAID 4. An earlier system known as 
raidtools is no longer used.

15. Slogan: “Enough is enough. You can either join BAARF. Or not.”

  



ptg

mdadm: Linux software RAID 243

St
or

ag
e

The following example scenario configures a RAID 5 array composed of three 
identical 500GB hard disks. Although md can use raw disks as components, we 
prefer to give each disk a partition table for consistency, so we start by running 
gparted, creating an MBR partition table on each disk (gparted refers to this as 
the “msdos” style of partition table), and assigning all the disk’s space to a single 
partition of type “unformatted” (which is unfortunately about as close as you can 
get to the actual use). It’s not strictly necessary to set the partition type, but it’s a 
useful reminder to anyone who might inspect the table later. There is also a “raid” 
flag bit you can set on a partition, although gparted doesn’t make this easy: you 
must create the partition, execute the pending operations, and then go back to the 
new partition and edit its flags.

The following command builds a RAID 5 array from our three SCSI partitions:
linux$ sudo mdadm --create /dev/md0 --level=5 --raid-devices=3 /dev/sdb1 

/dev/sdc1 /dev/sdd1
mdadm: array /dev/md0 started.

The virtual file /proc/mdstat always contains a summary of md’s status and the 
status of all the system’s RAID arrays. It is especially useful to keep an eye on the 
/proc/mdstat file after adding a new disk or replacing a faulty drive. (watch cat 
/proc/mdstat is a handy idiom.) 

linux$ cat /proc/mdstat 
Personalities : [linear] [multipath] [raid0] [raid1] [raid6] [raid5] [raid4] [raid10] 
md0 : active raid5 sdd1[3] sdc1[1] sdb1[0]

1023404544 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU_] [>.
.......................]  recovery =  0.1% (672640/511702272) finish=75.9min 

speed=112106K/sec
      
unused devices: <none>

The md system does not keep track of which blocks in an array have been used, so 
it must manually synchronize all the parity blocks with their corresponding data 
blocks. md calls the operation a “recovery” since it’s essentially the same proced-
ure used when you swap out a bad hard disk. It can take hours on a large array. 

Some helpful notifications appear in the /var/log/messages file, too.
md0:RAID5 conf printout: 
--- rd:3 wd:2 
disk 0, o:1, dev:sdb1 
disk 1, o:1, dev:sdc1 
disk 2, o:1, dev:sdd1 
md: recovery of RAID array md0 
md: minimum _guaranteed_  speed: 1000 KB/sec/disk. 
md: using max available idle IO bandwidth (but not more than 200000 KB/sec) 
for recovery. 
md: using 128k window, over a total of 511702272 blocks.

The initial creation command also serves to “activate” the array (make it available 
for use), but on subsequent reboots it may be necessary to activate the array as a 

  



ptg

244 Chapter 8 Storage

separate step, usually out of a startup script. Red Hat and SUSE include sample 
startup scripts for RAID, and Ubuntu starts arrays by default.

mdadm does not technically require a configuration file, although it will use a 
configuration file if one is supplied (typically, /etc/mdadm.conf). We strongly 
recommend the use of a configuration file. It documents the RAID configuration 
in a standard way, thus giving administrators an obvious place to look for infor-
mation when problems occur. The alternative to the use of a configuration file is 
to specify the configuration on the command line each time the array is activated.

mdadm --detail --scan dumps the current RAID setup into a configuration file. 
Unfortunately, the configuration it prints is not quite complete. The following 
commands build a complete configuration file for our example setup:

linux$ sudo sh -c 'echo DEVICE /dev/sdb1 /dev/sdc1 /dev/sdd1 > 
/etc/mdadm.conf'

linux$ sudo sh -c 'mdadm --detail --scan >> /etc/mdadm.conf' 
linux$ cat /etc/mdadm.conf 
DEVICE /dev/sdb1 /dev/sdc1 /dev/sdd1 
ARRAY /dev/md0 level=raid5 num-devices=3 metadata=00.90 spares=1 

UUID=f18070c5:e2b6aa18:e368bf24:bd0fce41

mdadm can now read this file at startup or shutdown to easily manage the array. 
To enable the array at startup by using the freshly created /etc/mdadm.conf, we 
would execute

$ sudo mdadm -As /dev/md0

To stop the array manually, we would use the command
$ sudo mdadm -S /dev/md0

Once you’ve set up the mdadm.conf file, print it out and tape it to the side of the 
server. It’s not always trivial to reconstruct the components of a RAID setup when 
something goes wrong.

mdadm has a --monitor mode in which it runs continuously as a daemon process 
and notifies you by email when problems are detected on a RAID array. Use this 
feature! To set it up, add a MAILADDR line to your mdadm.conf file to specify 
the recipient to whom warnings should be sent, and arrange for the monitor dae-
mon to run at boot time. All our example distributions have an init script that 
does this for you, but the names and procedures for enabling are slightly different.

ubuntu$ sudo update-rc.d mdadm enable 
suse$ sudo chkconfig -s mdadmd on 
redhat$ sudo chkconfig mdmonitor on

What happens when a disk actually fails? Let’s find out! mdadm offers a handy 
option that simulates a failed disk.

  



ptg

mdadm: Linux software RAID 245

St
or

ag
e

$ sudo mdadm /dev/md0 -f /dev/sdc1 
mdadm: set /dev/sdc1 faulty in /dev/md0

$ sudo tail /var/log/messages 
May 30 16:14:55 harp kernel: raid5: Disk failure on sdc, disabling device. 

Operation continuing on 2 devices 
kernel: RAID5 conf printout: 
kernel:  --- rd:3 wd:2 fd:1 
kernel:  disk 0, o:1, dev:sdb1 
kernel:  disk 1, o:0, dev:sdc1 
kernel:  disk 2, o:1, dev:sdd1 
kernel: RAID5 conf printout: 
kernel:  --- rd:3 wd:2 fd:1 
kernel:  disk 0, o:1, dev:sdb1 
kernel:  disk 2, o:1, dev:sdd1

$ cat /proc/mdstat
Personalities : [raid6] [raid5] [raid4] [linear] [multipath] [raid0] [raid1] [raid10] 
md0 : active raid5 sdb1[0] sdd1[2] sdc1[3](F)

1023404544 blocks level 5, 64k chunk, algorithm 2 [3/2] [U_U]

unused devices: <none>

Because RAID 5 is a redundant configuration, the array continues to function in 
degraded mode, so users will not necessarily be aware of the problem.

To remove the drive from the RAID configuration, use mdadm -r:
$ sudo mdadm /dev/md0 -r /dev/sdc1 
mdadm: hot removed /dev/sdc1

Once the disk has been logically removed, you can shut down the system and 
replace the drive. Hot-swappable drive hardware lets you make the change with-
out turning off the system or rebooting.

If your RAID components are raw disks, you should replace them with an identi-
cal drive only. Partition-based components can be replaced with any partition of 
similar size, although for bandwidth matching it’s best if the drive hardware is 
similar. (If your RAID configuration is built on top of partitions, you must run a 
partitioning utility to define the partitions appropriately before adding the re-
placement disk to the array.)

In our example, the failure is just simulated, so we can add the drive back to the 
array without replacing any hardware:

$ sudo mdadm /dev/md0 -a /dev/sdc1 
mdadm: hot added /dev/sdc1

md will immediately start to rebuild the array. As always, you can see its progress 
in /proc/mdstat. A rebuild may take hours, so consider this fact in your disaster 
recovery plans.

  



ptg

246 Chapter 8 Storage

8.8 LOGICAL VOLUME MANAGEMENT

Imagine a world in which you don’t know exactly how large a partition needs to 
be. Six months after creating the partition, you discover that it is much too large, 
but that a neighboring partition doesn’t have enough space… Sound familiar? A 
logical volume manager lets you reallocate space dynamically from the greedy 
partition to the needy partition.

Logical volume management is essentially a supercharged and abstracted version 
of disk partitioning. It groups individual storage devices into “volume groups.” 
The blocks in a volume group can then be allocated to “logical volumes,” which 
are represented by block device files and act like disk partitions. 

However, logical volumes are more flexible and powerful than disk partitions. 
Here are some of the magical operations a volume manager lets you carry out:

• Move logical volumes among different physical devices
• Grow and shrink logical volumes on the fly
• Take copy-on-write “snapshots” of logical volumes
• Replace on-line drives without interrupting service
• Incorporate mirroring or striping in your logical volumes

The components of a logical volume can be put together in various ways. Concat-
enation keeps each device’s physical blocks together and lines the devices up one 
after another. Striping interleaves the components so that adjacent virtual blocks 
are actually spread over multiple physical disks. By reducing single-disk bottle-
necks, striping can often provide higher bandwidth and lower latency.

LVM implementations

All our example systems support logical volume management, and with the ex-
ception of Solaris’s ZFS, the systems are all quite similar. 

In addition to ZFS, Solaris supports a previous generation of LVM called the So-
laris Volume Manager, formerly Solstice DiskSuite. This volume manager is still 
supported, but new deployments should use ZFS.

Linux’s volume manager, called LVM2, is essentially a clone of HP-UX’s volume 
manager, which is itself based on software by Veritas. The commands for the two 
systems are essentially identical, but we show examples for both systems because 
their ancillary commands are somewhat different. AIX’s system has similar ab-
stractions but different command syntax. Table 8.4 illustrates the parallels among 
these three systems.

In addition to commands that deal with volume groups and logical volumes, Ta-
ble 8.4 also shows a couple of commands that relate to “physical volumes.” A phys-
ical volume is a storage device that has had an LVM label applied; applying such a 
label is the first step to using the device through the LVM. Linux and HP-UX use 
pvcreate to apply a label, but AIX’s mkvg does it automatically. In addition to 
bookkeeping information, the label includes a unique ID to identify the device.

  



ptg

Linux logical volume management 247

St
or

ag
e

“Physical volume” is a somewhat misleading term because physical volumes need 
not have a direct correspondence to physical devices. They can be disks, but they 
can also be disk partitions or RAID arrays. The LVM doesn’t care.

Linux logical volume management

You can control Linux’s LVM implementation (LVM2) with either a large group of 
simple commands (the ones illustrated in Table 8.4) or with the single lvm com-
mand and its various subcommands. These options are for all intents and pur-
poses identical; in fact, the individual commands are really just links to lvm, 
which looks to see how it’s been called to know how to behave. man lvm is a good 
introduction to the system and its tools.

A Linux LVM configuration proceeds in a few distinct phases:

• Creating (defining, really) and initializing physical volumes
• Adding the physical volumes to a volume group
• Creating logical volumes on the volume group

LVM commands start with letters that make it clear at which level of abstraction 
they operate: pv commands manipulate physical volumes, vg commands manipu-
late volume groups, and lv commands manipulate logical volumes. A few com-
mands with the prefix lvm (e.g., lvmchange) operate on the system as a whole.

In the following example, we set up the /dev/md0 RAID 5 device we created on 
page 243 for use with LVM and create a logical volume. Since striping and redun-
dancy have already been addressed by the underlying RAID configuration, we 
won’t make use of the corresponding LVM2 features, although they exist.

Table 8.4 Comparison of LVM commands

Operation Linux HP-UX AIX

Ph
ys

ic
al

 v
ol Create pvcreate pvcreate –

Inspect pvdisplay pvdisplay lspv

Modify pvchange pvchange chpv

Check pvck pvck –
Vo

lu
m

e 
gr

ou
p

Create vgcreate vgcreate mkvg

Modify vgchange vgchange chvg

Extend vgextend vgextend extendvg

Inspect vgdisplay vgdisplay lsvg

Check vgck – –
Enable vgscan vgscan varyonvg

Lo
gi

ca
l v

ol Create lvcreate lvcreate mklv

Modify lvchange lvchange chlv

Resize lvresize lvextend, lvreduce extendlv

Inspect lvdisplay lvdisplay lslv

  



ptg

248 Chapter 8 Storage

$ sudo pvcreate /dev/md0 
Physical volume "/dev/md0" successfully created

Our physical device is now ready to be added to a volume group:
$ sudo vgcreate DEMO /dev/md0 
Volume group "DEMO" successfully created

Although we’re using only a single physical device in this example, we could of 
course add additional devices. In this case, it would be strange to add anything but 
another RAID 5 array since there is no benefit to partial redundancy. DEMO is an 
arbitrary name that we’ve selected.

To step back and examine our handiwork, we use the vgdisplay command:
$ sudo vgdisplay DEMO 
--- Volume group ---
VG Name DEMO
System ID
Format lvm2
Metadata Areas 1
Metadata Sequence No 1 
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 0
Open LV 0
Max PV 0
Cur PV 1
Act PV 1
VG Size 975.99 GB
PE Size 4.00 MB
Total PE 249854
Alloc PE / Size 0 / 0
Free PE / Size249854 / 975.99 GB
VG UUID NtbRLu-RqiQ-3Urt-iQZn-vEvJ-u0Th-FVYKWF

A “PE” is a physical extent, the allocation unit according to which the volume 
group is subdivided.

The final steps are to create the logical volume within DEMO and then to create a 
filesystem within that volume. We make the logical volume 100GB in size:

$ sudo lvcreate -L 100G -n web1 DEMO 
Logical volume "web1" created

Most of LVM2’s interesting options live at the logical volume level. That’s where 
striping, mirroring, and contiguous allocation would be requested if we were us-
ing those features.

We can now access the volume through the device /dev/DEMO/web1. We discuss 
filesystems in general starting on page 254, but here is a quick overview of creat-
ing a standard filesystem so that we can demonstrate a few additional LVM tricks.

  



ptg

Volume snapshots 249

St
or

ag
e

$ sudo mkfs /dev/DEMO/web1 
… 
$ sudo mkdir /mnt/web1 
$ sudo mount /dev/DEMO/web1 /mnt/web1

Volume snapshots
You can create copy-on-write duplicates of any LVM2 logical volume, whether or 
not it contains a filesystem. This feature is handy for creating a quiescent image of 
a filesystem to be backed up on tape, but unlike ZFS snapshots, LVM2 snapshots 
are unfortunately not very useful as a general method of version control. 

The problem is that logical volumes are of fixed size. When you create one, stor-
age space is allocated for it up front from the volume group. A copy-on-write du-
plicate initially consumes no space, but as blocks are modified, the volume man-
ager must find space in which to store both the old and new versions. This space 
for modified blocks must be set aside when you create the snapshot, and like any 
LVM volume, the allocated storage is of fixed size.

Note that it does not matter whether you modify the original volume or the snap-
shot (which by default is writable). Either way, the cost of duplicating the blocks is 
charged to the snapshot. Snapshots’ allocations can be pared away by activity on 
the source volume even when the snapshots themselves are idle.

If you do not allocate as much space for a snapshot as is consumed by the volume 
of which it is an image, you can potentially run out of space in the snapshot. That’s 
more catastrophic than it sounds because the volume manager then has no way to 
maintain a coherent image of the snapshot; additional storage space is required 
just to keep the snapshot the same. The result of running out of space is that LVM 
stops maintaining the snapshot, and the snapshot becomes irrevocably corrupt. 

So, as a matter of practice, LVM snapshots should be either short-lived or as large 
as their source volumes. So much for “lots of cheap virtual copies.”

To create /dev/DEMO/web1-snap as a snapshot of /dev/DEMO/web1, we would 
use the following command: 

$ sudo lvcreate -L 100G -s -n web1-snap DEMO/web1

Note that the snapshot has its own name and that the source of the snapshot must 
be specified as volume_group/volume.

In theory, /mnt/web1 should really be unmounted first to ensure the consistency 
of the filesystem. In practice, ext4 will protect us against filesystem corruption, 
although we may lose a few of the most recent data block updates. This is a per-
fectly reasonable compromise for a snapshot used as a backup source.

To check on the status of your snapshots, run lvdisplay. If lvdisplay tells you that 
a snapshot is “inactive,” that means it has run out of space and should be deleted. 
There’s very little you can do with a snapshot once it reaches this point.

  



ptg

250 Chapter 8 Storage

Resizing filesystems
Filesystem overflows are more common than disk crashes, and one advantage of 
logical volumes is that they’re much easier to juggle and resize than are hard par-
titions. We have experienced everything from servers used for personal MP3 stor-
age to a department full of email pack rats.

The logical volume manager doesn’t know anything about the contents of its vol-
umes, so you must do your resizing at both the volume and filesystem levels. The 
order depends on the specific operation. Reductions must be filesystem-first, and 
enlargements must be volume-first. Don’t memorize these rules: just think about 
what’s actually happening and use common sense.

Suppose that in our example, /mnt/web1 has grown more than we predicted and 
needs another 10GB of space. We first check the volume group to be sure addi-
tional space is available.

$ sudo vgdisplay DEMO 
--- Volume group ---
VG Name DEMO
System ID
Format lvm2
Metadata Areas 1
Metadata Sequence No 18 
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 2
Open LV 1
Max PV 0
Cur PV 1
Act PV 1
VG Size 975.99 GB
PE Size 4.00 MB
Total PE 249854
Alloc PE / Size 51200 / 200.00 GB
Free PE / Size198654 / 775.99 GB
VG UUID NtbRLu-RqiQ-3Urt-iQZn-vEvJ-u0Th-FVYKWF

Plenty of space is available, so we unmount the filesystem and use lvresize to add 
space to the logical volume.

$ sudo umount /mnt/web1 
$ sudo lvchange -an DEMO/web1 
$ sudo lvresize -L +10G DEMO/web1 
$ sudo lvchange -ay DEMO/web1 
Extending logical volume web1 to 110.00 GB 
Logical volume web1 successfully resized

The lvchange commands are needed to deactivate the volume for resizing and to 
reactivate it afterwards. This part is only needed because there is an existing snap-
shot of web1 from our previous example. After the resize operation, the snapshot 

  



ptg

HP-UX logical volume management 251

St
or

ag
e

will “see” the additional 10GB of allocated space, but since the filesystem it con-
tains is only 100GB in size, the snapshot will still be usable.

We can now resize the filesytem with resize2fs. (The 2 comes from the original 
ext2 filesystem, but the command supports all versions of ext.) Since resize2fs can 
determine the size of the new filesystem from the volume, we don’t need to specify 
the new size explicitly. We would have to do so when shrinking the filesystem.

$ sudo resize2fs /dev/DEMO/web1 
resize2fs 1.41.9 (22-Aug-2009)
Please run 'e2fsck -f /dev/DEMO/web1' first.

Oops! resize2fs forces you to double-check the consistency of the filesystem be-
fore resizing.

$ sudo e2fsck -f /dev/DEMO/web1 
e2fsck 1.41.9 (22-Aug-2009)
Pass 1: Checking inodes, blocks, and sizes 
… 
/dev/DEMO/web1: 6432/6553600 files (0.1% non-contiguous), 473045/26214400 

blocks 
$ sudo resize2fs /dev/DEMO/web1 
resize2fs 1.41.9 (22-Aug-2009)
Resizing the filesystem on /dev/DEMO/web1 to 28835840 (4k) blocks. 
The filesystem on /dev/DEMO/web1 is now 28835840 blocks long.

That’s it! Examining the output of df again shows the changes:
$ sudo mount /dev/DEMO/web1 /mnt/web1 
$ df -h /mnt/web1 
Filesystem Size Used Avail Use% Mounted on 
/dev/mapper/DEMO-web 1109G 188M 103G 1% /mnt/web1

HP-UX logical volume management

As of HP-UX 10.20, HP provides a full logical volume manager. It’s a nice addi-
tion, especially when you consider that HP-UX formerly did not even support the 
notion of disk partitions. The volume manager is called LVM, just as on Linux, 
although the HP-UX version is in fact the original. (Really, it’s Veritas software…)

As a simple example of LVM wrangling, here’s how you would configure a 75GB 
hard disk for use with the logical volume manager. If you have read through the 
Linux example above, the following procedure will seem eerily familiar. There are 
a few minor differences, but the overall process is essentially the same. 

The pvcreate command identifies physical volumes.
$ sudo pvcreate /dev/rdisk/disk4 
Creating "/etc/lvmtab_p".
Physical volume "/dev/rdisk/disk4" has been successfully created.

If you will be using the disk as a boot disk, add the -B option to pvcreate to re-
serve space for a boot block, then run mkboot to install it.

  



ptg

252 Chapter 8 Storage 

After defining the disk as a physical volume, you add it to a new volume group 
with the vgcreate command. Two metadata formats exist for volume groups, ver-
sions 1.0 and 2.0. You specify which version you want with the -V option when 
creating a volume group; version 1.0 remains the default. Version 2.0 has higher 
size limits, but it’s not usable for boot devices or swap volumes. Even version 1.0 
metadata has quite generous limits, so it should be fine for most uses. You can see 
the exact limits with lvmadm. For reference, here are the limits for 1.0:

$ sudo lvmadm -t -V 1.0 
--- LVM Limits ---
VG Version 1.0 
Max VG Size (Tbytes) 510 
Max LV Size (Tbytes) 16 
Max PV Size (Tbytes) 2
Max VGs 256
Max LVs 255
Max PVs 255
Max Mirrors 2
Max Stripes 255 
Max Stripe Size (Kbytes) 32768 
Max LXs per LV 65535
Max PXs per PV 65535 
Max Extent Size (Mbytes) 256

You can add extra disks to a volume group with vgextend, but this example vol-
ume group contains only a single disk.

$ sudo vgcreate vg01 /dev/disk/disk4 
Increased the number of physical extents per physical volume to 17501. 
Volume group "/dev/vg01" has been successfully created.
Volume Group configuration for /dev/vg01 has been saved in 

/etc/lvmconf/vg01.con

Once your disks have been added to a convenient volume group, you can split the 
volume group’s pool of disk space back into logical volumes. The lvcreate com-
mand creates a new logical volume. Specify the size of the volume in megabytes 
with the -L flag or in logical extents (typically 4MiB) with the -l flag. Sizes speci-
fied in MiB are rounded up to the nearest multiple of the logical extent size.

To assess the amount of free space remaining in a volume group, run vgdisplay
vgname as root. The output includes the extent size and the number of unallo-
cated extents.

$ sudo lvcreate -L 25000 -n web1 vg01 
Logical volume "/dev/vg01/web1" has been successfully created with character 

device "/dev/vg01/rweb1".
Logical volume "/dev/vg01/web1" has been successfully extended. 
Volume Group configuration for /dev/vg01 has been saved in 

/etc/lvmconf/vg01.conf

  



ptg

AIX logical volume management 253

St
or

ag
e

The command above creates a 25GB logical volume named web1. Once you’ve 
created your logical volumes, you can verify them by running vgdisplay -v 
/dev/vgname to double-check their sizes and make sure they were set up correctly.

In most scenarios, you would then go on to create a filesystem on /dev/vg01/web1
and arrange for it to be mounted at boot time. See page 258 for details.

Another common way to create a logical volume is to use lvcreate to create a zero-
length volume and then use lvextend to add storage to it. That way, you can spec-
ify exactly which physical volumes in the volume group should compose the logi-
cal volume. If you allocate space with lvcreate (as we did above), it simply uses 
free extents from any available physical volumes in the volume group—good 
enough for most situations.

As in Linux, striping (which HP-UX’s LVM refers to as “distributed allocation”) 
and mirroring are features at the logical volume level. You can request them at the 
time the logical volume is created with lvcreate, or later with lvchange. In con-
trast to Linux, the logical volume manager does not allow snapshots. However, 
temporary snapshots are available as a feature of HP’s VxFS filesystem.

If you plan to use a logical volume as a boot or swap device or to store system core 
dumps, you must specify contiguous allocation and turn off bad block remapping 
with the -C and -r flags to lvcreate, as shown below.16

# lvcreate -C y -r n -L 1500 -n root vg01 
Logical volume "/dev/vg01/root" has been successfully created with character 

device "/dev/vg01/rroot".
Logical volume "/dev/vg01/root" has been successfully extended. 
Volume Group configuration for /dev/vg01 has been saved in 

/etc/lvmconf/vg01.conf 
# lvcreate -C y -r n -L 500 -n swap vg01 
Logical volume "/dev/vg01/swap" has been successfully created with character 

device "/dev/vg01/rswap". 
…

You must then run the lvlnboot command to notify the system of the new root 
and swap volumes. See the man page for lvlnboot for more information about the 
special procedures for creating boot, swap, and dump volumes.

AIX logical volume management

AIX’s logical volume manager uses a different command set from the volume 
managers of Linux and HP-UX, but its underlying architecture and approach are 
similar. One potentially confusing point is that AIX calls the objects more com-
monly known as extents (that is, the units of space allocation within a volume 
group) “partitions.” Because the entities normally referred to as partitions do not 

16. HP-UX limitations require swap space to reside in the first 2GiB of the physical disk and the boot vol-
ume to be the first logical volume. The 1.5GB root and 500MB swap shown here were chosen to work 
around these constraints. You can have a root partition that is larger than these values, but you must 
then have separate boot and root volumes. See the man page for lvlnboot for more details.

  



ptg

254 Chapter 8 Storage 

exist in AIX, there is no ambiguity within the AIX sphere itself. However, tourists 
visiting from other systems may wish to bring along an AIX phrase book.

In other respects—physical volume, volume group, logical volume—AIX termi-
nology is standard. The SMIT interface for logical volume management is pretty 
complete, but you can also use the commands listed in Table 8.4.

The following four commands create a volume group called webvg, a logical vol-
ume called web1 within it, and a JFS2 filesystem inside web1. The filesystem is 
then mounted in /mnt/web1.

$ sudo mkvg -y webvg hdisk1 
webvg 
$ sudo crfs -v jfs2 -g webvg -m /mnt/web1 -a size=25G 
File system created successfully. 
26213396 kilobytes total disk space.
New File System size is 52428800 
$ sudo mkdir /mnt/web1 
$ sudo mount /mnt/web1

AIX does not require you to label disks to turn them into physical volumes. mkvg
and extendvg automatically label disks as part of the induction process. Note that 
mkvg takes a device name and not the path to a disk device.

You can create the logical volume and the filesystem inside it in separate steps 
(with mklv and mkfs, respectively), but crfs performs both tasks for you and up-
dates /etc/filesystems as well. The exact name of the logical volume device that 
holds the filesystem is made up for you in the crfs scenario, but you can deter-
mine it by inspecting /etc/filesystems or running mount. (On the other hand, it 
can be hard to unscramble filesystems in the event of problems if the volumes all 
have generic names.)

If you run mklv directly, you can specify not only a device name of your choosing 
but also various options to the volume manager such as striping and mirroring 
configurations. Snapshots are implemented through the JFS2 filesystem and not 
through the volume manager.

8.9 FILESYSTEMS

Even after a hard disk has been conceptually divided into partitions or logical 
volumes, it is still not ready to hold files. All the abstractions and goodies de-
scribed in Chapter 6, The Filesystem, must be implemented in terms of raw disk 
blocks. The filesystem is the code that implements these, and it needs to add a bit 
of its own overhead and data.

The Berkeley Fast File System implemented by McKusick et al. in the 1980s was 
an early standard that spread to many UNIX systems. With some small adjust-
ments, it eventually became known as the UNIX File System (UFS) and formed 

  



ptg

Linux filesystems: the ext family 255

St
or

ag
e

the basis of several other filesystem implementations, including Linux’s ext series, 
Solaris’s UFS, and IBM’s JFS.

Early systems bundled the filesystem implementation into the kernel, but it soon 
became apparent that support for multiple filesystem types was an important de-
sign goal. UNIX systems developed a well-defined kernel interface that allowed 
multiple types of filesystems to be active at once. The filesystem interface also 
abstracted the underlying hardware, so filesystems see approximately the same 
interface to storage devices as do other UNIX programs that access the disks 
through device files in /dev.

Support for multiple filesystem types was initially motivated by the need to sup-
port NFS and filesystems for removable media. But once the floodgates were 
opened, the “what if ” era began; many different groups started to work on im-
proved filesystems. Some were system specific, and others (such as ReiserFS) were 
not tied to any particular OS.

Given that you may have a choice of filesystems, should you investigate the vari-
ous alternatives and choose the “best” one? Unless you’re setting up a data disk for 
a very specific application, no. In nearly all situations, it’s better to stick with the 
system’s defaults. That’s what the system’s documentation and administrative tools 
probably assume.

Only a few features are truly non-negotiable:

• Good performance
• Tolerance for crashes and power outages without filesystem corruption
• The ability to handle disks and filesystems large enough for your needs

Fortunately, modern systems’ default filesystems already cover these bases. Any 
improvement you might see from changing filesystems will be marginal and con-
text dependent at best.

The next sections discuss the default filesystems on Linux, HP-UX, and AIX. The 
ZFS filesystem used by Solaris is administered differently and merits an entire 
section of its own; that section starts on page 264.

Linux filesystems: the ext family

The “second extended filesystem,” ext2, was for a long time the mainstream Linux 
standard. It was designed and implemented primarily by Rémy Card, Theodore 
Ts’o, and Stephen Tweedie. Although the code for ext2 was written specifically for 
Linux, it is functionally similar to the Berkeley Fast File System.

Ext3 adds journaling capability to the existing ext2 code, a conceptually simple 
modification that increases reliability enormously. Even more interestingly, the 
ext3 extensions were implemented without changing the fundamental structure 
of ext2. In fact, you can still mount an ext3 filesystem as an ext2 filesystem—it just 
won’t have journaling enabled.

  



ptg

256 Chapter 8 Storage

Ext3 sets aside an area of the disk for the journal. The journal is allocated as if it 
were a regular file in the root of the filesystem, so it is not really a distinct struc-
tural component.

When a filesystem operation occurs, the required modifications are first written 
to the journal. When the journal update is complete, a “commit record” is written 
to mark the end of the entry. Only then is the normal filesystem modified. If a 
crash occurs during the update, the filesystem uses the journal log to reconstruct 
a perfectly consistent filesystem.17

Journaling reduces the time needed to perform filesystem consistency checks (see 
the fsck section on page 259) to approximately one second per filesystem. Barring 
some type of hardware failure, the state of an ext3 filesystem can almost instantly 
be assessed and restored.

Ext4 is a comparatively incremental update that raises a few size limits, increases 
the performance of certain operations, and allows the use of “extents” (disk block 
ranges) for storage allocation rather than just individual disk blocks. The on-disk 
format is compatible enough that ext2 and ext3 filesystems can be mounted as 
ext4 filesystems. Furthermore, ext4 filesystems can be mounted as if they were 
ext3 filesystems provided that the extent system has not been used.

Use of ext4 over the previous versions is recommended as of Linux kernel 2.6.28.18 
It is the default on Ubuntu and SUSE; Red Hat remains on ext3.

It’s easy to add a journal to an existing ext2 filesystem, thereby promoting it to 
ext3 or ext4 (the distinction is vague because of backward compatibility). Just run 
tune2fs with the -j option. For example:

# tune2fs -j /dev/hda4

You would then need to modify the corresponding entry in /etc/fstab to read ext4
rather than ext2 (see page 260 for more information on the fstab file).

HP-UX filesystems: VxFS and HFS

VxFS is the mainstream HP-UX filesystem. It’s based on a filesystem originally 
developed by Veritas Software, now part of Symantec. Since it includes a journal, 
HP sometimes refers to it as JFS, the Journaled File System. Don’t confuse this JFS 
with AIX’s JFS2, though; they are different filesystems.

VxFS is nearly unique among mainstream filesystems in that it supports cluster-
ing; that is, simultaneous modification by multiple, independent computers. This 
mode of operation involves some performance costs because the filesystem must 

17. In most cases, only metadata changes are journaled. The actual data to be stored is written directly to 
the filesystem. However, you can change this behavior with the data mount option. See the mount
man page for specifics.

18. Some say that the recommendation for ext4 in kernel 2.6.28 was, in retrospect, premature. Current 
versions are solid, however.

  



ptg

Filesystem terminology 257

St
or

ag
e

take extra steps to ensure cache coherency among computers. By default, cluster-
ing features are turned off; use the -o cluster option to mount to turn them on.

HFS is HP’s previous mainstream filesystem. It’s based on the UNIX File System 
and is now deprecated, though still supported.

AIX’s JFS2

JFS2 is yet another filesystem that traces its roots back to the Berkeley Fast File 
System. The J stands for “journaled,” but JFS2 has some other tricks up its sleeve, 
including extents, dynamic allocation of inodes, and the use of a B+ tree structure 
to store directory entries.

JFS2 is also interesting in that it’s available under the GNU General Public Li-
cense. It runs on Linux, too.

Filesystem terminology

Largely because of their common history with UFS, many filesystems share some 
descriptive terminology. The implementations of the underlying objects have of-
ten changed, but the terms are still widely used by administrators as labels for 
fundamental concepts.

“Inodes” are fixed-length table entries that each hold information about one file. 
They were originally preallocated at the time a filesystem was created, but some 
filesystems now create them dynamically as they are needed. Either way, an inode 
usually has an identifying number that you can see with ls -i.

Inodes are the “things” pointed to by directory entries. When you create a hard 
link to an existing file, you create a new directory entry, but you do not create a 
new inode. 

On systems that preallocate inodes, you must decide in advance how many to 
create. It’s impossible to predict exactly how many will someday be needed, so 
filesystem-building commands use an empirical formula, based on the size of the 
volume and an average file size, to guesstimate an appropriate number. If you an-
ticipate storing zillions of small files, you may need to increase this number.

A superblock is a record that describes the characteristics of the filesystem. It con-
tains information about the length of a disk block, the size and location of the 
inode tables, the disk block map and usage information, the size of the block 
groups, and a few other important parameters of the filesystem. Because damage 
to the superblock could erase some extremely crucial information, several copies 
of it are maintained in scattered locations.

Filesystems cache disk blocks to increase efficiency. All types of blocks can be 
cached, including superblocks, inode blocks, and directory information. Caches 
are normally not “write-through,” so there may be some delay between the point 
at which an application thinks it has written a block and the point at which the 

  



ptg

258 Chapter 8 Storage 

block is actually saved to disk. Applications can request more predictable behavior 
for a file, but this option lowers throughput.

The sync system call flushes modified blocks to their permanent homes on disk, 
possibly making the on-disk filesystem fully consistent for a split second. This 
periodic save minimizes the amount of data loss that might occur if the machine 
were to crash with many unsaved blocks. Filesystems can do syncs on their own 
schedule or leave this up to the OS. Modern filesystems have journaling mecha-
nisms that minimize or eliminate the possibility of structural corruption in the 
event of a crash, so sync frequency now mostly has to do with how many data 
blocks might be lost in a crash.

A filesystem’s disk block map is a table of the free blocks it contains. When new 
files are written, this map is examined to devise an efficient layout scheme. The 
block usage summary records basic information about the blocks that are already 
in use. On filesystems that support extents, the information may be significantly 
more complex than the simple bitmap used by older filesystems.

Filesystem polymorphism

Filesystems are software packages with multiple components. One part lives in the 
kernel (or even potentially in user space under Linux; google for FUSE) and im-
plements the nuts and bolts of translating the standard filesystem API into reads 
and writes of disk blocks. Other parts are user-level commands that initialize new 
volumes to the standard format, check filesystems for corruption, and perform 
other format-specific tasks.

Long ago, the standard user-level commands knew about “the filesystem” that the 
system used, and they simply implemented the appropriate functionality. mkfs
created new filesystems, fsck fixed problems, and mount mostly just invoked the 
appropriate underlying system calls. These days filesystems are more modular, so 
these commands call filesystem-specific implementations of each utility.

The exact implementation varies. For example, the Linux wrappers look for dis-
crete commands named mkfs.fsname, fsck.fsname, and so on in the normal direc-
tories for system commands. (You can run these commands directly, but it’s rarely 
necessary.) AIX has a central /etc/vfs switch that records metainformation for 
filesystems (not to be confused with Solaris’s /etc/vfstab, which is equivalent to 
the fstab or filesystems file on other systems; it’s not needed for ZFS, though).

mkfs: format filesystems

The general recipe for creating a new filesystem is
mkfs [-T fstype ] [-o options] rawdevice

The default fstype may be hard-coded into the wrapper, or it might be specified in 
/etc/default/fs. The available options are filesystem specific, but it’s rare that you’ll 
need to use them. Linux uses -t instead of -T, omits the -o designator, and does 
not have raw disk device files. AIX uses -V instead of -T.

  



ptg

fsck: check and repair filesystems 259

St
or

ag
e

AIX’s crfs can allocate a new logical volume, create a filesystem on it, and update 
the /etc/filesystems file all in one step. 

Two options you may consider tweaking are those that enable snapshots for file-
systems that support them (JFS2 and VxFS) and locating the filesystem journal on 
a separate disk. The latter option can give quite a performance boost in the right 
circumstances.

fsck: check and repair filesystems

Because of block buffering and the fact that disk drives are not really transactional 
devices, filesystem data structures can potentially become self-inconsistent. If 
these problems are not corrected quickly, they propagate and snowball.

The original fix for corruption was a command called fsck (“filesystem consis-
tency check,” spelled aloud or pronounced “FS check” or “fisk”) that carefully in-
spected all data structures and walked the allocation tree for every file. It relied on 
a set of heuristic rules about what the filesystem state might look like after failures 
at various points during an update.

The original fsck scheme worked surprisingly well, but because it involved read-
ing all a disk’s data, it could take hours on a large drive. An early optimization was 
a “filesystem clean” bit that could be set in the superblock when the filesystem was 
properly unmounted. When the system restarted, it would see the clean bit and 
know to skip the fsck check.

Now, filesystem journals let fsck pinpoint the activity that was occurring at the 
time of a failure. fsck can simply rewind the filesystem to the last known consis-
tent state.

Disks are normally fscked automatically at boot time if they are listed in the sys-
tem’s /etc/fstab, /etc/vfstab, or /etc/filesystems file. The fstab and vfstab files 
have legacy “fsck sequence” fields that were normally used to order and parallelize 
filesystem checks. But now that fscks are fast, the only thing that really matters is 
that the root filesystem be checked first.

You can run fsck by hand to perform an in-depth examination more akin to the 
original fsck procedure, but be aware of the time required. 

Linux ext-family filesystems can be set to force a recheck after they have been 
remounted a certain number of times or after a certain period of time, even if all 
the unmounts were “clean.” This precaution is good hygiene, and in most cases the 
default value (usually around 20 mounts) is acceptable. However, on systems that 
mount filesystems frequently, such as desktop workstations, even that frequency 
of fscks can become tiresome. To increase the interval to 50 mounts, use the 
tune2fs command:

$ sudo /sbin/tune2fs -c 50 /dev/sda3 
tune2fs 1.41.9 (22-Aug-2009)
Setting maximal mount count to 50

  



ptg

260 Chapter 8 Storage

If a filesystem appears damaged and fsck cannot repair it automatically, do not 
experiment with it before making an ironclad backup. The best insurance policy is 
to dd the entire disk to a backup file or backup disk. 

Most filesystems create a lost+found directory at the root of each filesystem in 
which fsck can deposit files whose parent directory cannot be determined. The 
lost+found directory has some extra space preallocated so that fsck can store or-
phaned files there without having to allocate additional directory entries on an 
unstable filesystem. Don’t delete this directory.19

Since the name given to a file is recorded only in the file’s parent directory, names 
for orphan files are not available and the files placed in lost+found are named 
with their inode numbers. The inode table does record the UID of the file’s owner, 
however, so getting a file back to its original owner is relatively easy.

Filesystem mounting

A filesystem must be mounted before it becomes visible to processes. The mount 
point for a filesystem can be any directory, but the files and subdirectories be-
neath it are not accessible while a filesystem is mounted there. See Filesystem 
mounting and unmounting on page 143 for more information.

After installing a new disk, you should mount new filesystems by hand to be sure 
that everything is working correctly. For example, the command

$ sudo mount /dev/sda1 /mnt/temp

mounts the filesystem in the partition represented by the device file /dev/sd1a
(device names will vary among systems) on a subdirectory of /mnt, which is a 
traditional path used for temporary mounts.

You can verify the size of a filesystem with the df command. The example below 
uses the Linux -h flag to request “human readable” output. Unfortunately, most 
systems’ df defaults to an unhelpful unit such as “disk blocks,” but there is usually 
a flag to make df report something specific such as kibibytes or gibibytes.

$ df -h /mnt/web1 
Filesystem Size Used Available Use% Mounted on 
/dev/mapper-DEMO-web1 109G 188M 103G 1% /mnt/web1

Setup for automatic mounting

You will generally want to configure the system to mount local filesystems at boot 
time. A configuration file in /etc lists the device names and mount points of all the 
system’s disks (among other things). On most systems this file is called /etc/fstab
(for “filesystem table”), but under both Solaris and AIX it has been restructured 
and renamed: /etc/vfstab on Solaris and /etc/filesystems on AIX. Here, we use 
the generic term “filesystem catalog” to refer to all three files.

19. Some systems have a mklost+found command you can use to recreate this directory if it is deleted.

  



ptg

Setup for automatic mounting 261

St
or

ag
e

By default, ZFS filesystems mount themselves automatically and do not require 
vfstab entries. However, you can change this behavior by setting ZFS filesystem 
properties. Swap areas and nonfilesystem mounts should still appear in vfstab.

mount, umount, swapon, and fsck all read the filesystem catalog, so it is helpful 
if the data presented there is correct and complete. mount and umount use the 
catalog to figure out what you want done if you specify only a partition name or 
mount point on the command line. For example, with the Linux fstab configura-
tion shown on page 262, the command

$ sudo mount /media/cdrom0

would have the same effect as typing 
$ sudo mount -t udf -o user,noauto,exec,utf8 /dev/scd0 /media/cdrom0

The command mount -a mounts all regular filesystems listed in the filesystem 
catalog; it is usually executed from the startup scripts at boot time.20 The -t, -F, or 
-v flag (-t for Linux, -F for Solaris and HP-UX, -v for AIX) with an fstype argu-
ment constrains the operation to filesystems of a certain type. For example,

$ sudo mount -at ext4

mounts all local ext4 filesystems. The mount command reads fstab sequentially. 
Therefore, filesystems that are mounted beneath other filesystems must follow 
their parent partitions in the fstab file. For example, the line for /var/log must 
follow the line for /var if /var is a separate filesystem. 

The umount command for unmounting filesystems accepts a similar syntax. You 
cannot unmount a filesystem that a process is using as its current directory or on 
which files are open. There are commands to identify the processes that are inter-
fering with your umount attempt; see page 144.

The HP-UX fstab file is the most traditional of our example systems. Here are 
entries for a system that has only a single volume group:

# Device Mount point Type Options Seq

/dev/vg00/lvol3 / vxfs delaylog 0 1
/dev/vg00/lvol1 /stand vxfs tranflush 0 1
/dev/vg00/lvol4 /tmp vxfs delaylog 0 2
/dev/vg00/lvol5 /home vxfs delaylog 0 2
/dev/vg00/lvol6 /opt vxfs delaylog 0 2
/dev/vg00/lvol7 /usr vxfs delaylog 0 2
/dev/vg00/lvol8 /var vxfs delaylog 0 2

There are six fields per line, separated by whitespace. Each line describes a single 
filesystem. The fields are traditionally aligned for readability, but alignment is not 
required.

20. The noauto mount option excludes a given filesystem from automatic mounting by mount -a.

  



ptg

262 Chapter 8 Storage

See Chapter 18 for 
more information 
about NFS.

The first field gives the device name. The fstab file can include mounts from re-
mote systems, in which case the first field contains an NFS path. The notation 
server:/export indicates the /export directory on the machine named server.

The second field specifies the mount point, and the third field names the type of 
filesystem. The exact type name used to identify local filesystems varies among 
machines.

The fourth field specifies mount options to be applied by default. There are many 
possibilities; see the man page for mount for the ones that are common to all 
filesystem types. Individual filesystems usually introduce options of their own. All 
the options shown above are specific to VxFS. For example, the delaylog option 
sacrifices some reliability for speed. See the mount_vxfs man page for more in-
formation about this and other VxFS mount options. 

The fifth and sixth fields are vestigial. They are supposedly a “dump frequency” 
column and a column used to control fsck parallelism. Neither is important on 
contemporary systems.

Below are some additional examples culled from an Ubuntu system’s fstab. The 
general format is the same, but Linux systems often include some additional 
flourishes.

proc /proc proc defaults 0 0
UUID=a8e3…8f8a / ext4 errors=remount-ro 0 1
UUID=13e9…b8d2 none swap sw 0 0
/dev/scd0 /media/cdrom0 udf,iso9660 user,noauto,exec,utf8 0 0
/dev/scd1 /media/cdrom1 udf,iso9660 user,noauto,exec,utf8 0 0
/dev/fd0 /media/floppy0 auto rw,user,noauto,exec,utf8 0 0

The first line addresses the /proc filesystem, which is in fact presented by a kernel 
driver and has no actual backing store. The proc device listed in the first column 
is just a placeholder.

The second and third lines use partition IDs (UUIDs, which we’ve truncated to 
make the excerpt more readable) instead of device names to identify volumes. 
This alternative is useful on Linux systems because the device names of disk parti-
tions are unstable; adding or removing a disk can cause all the other disks to 
change names (e.g., from /dev/sdb1 to /dev/sdc1). The UUID is linked only to 
the content of the partition, so it allows the partition to be tracked down wherever 
it might be hiding. Note that this convention works for the swap partition as well 
as the root.

The last three lines configure support for CD-ROM and floppy disk devices. The 
noauto option prevents the system from trying to mount these devices at boot 
time. (If no media were inserted, the mount attempt would fail and prolong the 
boot process.) The user option makes all the files on these removable drives ap-
pear to be owned by the user who mounts them.

  



ptg

USB drive mounting 263

St
or

ag
e

On Solaris systems, the /etc/vfstab file has a slightly reorganized format with the 
order of some fields being swapped relative to the Linux and HP-UX scheme. 
However, the data is still tabular and is easily readable without much decoding 
effort. The distinguishing features of the vfstab format are that it has a separate 
“device to fsck” column and a separate “mount at boot” column.

AIX’s /etc/filesystems file is organized as a series of property lists somewhat rem-
iniscent of YAML or JSON, although the format is a bit different. Here’s an exam-
ple configuration for one filesystem:

/opt:
dev = /dev/hd10opt 
vfs = jfs2 
log = /dev/hd8 
mount = true 
check = true 
vol = /opt 
free = false

This format is nice in that it allows arbitrary properties to be associated with each 
filesystem, so filesystem-type-specific parameters can easily be recorded in the 
filesystems catalog. AIX automatically maintains this file when you perform disk 
wrangling operations through SMIT, but it’s fine to edit the file directly, too.

USB drive mounting

Floppy disks have finally gone the way of the dodo, and good riddance. In their 
place are friendly, fast, and fun USB drives. These devices come in many flavors: 
personal “thumb” drives, digital cameras, iPods, and large external disks, to name 
a few. Most of these are supported by UNIX systems as data storage devices.

In the past, special tricks were necessary to manage USB devices. But now that 
operating systems have embraced dynamic device management as a fundamental 
requirement, USB drives are just one more type of device that shows up or disap-
pears without warning.

From the perspective of storage management, the issues are

• Getting the kernel to recognize a device and to assign a device file to it
• Finding out what assignment has been made

The first step usually happens automatically, but systems have commands (such as 
AIX’s cfgmgr) that you can use to goose the system if need be. Once a device file 
has been assigned, you can use the normal procedures described in Disk device 
files on page 224 to find out what it is.

For additional information about dynamic device management, see Chapter 13, 
Drivers and the Kernel.

  



ptg

264 Chapter 8 Storage

Enabling swapping

Raw partitions or logical volumes, rather than structured filesystems, are nor-
mally used for swap space. Instead of using a filesystem to keep track of the swap 
area’s contents, the kernel maintains its own simplified mapping from memory 
blocks to swap space blocks.

On some systems, it’s also possible to swap to a file in a filesystem partition. With 
older kernels this configuration can be slower than using a dedicated partition, 
but it’s still very handy in a pinch. In any event, logical volume managers eliminate 
most of the reasons you might want to use a swap file rather than a swap volume.

See page 1129 for more 
information about 
splitting swap areas.

The more swap space you have, the more virtual memory your processes can allo-
cate. The best virtual memory performance is achieved when the swap area is split 
among several drives. Of course, the best option of all is to not swap; consider 
adding RAM if you find yourself needing to optimize swap performance.

On Linux systems, swap areas must be initialized with mkswap, which takes the 
device name of the swap volume as an argument.

You can manually enable swapping to a particular device with swapon device on 
most systems or swap -a device on Solaris. However, you will generally want to 
have this function performed automatically at boot time. Except on AIX, you can 
list swap areas in the regular filesystem catalog (fstab or vfstab) by giving them a 
filesystem type of swap. AIX has a separate file that lists the system’s swap areas, 
/etc/swapspaces.

To review the system’s current swapping configuration, run swapon -s on Linux 
systems, swap -s on Solaris and AIX, or swapinfo on HP-UX.

On AIX systems, you can use the mkps command to create a logical volume for 
swapping, add it to the /etc/swapspaces file, and start using it. This is the com-
mand called by the SMIT interface.

8.10 ZFS: ALL YOUR STORAGE PROBLEMS SOLVED

ZFS was introduced in 2005 as a component of OpenSolaris, and it quickly made 
its way to Solaris 10 and to various BSD-based distributions. In 2008, it became 
usable as a root filesystem, and it has been the front-line filesystem of choice for 
Solaris ever since.

Although ZFS is usually referred to as a filesystem, it is in fact a comprehensive 
approach to storage management that includes the functions of a logical volume 
manager and a RAID controller. It also redefines many common aspects of stor-
age administration to make them simpler, easier, and more consistent. Although 
the current version of ZFS has a few limitations, most fall into the “not yet imple-
mented” category rather than the “can’t do for architectural reasons” category.

The advantages of ZFS’s integrated approach are clear. If you’re not already famil-
iar with ZFS, we predict that you’ll enjoy working with it. There is little doubt that 

  



ptg

ZFS architecture 265

St
or

ag
e

the system will be widely emulated over the next decade. The open question is 
how long we’ll have to wait to get ZFS-style features on other systems. Although 
ZFS is open source software, the terms of its current license unfortunately prevent 
inclusion in the Linux kernel.

Oracle’s Btrfs filesystem project (“B-tree file system,” officially pronounced “but-
ter FS,” though it’s hard not to think “butter face”) aims to repeat many of ZFS’s 
advances on the Linux platform. It is already included in current Linux kernels as 
a technology preview. Ubuntu and SUSE users can experiment with it by install-
ing the btrfs-tools or btrfsprogs packages, respectively. However, Btrfs is not pro-
duction-ready, and now that Oracle has acquired Sun, the exact futures of both 
Btrfs and ZFS are uncertain.

ZFS architecture

Exhibit D shows a schematic of the major objects in the ZFS system and their 
relationship to each other. 

Exhibit D ZFS architecture

A ZFS “pool” is analogous to a “volume group” in other logical volume manage-
ment systems. Each pool is composed of “virtual devices,” which can be raw stor-
age devices (disks, partitions, SAN devices, etc.), mirror groups, or RAID arrays. 
ZFS RAID is similar in spirit to RAID 5 in that it uses one or more parity devices 
to provide redundancy for the array. However, ZFS calls the scheme RAID-Z and 
uses variable-sized stripes to eliminate the RAID 5 write hole. All writes to the 
storage pool are striped across the pool’s virtual devices, so a pool that contains 
only individual storage devices is effectively an implementation of RAID 0, al-
though the devices in this configuration are not required to be of the same size.

Unfortunately, the current ZFS RAID is a bit brittle in that you cannot add new 
devices to an array once it has been defined; nor can you permanently remove a 

ZFS

Storage devices

Partitions

RAID-Z arrays RAID 1 arrays (mirrors)

Virtual devices

Filesystems, swap areas, database storage

Storage pools

  



ptg

266 Chapter 8 Storage

device. As in most RAID implementations, devices in a RAID set must be the 
same size; you can force ZFS to accept mixed sizes, but the size of the smallest 
volume then dictates the overall size of the array. To use disks of different sizes 
efficiently in combination with ZFS RAID, you must partition the disks ahead of 
time and define the leftover regions as separate devices.

Although you can turn over raw, unpartitioned disks to ZFS’s care, ZFS secretly 
writes a GPT-style partition table onto them and allocates all of each disk’s space 
to its first partition.

Most configuration and management of ZFS is done through two commands: 
zpool and zfs. Use zpool to build and manage storage pools. Use zfs to create and 
manage the entities created from pools, chiefly filesystems and raw volumes used 
as swap space and database storage.

Example: Solaris disk addition 

Before we descend into the details of ZFS, let’s start with a high-level example. 
Suppose you’ve added a new disk to your Solaris system and the disk has shown 
up as /dev/dsk/c8d1. (An easy way to determine the correct device is to run sudo 
format. The format command then shows you a menu of the system’s disks from 
which you can spot the correct disk before typing <Control-C>.)

The first step is to label the disk and add it to a new storage pool:
solaris$ sudo zpool create demo c8d1

Step two is… well, there is no step two. ZFS labels the disk, creates the pool 
“demo,” creates a filesystem root inside that pool, and mounts that filesystem as 
/demo. The filesystem will be remounted automatically when the system boots.

solaris$ ls -a /demo 
. ..

It would be even more impressive if we could simply add our new disk to the 
existing storage pool of the root disk, which is called “rpool” by default. (The 
command would be sudo zpool add rpool c8d1.) Unfortunately, the root pool 
can only contain a single virtual device. Other pools can be painlessly extended in 
this manner, however.

Filesystems and properties

It’s fine for ZFS to automatically create a filesystem on a new storage pool because 
by default, ZFS filesystems consume no particular amount of space. All filesys-
tems that live in a pool can draw from the pool’s available space. 

Unlike traditional filesystems, which are independent of one another, ZFS filesys-
tems are hierarchical and interact with their parent and child filesystems in sev-
eral ways. You create new filesystems with zfs create.

  



ptg

Filesystems and properties 267

St
or

ag
e

solaris$ sudo zfs create demo/new_fs 
solaris$ zfs list -r demo 
NAME USED AVAIL REFER MOUNTPOINT 
demo 100K 488G 21K /demo
demo/new_fs 19K 488G 19K /demo/new_fs

The -r flag to zfs list makes it recurse through child filesystems. Most other zfs
subcommands understand -r, too. Ever helpful, ZFS automounts the new filesys-
tem as soon as we create it.

To simulate traditional filesystems of fixed size, you can adjust the filesystem’s 
properties to add a “reservation” (an amount of space reserved in the storage pool 
for the filesystem’s use) and a quota. This adjustment of filesystem properties is 
one of the keys to ZFS management, and it’s something of a paradigm shift for 
administrators who are used to other systems. Here, we set both values to 1GB:

solaris$ sudo zfs set reservation=1g demo/new_fs 
solaris$ sudo zfs set quota=1g demo/new_fs 
solaris$ zfs list -r demo 
NAME USED AVAIL REFER MOUNTPOINT 
demo 1.00G 487G 21K /demo 
demo/new_fs 19K 1024M 19K /demo/new_fs

The new quota is reflected in the AVAIL column for /demo/new_fs. Similarly, the 
reservation shows up immediately in the USED column for /demo. That’s because 
the reservations of /demo’s descendant filesystems are included in its size tally.21 

Both property changes are purely bookkeeping entries. The only change to the 
actual storage pool is the update of a block or two to record the new settings. No 
process goes out to format the 1GB of space reserved for /demo/new_fs. Most 
ZFS operations, including the creation of new storage pools and new filesystems, 
are similarly lightweight.

Using this hierarchical system of space management, you can easily group several 
filesystems to guarantee that their collective size will not exceed a certain thresh-
old; you do not need to specify limits on individual filesystems. 

You must set both the quota and reservation properties to properly emulate a 
traditional fixed-size filesystem.22 The reservation alone simply ensures that the 
filesystem will have enough room available to grow at least that large. The quota 
limits the filesystem’s maximum size without guaranteeing that space will be avail-
able for this growth; another object could snatch up all the pool’s free space, leav-
ing no room for /demo/new_fs to expand.

21. The REFER column shows the amount of data referenced by the active copy of each filesystem. /demo
and /demo/new_fs have similar REFER values because they’re both empty filesystems, not because 
there’s any inherent relationship between the numbers. 

22. The reservation and quota properties take into account all storage costs of the filesystem, including 
the space consumed for snapshots. If you want to limit only the size of the active copy of the filesys-
tem, use the refreservation and refquota properties instead. The ref prefix indicates “amount of data 
referred to” by the active filesystem, the same total shown in the REFER column in zfs list output.

  



ptg

268 Chapter 8 Storage

On the other hand, there are few reasons to set up a filesystem this way in real life. 
We show the use of these properties simply to demonstrate ZFS’s space account-
ing system and to emphasize that ZFS is compatible with the traditional model, 
should you wish to enforce it.

Property inheritance

Many properties are naturally inherited by child filesystems. For example, if we 
wanted to mount the root of the demo pool in /opt/demo instead of /demo, we 
could simply set the root’s mountpoint parameter:

solaris$ sudo zfs set mountpoint=/opt/demo demo 
solaris$ zfs list -r demo 
NAME USED AVAIL REFER MOUNTPOINT 
demo 1.00G 487G 21K /opt/demo 
demo/new_fs 19K 1024M 19K /opt/demo/new_fs
solaris$ ls /opt/demo 
new_fs

Setting the mountpoint parameter automatically remounts the filesystems, and 
the mount point change affects child filesystems in a predictable and straightfor-
ward way. The usual rules regarding filesystem activity still apply, however; see 
page 143.

Use zfs get to see the effective value of a particular property; zfs get all dumps 
them all. The SOURCE column tells you why each property has its particular 
value: local means that the property was set explicitly, and a dash means that the 
property is read-only. If the property value is inherited from an ancestor filesys-
tem, SOURCE shows the details of that inheritance as well.

solaris$ zfs get all demo/new_fs 
solaris$ zfs get all demo/new_fs 
NAME PROPERTY VALUE SOURCE
demo/new_fs type filesystem -
demo/new_fs creation Wed Mar 17 17:57 2010 -
demo/new_fs used 19K -
demo/new_fs available 1024M -
demo/new_fs referenced 19K -
demo/new_fs compressratio 1.00x -
demo/new_fs mounted yes -
demo/new_fs quota 1G local
demo/new_fs reservation 1G local
demo/new_fs mountpoint /opt/demo/new_fs inherited from demo
… <many more, about 40 in all>

Vigilant readers may notice that the available and referenced properties look 
suspiciously similar to the AVAIL and REFER columns shown by zfs list. In fact, 
zfs list is just a different way of displaying filesystem properties. If we had in-
cluded the full output of our zfs get command above, there would be a used prop-
erty in there, too. You can specify the properties you want zfs list to show with the 
-o option.

  



ptg

Snapshots and clones 269

St
or

ag
e

It wouldn’t make sense to assign values to used and to the other size properties, so 
these properties are read-only. If the specific rules for calculating used don’t meet 
your needs, other properties such as usedbychildren and usedbysnapshots may 
give you better insight into how your disk space is being consumed. See the ZFS 
admin guide for a complete list.

You can set additional, nonstandard properties on filesystems for your own use 
and for the use of your local scripts. The process is the same as for standard prop-
erties. The names of custom properties must include a colon to distinguish them 
from standard properties.

One filesystem per user

Since filesystems consume no space and take no time to create, the optimal num-
ber of them is closer to “a lot” than “a few.” If you keep users’ home directories on 
a ZFS storage pool, it’s recommended that you make each home directory a sepa-
rate filesystem. There are several reasons for this convention.

• If you need to set disk usage quotas, home directories are a natural gran-
ularity at which to do this. You can set quotas on both individual users’ 
filesystems and on the filesystem that contains all users.

• Snapshots are per filesystem. If each user’s home directory is a separate 
filesystem, the user can access old snapshots through ~/.zfs.23 This alone 
is a huge time saver for administrators because it means that users can 
service most of their own file restore needs.

• ZFS lets you delegate permission to perform various operations such as 
taking snapshots and rolling back the filesystem to an earlier state. If you 
wish, you can give users control over these operations for their own 
home directories. We do not describe the details of ZFS permission 
management in this book; see the ZFS Administration Guide.

Snapshots and clones

ZFS is organized around the principle of copy-on-write. Instead of overwriting 
disk blocks in place, ZFS allocates new blocks and updates pointers. This ap-
proach makes ZFS resistant to corruption because operations can never end up 
half-completed in the event of a power failure or crash. Either the root block is 
updated or it’s not; the filesystem is consistent either way (though a few recent 
changes may be “undone”).

Just as in a logical volume manager, ZFS brings copy-on-write to the user level by 
allowing you to create instantaneous snapshots. However, there’s an important 
difference: ZFS snapshots are implemented per-filesystem rather than per-vol-
ume, so they have arbitrary granularity. Solaris uses this feature to great effect in 
the Time Slider widget for the GNOME desktop. Much like Mac OS’s Time 

23. This directory is hidden by default; it does not appear in ls -a output. You can make it visible with zfs 
set snapdir=visible filesystem.

  



ptg

270 Chapter 8 Storage

Machine, the Time Slider is a combination of scheduled tasks that create and 
manage snapshots at regular intervals and a UI that makes it easy for you to reach 
older versions of your files.

On the command line, you create snapshots with zfs snapshot. For example, the 
following command sequence illustrates creation of a snapshot, use of the snap-
shot through the filesystem’s .zfs/snapshot directory, and reversion of the filesys-
tem to its previous state.

solaris$ sudo touch /opt/demo/new_fs/now_you_see_me 
solaris$ ls /opt/demo/new_fs 
now_you_see_me 
solaris$ sudo zfs snapshot demo/new_fs@snap1 
solaris$ sudo rm /opt/demo/new_fs/now_you_see_me
solaris$ ls /opt/demo/new_fs 
solaris$ ls /opt/demo/new_fs/.zfs/snapshot/snap1 
now_you_see_me 
solaris$ sudo zfs rollback demo/new_fs@snap1 
solaris$ ls /opt/demo/new_fs 
now_you_see_me

You assign a name to each snapshot at the time it’s created. The complete specifier 
for a snapshot is usually written in the form filesystem@snapshot.

Use zfs snapshot -r to create snapshots recursively. The effect is the same as exe-
cuting zfs snapshot on each contained object individually: each subcomponent 
receives its own snapshot. All the snapshots have the same name, but they’re logi-
cally distinct.

ZFS snapshots are read-only, and although they can bear properties, they are not 
true filesystems. However, you can instantiate a snapshot as a full-fledged, writ-
able filesystem by “cloning” it.

solaris$ sudo zfs clone demo/new_fs@snap1 demo/subclone 
solaris$ ls /opt/demo/subclone 
now_you_see_me 
solaris$ sudo touch /opt/demo/subclone/and_me_too 
solaris$ ls /opt/demo/subclone 
and_me_too now_you_see_me

The snapshot that is the basis of the clone remains undisturbed and read-only. 
However, the new filesystem (demo/subclone in this example) retains a link to 
both the snapshot and the filesystem on which it’s based, and neither of those 
entities can be deleted as long as the clone exists.

Cloning isn’t a common operation, but it’s the only way to create a branch in a 
filesystem’s evolution. The zfs rollback operation demonstrated above can only 
revert a filesystem to its most recent snapshot, so to use it you must permanently 
delete (zfs destroy) any snapshots made since the snapshot that is your reversion 
target. Cloning lets you go back in time without losing access to recent changes.

  



ptg

Filesystem sharing filesystem through NFS, CIFS, and iSCSI 271

St
or

ag
e

For example, suppose that you’ve discovered a security breach that occurred some 
time within the last week. For safety, you want to revert a filesystem to its state of 
a week ago to be sure it contains no hacker-installed back doors. At the same time, 
you don’t want to lose recent work or the data for forensic analysis. The solution is 
to clone the week-ago snapshot to a new filesystem, zfs rename the old filesystem, 
and then zfs rename the clone in place of the original filesystem.

For good measure, you should also zfs promote the clone; this operation inverts 
the relationship between the clone and the filesystem of origin. After promotion, 
the main-line filesystem has access to all the old filesystem’s snapshots, and the 
old, moved-aside filesystem becomes the “cloned” branch.

Raw volumes

You create swap areas and raw storage areas with zfs create, just as you create 
filesystems. The -V size argument makes zfs treat the new object as a raw volume 
instead of a filesystem. The size can use any common unit, for example, 128m.

Since the volume does not contain a filesystem, it is not mounted; instead, it 
shows up in the /dev/zvol/dsk and /dev/zvol/rdsk directories and can be refer-
enced as if it were a hard disk or partition. ZFS mirrors the hierarchical structure 
of the storage pool in these directories, so sudo zfc create -V 128m demo/swap
creates a 128MB swap volume located at /dev/zvol/dsk/demo/swap.

You can create snapshots of raw volumes just as you can with filesystems, but 
because there’s no filesystem hierarchy in which to put a .zfs/snapshot directory, 
the snapshots show up in the same directory as their source volumes. Clones work 
too, just as you’d expect.

By default, raw volumes receive a space reservation equal to their specified size. 
You’re free to reduce the reservation or do away with it entirely, but note that this 
can make writes to the volume return an “out of space” error. Clients of raw vol-
umes may not be designed to deal with such an error.

Filesystem sharing filesystem through NFS, CIFS, and iSCSI

Just as ZFS redefines many aspects of traditional filesystem management, it also 
changes the way that filesystems are shared over a network. In particular, you can 
set the sharenfs or sharesmb property of a filesystem to on to make it available 
through NFS or Solaris’s built-in CIFS server. See Chapter 18, The Network File 
System, for more information about NFS, and see the section Sharing files with 
Samba and CIFS on page 1142 for more information about CIFS.

If you leave these properties set to off, that does not mean the filesystems are 
unsharable; it just means that you must do your own export management with 
tools such as sharemgr, share, and unshare instead of having ZFS take care of this 
for you. The sharenfs and sharesmb properties can also take on values other than 
on and off. If you set a more detailed value, it’s assumed that you want sharing 

  



ptg

272 Chapter 8 Storage

turned on, and the value is passed through zfs share and on to share in the form 
of command-line arguments.

In a similar vein, shareiscsi=on on a raw volume makes that volume available as 
an iSCSI target. See page 274 for more information about iSCSI.

By default, all the share* properties are inheritable. If you share /home over NFS, 
for example, you automatically share the individual home directories beneath it, 
even if they are defined as separate filesystems. Of course, you can override this 
behavior by setting an explicit sharenfs=no value on each sub-filesystem.

ZFS uses the NFSv4 standard for access control lists. The nuances of that standard 
are discussed in more detail in Chapter 6, The Filesystem, starting on page 166. 
The executive summary is that ZFS provides excellent ACL support for both Win-
dows and NFS clients.

Storage pool management 

Now that we’ve peeked at some of the features that ZFS offers at the filesystem and 
block-client level, let’s take a longer swim in ZFS’s storage pools.

Up to this point, we’ve used a pool called “demo” that we created from a single 
disk back on page 266. Here it is in the output of zpool list:

solaris$ zpool list 
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
demo 496G 240K 496G 0% ONLINE -
rpool 748G 23.78G 724G 3% ONLINE -

The pool named rpool contains the bootable root filesystem. Bootable pools are 
currently restricted in several ways: they can only contain a single virtual device, 
and that device must be either a mirror array or a single disk drive; it cannot be a 
RAID array. If it is a disk, it cannot have a GPT partition table. 

zpool status adds more detail about the virtual devices that make up a storage 
pool and reports their current status.

solaris$ zpool status demo 
pool: demo

state: ONLINE 
scrub: none requested

config:

NAME STATE READ WRITE CKSUM 
demo ONLINE 0 0 0

c8d1 ONLINE 0 0 0

Let’s get rid of this demo pool and set up something a bit more sophisticated. 
We’ve attached five 500GB SCSI drives to our example system. We first create a 
pool called “monster” that includes three of those drives in a RAID-Z single-par-
ity configuration. 

  



ptg

Storage pool management 273

St
or

ag
e

solaris$ sudo zpool destroy demo 
solaris$ sudo zpool create monster raidz1 c9t0d0 c9t1d0 c9t2d0 
solaris$ zfs list monster 
NAME USED AVAIL REFER MOUNTPOINT 
monster 91.2K 981G 25.3K /monster

ZFS also understands raidz2 and raidz3 for double and triple parity configura-
tions. The minimum number of disks is always one more than the number of 
parity devices. Here, one drive out of three is used for parity, so roughly 1TB is 
available for use by filesystems.

For illustration, we then add the remaining two drives configured as a mirror.
solaris$ sudo zpool add monster mirror c9t3d0 c9t4d0 
invalid vdev specification 
use '-f' to override the following errors: 
mismatched replication level: pool uses raidz and new vdev is mirror 
solaris$ sudo zpool add -f monster mirror c9t3d0 c9t4d0

zpool initially balks at this configuration because the two virtual devices have 
different redundancy schemes. This particular configuration is OK since both 
vdevs have some redundancy. In actual use, you should not mix redundant and 
nonredundant vdevs since there’s no way to predict which blocks might be stored 
on which devices; partial redundancy is useless.

solaris$ zpool status monster 
pool: monster

state: ONLINE 
scrub: none requested

config:

NAME STATE READ WRITE CKSUM 
monster ONLINE 0 0 0

raidz1 ONLINE 0 0 0
c9t0d0 ONLINE 0 0 0
c9t1d0 ONLINE 0 0 0
c9t2d0 ONLINE 0 0 0

mirror ONLINE 0 0 0
c9t3d0 ONLINE 0 0 0
c9t4d0 ONLINE 0 0 0

ZFS distributes writes among all a pool’s virtual devices. As demonstrated in this 
example, it is not necessary for all virtual devices to be the same size.24 However, 
the components within a redundancy group should be of similar size. If they are 
not, only the smallest size is used on each component. If you use multiple simple 
disks together in a storage pool, that is essentially a RAID 0 configuration.

You can add additional vdevs to a pool at any time. However, existing data will not 
be redistributed to take advantage of parallelism. Unfortunately, you cannot cur-
rently add additional devices to an existing RAID array or mirror.

24. In this example the disks are all the same size, but the virtual devices are not (1TB vs. 500GB).

  



ptg

274 Chapter 8 Storage

ZFS has an especially nice implementation of read caching that makes good use of 
SSDs. To set up this configuration, just add the SSDs to the storage pool as vdevs 
of type cache. The caching system uses an adaptive replacement algorithm devel-
oped at IBM that is smarter than a normal LRU (least recently used) cache. It 
knows about the frequency at which blocks are referenced as well as their recency 
of use, so reads of large files are not supposed to wipe out the cache.

Hot spares are handled as vdevs of type spare. You can add the same disk to mul-
tiple storage pools; whichever pool experiences a disk failure first gets to claim the 
spare disk.

8.11 STORAGE AREA NETWORKING

There are several ways to attach storage resources to a network. Chapter 18, The 
Network File System, describes NFS, the traditional UNIX protocol used for file 
sharing. Windows systems use the protocol known variously as CIFS or SMB for 
similar purposes. The predominant implementation of CIFS for UNIX and Linux 
is Samba; see Sharing files with Samba and CIFS on page 1142 for more details.

NFS and CIFS are examples of “network-attached storage” (NAS) systems. They 
are high-level protocols, and their basic operations are along the lines of “open file 
X and send me the first 4KiB of data” or “adjust the ACL on file Y as described in 
this request.” These systems are good at arbitrating access to filesystems that many 
clients want to read or write at once.

A storage area network (SAN) is a lower-level system for abstracting storage, one 
that makes network storage look like a local hard disk. SAN operations consist 
primarily of instructions to read or write particular “disk” blocks (though, of 
course, the block addressing is virtualized by the server in some way). If a client 
wants to use SAN storage to hold a filesystem, it must provide its own filesystem 
implementation. On the other hand, SAN volumes can also be used to store swap 
areas or other data that doesn’t need the structure or overhead of a filesystem.

With the exception of HP’s VxFS, mainstream filesystems are not designed to be 
updated by multiple clients that are unaware of each other’s existence (at least, not 
at the level of raw disk blocks).25 Therefore, SAN storage is not typically used as a 
way of sharing files. Instead, it’s a way to replace local hard disks with centralized 
storage resources.

Why would you want to do this? Several reasons:

• Every client gets to share the benefits of a sophisticated storage facility 
that’s optimized for performance, fault tolerance, and disaster recovery.

25. Just to be clear, many such filesystems exist. They are known generically as cluster (or clustered) file-
systems. Special locking and synchronization algorithms must be used to implement clustering, so 
clustered filesystems are typically slower than standard filesystems on local disks. VxFS can operate in 
clustered or nonclustered mode, so it’s a serviceable option for either situation.

  



ptg

SAN networks 275

St
or

ag
e

• Utilization efficiency is increased because every client can have exactly 
as much storage as it needs. Although space allocations for virtual disks 
are fixed, they are not limited to the standard sizes of physical hard disks. 
In addition, virtual disk blocks that the client never writes need never 
actually be stored on the server.

• At the same time, a SAN makes storage infinitely more flexible and triv-
ial to reconfigure. A “hard disk upgrade” can now be performed in a 
command or two from an administrator’s terminal window.

• Duplicate block detection techniques can reduce the cost of storing files 
that are the same on many machines.

• Backup strategy for the enterprise can be unified through the use of 
shadow copies of block stores on the SAN server. In some cases, every 
client gets access to advanced snapshot facilities such as those found on 
logical volume managers, regardless of its operating system or the file-
system it’s using.

Performance is always of interest to system administrators, but it’s hard to make 
general statements about the effect of a SAN on a server’s I/O performance with-
out knowing more about the specific implementation. Networks impose latency 
costs and bandwidth restrictions that local disks do not. Even with advanced 
switching hardware, networks are semi-shared resources that can be subject to 
bandwidth contention among clients. On the positive side, large SAN servers 
come packed to the gills with memory and SSD caches. They use premium com-
ponents and spread their physical I/O across many disks. In general, a properly 
implemented SAN is significantly faster than local storage.

That kind of setup isn’t cheap, however. This is a domain of specialized, enter-
prise-class hardware, so get that $80 hard disk from Fry’s out of your mind right 
from the start. Some major players in the SAN space are EMC, NetApp, HP, IBM, 
and perhaps surprisingly, Dell.

SAN networks

Because network concerns are a major determinant of SAN performance, serious 
installations have traditionally relied on Fibre Channel networks for their infra-
structure. Mainstream Fibre Channel speeds are typically 4 or 8 Gb/s, as opposed 
to the 1 Gb/s speed of a typical Ethernet.

Ethernet is rapidly gaining ground, however. There are several reasons for this, 
the two most important being the growing availability of inexpensive 10 Gb/s 
Ethernets and the increasing prevalence of virtualized servers; virtualization sys-
tems generally have better support for Ethernet than for Fibre Channel. Of course, 
it’s also helpful that Ethernet-based systems don’t require the installation of an 
expensive secondary physical network infrastructure.

  



ptg

276 Chapter 8 Storage

Several communication protocols can implement SAN functionality over Ether-
net. The common theme among these protocols is that they each emulate a partic-
ular hardware interface that many systems already understand.

The predominant protocol is iSCSI, which presents the virtual storage device to 
the system as if it lived on a local SCSI bus. Other options are ATA-over-Ethernet 
(AoE) and Fibre-Channel-over-Ethernet (FCoE). These last options are Ethernet-
specific (and therefore limited in their geographical extent), whereas iSCSI runs 
on top of IP. At present, iSCSI has about 20% of the SAN market, true Fibre Chan-
nel has about 60%, and other solutions account for the remaining 20%.

The details of implementing a Fibre Channel deployment are beyond the scope of 
this book, so here we review only iSCSI in detail. From the host operating system’s 
perspective, Fibre Channel SAN drives typically look like a pile of SCSI disks, and 
they can be managed as such.

iSCSI: SCSI over IP

iSCSI lets you implement a SAN with your existing, cheap network hardware 
rather than a dedicated Fibre Channel network and expensive Fibre Channel host 
bus adapters. Your SAN servers will still likely be task-specific systems, but they 
too can take advantage of commodity hardware.

Borrowing a bit of terminology from traditional SCSI, iSCSI refers to a server that 
makes virtual disks available over the network as an iSCSI “target.” A client that 
mounts these disks is called an “initiator,” which makes sense if you keep in mind 
that the client originates SCSI commands and the server responds to them.

The software components that implement the target and initiator sides of an iSCSI 
relationship are separate. All modern operating systems include an initiator, al-
though it’s often an optional component. Most systems also have a standard target 
implementation.

iSCSI is formally specified in RFC3720. Unlike most RFCs, the specification is 
several hundred pages long, mostly because of the complexity of the underlying 
SCSI protocol. For the most part, iSCSI administration is simple unless you use 
the optional Internet Storage Name Service (iSNS) for structured management 
and discovery of storage resources. iSNS, defined in RFC4171, is an adaptation of 
Fibre Channel’s management and discovery protocols to IP, so it’s primarily of 
interest to sites that want to use both Fibre Channel and iSCSI.

Without iSNS, you simply point your initiator at the appropriate server, specify 
the name of the iSCSI device you want to access, and specify a username and 
password with which to authenticate. By default, iSCSI authentication uses the 
Challenge Handshake Authentication Protocol (CHAP) originally defined for the 
Point-to-Point Protocol (PPP) (see RFC1994), so passwords are not sent in plain-
text over the network. Optionally, the initiator can authenticate the target through 
the use of a second shared secret.

  



ptg

Vendor specifics for iSCSI initiators 277

St
or

ag
e

iSCSI can run over IPsec, although that is not required. If you don’t use an IPsec 
tunnel, data blocks themselves are not encrypted. According to RFC3720, connec-
tions that don’t use IPsec must use CHAP secrets at least 12 characters long.

Targets and initiators both have iSCSI names, and several naming schemes are 
defined. The names in common use are iSCSI Qualified Names (IQNs), which 
have the following bizarre format:

iqn.yyyy-mm.reversed_DNS_domain :arbitrary_name

In most cases, everything up to the colon is a fixed (i.e., essentially irrelevant) 
prefix that’s characteristic of your site. You implement your own naming scheme 
in the arbitrary_name portion of the IQN. The month and year (mm and yyyy) 
qualify the DNS domain to guard against the possibility of a domain changing 
hands. Use the original DNS registration date. An actual name looks something 
like this:

iqn.1995-08.com.example:disk54.db.engr

Despite the specificity of the IQN name format, it is not important that the prefix 
reflect your actual DNS domain or inception date. Most iSCSI implementations 
default to using the vendor’s domain as an IQN, and this works fine. It is not even 
necessary that the IQNs involved in a service relationship have matching prefixes.

Booting from an iSCSI volume

If you’re going to put your important data on a SAN, wouldn’t it be nice to elimi-
nate local hard disks entirely? Not only could you eliminate many of the special 
procedures needed to manage local disks, but you could also allow administrators 
to “swap” boot drives with a simple reboot, bringing instant upgrades and multi-
ple boot configurations within reach even of Windows systems.

Unfortunately, the use of an iSCSI volume as a boot device is not widely sup-
ported. At least, not straightforwardly and not as a mainstream feature. Various 
Linux projects have made a go of it, but the implementations are necessarily tied 
to specific hardware and to specific iSCSI initiator software, and no current iSCSI 
boot project cooperates with the now-predominant initiator software, Open-
iSCSI. Similarly, iSCSI boot support for Solaris and OpenSolaris is being worked 
on, but there’s no production-ready solution yet.

The lone exception among our example systems is AIX, which has a long history 
of good support for iSCSI. AIX versions 5.3 and later running on POWER hard-
ware have full support for iSCSI booting over IPv4.

Vendor specifics for iSCSI initiators

There have been at least four different iSCSI initiator implementations for Linux. 
Several have died off and others have merged. The sole survivor at this point 
seems to be Open-iSCSI, which is the standard initiator packaged with all our 
example Linux distributions. To get it up and running, install the open-scsi pack-
age on Ubuntu and SUSE and the iscsi-initiator-utils package on Red Hat.

  



ptg

278 Chapter 8 Storage

The project’s home page is open-iscsi.org, but don’t go there looking for docu-
mentation. None seems to exist other than the man pages for iscsid and iscsiadm, 
which represent the implementation and the administrative interface for the sys-
tem, respectively. Unfortunately, the administrative model for Open-iSCSI is best 
described as “creative.”

In Open-iSCSI’s world, a “node” is an iSCSI target, the thing that’s named with an 
IQN. Open-iSCSI maintains a database of the nodes it knows about in a hierarchy 
underneath the directory /etc/iscsi/nodes. Configuration parameters for individ-
ual nodes are stored in this tree. Defaults are set in /etc/iscsi/iscsid.conf, but they 
are sometimes copied to newly defined nodes, so their function is not entirely 
predictable. The process of setting per-target parameters is painful; iscsiadm tor-
tures you by making you change one parameter at a time and by making you list 
the IQN and server on each command line.

The saving grace of the system is that iscsid.conf and all the database files are just 
editable text files. Therefore, the sane approach is to use iscsiadm for the few 
things it does well and to circumvent it for the others.

To set up the system for simple, static operation with a single username and pass-
word for all iSCSI targets, first edit the iscsid.conf file and make sure the follow-
ing lines are configured as shown:

node.startup = automatic 
node.session.auth.authmethod = CHAP 
node.session.auth.username = chap_name 
node.session.auth.password = chap_password

We show these lines together, but they’ll be separated in the actual file. The file is 
actually quite nicely commented and contains a variety of commented-out config-
uration options. Make sure you don’t introduce duplicates.

Next, point iscsiadm at your target server and let it create node entries for each of 
the targets it discovers by reading that server’s directory. Here, we’ll configure the 
target called test from the server named iserver.

ubuntu$ sudo iscsiadm -m discovery -t st -p iserver 
192.168.0.75:3260,1 iqn.1994-11.com.admin:test

iscsiadm creates a subdirectory in /etc/iscsi/nodes for each target. If there are 
targets you don’t want to deal with, it’s fine to just rm -rf their configuration direc-
tories. If the server offers many targets and you’d rather just specify the details of 
the one you want, you can do that, too:

ubuntu$ sudo iscsiadm -m node -o new -p iserver 
-T iqn.1994-11.com.admin:test

New iSCSI node [tcp:[hw=default,ip=,net_if=default,iscsi_if=default] 
iserver,3260,-1 iqn.1994-11.com.admin:test] added

Strangely, these two methods achieve similar results but create different hierar-
chies under /etc/iscsi/nodes. Whichever version you use, check the text files that 

  



ptg

Vendor specifics for iSCSI initiators 279

St
or

ag
e

are the leaves of the hierarchy to be sure the configuration parameters are set ap-
propriately. If you entered the target manually, you may need to set the property 
node.startup to automatic by hand.

You can then connect to the remote targets with iscsiadm -m node -l:
ubuntu$ sudo iscsiadm -m node -l 
Logging in to [iface: default, target: iqn.1994-11.com.admin:test, portal: 

192.168.0.75,3260]
Login to [iface: default, target: iqn.1994-11.com.admin:test, portal: 

192.168.0.75,3260]: successful

You can verify that the system now sees the additional disk by running fdisk -l. 
(The device files for iSCSI disks are named like those for any other SCSI disk.) If 
you have set up the configuration files as described above, the connections should 
be restored automatically at boot time.

For iSCSI target service on Linux systems, the preferred implementation is the 
iSCSI Enterprise Target package hosted at iscsitarget.sourceforge.net. It’s usually 
available as a package called iscsitarget.

Solaris includes target and initiator packages; both are optional. All packages re-
lated to iSCSI have “iscsi” in their names. For the initiator side, install the package 
SUNWiscsi; you’ll have to reboot afterward.

There is no configuration file; all configuration is performed with the iscsiadm
command, which has a rather strange syntax. Four top-level verbs (add, modify, 
list, and remove) can be applied to a variety of different aspects of the initiator 
configuration. The following steps perform basic configuration of the initiator as 
a whole and connect to a target on the server iserver.

solaris$ sudo iscsiadm modify initiator-node -a CHAP -H testclient 
solaris$ sudo iscsiadm modify initiator-node -C 
Enter secret: <password for testclient>
Re-enter secret: <password for testclient> 
solaris$ sudo iscsiadm modify discovery -s enable 
solaris$ sudo iscsiadm add static-config iqn.1994-11.com.admin:test,iserver 
solaris$ sudo iscsiadm list target -S 
Target: iqn.1994-11.com.admin:test

Alias: -
TPGT: 1 
ISID: 4000002a0000 
Connections: 1 
LUN: 0

Vendor: IET 
Product: VIRTUAL-DISK 
OS Device Name: /dev/rdsk/c10t3d0s2

At this point you can simply configure the disk normally (for example, by running 
zpool create iscsi c10t3d0). 

  



ptg

280 Chapter 8 Storage

The first command sets the initiator’s authentication mode to CHAP and sets the 
CHAP username to testclient. The -C option sets the password; you cannot com-
bine this option with any others. It’s also possible to set the name and password 
individually for each target if you prefer.

The modify discovery command enables the use of statically configured targets, 
and the add command designates the server and IQN of a specific target. All this 
configuration is persistent across reboots.

To serve iSCSI targets to other systems, you’ll need to install the SUNWiscsitgt 
package. Administration is structured similarly to the initiator side, but the com-
mand is iscsitadm instead of iscsiadm.

To use iSCSI on HP-UX systems, download the iSCSI initiator software from soft-
ware.hp.com and install it with HP-UX’s Software Distributor tool. A kernel re-
build and reboot are required. Fortunately, the system is well documented in a 
stand-alone manual, the HP-UX iSCSI Software Initiator Support Guide, available 
from docs.hp.com.

Most initiator configuration is performed with the iscsiutil command, installed 
in /opt/iscsi/bin. Use iscsiutil -l iqn to set the initiator’s IQN, iscsiutil -u -N user
to set the global CHAP username (it can also be set per-server or per-target), and 
iscsiutil -u -W password to set the global CHAP password.

You can then add targets from a particular server with iscsiutil -a -I server. Run 
ioscan -NH 64000 to activate the server connections and to create virtual disk 
devices. You can check the status of the system with iscsiutil -p -o.

AIX’s iSCSI initiator comes installed and ready to go. In typical AIX style, most 
configuration is done through the system’s ODM database. The iscsi0 device rep-
resents the configuration of the initiator as a whole, and individual target devices 
can be defined as ODM entries or in text configuration files in /etc/iscsi. The text 
configuration files seem to work somewhat more reliably.

AIX does not distinguish between the initiator’s IQN and its CHAP username. 
The IQN is set on the iscsi0 device; therefore, you should plan on using the same 
CHAP username on every server. The first step on the fast configuration path is to 
set that IQN to an appropriate value.

aix$ sudo chdev -l iscsi0 -a initiator_name='iqn.1994-11.com.admin:client'

We used a different CHAP username for this example than for other systems since 
“testclient” isn’t technically a valid IQN for the initiator (although in fact it works 
fine as well).

In the /etc/iscsi/targets file, we add the following entry:
iserver 3260 iqn.1994-11.com.admin:test "chap_password"

The 3260 is the standard server port for iSCSI; we include it here only because the 
port is required by the file format. To activate the new iSCSI disk, we need only 

  



ptg

Exercises 281

St
or

ag
e

run cfgmgr -l iscsi0. The cfgmgr command prints no confirmation messages, but 
we can see that the new device has appeared by looking in the /dev directory (on 
our example system, the new disk is /dev/hdisk2) or by running smitty devices, 
navigating to the Fixed Disk category, and listing the entries. The latter option is 
perhaps safer since smitty explicitly shows that hdisk2 is an iSCSI volume.

To disconnect an iSCSI device, you must not only edit the configuration file and 
reload the configuration with cfgmgr but you must also delete the disk from 
smitty’s Fixed Disk list.

8.12 EXERCISES

E8.1 Describe any special considerations that an administrator should take 
into account when designing a storage architecture for each of the fol-
lowing applications.

a) A server that will host the home directories of about 200 users
b)A swap area for a site’s primary DNS server
c) Storage for the mail queue at a large spam house
d)A large InnoDB (MySQL) database

E8.2 Logical volume managers are powerful but can be confusing if not well 
understood. Practice adding, removing, and resizing disks in a volume 
group. Show how you would remove a device from one volume group 
and add it to another. What would you do if you wanted to move a 
logical volume from one volume group to another?

E8.3 Using printed or Internet resources, identify the best-performing SCSI 
and SATA drives. Do the benchmarks used to evaluate these drives re-
flect the way that a busy server would use its boot disk? What cost pre-
mium would you pay for SCSI, and how much performance improve-
ment (if any) would you get for the money?

E8.4 Add a disk to your system and set up a partition or logical volume on 
the new disk as a backup root partition. Make sure you can boot from 
the backup root and that the system runs normally when so booted. 
Keep a journal of all the steps required to complete this task. You may 
find the script command helpful. (Requires root access.)

E8.5 What is a superblock and what is it used for? Look up the definition of 
the ext4 superblock structure in the kernel header files and discuss 
what each of the fields in the structure represents.

E8.6 Use mdadm and its -f option to simulate a failed disk in a Linux RAID 
array. Remove the disk from the array and add it back. How does 
/proc/mdstat look at each step?

  



ptg

282 Chapter 8 Storage

E8.7 What fields are stored in an inode on an ext4 filesystem? List the con-
tents of the inode that represents the /etc/motd file. Where is this file’s 
filename stored? (Tools such as hexdump and ls -i might help.)

E8.8 Examine the contents of a directory file with a program such as od or 
hexdump. Each variable-length record represents a file in that direc-
tory. Look up the on-disk structure of a directory and explain each 
field, using an example from a real directory file. Next, look at the 
lost+found directory on a filesystem that uses them. Why are there so 
many names there when the lost+found directory is empty?

E8.9 Write a program that traverses the filesystem and prints the contents 
of the /etc/motd and /etc/magic files. But don’t open the files directly; 
open the raw device file for the root partition and use the seek and 
read system calls to decode the filesystem and find the appropriate 
data blocks. /etc/motd is usually short and will probably contain only 
direct blocks. /etc/magic should require you to decode indirect 
blocks. (If it doesn’t, pick a larger text file.)

Hint: when reading the system header files, be sure you have found 
the filesystem’s on-disk inode structure, not the in-core inode struc-
ture. (Requires root access.)

  



ptg

283

Cr
on

Cron

9 Periodic Processes

Scripting and automation are the keys to consistency and reliability. For example, 
an adduser program can add new users faster than you can, with a smaller chance 
of making mistakes. Almost any task can be encoded in a Perl or Python script.

It’s often useful to have a script or command executed without any human inter-
vention. For example, you might want to have a script verify (say, every half-hour) 
that your network routers and switches are working correctly, and have the script 
send you email when problems are discovered.1

9.1 CRON: SCHEDULE COMMANDS

The cron daemon is the standard tool for running commands on a predetermined 
schedule. It starts when the system boots and runs as long as the system is up. 

cron reads configuration files that contain lists of command lines and the times at 
which they are to be invoked. The command lines are executed by sh, so almost 
anything you can do by hand from the shell can also be done with cron.2

1. Many sites go further than this and send a text message to an administrator’s phone as soon as a prob-
lem is detected. See Chapter 21, Network Management and Debugging, for more details.

2. You can configure cron to use other shells as well.

  



ptg

284 Chapter 9 Periodic Processes

A cron configuration file is called a “crontab,” short for “cron table.” Crontabs for 
individual users are stored under /var/spool/cron. There is (at most) one crontab 
file per user: one for root, one for jsmith, and so on. Crontab files are named with 
the login names of the users to whom they belong, and cron uses these filenames 
to figure out which UID to use when running the commands contained in each 
file. The crontab command transfers crontab files to and from this directory.

Although the exact implementations vary, all versions of cron try to minimize the 
time they spend reparsing configuration files and making time calculations. The 
crontab command helps maintain cron’s efficiency by notifying cron when the 
crontabs change. Ergo, you shouldn’t edit crontab files directly, since this may re-
sult in cron not noticing your changes. If you do get into a situation where cron
doesn’t seem to acknowledge a modified crontab, a HUP signal will force it to 
reload on most systems.

See Chapter 11 for 
more information 
about syslog.

cron normally does its work silently, but most versions can keep a log file (usually 
/var/cron/log or /var/adm/cron/log) that lists the commands that were executed 
and the times at which they ran. See Table 9.2 on page 287 for logging defaults.

On some systems, creating the log file enables logging, and removing the log file 
turns logging off. On other systems, the log is turned on or off in a configuration 
file. Yet another variation is for cron to use syslog. The log file grows quickly and 
is rarely useful; leave logging turned off unless you’re debugging a specific prob-
lem or have specific auditing requirements.

9.2 THE FORMAT OF CRONTAB FILES

All the crontab files on a system share a similar format. Comments are introduced 
with a pound sign (#) in the first column of a line. Each noncomment line con-
tains six fields and represents one command:

minute hour dom month weekday command

The first five fields tell cron when to run the command. They’re separated by 
whitespace, but within the command field, whitespace is passed along to the shell. 
The fields in the time specification are interpreted as shown in Table 9.1.

Table 9.1 Crontab time specifications

Field Description Range

minute Minute of the hour 0 to 59
hour Hour of the day 0 to 23
dom Day of the month 1 to 31
month Month of the year 1 to 12
weekday Day of the week 0 to 6 (0 = Sunday)

  



ptg

The format of crontab files 285

Cr
on

Each of the time-related fields may contain

• A star, which matches everything
• A single integer, which matches exactly
• Two integers separated by a dash, matching a range of values
• A range followed by a slash and a step value, e.g., 1-10/2 (Linux only)
• A comma-separated list of integers or ranges, matching any value

For example, the time specification
45  10  *  *  1-5

means “10:45 a.m., Monday through Friday.” A hint: never put a star in the first 
field unless you want the command to be run every minute.

There is a potential ambiguity to watch out for with the weekday and dom fields. 
Every day is both a day of the week and a day of the month. If both weekday and 
dom are specified, a day need satisfy only one of the two conditions in order to be 
selected. For example,

0,30  *  13  *  5

means “every half-hour on Friday, and every half-hour on the 13th of the month,” 
not “every half-hour on Friday the 13th.”

The command is the sh command line to be executed. It can be any valid shell 
command and should not be quoted. The command is considered to continue to 
the end of the line and may contain blanks or tabs.

Although sh is involved in executing the command, the shell does not act as a 
login shell and does not read the contents of ~/.profile or ~/.bash_profile. As a 
result, the command’s environment variables may be set up somewhat differently 
from what you expect. If a command seems to work fine when executed from the 
shell but fails when introduced into a crontab file, the environment is the likely 
culprit. If need be, you can always wrap your command into a script that sets up 
the appropriate environment variables.

Percent signs (%) indicate newlines within the command field. Only the text up to 
the first percent sign is included in the actual command. The remaining lines are 
given to the command as standard input.

Here are some examples of legal crontab commands:
echo The time is now `date` > /dev/console 
mail -s Reminder evi@anchor % Don't forget to write your chapters. 
cd /etc; /bin/mail -s "Password file" evi < passwd

And below are some additional examples of complete crontab entries:
30  2  *  *  1 (cd /home/joe/project; make)

  



ptg

286 Chapter 9 Periodic Processes

This entry runs make in the directory /home/joe/project every Monday morning 
at 2:30 a.m. An entry like this might be used to start a long compilation at a time 
when other users would not be using the system. Usually, any output produced by 
a cron command is mailed to the owner of the crontab.3

20  1  *  *  * find /tmp -atime +3 -type f -exec rm -f { } ';'

This command runs at 1:20 each morning. It removes all files in the /tmp direc-
tory that have not been accessed in 3 days.

55  23  *  *  0-3,6 /staff/trent/bin/checkservers

This line runs checkservers at 11:55 p.m. every day except Thursdays and Fridays.

cron does not try to compensate for commands that are missed while the system 
is down. However, the Linux and HP-UX crons are smart about small time adjust-
ments such as shifts into and out of daylight saving time. Other versions of cron
may skip commands or run them twice if they are scheduled during the transition 
period (usually between 1:00 and 3:00 a.m. in the United States, for example).4

9.3 CRONTAB MANAGEMENT

crontab filename installs filename as your crontab, replacing any previous version. 
crontab -e checks out a copy of your crontab, invokes your editor on it (as speci-
fied by the EDITOR environment variable), and then resubmits it to the crontab 
directory. crontab -l lists the contents of your crontab to standard output, and 
crontab -r removes it, leaving you with no crontab file at all.

Root can supply a username argument to edit or view other users’ crontabs. For 
example, crontab -r jsmith erases the crontab belonging to the user jsmith, and 
crontab -e jsmith edits it. Linux allows both a username and a filename argument 
in the same command, so the username must be prefixed with -u to disambiguate 
(e.g., crontab -u jsmith crontab.new).

Without command-line arguments, most versions of crontab will try to read a 
crontab from standard input. If you enter this mode by accident, don’t try to exit 
with <Control-D>; doing so will erase your entire crontab. Use <Control-C> in-
stead. Linux requires you to supply a dash as the filename argument if you want to 
make crontab pay attention to its standard input. Smart.

Two config files, cron.deny and cron.allow, specify which users may submit 
crontab files. They’re located in a different directory on every system; see Table 
9.2 for a summary.

3. That is, the user after whom the crontab file is named. On most (but not all) systems, the actual owner 
of crontab files is root.

4. One of our contributors reports having seen a case in which cron consumed 100% of the CPU because 
the system date had been set to the UNIX epoch. The local time zone was a negative offset from GMT, 
so with the offset taken into account, the local time appeared to be a negative number, and cron was 
confused. Most systems power their on-board clocks with a battery, so clock resets are not as unusual 
as you might think. Time instability is a common symptom of a dead or dying battery.

  



ptg

Linux and Vixie-cron extensions 287

Cr
on

If the allow file exists, then it contains a list of all users that may submit crontabs, 
one per line. No unlisted person can invoke the crontab command. If the allow 
file doesn’t exist, then the deny file is checked. It, too, is just a list of users, but the 
meaning is reversed: everyone except the listed users is allowed access.

If neither the allow file nor the deny file exists, systems default (apparently at ran-
dom, there being no dominant convention) to allowing all users to submit cron-
tabs or to limiting crontab access to root. In practice, a starter cron.allow or 
cron.deny file is often included in the default OS installation, so the question of 
how crontab behaves without configuration files is moot. Among our example 
systems, only HP-UX defaults to blocking crontab access for unprivileged users.

It’s important to note that on most systems, access control is implemented by 
crontab, not by cron. If a user is able to sneak a crontab file into the appropriate 
directory by other means, cron will blindly execute the commands it contains.

Solaris is a bit different in this regard. Its cron daemon checks to be sure that the 
user’s account hasn’t been locked with an *LK* in /etc/shadow. If it has, cron won’t 
run the user’s jobs. The rationale is to prevent disabled users from running jobs, 
whether inadvertently or maliciously. If you want a user to have a valid account 
from cron’s perspective but not a valid password, run passwd -N user.

9.4 LINUX AND VIXIE-CRON EXTENSIONS

The version of cron included on Linux distributions (including our three exam-
ples) is usually the one known as ISC cron or “Vixie-cron,” named after its author, 
Paul Vixie. It’s a modern rewrite that provides a bit of added functionality with 
less mess.

A primary difference is that in addition to looking for user-specific crontabs, 
Vixie-cron also obeys system crontab entries found in /etc/crontab and in the 
/etc/cron.d directory. These files have a slightly different format from the per-
user crontab files in that they allow commands to be run as an arbitrary user. An 
extra username field comes before the command name. The username field is not 
present in garden-variety crontab files because the crontab’s filename provides 
this same information (even on Linux systems).

cron treats the /etc/crontab and /etc/cron.d entries in exactly the same way. In 
general, /etc/crontab is intended as a file for system administrators to maintain by 

Table 9.2 Locations of cron permission and log files

System Allow/deny Default Default log

Linux /etc All users via syslog
Solaris /etc/cron.d All users /var/cron/log

HP-UX /usr/lib/cron Only root /var/adm/cron/log

AIX /var/adm/cron All users /var/adm/cron/log

  



ptg

288 Chapter 9 Periodic Processes

hand, whereas /etc/cron.d is provided as a depot into which software packages 
can install any crontab entries they might need. Files in /etc/cron.d are by con-
vention named after the packages that install them, but cron doesn’t care about or 
enforce this convention.

Time ranges in Vixie-cron crontabs can include a step value. For example, the 
series 0,3,6,9,12,15,18 can be written more concisely as 0-18/3. You can also use 
three-letter text mnemonics for the names of months and days, but not in combi-
nation with ranges. As far as we know, this feature works only with English names.

You can specify environment variables and their values in a Vixie-cron crontab 
file. See the crontab(5) man page for more details.

Vixie-cron logs its activities through syslog using the facility “cron,” with most 
messages submitted at level “info.” Default syslog configurations generally send 
cron log data to its own file.

For reasons that are unclear, cron has been renamed crond on Red Hat. But it is 
still the same Vixie-cron we all know and love.

9.5 SOME COMMON USES FOR CRON

A number of standard tasks are especially suited for invocation by cron, and these 
usually make up the bulk of the material in root’s crontab. In this section we look 
at a few common chores and the crontab lines used to implement them.

Systems often come with crontab entries preinstalled. If you want to deactivate the 
standard entries, comment them out by inserting a pound sign (#) at the begin-
ning of each line. Don’t delete them; you might want to refer to them later.

In addition to the /etc/cron.d mechanism, Linux distributions also preinstall 
crontab entries that run the scripts in a set of well-known directories, thereby 
providing another way for software packages to install periodic jobs without any 
editing of a crontab file. For example, scripts in /etc/cron.daily are run once a day, 
and scripts in /etc/cron.weekly are run once a week. You can put files in these 
directories by hand as well.

Many sites have experienced subtle but recurrent network glitches that occur be-
cause administrators have configured cron to run the same command on hun-
dreds of machines at exactly the same time. Clock synchronization with NTP ex-
acerbates the problem. The problem is easy to fix with a random delay script or 
config file adjustment, but it can be tricky to diagnose because the symptoms re-
solve so quickly and completely.

Simple reminders

It’s not going to put Google Calendar out of business, but cron can be quite useful 
in its own geeky way for simple reminders: birthdays, due dates, recurrent tasks, 
etc. That’s especially true when the reminder process has to integrate with other 
home-grown software such as a trouble ticket manager.

  



ptg

Filesystem cleanup 289

Cr
on

The following crontab entry implements a simple email reminder. (Lines have 
been folded to fit the page. In reality, this is one long line.)

30  4  25  *  * /usr/bin/mail -s “Time to do the TPS reports” 
owen@atrust.com%TPS reports are due at the end of the month! Get 
busy!%%Sincerely,%cron

Note the use of the % character both to separate the command from the input text 
and to mark line endings within the input. This entry sends email once on the 25th 
day of each month.

Filesystem cleanup 

Some of the files on any system are worthless junk (no, not the system files). For 
example, when a program crashes, the kernel may write out a file (usually named 
core, core.pid, or program.core) that contains an image of the program’s address 
space. Core files are useful for developers, but for administrators they are usually 
a waste of space. Users often don’t know about core files, so they tend not to delete 
them on their own.5

NFS, the Network File 
System, is described 
in Chapter 18.

NFSv3 is another source of extra files. Because NFSv3 servers are stateless, they 
have to use a special convention to preserve files that have been deleted locally but 
are still in use by a remote machine. Most implementations rename such files to 
.nfsxxx, where xxx is a number. Various situations can result in these files being 
forgotten and left around after they are supposed to have been deleted.

Many programs create temporary files in /tmp or /var/tmp that aren’t erased for 
one reason or another. Some programs, especially editors, like to make a backup 
copy of each file they work with.

A partial solution to the junk file problem is to institute some sort of nightly disk 
space reclamation out of cron. Modern systems usually come with something of 
this sort set up for you, but it’s a good idea to review your system’s default behavior 
to make sure it’s appropriate for your situation.

Below are several common idioms implemented with the find command.
find / -xdev -type f '(' -name core -o name 'core.[0-9]*' -o name '*.core' ')' 

-atime +7 -exec rm -f { } ';' 

This command removes core images that have not been accessed in a week. The 
-xdev argument makes sure that find won’t cross over to filesystems other than 
the root; this restraint is important on networks where many filesystems may be 
cross-mounted.6 If you want to clean up more than one filesystem, use a separate 
command for each. (Note that /var is typically a separate filesystem.)

5. Many systems’ kernels can be configured to put core dumps in a particular directory, or optionally, not 
generate them at all. For example, see man core on Linux or man coreadm on Solaris.

6. Not all versions of find support the -xdev argument. On some systems, it’s called -x. 

  



ptg

290 Chapter 9 Periodic Processes

The -type f argument is important because the Linux kernel source contains a 
directory called core. You wouldn’t want to be deleting that, would you?7

find / -xdev -atime +3 '(' -name '#*' -o -name '.#*' -o -name '*.CKP' -o 
-name '*~' -o -name '.nfs*' ')' -exec rm -f { } ';' 

This command deletes files that have not been accessed in three days and that 
begin with # or .# or .nfs or end with ~ or .CKP. These patterns are typical of 
various sorts of temporary and editor backup files.

See page 143 for 
more information 
about mount options.

For performance reasons, some administrators use the noatime mount option to 
prevent the filesystem from maintaining access time stamps. That configuration 
will confuse both of the find commands shown above because the files will appear 
to have been unreferenced even if they were recently active. Unfortunately, the 
failure mode is to delete the files; be sure you are maintaining access times before 
using these commands as shown.

cd /tmp; find . ! -name . ! -name lost+found -type d -mtime +3 
-exec /bin/rm -rf { } ';' 

This command recursively removes all subdirectories of /tmp not modified in 72 
hours. On most systems, plain files in /tmp are removed at boot time by the sys-
tem startup scripts. However, some systems do not remove directories. If a direc-
tory named lost+found exists, it is treated specially and is not removed. This is 
important if /tmp is a separate filesystem. See page 260 for more information 
about lost+found.

If you use any of these commands, make sure that users are aware of your cleanup 
policies before disaster strikes!

Network distribution of configuration files

See Chapter 19 for 
more information 
about sharing configu-
ration files.

If you are running a network of machines, it’s often convenient to maintain a sin-
gle, network-wide version of configuration files such as the mail aliases database. 
Usually, the underlying sharing mechanism is some form of polling or periodic 
distribution, so this is an ideal task for cron. Master versions of system files can be 
distributed every night with rsync or rdist.

Sometimes, postprocessing is required. For example, you might need to run the 
newaliases command to convert a file of mail aliases to the hashed format used by 
sendmail because the AutoRebuildAliases option isn’t set in your sendmail.cf
file. You might also need to load files into an administrative database such as NIS.

Log file rotation 

Systems vary in the quality of their default log file management, and you will 
probably need to adjust the defaults to conform to your local policies. To “rotate” 

7. Bryan Helvey, one of our technical reviewers, has worked in the oil industry and notes that core in that 
context is as likely to refer to a core sample as to a core dump. More generally, we acknowledge that it’s 
inherently dangerous to delete files base on their names alone.

  



ptg

Exercises 291

Cr
on

a log file means to divide it into segments by size or by date, keeping several older 
versions of the log available at all times. Since log rotation is a recurrent and regu-
larly scheduled event, it’s an ideal task for cron. See Chapter 11, Syslog and Log 
Files for more details.

9.6 EXERCISES

E9.1 A local user has been abusing his crontab privileges by running expen-
sive tasks at frequent intervals. After asking him to stop several times, 
you are forced to revoke his privileges. List the steps needed to delete 
his current crontab and make sure he can’t add a new one.

E9.2 Think of three tasks (other than those mentioned in this chapter) that 
might need to be run periodically. Write crontab entries for each task 
and specify where they should go on your system.

E9.3 Choose three entries from your system’s crontab files. Decode each one 
and describe when it runs, what it does, and why you think the entry is 
needed. (Requires root access.)

E9.4 Write a script that keeps your startup files (~/.[a-z]*) synchronized 
among all the machines on which you have an account. Schedule this 
script to run regularly from cron. (Is it safe to blindly copy every file 
whose name starts with a dot? How will you handle directories? Should 
files being replaced on the destination machines be backed up before 
they are overwritten?)

  



ptg

292

10 Backups

At most sites, the information stored on computers is worth far more than the 
computers themselves. It is also much harder to replace. Protecting this informa-
tion is one of the system administrator’s most important (and, unfortunately, most 
tedious) tasks.

There are hundreds of creative and not-so-creative ways to lose data. Software 
bugs routinely corrupt documents. Users accidentally delete data files. Hackers 
and disgruntled employees erase disks. Hardware problems and natural disasters 
take out entire machine rooms.

If executed correctly, backups allow an administrator to restore a filesystem (or 
any portion of a filesystem) to the condition it was in at the time of the last 
backup. Backups must be done carefully and on a strict schedule. The backup 
system and backup media must also be tested regularly to verify that they are 
working correctly.

The integrity of your backup procedures directly affects your company’s bottom 
line. Senior management needs to understand what the backups are actually capa-
ble of doing, as opposed to what they want the backups to do. It may be OK to lose 
a day’s work at a university computer science department, but it probably isn’t OK 
at a commodity trading firm.

Backups

  



ptg

Label your media 293

Ba
ck

up
s

We begin this chapter with some general backup philosophy, followed by a discus-
sion of the most commonly used backup devices and media (their strengths, 
weaknesses, and costs). Next, we talk about how to design a backup scheme and 
review the mechanics of the popular dump and restore utilities.

We then discuss some additional backup and archiving commands and suggest 
which commands are best for which situations. Finally, we take a look at Bacula, a 
free network backup package, and offer some comments about other open source 
and commercial alternatives.

10.1 MOTHERHOOD AND APPLE PIE

Before we get into the meat and potatoes of backups, we want to pass on some 
general hints that we have learned over time (usually, the hard way). None of these 
suggestions is an absolute rule, but you will find that the more of them you follow, 
the smoother your backups and restores will go.

Perform all backups from a central location

Many backup utilities allow you to perform dumps over the network. Although 
there is some performance penalty for doing dumps that way, the increase in ease 
of administration makes it worthwhile. If you manage only a handful of servers, 
it’s probably easiest to run a script from a central location that executes dump (by 
way of ssh) on each machine that needs to be dumped. If you have more than a 
few servers, you should use a software package (commercial or free) to automate 
this process. 

Even if your backups are too large to be funneled through a single server, you 
should still try to keep your backup system as centralized as possible. Centraliza-
tion facilitates administration and lets you restore data to alternate servers. De-
pending on the media you are using, you can often put more than one media 
device on a server without affecting performance.

Dumps created with dump can only be restored on machines that have the same 
byte order as the dump host (and in most cases, only on machines running the 
same OS). You can sometimes use dd to take care of byte swapping problems, but 
this simple fix won’t resolve differences among incompatible versions of dump.

If you are backing up so much data across a network that the network’s bandwidth 
becomes an issue, consider creating a LAN dedicated to backup traffic. Many or-
ganizations find this approach effective for alleviating network bottlenecks.

Label your media

Label each piece of backup media clearly and completely—an unlabeled tape is a 
scratch tape. Directly label each piece of media to uniquely identify its contents. 
On the cases for the media, write detailed information such as lists of filesystems, 
backup dates, the format of the backups, the exact syntax of the commands used 

  



ptg

294 Chapter 10 Backups

to create them, and any other information you would need to restore the system 
without referring to on-line documentation.

Free and commercial labeling programs abound. Save yourself a major headache 
and invest in one. Vendors of laser printer labels can usually provide templates for 
each of their labels. Better yet, buy a dedicated label printer. They are inexpensive 
and work well. 

Your automated dump system should record the name of each filesystem it has 
dumped. Good record keeping allows you to quickly skip forward to the correct 
filesystem when you want to restore a file. It’s also a good idea to record the order 
of the filesystems on the tape or case.

If you can afford it, buy an autochanger or tape drive that reads bar codes. This 
feature ensures that your electronic tape labels always match the physical ones.

Pick a reasonable backup interval

The more often backups are done, the less data is lost in a crash. However, back-
ups use system resources and an operator’s time. You must provide adequate data 
integrity at a reasonable cost of time and materials. In general, costs increase as 
you move toward more granular restoration capabilities.

On busy systems, it is generally appropriate to back up home directories every 
workday. On systems that are used less heavily or on which the data is less volatile, 
you might decide that performing backups several times a week is sufficient. On a 
small system with only one user, performing backups once a week is probably 
adequate. How much data are your users willing to lose?

Choose filesystems carefully

Filesystems that are rarely modified do not need to be backed up as frequently as 
users’ home directories. If only a few files change on an otherwise static filesystem 
(such as /etc/passwd in the root filesystem), you can copy these files every day to 
another partition that is backed up regularly. 

If /tmp is a separate filesystem, it should not be backed up. The /tmp directory 
should not contain anything essential, so there is no reason to preserve it. If this 
seems obvious, you are in better shape than many sites we’ve visited.

Make daily dumps fit on one piece of media

See Chapter 9 for 
more information 
about cron.

In a perfect world, you could do daily dumps of all your important filesystems 
onto a single tape. High-density media such as DLT, AIT, and LTO make this goal 
practical for some sites. However, as our work habits change and telecommuting 
becomes more popular, the range of “good” times to do backups is shrinking. 
More and more network services must be available around the clock, and large 
backups take time.

  



ptg

Protect your backups 295

Ba
ck

up
s

Another major problem is the rapid expansion of disk space that has resulted 
from the ever-lower price of hard disks. You can no longer purchase a stock desk-
top machine with less than 250GB of disk space. Why clean up your disks and 
enforce quotas when you can just throw a little money at the problem and add 
more disk space? Unfortunately, it’s all too easy for the amount of on-line storage 
to outstrip your ability to back it up.

Backup utilities are perfectly capable of dumping filesystems to multiple pieces of 
media. However, if a dump spans multiple tapes, an operator or tape library robot 
must be present to change the media, and the media must be carefully labeled to 
allow restores to be performed easily. Unless you have a good reason to create a 
really large filesystem, don’t do it.

If you can’t fit your daily backups on one tape, you have several options:

• Buy a higher-capacity backup device.
• Buy a stacker or library and feed multiple pieces of media to one device.
• Change your dump sequence.
• Use multiple backup devices.

Keep media off-site

First, baby steps: you should always have an off-line copy of your data.That is, a 
protected copy that is not stored on a hard disk on the machine of origin. Snap-
shots and RAID arrays are not substitutes for real backups!

Most organizations also keep backups off-site so that a disaster such as a fire can-
not destroy both the original data and the backups. “Off-site” can be anything 
from a safe deposit box at a bank to the President’s or CEO’s home. Companies 
that specialize in the secure storage of backup media guarantee a secure and cli-
mate-controlled environment for your archives. Always make sure your off-site 
storage provider is reputable, bonded, and insured. There are on-line (but off-site) 
businesses today that specialize in safeguarding your data.

The speed with which backup media are moved off-site should depend on how 
often you need to restore files and on how much latency you can accept. Some 
sites avoid making this decision by performing two dumps to different backup 
devices, one that stays on-site and one that is moved immediately.1

Protect your backups

Dan Geer, a security consultant, said, “What does a backup do? It reliably violates 
file permissions at a distance.” Hmmm.

Encryption of backup media is usually a no-brainer and is required by security 
standards such as the Payment Card Industry Data Security Standard (PCI DSS). 

1. A large financial institution located in the World Trade Center kept its “off-site” backups one or two 
floors below their offices. When the building was bombed (the first time), the backup tapes (as well as 
the computers) were destroyed. Make sure “off-site” really is.

  



ptg

296 Chapter 10 Backups

Many backup utilities make encryption relatively painless. However, you must be 
sure that the encryption keys cannot be lost or destroyed and that they are avail-
able for use in an emergency.

Physically secure your backup media as well. Not only should you keep your me-
dia off-site, but you should also keep them under lock and key. If you use a com-
mercial storage facility for this purpose, the company you deal with should guar-
antee the confidentiality of the tapes in their care.

Some companies feel so strongly about the importance of backups that they make 
duplicates, which is really not a bad idea at all.

Limit activity during backups

Filesystem activity should be limited during backups because changes can cause 
your backup utility to make mistakes. One way to limit activity is to do dumps 
when few active users are around (in the middle of night or on weekends). To 
automate the process, mount your backup media every day before leaving work 
and let cron execute the backup for you. That way, dumps occur at a time when 
files are less likely to be changing, and the dumps have minimal impact on users.

In practice, it is next to impossible to find a disk that doesn’t always have at least a 
little activity. Users want 24/7 access to data, services run around the clock, and 
databases require special backup procedures. Most databases must be temporarily 
stopped or put in a special degraded mode so that backups can accurately capture 
data at a single point in time. Sites with a lot of data may not be able to tolerate the 
downtime necessary to perform a traditional backup of their database. These days 
the only way to do a backup with no disk activity is to first create a snapshot.

See page 274 for 
more information 
about SANs.

Most SAN controllers, and all our example operating systems, provide some way 
to create a snapshot of a filesystem. This feature lets you make relatively safe back-
ups of an active filesystem, even one on which files are currently open. On Linux, 
snapshots are implemented through the logical volume manager (see page 249), 
and on our other example systems they are created through the filesystem.

Snapshots can be created almost instantaneously thanks to a clever copy-on-write 
scheme. No data is actually copied or moved at the time the snapshot is created. 
Once the snapshot exists, changes to the filesystem are written to new locations 
on disk. In this way, two (or more) images can be maintained with minimal use of 
additional storage. Snapshots are similar in concept to incremental backups, ex-
cept that they operate at the block level rather than the filesystem level.

In this context, snapshots are primarily a tool for creating “real” backups of a file-
system. They are never a replacement for off-line backups. Snapshots also help 
facilitate database backups, since the database only needs to be paused for a sec-
ond while the snapshot completes. Later, the relatively slow tape backup can be 
performed against the snapshot as the live database goes happily on its way serv-
ing up queries.

  



ptg

Develop a media life cycle 297

Ba
ck

up
s

Verify your media

We’ve heard many horror stories about system administrators who did not dis-
cover problems with their dump regime until after a serious system failure. It is 
essential that you continually monitor your backup procedure and verify that it is 
functioning correctly. Operator error ruins more dumps than any other problem.

The first check is to have your backup software attempt to reread tapes immedi-
ately after it has finished dumping.2 Scanning a tape to verify that it contains the 
expected number of files is a good check. It’s best if every tape is scanned, but this 
no longer seems practical for a large organization that uses many tapes every day. 
A random sample would be most prudent in this environment.

See page 310 for 
more information 
about restore.

It is often useful to generate a table of contents for each filesystem (dump users 
can use restore -t) and to store the resulting catalogs on disk. These catalogs 
should be named in a way that relates them to the appropriate tape; for example, 
okra:usr.Jan.13. A database of these records makes it easy to discover what piece 
of media a lost file is on. Just grep for the filename and pick the newest instance.

In addition to providing a catalog of tapes, successfully reading the table of con-
tents from the tape is a good indication that the dump is OK and that you will 
probably be able to read the media when you need to. A quick attempt to restore a 
random file gives you even more confidence in your ability to restore from that 
piece of media.3

You should periodically attempt to restore from random media to make sure that 
restoration is still possible. Every so often, try to restore from an old (months or 
years) piece of dump media.4 Tape drives have been known to wander out of 
alignment over time and become unable to read their old tapes. The media can be 
recovered by a company that specializes in this service, but it is expensive.

A related check is to verify that you can read the media on hardware other than 
your own. If your machine room burns, it does not do much good to know that 
the backup could have been read on a tape drive that has now been destroyed. 
DAT tapes have been particularly susceptible to this problem in the past, but more 
recent versions of the technology have improved.

Develop a media life cycle

All media have a finite life. It’s great to recycle your media, but be sure to abide by 
the manufacturer’s recommendations regarding the life of the media. Most tape 
manufacturers quantify this life in terms of the number of passes that a tape can 
stand: a backup, a restore, and an mt fsf (file skip forward) each represent one 

2. GNU versions of restore include the -C option to verify a dump tape against a directory tree.
3. For example, restore -t reads only the table of contents for the dump, which is stored at the beginning 

of the tape. When you actually restore a file, you are testing a more extensive region of the medium. 
4. It’s helpful to treat users who request the restoration of accidentally deleted files as colleagues who are 

spot-checking your backup system rather than as incompetent, file-deleting annoyances. A positive 
attitude makes the experience more pleasant for both of you and increases the number of spot-checks.

  



ptg

298 Chapter 10 Backups

pass. Nontape technologies have a much longer life that is sometimes expressed as 
a mean time to failure (MTTF), but all hardware and media have a finite lifetime. 
Think of media life in dog-years rather than real years.

Before you toss old tapes in the trash, remember to erase or render them unread-
able. A bulk tape eraser (a large electromagnet) can help with this, but be sure to 
keep it far, far away from computers and active media. Cutting or pulling out part 
of a backup tape does not really do much to protect your data, because tape is easy 
to splice or respool. Document-destruction companies shred tapes for a fee.

In the case of hard disks used as backup media, remember that drive recovery 
services cost less than a thousand dollars and are just as available to bad guys as 
they are to you. Consider performing a secure erase (page 227) or SCSI format 
operation before a drive leaves your site.

Design your data for backups

With disks so cheap and new storage architectures so reliable, it’s tempting to 
throw up your hands and not back up all your data. Don’t give up! A sensible 
storage architecture—designed rather than grown willy-nilly as disk needs in-
crease—can make backups much more tractable. 

Start by taking an inventory of your storage needs:

• The various kinds of data your site deals with
• The expected volatility of each type of data
• The backup frequency needed for comfort with potential losses
• The network and political boundaries over which the data is spread

Use this information to design your site’s storage architecture, keeping backups 
and potential growth in mind. For example, putting project directories and users’ 
home directories on a dedicated file server can make it easier to manage your data 
and ensure its safety.

With the advent of powerful system-imaging and disk-building solutions, it is of-
ten easier to re-image a broken system than to troubleshoot and restore corrupt or 
missing files. Many administrators configure their users’ workstations to store all 
data on a centralized server. Others manage farms of servers that have near-iden-
tical configurations and data (such as the content for a busy web site). In such an 
environment, it’s reasonable not to back up vast arrays of duplicated systems. On 
the other hand, security mavens encourage generous backups so that data is avail-
able for forensic analysis in the event of an incident.

Prepare for the worst

After you have established a backup procedure, explore the worst case scenario: 
your site is completely destroyed. Determine how much data would be lost and 
how long it would take to get your system back to life. (Include in your calcula-
tions the time it would take to acquire new hardware.) Then determine whether 
you can live with your answers.

  



ptg

Optical media: CD-R/RW, DVD±R/RW, DVD-RAM, and Blu-ray 299

Ba
ck

up
s

More formal organizations often designate a Recovery Time Objective (RTO) and 
a Recovery Point Objective (RPO) for information on specific servers or filesys-
tems. When these numbers are available, they provide valuable guidance. 

An RTO represents the maximum amount of time that the business can tolerate 
waiting for a recovery to complete. Typical RTOs for user data range from hours 
to days. For production servers, RTOs can range from hours to seconds.

An RPO indicates how recent a backup is required for the restore and influences 
the granularity at which backups must be retained. Depending on how frequently 
the dataset changes and how important it is, an RPO might range from weeks to 
hours to seconds. Tape backups clearly can’t satisfy near-real-time RPOs, so such 
requirements usually imply large investments and specialized storage devices lo-
cated in multiple data centers.

Although the process of defining these metrics may seem somewhat arbitrary, it is 
a useful way to get the “owners” of the data on the same page as the technical 
folks. The process requires balancing cost and effort against the business’s need 
for recoverability. It’s a difficult but important venture.

10.2 BACKUP DEVICES AND MEDIA

Many failures can damage several pieces of hardware at once, so backups should 
be written to some sort of removable media. A good rule of thumb is to create off-
line backups that no single disgruntled system administrator could destroy.

Backing up one hard disk to another on the same machine or in the same data 
center provides little protection against a server failure, although it is certainly 
better than no backup at all. Companies that back up your data over the Internet 
are becoming more popular, but most backups are still created locally.

The following sections describe some of the media that can be used for backups. 
The media are presented in rough order of increasing capacity.

Manufacturers like to specify their hardware capacities in terms of compressed 
data; they often optimistically assume a compression ratio of 2:1 or more. In the 
sections below, we ignore compression in favor of the actual number of bytes that 
can physically be stored on each piece of media.

The compression ratio also affects a drive’s throughput rating. If a drive can phys-
ically write 1 MB/s to tape but the manufacturer assumes 2:1 compression, the 
throughput magically rises to 2 MB/s. As with capacity figures, we have ignored 
throughput inflation below.

Optical media: CD-R/RW, DVD±R/RW, DVD-RAM, and Blu-ray

At a cost of about $0.30 each, CDs and DVDs are an attractive option for backups 
of small, isolated systems. CDs hold about 700MB and DVDs hold 4.7GB. Dual-
layer DVDs clock in at about 8.5GB.

  



ptg

300 Chapter 10 Backups

Drives that write these media are available for every common bus (SCSI, IDE, 
USB, SATA, etc.) and are in many cases are so inexpensive as to be essentially free. 
Now that CD and DVD prices have equilibrated, there’s no reason to use CDs 
rather than DVDs. However, we still see quite a few CDs used in the real world for 
reasons that are not entirely clear.

Optical media are written through a photochemical process that involves the use 
of a laser. Although hard data on longevity has been elusive, it is widely believed 
that optical media have a substantially longer shelf life than magnetic media. 
However, the write-once versions (CD-R, DVD-R, and DVD+R) are not as dura-
ble as manufactured (stamped) CDs and DVDs.

Today’s fast DVD writers offer speeds as fast as—if not faster than—tape drives. 
The write-once versions are DVD-R and DVD+R. DVD-RW, DVD+RW, and 
DVD-RAM are rewritable. The DVD-RAM system has built-in defect manage-
ment and is therefore more reliable than other optical media. On the other hand, 
it is much more expensive.

Manufacturers estimate a potential life span of hundreds of years for these media 
if they are properly stored. Their recommendations for proper storage include in-
dividual cases, storage at a constant temperature in the range 41°F–68°F with rela-
tive humidity of 30%–50%, no exposure to direct sunlight, and marking only with 
water-soluble markers. Under average conditions, a reliable shelf life of 1–5 years 
is probably more realistic.

As borne out by numerous third-party evaluations, the reliability of optical media 
has proved to be exceptionally manufacturer dependent. This is one case in which 
it pays to spend money on premium quality media. Unfortunately, quality varies 
from product to product even within a manufacturer’s line, so there is no safe-bet 
manufacturer.

A recent entry to the optical data storage market is the Blu-ray disc, whose various 
flavors store from 25–100 GB of data. This high capacity is a result of the short 
wavelength (405nm) of the laser used to read and write the disks (hence the “blue” 
in Blu-ray). As the cost of media drops, this technology promises to become a 
good solution for backups.

Portable and removable hard disks

External storage devices that connect through a USB 2.0 or eSATA port are com-
mon. The underlying storage technology is usually some form of hard disk, but 
flash memory devices are common at the low end (the ubiquitous “jump drives”). 
Capacities for conventional hard drives range from less than 250GB to over 2TB. 
Solid state drives (SSDs) are based on flash memory and are currently available in 
sizes up to 160GB. The limit on USB flash memory devices is about 64GB, but it is 
growing fast. 

The lifetime of flash memory devices is mostly a function of the number of write 
cycles. Midrange drives usually last at least 100,000 cycles.

  



ptg

DLT/S-DLT 301

Ba
ck

up
s

The main limitation of such drives as backup media is that they are normally on-
line and so are vulnerable to power surges, heating overload, and tampering by 
malicious users. For hard drives to be effective as backup media, they must be 
manually unmounted or disconnected from the server. Removable drives make 
this task easier. Specialized “tapeless backup” systems that use disks to emulate the 
off-line nature of tapes are also available.

Magnetic tapes in general

Many kinds of media store data by adjusting the orientation of magnetic particles. 
These media are subject to damage by electrical and magnetic fields. You should 
beware of the following sources of magnetic fields: audio speakers, transformers 
and power supplies, unshielded electric motors, disk fans, CRT monitors, and 
even prolonged exposure to the Earth’s background radiation.

All magnetic tapes eventually become unreadable over a period of years. Most 
tape media will keep for at least three years, but if you plan to store data longer 
than that, you should either use media that are certified for a longer retention 
period or rerecord the data periodically. 

Small tape drives: 8mm and DDS/DAT

Various flavors of 8mm and Digital Data Storage/Digital Audio Tape drives com-
pose the low end of the tape storage market. Exabyte 8mm tape drives were early 
favorites, but the drives tended to become misaligned every 6–12 months, requir-
ing a trip to the repair depot. It was not uncommon for tapes to be stretched in the 
transport mechanism and become unreliable. The 2–7 GB capacity of these tapes 
makes them inefficient for backing up today’s desktop systems, let alone servers.

DDS/DAT drives are helical scan devices that use 4mm cartridges. Although these 
drives are usually referred to as DAT drives, they are really DDS drives; the exact 
distinction is unimportant. The original format held about 2GB, but successive 
generations have significantly improved DDS capacity. The current generation 
(DAT 160) holds up to 80GB of data at a transfer rate of 6.9 MB/s. The tapes 
should last for 100 backups and are reported to have a shelf life of 10 years.

DLT/S-DLT

Digital Linear Tape/Super Digital Linear Tape is a mainstream backup medium. 
These drives are reliable, affordable, and capacious. They evolved from DEC’s 
TK-50 and TK-70 cartridge tape drives. DEC sold the technology to Quantum, 
which popularized the drives by increasing their speed and capacity and by drop-
ping their price. In 2002, Quantum acquired Super DLT, a technology by Bench-
mark Storage Innovations that tilts the recording head back and forth to reduce 
crosstalk between adjacent tracks.

Quantum now offers two hardware lines: a performance line and a value line. You 
get what you pay for. The tape capacities vary from DLT-4 at 800GB to DLT-4 in 
the value line at 160GB, with transfer rates of 60 MB/s and 10 MB/s, respectively. 

  



ptg

302 Chapter 10 Backups

Manufacturers boast that the tapes will last 20 to 30 years—that is, if the hardware 
to read them still exists. How many 9-track tape drives are still functioning and 
on-line these days?

The downside of S-DLT is the price of media, which runs $90–100 per 800GB 
tape. A bit pricey for a university; perhaps not for a Wall Street investment firm.

AIT and SAIT

Advanced Intelligent Tape is Sony’s own 8mm product on steroids. In 1996, Sony 
dissolved its relationship with Exabyte and introduced the AIT-1, an 8mm helical 
scan device with twice the capacity of 8mm drives from Exabyte. Today, Sony of-
fers AIT-4, with a capacity of 200GB and a 24 MB/s maximum transfer rate, and 
AIT-5, which doubles the capacity while keeping the same transfer speed.

SAIT is Sony’s half-height offering, which uses larger media and has greater ca-
pacity than AIT. SAIT tapes holds up to 500GB of data and sport a transfer rate of 
30 MB/s. This product is most common in the form of tape library offerings— 
Sony’s are especially popular.

The Advanced Metal Evaporated (AME) tapes used in AIT and SAIT drives have 
a long life cycle. They also contain a built-in EEPROM that gives the media itself 
some smarts. Software support is needed to make any actual use of the EEPROM, 
however. Drive and tape prices are both roughly on par with DLT. 

VXA/VXA-X

The VXA and VXA-X technologies were originally developed by Exabyte and 
were acquired by Tandberg Data in 2006. The VXA drives use what Exabyte de-
scribes as a packet technology for data transfer. The VXA-X products still rely on 
Sony for the AME media; the V series is upgradable as larger-capacity media be-
come available. The VXA and X series claim capacities in the range of 33–160 GB, 
with a transfer rate of 24 MB/s. 

LTO

Linear Tape-Open was developed by IBM, HP, and Quantum as an alternative to 
the proprietary format of DLT. LTO-4, the latest version, has an 800GB capacity at 
a speed of 120 MB/s. LTO media has an estimated storage life of 30 years but is 
susceptible to magnetic exposure. As with most technology, the previous genera-
tion LTO-3 drives are much less expensive and are still adequate for use in many 
environments. The cost of media is about $40 for LTO-4 tapes and $25 for the 
400GB LTO-3 tapes.

Jukeboxes, stackers, and tape libraries

With the low cost of disks these days, most sites have so much disk space that a 
full backup requires many tapes, even at 800GB per tape. One possible solution 
for these sites is a stacker, jukebox, or tape library.

  



ptg

Internet and cloud backup services 303

Ba
ck

up
s

A stacker is a simple tape changer that is used with a standard tape drive. It has a 
hopper that you load with tapes. The stacker unloads full tapes as they are ejected 
from the drive and replaces them with blank tapes from the hopper. Most stackers 
hold about ten tapes.

A jukebox is a hardware device that can automatically change removable media in 
a limited number of drives, much like an old-style music jukebox that changed 
records on a single turntable. Jukeboxes are available for all the media discussed 
here. They are often bundled with special backup software that understands how 
to manipulate the changer. Storage Technology (now part of Oracle) and Sony are 
two large manufacturers of these products.

Tape libraries, also known as autochangers, are a hardware backup solution for 
large data sets—terabytes, usually. They are large-closet-sized mechanisms with 
multiple tape drives (or optical drives) and a robotic arm that retrieves and files 
media on the library’s many shelves. As you can imagine, they are quite expensive 
to purchase and maintain, and they have special power, space, and air condition-
ing requirements.

Most purchasers of tape libraries also purchase an operations contract from the 
manufacturer to optimize and run the device. The libraries have a software com-
ponent, of course, which is what really runs the device. Storage Technology (Ora-
cle), Spectra Logic, and HP are leading manufacturers of tape libraries.

Hard disks

The decreasing cost of hard drives makes disk-to-disk backups an attractive op-
tion to consider. Although we suggest that you not duplicate one disk to another 
within the same physical machine, hard disks can be a good, low-cost solution for 
backups over a network and can dramatically decrease the time required to re-
store large datasets.

One obvious problem is that hard disk storage space is finite and must eventually 
be reused. However, disk-to-disk backups are an excellent way to protect against 
the accidental deletion of files. If you maintain a day-old disk image in a well-
known place that’s shared over NFS or CIFS, users can recover from their own 
mistakes without involving an administrator. 

Remember that on-line storage is usually not sufficient protection against mali-
cious attackers or data center equipment failures. If you are not able to actually 
store your backups off-line, at least shoot for geographic diversity when storing 
them on-line.

Internet and cloud backup services

Service providers have recently begun to offer Internet-hosted storage solutions. 
Rather than provisioning storage in your own data center, you lease storage from 
a cloud provider. Not only does this approach provide on-demand access to 

  



ptg

304 Chapter 10 Backups

almost limitless storage, but it also gives you an easy way to store data in multiple 
geographic locations. 

Internet storage services start at 10¢/GB/month and get more expensive as you 
add features. For example, some providers let you choose how many redundant 
copies of your data will be stored. This pay-per-use pricing allows you to pick the 
reliability that is appropriate for your data and budget.

Internet backups only work if your Internet connection is fast enough to transmit 
copies of your changes every night without bogging down “real” traffic. If your 
organization handles large amounts of data, it is unlikely that you can back it up 
across the Internet. But for smaller organizations, cloud backups can be an ideal 
solution since there is no up-front cost and no hardware to buy. Remember, any 
sensitive data that transits the Internet or is stored in the cloud must be encrypted.

Summary of media types

Whew! That’s a lot of possibilities. Table 10.1 summarizes the characteristics of 
the media discussed in the previous sections.

What to buy

When you buy a backup system, you pretty much get what you see in Table 10.1. 
All the media work reasonably well, and among the technologies that are close in 
price, there generally isn’t a compelling reason to prefer one over another. Buy a 

Table 10.1 Backup media compared

Medium Capacitya Speeda Drive Media Cost/GBa Reuse? Random?b

CD-R 700MB 7MB/s $15 15¢ 21¢ No Yes
CD-RW 700MB 4MB/s $20 30¢ 42¢ Yes Yes
DVD±R 4.7GB 30MB/s $30 30¢ 6¢ No Yes
DVD+R DLc 8.5GB 30MB/s $30 $1 12¢ No Yes
DVD±RW 4.7GB 10MB/s $30 40¢ 9¢ Yes Yes
Blu-ray 25GB 30MB/s $100 $3 12¢ No Yes
DDS-4 (4mm) 20GB 30MB/s $100 $5 25¢ Yes No
DLT/S-DLT 160GB 16MB/s $500 $10 6¢ Yes No
DLT-S4 800GB 60MB/s $2,500 $100 13¢ Yes No
AIT-4 (8mm) 200GB 24MB/s $1,200 $40 20¢ Yes No
AIT-5 400GB 24MB/s $2,500 $50 13¢ Yes No
VXA-320 160GB 12MB/s $800 $60 38¢ Yes No
LTO-3 400GB 80MB/s $200 $25 6¢ Yes No
LTO-4 800GB 120MB/s $1,600 $40 5¢ Yes No

a. Uncompressed capacity and speed
b. Allows random access to any part of the media
c. Dual-layer

  



ptg

Saving space and time with incremental backups 305

Ba
ck

up
s

system that meets your specifications and your budget. If you are deploying new 
hardware, make sure it is supported by your OS and backup software.

Although cost and media capacity are both important considerations, it’s impor-
tant to consider throughput as well. Fast media are more pleasant to deal with, but 
be careful not to purchase a tape drive that overpowers the server it is attached to. 
If the server can’t shovel data to the drive at an acceptable pace, the drive will be 
forced to stop writing while it waits on the server. You sure don’t want a tape drive 
that is too slow, but you also don’t want one that is too fast.

Similarly, choose backup media that is appropriately sized for your data. It doesn’t 
make any sense to splurge on DLT-S4 tapes if you have only a few hundred GB of 
data to protect. You will just end up taking half-full tapes off-site.

Optical media, DDS, and LTO drives are excellent solutions for small workgroups 
and for individual machines with a lot of storage. The startup costs are relatively 
modest, the media are widely available, and several manufacturers are using each 
standard. All of these systems are fast enough to back up beaucoup data in a finite 
amount of time.

DLT, AIT, and LTO are all roughly comparable for larger environments. There 
isn’t a clear winner among the three, and even if there were, the situation would 
no doubt change within a few months as new versions of the formats were de-
ployed. All of these formats are well established and would be easy to integrate 
into your environment, be it a university or corporation.

In the remainder of this chapter, we use the generic term “tape” to refer to the 
media chosen for backups. Examples of backup commands are phrased in terms 
of tape devices.

10.3 SAVING SPACE AND TIME WITH INCREMENTAL BACKUPS

Almost all backup tools support at least two different kinds of backups: full back-
ups and incremental backups. A full backup includes all of a filesystem’s contents. 
An incremental backup includes only files that have changed since the previous 
backup. Incremental backups are useful for minimizing the amount of network 
bandwidth and tape storage consumed by each day’s backups. Because most files 
never change, even the simplest incremental schedule eliminates many files from 
the daily dumps.

Many backup tools support additional kinds of dumps beyond the basic full and 
incremental procedures. In general, these are all more-sophisticated varieties of 
incremental dump. The only way to back up less data is to take advantage of data 
that’s already been stored on a backup tape somewhere.

Some backup software identifies identical copies of data even if they are found in 
different files on different machines. The software then ensures that only one copy 

  



ptg

306 Chapter 10 Backups

is written to tape. This feature is usually known as deduplication, and it can be 
very helpful for limiting the size of backups.

The schedule that is right for you depends on

• The activity of your filesystems
• The capacity of your dump device
• The amount of redundancy you want
• The number of tapes you want to buy

When you do a backup with dump, you assign it a backup level, which is an inte-
ger. A level N dump backs up all files that have changed since the last dump of 
level less than N. A level 0 backup places the entire filesystem on the tape. With an 
incremental backup system, you may have to restore files from several sets of 
backup tapes to reset a filesystem to the state it was in during the last backup.5 

Historically, dump, supported levels 0 through 9, but newer versions support 
thousands of dump levels. As you add additional levels to your dump schedule, 
you divide the relatively few active files into smaller and smaller segments. A 
complex dump schedule confers the following benefits: 

• You can back up data more often, limiting your potential losses.
• You can use fewer daily tapes (or fit everything on one tape).
• You can keep multiple copies of each file to protect against media errors.
• You can reduce the network bandwidth and time needed for backups.

These benefits must be weighed against the added complexity of maintaining the 
system and of restoring files. Given these constraints, you can design a schedule at 
the appropriate level of sophistication. Below, we describe a couple of possible 
sequences and the motivation behind them. One of them might be right for your 
site—or, your needs might dictate a completely different schedule.

A simple schedule

If your total amount of disk space is smaller than the capacity of your tape device, 
you can use a trivial dump schedule. Do level 0 dumps of every filesystem each 
day. Reuse a group of tapes, but every N days (where N is determined by your 
site’s needs), keep the tape forever. This scheme costs you 

(365/N) * (price of tape) 

per year. Don’t reuse the exact same tape for every night’s dump. It’s better to ro-
tate among a set of tapes so that even if one night’s dump is blown, you can still 
fall back to the previous night.

This schedule guarantees massive redundancy and makes data recovery easy. It’s a 
good solution for a site with lots of money but limited operator time (or skill). 

5. Actually, most versions of dump do not keep track of files that have been deleted. If you restore from 
incremental backups, deleted files are recreated.

  



ptg

Setting up a backup regime with dump 307

Ba
ck

up
s

From a safety and convenience perspective, this schedule is the ideal. Don’t stray 
from it without a specific reason (e.g., to conserve tapes or labor).

A moderate schedule

A more reasonable schedule for most sites is to assign a tape to each day of the 
week, each week of the month (you’ll need 5), and each month of the year. Every 
day, do a level 9 dump to the daily tape. Every week, do a level 5 dump to the 
weekly tape. And every month, do a level 3 dump to the monthly tape. Do a level 
0 dump whenever the incrementals get too big to fit on one tape, which is most 
likely to happen on a monthly tape. Do a level 0 dump at least once a year. 

The choice of levels 3, 5, and 9 is arbitrary. You could use levels 1, 2, and 3 with the 
same effect. However, the gaps between dump levels give you some breathing 
room if you later decide you want to add another level of dumps. Other backup 
software uses the terms full, differential, and incremental rather than numeric 
dump levels.

This schedule requires 24 tapes plus however many tapes are needed for the level 
0 dumps. Although it does not require too many tapes, it also does not afford 
much redundancy.

10.4 SETTING UP A BACKUP REGIME WITH DUMP

The dump and restore commands are the most common way to create and re-
store from backups. These programs have been around for a very long time, and 
their behavior is well known. At most sites, dump and restore are the underlying 
commands used by automated backup software. 

You may have to explicitly install dump and restore on your Linux systems, de-
pending on the options you selected during the original installation. A package is 
available for easy installation on all our example distributions. The current Red 
Hat release offers a system administration package at installation time that in-
cludes dump.

On Solaris systems, dump and restore are called ufsdump and ufsrestore. A 
dump command exists, but it’s not backup-related. As the names suggest, the ufs*
commands work only with the older UFS filesystem; they do not work on ZFS 
filesystems. See page 316 for a discussion of ZFS backup options.

ufsdump accepts the same flags and arguments as other systems’ traditional 
dump, but it parses arguments differently. ufsdump expects all the flags to be 
contained in the first argument and the flags’ arguments to follow in order. For 
example, where most commands would want -a 5 -b -c 10, on Solaris ufsdump 
would want abc 5 10. 

ufsdump is only supposed to be used on unmounted filesystems. If you need to 
back up a live filesystem, be sure to run Solaris’s fssnap command and then run 
ufsdump against the snapshot.

  



ptg

308 Chapter 10 Backups

On AIX, the dump command is called backup, although restore is still called 
restore. A dump command exists, but it’s not backup-related.

For simplicity, we refer to the backup commands as dump and restore and show 
their traditional command-line flags. Even on systems that call the commands 
something else, they function similarly. Given the importance of reliable dumps, 
however, you must check these flags against the man pages on the machine you 
are dumping; most vendors have tampered with the meaning of at least one flag.

Dumping filesystems

dump builds a list of files that have been modified since a previous dump, then 
packs those files into a single large file to archive to an external device. dump has 
several advantages over most of the other utilities described in this chapter.

• Backups can span multiple tapes.
• Files of any type (even devices) can be backed up and restored.
• Permissions, ownerships, and modification times are preserved.
• Files with holes are handled correctly.6

• Backups can be performed incrementally (with only recently modified 
files being written out to tape).

The GNU version of tar used on Linux provides all these features as well. How-
ever, dump’s handling of incremental backups is a bit more sophisticated than 
tar’s. You may find the extra horsepower useful if your needs are complex.

Unfortunately, the version of tar shipped with most major UNIX distributions 
lacks many of GNU tar’s features. If you must support backups for both Linux and 
UNIX variants, dump is your best choice. It is the only command that handles 
these issues (fairly) consistently across platforms, so you can be an expert in one 
command rather than being familiar with two. If you are lucky enough to be in a 
completely homogeneous Linux environment, pick your favorite. dump is less 
filling, but tar tastes great!

On Linux systems, dump natively supports filesystems in the ext family. You may 
have to download and install other versions of dump to support other filesystems.

The dump command understands the layout of raw filesystems, and it reads a 
filesystem’s inode table directly to decide which files must be backed up. This 
knowledge of the filesystem makes dump very efficient, but it also imposes a cou-
ple of limitations.7 

See Chapter 18 for 
more information 
about NFS.

The first limitation is that every filesystem must be dumped individually. The 
other limitation is that only filesystems on the local machine can be dumped; you 

6. Holes are blocks that have never contained data. If you open a file, write one byte, seek 1MB into the 
file, then write another byte, the resulting “sparse” file takes up only two disk blocks even though its 
logical size is much bigger. Files created by Berkeley DB or ndbm contain many holes.

7. dump requires access to raw disk partitions. Anyone allowed to do dumps can read all the files on the 
system with a little work.

  



ptg

Dumping filesystems 309

Ba
ck

up
s

cannot dump an NFS filesystem you have mounted from a remote machine. How-
ever, you can dump a local filesystem to a remote tape drive.8

dump does not care about the length of filenames. Hierarchies can be arbitrarily 
deep, and long names are handled correctly.

The first argument to dump is the incremental dump level. dump uses the 
/etc/dumpdates file to determine how far back an incremental dump must go. 

The -u flag causes dump to automatically update /etc/dumpdates when the dump 
completes. The date, dump level, and filesystem name are recorded. If you never 
use the -u flag, all dumps become level 0s because no record of your having previ-
ously dumped the filesystem is ever created. If you change a filesystem’s name, you 
can edit the /etc/dumpdates file by hand.

See page 418 for infor-
mation about device 
numbers.

dump sends its output to some default device, usually the primary tape drive. To 
specify a different device, use the -f flag. If you are placing multiple dumps on a 
single tape, make sure you specify a non-rewinding tape device (a device file that 
does not cause the tape to be rewound when it is closed—most tape drives have 
both a standard and a non-rewinding device entry).9 Read the man page for the 
tape device to determine the exact name of the appropriate device file. Table 10.2 
gives some hints for our four example systems.

If you choose the rewinding device by accident, you end up saving only the last 
filesystem dumped. Since dump does not have any idea where the tape is posi-
tioned, this mistake does not cause errors. The situation only becomes apparent 
when you try to restore files.

To dump to a remote system, you specify the identity of the remote tape drive as 
hostname:device; for example,

$ sudo dump -0u -f anchor:/dev/nst0 /spare 

Permission to access remote tape drives should be controlled through an SSH tun-
nel. See page 926 for more information.

8. Legacy systems may use a separate rdump command to perform dumps to a remote tape drive. Mod-
ern dumps accept a -f hostname:tapedevice argument.

9. All the entries for a tape unit use the same major device number. The minor device number tells the 
tape device driver about special behaviors (rewinding, byte swapping, etc.).

Table 10.2 Device files for the default SCSI tape drive

System Rewinding Non-rewinding

Linux /dev/st0 /dev/nst0

Solaris /dev/rmt/0 /dev/rmt/0n

HP-UX /dev/rmt/0m /dev/rmt/0mn

AIX /dev/rmt0 /dev/rmt0.1

  



ptg

310 Chapter 10 Backups

In the past, you had to tell dump exactly how long your tapes were so that it could 
stop writing before it ran off the end of a tape. Modern tape drives can tell when 
they have reached the end of a tape and report that fact back to dump, which then 
rewinds and ejects the current tape and requests a new one. Since the variability of 
hardware compression makes the “virtual length” of each tape somewhat indeter-
minate, it’s always best to rely on the end-of-tape (EOT) indication.

All versions of dump understand the -d and -s options, which specify the tape 
density in bytes per inch and the tape length in feet, respectively. A few more-
sensible versions let you specify sizes in kilobytes with the -B option. For versions 
that don’t, you must do a little bit of arithmetic to express the size you want.

For example, let’s suppose we want to do a level 5 dump of /work to a DDS-4 
(DAT) drive whose native capacity is 20GB (with a typical compressed capacity of 
about 40GB). DAT drives can report EOT, so we need to lie to dump and set the 
tape size to a value that’s much bigger than 40GB, say, 50GB. That works out to 
about 60,000 feet at 6,250 bpi:

# dump -5u -s 60000 -d 6250 -f /dev/nst0 /work 
DUMP: Date of this level 5 dump: Wed Nov 18 14:28:05 2009 
DUMP: Date of last level 0 dump: Sun Nov 15 21:11:05 2009 
DUMP: Dumping /dev/hda2 (/work) to /dev/nst0 
DUMP: mapping (Pass I) [regular files]
DUMP: mapping (Pass II) [directories]
DUMP: estimated 18750003 tape blocks on .23 tape(s) 
.…

The flags -5u are followed by the parameters -s (size: 60,000 feet), -d (density: 
6,250 bpi), and -f (tape device: /dev/nst0). Finally, the filesystem name (/work) is 
given; this argument is required. Most versions of dump allow you to specify the 
filesystem by its mount point, as in the example above. Some require you to spec-
ify the raw device file.

The last line of output shown above verifies that dump will not attempt to switch 
tapes on its own initiative, since it believes that only about a quarter of a tape is 
needed for this dump. It is fine if the number of estimated tapes is more than 1, as 
long as the specified tape size is larger than the actual tape size. dump will reach 
the actual EOT before it reaches its own computed limit.

Restoring from dumps with restore

The program that extracts data from tapes written with dump is called restore. 
We first discuss restoring individual files (or a small set of files), then explain how 
to restore entire filesystems.

Normally, the restore command is dynamically linked, so you need the system’s 
shared libraries available to do anything useful. Building a statically linked version 
of restore takes some extra effort but makes it easier to recover from a disaster 
because restore is then completely self-contained.

  



ptg

Restoring from dumps with restore 311

Ba
ck

up
s

When you are notified of a lost file, first determine which tapes contain versions 
of the file. Users often want the most recent version, but that is not always the 
case. For example, a user who loses a file by inadvertently copying another file on 
top of it would want the version that existed before the incident occurred. It’s 
helpful if you can browbeat users into telling you not only what files are missing 
but also when they were lost and when they were last modified. We find it helpful 
to structure users’ responses with a request form.

If you do not keep on-line catalogs, you must mount tapes and repeatedly attempt 
to restore the missing files until you find the correct tape. If the user remembers 
when the files were last changed, you may be able to make an educated guess 
about which tapes the files might be on.

After determining which tapes you want to extract from, create and cd to a tem-
porary directory such as /var/restore where a large directory hierarchy can be 
created; most versions of restore must create all the directories leading to a partic-
ular file before that file can be restored. Do not use /tmp—your work could be 
wiped out if the machine crashes and reboots before the restored data has been 
moved to its original location. 

The restore command has many options. Most useful are -i for interactive re-
stores of individual files and directories and -r for a complete restore of an entire 
filesystem. You might also need -x, which requests a noninteractive restore of 
specified files—be careful not to overwrite existing files.

restore -i reads the table of contents from the tape and then lets you navigate 
through it as you would a normal directory tree, using commands called ls, cd, 
and pwd. You mark the files that you want to restore with the add command. 
When you finish selecting, type extract to pull the files off the tape.

See page 317 for a 
description of mt. 

If you placed multiple dumps on a single tape, you must use the mt command to 
position the tape at the correct dump file before running restore. Remember to 
use the non-rewinding device!

For example, to restore the file /users/janet/iamlost from a remote tape drive, 
you might issue the following commands. Let’s assume that you have found the 
right tape, mounted it on tapehost:/dev/nst0, and determined that the filesystem 
containing janet’s home directory is the fourth one on the tape.

$ sudo mkdir /var/restore 
$ cd /var/restore 
$ sudo ssh tapehost mt -f /dev/nst0 fsf 3 
$ sudo restore -i -f tapehost:/dev/nst0 
restore> ls 
.: 
janet/  garth/  lost+found/ lynda/ 
restore> cd janet 
restore> ls 
afile bfile cfile iamlost

  



ptg

312 Chapter 10 Backups

restore> add iamlost 
restore> ls10

afile bfile cfile iamlost* 
restore> extract 
You have not read any volumes yet.
Unless you know which volume your files are on you should 
start with the last volume and work towards the first. 
Specify next volume #: 1 
set owner/mode for '.'? [yn] n

Volumes (tapes) are enumerated starting at 1, not 0, so for a dump that fits on a 
single tape, you specify 1. When restore asks if you want to set the owner and 
mode, it’s asking whether it should set the current directory to match the root of 
the tape. Unless you are restoring an entire filesystem, you probably do not want 
to do this.

Once the restore has completed, give the file to janet:
$ cd /var/restore 
$ ls janet 
iamlost 
$ ls ~janet 
afile bfile cfile 
$ sudo cp -p janet/iamlost ~janet/iamlost.restored 
$ sudo chown janet ~janet/iamlost.restored 
$ sudo chgrp staff ~janet/iamlost.restored 
$ cd /; sudo rm -rf /var/restore 
$ mail janet 
Your file iamlost has been restored as requested and has 
been placed in /users/janet/iamlost.restored.

Your name, Humble System Administrator

Some administrators prefer to restore files into a special directory and allow users 
to copy their files out by hand. In that scheme, the administrator must protect the 
privacy of the restored files by verifying their ownership and permissions. If you 
choose to use such a system, remember to clean out the directory every so often.

If you originally wrote a backup to a remote tape drive and are unable to restore 
files from it locally, try hosting the tape on the same remote host that was used for 
the original backup.

restore -i is usually the easiest way to restore a few files or directories from a 
dump. However, it does not work if the tape device cannot be moved backwards a 
record at a time (a problem with some 8mm drives). If restore -i fails, try restore 
-x before jumping out the window. restore -x requires you to specify the complete 
path of the file you want to restore (relative to the root of the dump) on the com-
mand line. The following sequence of commands repeats the previous example, 
but with -x.

10. The star next to iamlost indicates that it has been marked for extraction.

  



ptg

Restoring entire filesystems 313

Ba
ck

up
s

$ sudo mkdir /var/restore 
$ cd /var/restore 
$ sudo ssh tapehost mt -f /dev/nst0 fsf 3 
$ sudo restore -x -f tapehost:/dev/nst0 ./janet/iamlost

Restoring entire filesystems

With luck, you will never have to restore an entire filesystem after a system failure. 
However, the situation does occasionally arise. Before attempting to restore the 
filesystem, be absolutely sure that whatever problem caused the filesystem to be 
destroyed in the first place has been taken care of. It’s pointless to spend hours 
spinning tapes only to lose the filesystem once again.

Before you begin a full restore, create and mount the target filesystem. See Chap-
ter 8, Storage, for more information about how to prepare the filesystem. To start 
the restore, cd to the mount point of the new filesystem, put the first tape of the 
most recent level 0 dump in the tape drive, and type restore -r.

restore prompts for each tape in the dump. After the level 0 dump has been re-
stored, mount and restore the incremental dumps. Restore incremental dumps in 
the order in which they were created. Because of redundancy among dumps, it 
may not be necessary to restore every incremental. Here’s the algorithm for deter-
mining which dumps to restore:

Step 1: Restore the most recent level 0 dump.

Step 2: Restore the lowest-level dump made after the dump you just 
restored. If multiple dumps were made at that level, restore the 
most recent one.

Step 3: If that was the last dump that was ever made, you are done.

Step 4: Otherwise, go back to step 2.

Here are some examples of dump sequences. You would need to restore only the 
levels shown in boldface.

0 0 0 0 0 0 
0 5 5 5 5 
0 3 2 5 4 5 
0 9 9 5 9 9 3 9 9 5 9 9 
0 3 5 9 3 5 9

Let’s take a look at a complete command sequence. If the most recent dump was 
the first monthly after the annual level 0 in the “moderate” schedule on page 307, 
the commands to restore /home, residing on the logical volume /dev/vg01/lvol5, 
would look like this:

$ sudo mkfs /dev/vg01/lvol5 
$ sudo mount /dev/vg01/lvol5 /home 
$ cd /home

  



ptg

314 Chapter 10 Backups

/* Mount first tape of level 0 dump of /home. */
$ sudo restore -r 
/* Mount the tapes requested by restore. */ 
/* Mount first tape of level 3 monthly dump. */
$ sudo restore -r

If you had multiple filesystems on one dump tape, you’d use the mt command to 
skip forward to the correct filesystem before running each restore. See page 317 
for a description of mt.

This sequence would restore the filesystem to the state it was in when the level 3 
dump was done, except that all deleted files would be resurrected. This problem 
can be especially nasty when you are restoring an active filesystem or are restoring 
to a disk that is nearly full. It is possible for a restore to fail because the filesystem 
has been filled up with ghost files.11

Restoring to new hardware

When an entire system has failed, you must perform what is known as “bare metal 
recovery.” Before you can follow the filesystem restoration steps above, you will at 
least need to

• Provision replacement hardware
• Install a fresh copy of the operating system
• Install backup software (such as dump and restore)
• Configure the local tape drive or configure access to a tape server

After these steps, you can follow the restoration process described above.

10.5 DUMPING AND RESTORING FOR UPGRADES

We recommend that when you perform a major OS upgrade, you back up all file-
systems with a level 0 dump and, possibly, restore them. The restore is needed 
only if the new OS uses a different filesystem format or if you restructure your 
disks. However, you must do backups as insurance against any problems that 
might occur during the upgrade. A complete set of backups also gives you the 
option to reinstall the old OS if the new version does not prove satisfactory. Fortu-
nately, with the progressive upgrade systems used by most distributions these 
days, you are unlikely to need these tapes.

Be sure to back up all system and user partitions. Depending on your upgrade 
path, you may choose to restore only user data and system-specific files that are in 
the root filesystem or in /usr, such as /etc/passwd, /etc/shadow, or /usr/local. 
UNIX’s directory organization mixes local files with vendor-distributed files, 
making it quite difficult to pick out your local customizations.

11. Some versions of dump and restore are rumored to keep track of deletions. We believe Solaris and 
Linux to be among these.

  



ptg

tar: package files 315

Ba
ck

up
s

You should do a complete set of level 0 dumps immediately after an upgrade, too. 
Most vendors’ upgrade procedures set the modification dates of system files to the 
time when they were mastered rather than to the current time. Ergo, incremental 
dumps made relative to the pre-upgrade level 0 are not sufficient to restore your 
system to its post-upgrade state in the event of a crash.

10.6 USING OTHER ARCHIVING PROGRAMS

dump is not the only program you can use to archive files to tapes; however, it is 
usually the most efficient way to back up an entire system. tar and dd can also 
move files from one medium to another. 

tar: package files

tar reads multiple files or directories and packages them into one file, often a tape 
device. tar is a useful way to back up any files whose near-term recovery you an-
ticipate. For instance, if you have a bunch of old data files and the system is short 
of disk space, you can use tar to put the files on a tape and then remove them 
from the disk. 

tar is also useful for moving directory trees from place to place, especially if you 
are copying files as root. tar preserves ownership and time information, but only 
if you ask it to. For example,

sudo tar -cf - fromdir | ( cd todir ; sudo tar -xpf - )

creates a copy of the directory tree fromdir in todir. Avoid using .. in the todir
argument since symbolic links and automounters can make it mean something 
different from what you expect. We’ve been bitten several times. 

Most versions of tar do not follow symbolic links by default, but they can be told 
to do so. Consult your tar manual for the correct flag; it varies from system to 
system. The biggest drawback of tar is that non-GNU versions do not allow mul-
tiple tape volumes. If the data you want to archive will not fit on one tape, you may 
need to upgrade your version of tar.

Another problem with some non-GNU versions of tar is that pathnames are lim-
ited by default to 100 characters. This restriction prevents tar from archiving deep 
hierarchies. If you’re creating tar archives on your Linux systems and exchanging 
them with others, remember that people with the standard tar may not be able to 
read the tapes or files you create.12

tar’s -b option lets you specify a “blocking factor” to use when writing a tape. The 
blocking factor is specified in 512-byte blocks; it determines how much data tar
buffers internally before performing a write operation. Some DAT devices do not 

12. The GNU implementation includes a filename mapping table as one of the files in the archive. Users of 
the standard tar can extract the contents of the archive and fix it up by hand, but the process is tedious.

  



ptg

316 Chapter 10 Backups

work correctly unless the blocking factor is set to a special value, but other drives 
do not require this setting.

On some systems, certain blocking factors may yield better performance than 
others. The optimal blocking factor varies widely, depending on the computer and 
tape drive hardware. In many cases, you will not notice any difference in speed. 
When in doubt, try a blocking factor of 20.

tar expands holes in files and is intolerant of tape errors.13

dd: twiddle bits

dd is a file copying and conversion program. Unless you tell it to do some sort of 
conversion, dd just copies from its input file to its output file. If a user brings you 
a tape that was written on a non-UNIX system, dd may be the only way to read it.

One historical use for dd was to create a copy of an entire filesystem. However, a 
better option these days is to mkfs the destination filesystem and then run dump
piped to restore. dd can sometimes clobber partitioning information if used in-
correctly. It can only copy filesystems between partitions of exactly the same size.

You can also use dd to make a copy of a magnetic tape. With two tape drives, say, 
/dev/st0 and /dev/st1, you’d use the command

$ dd if=/dev/st0 of=/dev/st1 cbs=16b 

With one drive (/dev/st0), you’d use the following sequence:
$ dd if=/dev/st0 of=tfile cbs=16b
/* Change tapes. */ 
$ dd if=tfile of=/dev/st0 cbs=16b 
$ rm tfile

Of course, if you have only one tape drive, you must have enough disk space to 
store an image of the entire tape.

dd is also a popular tool among forensic specialists. Because it creates a bit-for-bit, 
unadulterated copy of a volume, dd can be used to duplicate electronic evidence 
for use in court.

ZFS backups

See page 264 for a 
more general intro-
duction to ZFS.

Solaris’s ZFS incorporates the features of a logical volume manager and RAID 
controller as well as a filesystem. It is in many ways a system administrator’s 
dream, but backup is something of a mixed bag.

ZFS makes it easy and efficient to create filesystem snapshots. Past versions of a 
filesystem are available through the .zfs directory in the filesystem’s root, so users 
can easily restore their own files from past snapshots without administrator inter-
vention. From the perspective of on-line version control, ZFS gets a gold star.

13. GNU’s tar handles holes intelligently if you invoke the -S option when creating an archive.

  



ptg

Using multiple files on a single tape 317

Ba
ck

up
s

However, snapshots stored on the same media as the active filesystem shouldn’t be 
your only backup strategy. ZFS knows this, too: it has a very nice zfs send facility 
that summarizes a filesystem snapshot to a linear stream. You can save the stream 
to a file or pipe it to a remote system. You can write the stream to a tape. You can 
even send the stream to a remote zfs receive process to replicate the filesystem 
elsewhere (optionally, with all its history and snapshots). If you like, zfs send can 
serialize only the incremental changes between two snapshots. Two gold stars: one 
for the feature, and one for the fact that the full documentation is just a page or 
two (see the man page for zfs).

The fly in the ointment is that zfs receive deals only with complete filesystems. To 
restore a few files from a set of serialized zfs send images, you must restore the 
entire filesystem and then pick out the files you want. Let’s hope you’ve got plenty 
of time and free disk space and that the tape drive isn’t needed for other backups.

In fairness, several arguments help excuse this state of affairs. ZFS filesystems are 
lightweight, so you’re encouraged to create many of them. Restoring all of /home
might be traumatic, but restoring all of /home/ned is likely to be trivial.14 More 
importantly, ZFS’s on-line snapshot system eliminates 95% of the cases in which 
you would normally need to refer to a backup tape. 

On-line snapshots don’t replace backup tapes or reduce the frequency with which 
those tapes must be written. However, snapshots do reduce the frequency at 
which tapes must be read.

10.7 USING MULTIPLE FILES ON A SINGLE TAPE

A magnetic tape contains one long string of data. However, it’s often useful to 
store more than one “thing” on a tape, so tape drives and their drivers conspire to 
afford a bit more structure. When dump or some other command writes a stream 
of bytes out to a tape device and then closes the device file, the driver writes an 
end-of-file marker on the tape. This marker separates the stream from other 
streams that are written subsequently. When the stream is read back in, reading 
stops automatically at the EOF.

You can use the mt command to position a tape at a particular stream or “fileset,” 
as mt calls them. mt is especially useful if you put multiple files (for example, 
multiple dumps) on a single tape. It also has some of the most interesting error 
messages of any UNIX utility. The basic format of the command is

mt [-f tapename] command [count]

There are numerous choices for command. They vary from platform to platform, 
so we discuss only the ones that are essential for doing backups and restores.

14. On the other hand, if you zfs send -R the /home filesystem and its descendants, there’s currently no 
way to restore only /home/ned; you must restore /home. As an administrator, you probably don’t want 
to have to schedule every home directory for independent backups.

  



ptg

318 Chapter 10 Backups

rew rewinds the tape to the beginning.
offl puts the tape off-line. On most tape drives, this command 

causes the tape to rewind and pop out of the drive. Most 
scripts use this command to eject the tape when they are 
done, clearly indicating that everything finished correctly.

status prints information about the current state of the tape drive 
(whether a tape is loaded, etc.).

fsf [count] fast-forwards the tape. If no count is specified, fsf skips for-
ward one file. With a numeric argument, it skips the speci-
fied number of files. Use this command to skip forward to 
the correct filesystem on a tape with multiple dumps.

bsf [count] should backspace count files. The exact behavior of this 
directive depends on the tape drive hardware and its associ-
ated driver. In some situations, the current file is counted. In 
others, it is not. On some equipment, bsf does nothing, 
silently. If you go too far forward on a tape, your best bet is 
to run mt rew on it and start again from the beginning. 

Consult the mt man page for a list of all the supported commands.

If you’re fortunate enough to have a robotic tape library, you may be able to con-
trol its tape changer by installing the mtx package, an enhanced version of mt. For 
example, we use it for unattended tape swapping with our groovy Dell PowerVault 
LTO-3 tape cartridge system. Tape changers with barcode readers will even dis-
play the scanned tape labels through the mtx interface. Look ma, no hands!

10.8 BACULA

Bacula is an enterprise-level client/server backup solution that manages backup, 
recovery, and verification of files over a network. The Bacula server components 
run on Linux, Solaris, and FreeBSD. The Bacula client backs up data from many 
platforms, including all our example operating systems and Microsoft Windows.

In previous editions of this book, Amanda was our favorite noncommercial 
backup tool. If you need Amanda information, see a previous edition of this book 
or amanda.org.

The feature list below explains why Bacula is our new favorite.

• It has a modular design.
• It backs up UNIX, Linux, Windows, and Mac OS systems.
• It supports MySQL, PostgreSQL, or SQLite for its back-end database.
• It supports an easy-to-use, menu-driven command-line console.
• It’s available under an open source license.
• Its backups can span multiple tape volumes.
• Its servers can run on multiple platforms.

  



ptg

The Bacula model 319

Ba
ck

up
s

• It creates SHA1 or MD5 signature files for each backed-up file.
• It allows encryption of both network traffic and data stored on tape.
• It can back up files larger than 2GiB.
• It supports tape libraries and autochangers.
• It can execute scripts or commands before and after backup jobs.
• It centralizes backup management for an entire network.

The Bacula model

To deploy Bacula, you should understand its major components. Exhibit A illus-
trates Bacula’s general architecture.

Exhibit A Bacula components and their relationships

The Bacula director is the daemon that coordinates backup, restore, and verifica-
tion operations. You can submit backup or restore jobs to the director daemon by 
using the Bacula console. You can also ask the director daemon to query the Bac-
ula storage daemon or the file daemons located on client computers.

You communicate with the director daemon through the Bacula console, which 
can be run as a GNOME or MS Windows GUI or as a command-line tool. The 
console can run anywhere; it doesn’t have to be located on the same computer as 
the director daemon. 

A storage daemon is the Bacula component that reads and writes tapes or other 
backup media. This service must run on the machine that is connected to the tape 
drive or storage device used for backups, but it does not have to be installed on the 
same server as the director (although it can be).

A Bacula file daemon runs on each system that is to be backed up. File daemon 
implementations for each supported operating system send the appropriate file 
data and attributes to the storage daemon as backup jobs are executed.

Console

Director 
daemon 

Client file 
daemon

Storage daemon

Catalog

  



ptg

320 Chapter 10 Backups

The final Bacula component is the catalog, a relational database in which Bacula 
stores information about every file and volume that is backed up. The catalog 
makes Bacula fast and efficient during a restore because the entire backup history 
is available on-line; Bacula knows what storage volumes are needed to restore a 
particular fileset before it reads a single tape. Bacula currently supports three dif-
ferent databases: MySQL, PostgreSQL, and SQLite. The catalog database need not 
reside on the same server as the director.

An additional, optional component is the Bacula Rescue CD-ROM. This compo-
nent is a separately downloadable package that creates individualized, bootable 
rescue CDs for Linux systems to use for “bare metal” recovery. The CDs contain a 
statically linked copy of the system’s file daemon as well as customized shell 
scripts that incorporate configuration information about the system’s disks, ker-
nel, and network interfaces. If a Linux system has a catastrophic failure, you can 
use its rescue CD to boot the fresh system, partition the disk, and connect to the 
Bacula director to perform a full system restore over the network.

Setting up Bacula

Because of Bacula’s complexity, advanced feature set, and modular design, there 
are many ways to set up a site-wide backup scheme. In this section we walk 
through a basic Bacula configuration.

In general, six steps get Bacula up and running:

• Install a supported third-party database and the Bacula daemons.
• Configure the Bacula daemons.
• Install and configure the client file daemons.
• Start the Bacula daemons.
• Add media to media pools with the Bacula console.
• Perform a test backup and restore.

A minimal setup consists of a single backup server machine and one or more 
clients. The clients run only a file daemon. The remaining four Bacula compo-
nents (director daemon, storage daemon, catalog, and console) all run on the 
server. In larger environments it’s advisable to distribute the server-side Bacula 
components among several machines, but the minimal setup works great for 
backing up at least a few dozen systems. 

Installing the database and Bacula daemons

It’s important to run the same (major) version of Bacula on every system. In the 
past, some major releases have been incompatible with one another. 

Before you can install Bacula, you must first install the back-end database for its 
catalog. For sites backing up just a few systems, SQLite provides the easiest instal-
lation. If you are backing up more systems, it’s advisable to use a more scalable 
database. Our experience with MySQL in this role has been positive, and we as-
sume MySQL in the following examples.

  



ptg

Configuring the Bacula daemons 321

Ba
ck

up
s

Stability and reliability are a must when you are dealing with a backup platform, 
so once you have installed the database, we recommend that you download and 
install the latest stable source code from the Bacula web site. Step-by-step installa-
tion documentation is included with the source code in the docs directory. The 
documentation is also on-line at bacula.org, where it is available in both HTML 
and PDF format. Helpful tutorials and developer guides can also be found there.

After unpacking the source code, run ./configure --with-mysql followed by make
to compile the binaries, and, finally, run make install to complete the installation. 

Once Bacula has been installed, the next step is to create the actual MySQL data-
base and the data tables inside it. Bacula includes three shell scripts that prepare 
MySQL to store the catalog. The grant_mysql_privileges script sets up the ap-
propriate MySQL permissions for the Bacula user. The create_mysql_database
script creates the Bacula database, and, finally, the make_mysql_tables script 
populates the database with the required tables. Analogous scripts are included 
for PostgreSQL and SQLite. Bacula’s prebuilt database creation scripts can be 
found in the src/cats directory of the Bacula source code distribution.

Bacula saves a table entry for every file backed up from every client, so your data-
base server should have plenty of memory and disk space. Database tables for a 
medium-sized network can easily grow to millions of entries. For MySQL, you 
should probably dedicate at least the resources defined in the my-large.cnf file 
included in the distribution. If you eventually find that your catalog database has 
grown to become unmanageable, you can always set up a second instance of 
MySQL and use separate catalogs for different groups of clients.

Configuring the Bacula daemons

After setting up the database that will store the catalog, you must configure the 
other four Bacula components. By default, all configuration files are located in the 
/etc/bacula directory. Bacula has a separate configuration file for each compo-
nent. Table 10.3 lists the filenames and the machines on which each configuration 
file is needed.

It might seem silly that you have to configure each Bacula component indepen-
dently when you have a single server, but this modular design allows Bacula to 
scale incredibly well. Tape backup server at capacity? Add a second server with its 

Table 10.3 Bacula configuration filenames (in /etc/bacula)

Component File Which machines

Director daemon bacula-dir.conf The server that runs the director daemon 
Storage daemon bacula-sd.conf Every server that has a storage device
File daemon bacula-fd.conf Every client that is to be backed up 
Management console bconsole.conf Every machine used as a control console

  



ptg

322 Chapter 10 Backups

own storage daemon. Want to back up to an off-site location? Install a storage 
daemon on a server there. Need to back up new clients? Install and configure the 
clients’ file daemons. New backup administrator? Install the management console 
on his or her workstation.

The configuration files are human-readable text files. The sample configuration 
files included in the Bacula distribution are well documented and are a great start-
ing place for a typical configuration.

Before we begin a more detailed discussion of our example setup, let’s first define 
some key Bacula terms.

• “Jobs” are the fundamental unit of Bacula activity. They come in two 
flavors: backup and restore. A job comprises a client, a fileset, a storage 
pool, and a schedule. 

• “Pools” are groups of physical media that store jobs. For example, you 
might use two pools, one for full backups and another for incrementals.

• “Filesets” are lists of filesystems and individual files. Filesets can be 
explicitly included in or excluded from backup or restore jobs. 

• “Messages” are inter-daemon communiqués (log entries, really) regard-
ing the status of daemons and jobs. Messages can also be sent by email 
and written to log files.

We do not cover all the possible configuration parameters in this chapter. Instead, 
we begin each section with a general overview and then point out some parame-
ters that we think are either particularly useful or hard to grasp. 

Common configuration sections

The Bacula configuration files are composed of sections known generically as “re-
sources.” Each resource section is enclosed in curly braces. Some resources appear 
in multiple configuration files. Comments are introduced with a # sign in all Bac-
ula configuration files. 

All four configuration files contain a Director resource:
# Sample Bacula director configuration file, /etc/bacula-dir.conf 

Director { 
Name = bull-dir # a canonical name for our Bacula director 
DIRport = 9101 
Query File = "/etc/bacula/query.sql"
Working Directory = "/var/Bacula/working"
Pid Directory = "/var/run"
Maximum Concurrent Jobs = 1 
Password = "zHpScUnHN9"
Messages = Standard

}

  



ptg

Common configuration sections 323

Ba
ck

up
s

The Director resource is more or less the mother ship of the Bacula sea. Its pa-
rameters define the name and basic behavior of the director. Options set the com-
munication port through which the other daemons communicate with the direc-
tor, the location in which the director stores its temporary files, and the number of 
concurrent jobs that the director can handle.

Passwords are strewn throughout the Bacula configuration files, and they serve a 
variety of purposes. Exhibit B shows how the passwords on different machines 
and in different configuration files should correspond.

Exhibit B Passwords in the Bacula configuration files

Although passwords appear as plaintext in the configuration files, they are never 
transmitted over the network in this form.

In our example configuration, the director and console are hosted on the same 
machine. However, a password is still required in both configuration files.

The director, storage, and file daemons all have a Messages resource that tells 
Bacula how to handle specific message types generated by each Bacula daemon. 
In a typical configuration, the storage and file daemons forward their messages 
back to the director:

Messages { 
Name = Standard 
director = bull-dir = all

}

In the director’s configuration file, the Messages resource is more complex. The 
example on the next page tells Bacula to save messages to a log file and to forward 
them by email.

bacula-dir.conf
on the director machine

bacula-sd.conf
on each storage server

bconsole.conf
on the console machine(s)

bacula-fd.conf
on each client

Use a different password for 
each client and storage server.

Director {
 ...
 Password "n4PQlM"
 ... 
}

Storage {
 ...
 Password "F88cdeP"
 ... 
}

Client {
 ...
 Password "c0NIIv"
 ... 
}

Director {
 ...
 Password "F88cdeP"
 ... 
}

Director {
 ...
 Password "n4PQlM"
 ... 
}

Director {
 ...
 Password "c0NIIv"
 ... 
}

  



ptg

324 Chapter 10 Backups

Messages { 
Name = Standard 
mailcommand = "/sbin/bsmtp -h localhost -f \"\(Bacula\) 

bacula@admin.com\" -s \"Bacula: %t %e of %c %l\" %r" 
operatorcommand = "/sbin/bsmtp -h localhost -f \"\(Bacula\)

bacula@admin.com\" -s \"Bacula: Intervention needed for %j\" %r" 
mail = backups-admins@admin.com = all, !skipped            
operator = backups-tapeadmins@admin.com = mount 
console = all, !skipped, !saved 
append = "/var/log/bacula.log" = all, !skipped

}

You can define multiple Messages resources for the director and then assign them 
to specific jobs in Job resources. This resource type is very configurable; a com-
plete list of variables and commands can be found in the on-line documentation.

bacula-dir.conf: director configuration

bacula-dir.conf is the most complex of Bacula’s configuration files. It requires a 
minimum of seven types of resource definitions in addition to the Director and 
Messages resources described above: Catalog, Storage, Pool, Schedule, Client, 
FileSet, and Job. We highlight each resource definition here with a brief example, 
but start your own configuration by editing the sample files included with Bacula.

Catalog resources
A Catalog resource points Bacula to a particular catalog database. It includes a 
catalog name (so that you can define multiple catalogs), a database name, and 
database credentials.

Catalog { 
Name = MYSQL 
dbname = "bacula"; dbuser = "bacula"; dbpassword = "9p6NLm6CnQ"

}

Storage resources
A Storage resource describes how to communicate with a particular storage dae-
mon, which in turn is responsible for interfacing with its local backup devices. 
Storage resources are hardware-independent; the storage daemon has its own 
configuration file that describes the storage hardware in detail.

Storage { 
Name = TL4000 
Address = bull 
SDPort = 9103 
Password = "jiKkrZuE00" 
Device = TL4000 
Autochanger = yes 
Maximum Concurrent Jobs = 2 
Media Type = LTO-3

}

  



ptg

Client resources 325

Ba
ck

up
s

Pool resources
A Pool resource groups backup media, typically tapes, into sets that are used by 
specific backup jobs. It may be useful to separate tapes that you use for off-site 
archival storage from those that you use for nightly incrementals. Each piece of 
media is assigned to a single Pool, so it’s easy to automatically recycle some tapes 
and archive others.

Pool { 
Name = Full_Pool 
Pool Type = Backup 
Recycle = yes 
AutoPrune = yes 
Storage = TL4000 
Volume Retention = 365 days

}

Schedule resources
Schedule resources define the timetables for backup jobs. The name, date, and 
time specification are the only required parameters, but as you can see from the 
example below, you can sneak in additional parameter values. These values then 
override the default parameters set in a Job specification.

Below, full backups run on the first Tuesday of each month at 8:10 p.m. The incre-
mental backups use a different tape pool and run every week from Wednesday 
through Monday at 8:10 p.m.

Schedule { 
Name = "Nightly"
Run = Level=Full Pool=FullPool 1st tue at 20:10 
Run = Level=Incremental Pool=IncrementalPool wed-mon at 20:10

}

Client resources
Client resources identify the computers to be backed up. Each resource has a 
unique name, IP address, and password; one is required for each client. The cata-
log for storing backup metadata is also specified.The parameters File Retention
and Job Retention specify how long file and job records for this client should be 
kept in the catalog. If the AutoPrune parameter is set, expired data is deleted from 
the catalog. Pruning affects only the catalog records and not the actual files stored 
on backup tapes; recycling of tapes is configured in the Pool resource.

Client { 
Name = harp 
Address = 192.168.1.28 
FDPort = 9102 
Catalog = MYSQL 
Password = "TbEpJqrcqy"

}

  



ptg

326 Chapter 10 Backups

FileSet resources
A FileSet resource defines the files and directories to be included in or excluded 
from a backup job. Unless you have systems with identical partitioning schemes, 
you’ll probably need a different fileset for each client. FileSet resources can define 
multiple Include and Exclude parameters, along with individual Options such as 
regular expressions. By default, Bacula recursively backs up directories but does 
not span partitions, so take care to list in separate File parameters all the parti-
tions you want to back up.

In the example below, we enable software compression as well as the signature 
option, which computes a hash value for each file backed up. These options in-
crease the CPU overhead for backups but can save tape capacity or help identify 
files that have been modified during a suspected security incident.

FileSet { 
Name = "harp" 
Include {

Options { 
signature=SHA1 
compression=GZIP

}
File = "/"
File = "/boot" 
File = "/var"

}
Exclude = { /proc /tmp /.journal /.fsck }

}

Job resources
A Job resource defines the overall characteristics of a particular backup job by 
tying together Client, FileSet, Storage, Pool, and Schedule resources. In general, 
there is one Job definition per client, although you can easily set up multiple jobs 
if you want to back up different FileSets at different frequencies.

You can supply an (optional) JobDefs resource to set the defaults for all backup 
jobs. Use of this resource can simplify the per-job configuration data.

Job { 
Name = "Harp"
JobDefs = DefaultJob 
Level = Full 
Write Bootstrap = "/bacula/bootstraps/harp.bsr" 
Client = harp 
FileSet = harp 
Pool = Full_Pool 
Incremental Backup Pool = Incremental_Pool 
Schedule = "Nightly"
Prefer Mounted Volumes = no 
Max Run Time = 36000

}

  



ptg

Device resources 327

Ba
ck

up
s

A “bootstrap” file is a special text file, created by Bacula, that contains information 
about files to restore. Bootstrap files list the files and volumes needed for a restore 
job and are incredibly helpful for bare-metal restores. They are not mandatory but 
are highly recommended. 

Bootstrap files are created during restores, or during backups if you have defined 
the Write Bootstrap parameter for the job. Write Bootstrap tells Bacula where to 
save the bootstrap information. Bootstrap files are overwritten during full back-
ups and appended to during incremental backups.

bacula-sd.conf: storage daemon configuration

Storage daemons accept data from file daemons and transfer it to the actual stor-
age media (or vice versa, in the case of a restore). The resources Storage, Device, 
and Autochanger are defined within the bacula-sd.conf file, along with the com-
mon Messages and Director resources. 

The Director resource
The Director resource controls which directors are permitted to contact the stor-
age daemon. The password in the Storage resource of bacula-dir.conf must 
match the password in the Director resource of bacula-sd.conf.

Director { 
Name = bull-dir 
Password = "jiKkrZuE00"

}

The Storage resource
The Storage resource is relatively straightforward. It defines some basic working 
parameters such as the daemon’s network port and working directory.

Storage { 
Name = bull-sd 
SDPort = 9103 
WorkingDirectory = "/var/bacula/working" 
Pid Directory = "/var/run"
Maximum Concurrent Jobs = 2

}

Device resources
Each storage device gets its own Device resource definition. This resource speci-
fies details about the physical backup hardware, be it tape, optical media, or on-
line storage. The details include media type, capabilities, and autochanger infor-
mation for devices that are managed by a tape changer or media robot.

The example below defines an LTO-3 drive with an automatic tape changer. Note 
that /dev/nst0 is a non-rewinding device, which is almost invariably what you 
want. The Name parameter defines a symbolic name that’s used to associate the 

  



ptg

328 Chapter 10 Backups

drive with its corresponding Autochanger resource. The Name also helps you 
remember which piece of equipment the resource describes.

The AlwaysOpen parameter tells Bacula to keep the device open unless an ad-
ministrator explicitly requests an unmount. This option saves time and tape stress 
because it avoids rewinding and positioning operations between jobs.

Device { 
Name = TL4000-Drive0 
Media Type = LTO-3 
Archive Device = /dev/nst0 
AutomaticMount = yes 
AlwaysOpen = yes 
RemovableMedia = yes 
RandomAccess = no 
Autochanger = yes

}

Autochanger resources
The optional Autochanger resource definition is only required if you are lucky 
enough to have a tape changer. It associates the storage devices to the autochanger 
and specifies the command that makes the changer swap tapes.

Autochanger { 
Name = TL4000 
Device = TL4000-Drive0,TL4000-Drive1 
Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d" 
Changer Device = /dev/changer

}

bconsole.conf: console configuration

The console program communicates with the director to schedule jobs, check the 
status of jobs, or restore data. bconsole.conf tells the console how to communi-
cate with the director. The parameters in this file must correspond to those given 
in the Director resource in the director’s configuration file (bacula-dir.conf), 
with the exception of the Address parameter.

# Console configuration file, bconsole.conf

Director { 
Name = bull-dir 
DIRport = 9101 
Address = bull 
Password = "zHpScUnHN9"

}

Installing and configuring the client file daemon

The file daemon installed on backup clients communicates with the Bacula stor-
age daemon as backups and restores are executed. A file daemon must be installed 
and configured on every computer that is to be backed up with Bacula.

  



ptg

Adding media to pools 329

Ba
ck

up
s

Bacula is available in binary form for many platforms, including Windows and 
various Linux distributions. On UNIX systems, you can install the file daemon 
from the original source tree by running ./configure --enable-client-only fol-
lowed by make and make install. You can hard-code defaults for many file dae-
mon options at configuration time, but maintenance is easier if you just list them 
in your bacula-fd.conf file. By default, binaries are installed in /sbin and configu-
ration files in /etc/bacula.

After installing the file daemon, configure it by editing bacula-fd.conf, which is 
broken into three parts. The first part consists of the Director resource, which tells 
the file daemon which director is allowed to schedule backups for this client. The 
Director resource also includes a Password parameter, which must be identical to 
the password listed in the Client resource in the director’s own configuration file.

The second part of the bacula-fd.conf file is the FileDaemon resource, which 
names the client and specifies the port on which the file daemon listens for com-
mands from the director daemon.

The final component is the Messages resource (refer back to page 323), which 
defines how local messages are to be handled. 

Starting the Bacula daemons 

With the server daemons installed and a test client configured, the next step is to 
fire up the daemons by running the startup script in the server’s installation direc-
tory (./bacula start). This same command is also used on each client to start the 
client’s file daemon.

The bacula startup script should be configured to run at boot time. Depending on 
your system and installation method, this may or may not be done for you. See 
Chapter 3, Booting and Shutting Down, for some additional details on how to start 
services at boot time on our example systems.

Once the daemons are running, you can use the console program (bconsole in 
the installation directory) to check their status, add media to pools, and execute 
backup and restore jobs. You can run bconsole from any computer as long as it 
has been properly installed and configured.

$ sudo ./bconsole 
Connecting to Director bull:9101 
1000 OK: bull-dir Version: 2.4.4 (23 December 2009) 
Enter a period to cancel a command.
*

Use the console’s help command to see a list of the commands it supports. 

Adding media to pools

Before you can run a backup job, you need to label a tape and assign it to one of 
the media pools defined in the director’s configuration file. Use the console’s label
command to write a software “label” to a blank tape and assign it to a Bacula pool. 

  



ptg

330 Chapter 10 Backups

Always match your Bacula label to the physical label on your tape. If you have an 
autochanger that supports bar codes, you can use the label barcode command to 
automatically label any blank tapes with the human-readable values from their 
bar-coded labels.

Use the list media command to verify that the tape has been added to the correct 
pool and marked as appendable.

Running a manual backup

Use the console’s run command to perform a manual backup. No arguments are 
needed; the console displays all the backup jobs defined in the director’s configu-
ration file. You can modify any option within the run command by following the 
console’s menu-driven prompts.

The following example shows a manual full backup of the server harp, using the 
defaults specified in our configuration files.

* run harp
Run Backup job 
JobName: harp 
Level: Full
Client: harp
FileSet: harp
Pool: FullPool
Storage: SureStore 
When: 2009-10-08 10:56:41 
Priority: 10
OK to run? (yes/mod/no): yes 
Run command submitted.

After the backup job has been successfully submitted to the director, you can track 
its status with the console’s status command. You can also use the messages com-
mand to obtain blow-by-blow updates as they arrive. Depending on how you have 
set up the system’s Message resources, a detailed summary report may also be 
emailed to the Bacula administrator. 

Running a restore job

To restore files, start up the console and run the restore command. Like the run
command, restore is menu driven. It starts by helping you identify which jobs 
need to be read to restore the target files. restore presents you with several meth-
ods of specifying the relevant job IDs. Once you have selected a set of jobs, you 
can then select the files from those jobs to restore.

* restore
To select the JobIds, you have the following choices:

1: List last 20 Jobs run
2: List Jobs where a given File is saved
3: Enter list of comma separated JobIds to select
4: Enter SQL list command

  



ptg

Running a restore job 331

Ba
ck

up
s

5: Select the most recent backup for a client 
6: Select backup for a client before a specified time 
7: Enter a list of files to restore 
8: Enter a list of files to restore before a specified time 
9: Find the JobIds of the most recent backup for a client 
10: Find the JobIds for a backup for a client before a specified time 
11: Enter a list of directories to restore for found JobIds 
12: Cancel

Select item:  (1-12):

The three most useful options are probably “Select the most recent backup for a 
client” (#5), “Select backup for a client before a specified time” (#6), and “List Jobs 
where a given File is saved” (#2). The first two of these options provide a shell-like 
environment for selecting files, similar to that of restore -i. The third option 
comes in handy for those pesky users that can never seem to remember exactly 
where the file they removed really lives. Another powerful way to find job IDs is 
option #4, “Enter SQL list command,” which lets you enter any properly formatted 
SQL query. (Of course, you must be familiar with the database schema.)

Suppose that a user needs a recent copy of his pw_expire.pl script restored. How-
ever, he’s not sure in which directory he kept the file. In addition, he would like 
the files restored to the /tmp directory of the original machine. A request like this 
would set many a system administrator to grumbling around the water cooler, but 
for the Bacula administrator it’s a snap. (Unfortunately, Bacula’s format for search 
results is so wide that we had to truncate it below.)

* restore 
…
To select the JobIds, you have the following choices: 

1: List last 20 Jobs run 
2: List Jobs where a given File is saved 
…

Select item:  (1-12): 2 
Defined Clients:

1: bull 
2: harp 
…

Select the Client (1-12): 2 
Enter Filename (no path): pw_expire.pl 
+-------+-------------------------------------------------+--------------------------+-----------
| JobId | Name | StartTime | JobType… 
+-------+-------------------------------------------------+--------------------------+-----------
| 4484 | /home/jim/development/pw_expire.pl | 2009-11-03 20:11:35 | B… 
| 4251 | /home/jim/development/pw_expire.pl | 2009-10-21 18:03:01 | B… 
| 4006 | /home/jim/development/pw_expire.pl | 2009-10-06 20:10:02 | B… 
+-------+-------------------------------------------------+--------------------------+-----------

Bacula’s list of pw_expire.pl instances reveals several recent backups and their 
associated job IDs. Bacula then returns us to the restore menu, where we can use 
option #3 (enter job IDs) to focus on a specific job.

  



ptg

332 Chapter 10 Backups

Select item: (1-12): 3 
Enter JobId(s), comma separated, to restore: 4484 
You have selected the following JobId: 4484 
Building directory tree for JobId 4484 ... 1 Job, 779,470 files 
You are now entering file selection mode where you add (mark) and 
remove (unmark) files to be restored. No files are initially added, unless 
you used the "all" keyword on the command line.
Enter "done" to leave this mode. 
cwd is: / 
$ cd /home/jim/development 
cwd is: /home/jim/development 
$ dir 
… 
-rwxr-xr-x 1 jim atrust 923 2009-10-25 12:05:43 /home/jim/development/pw_exp… 
$ mark pw_expire.pl 
1 files marked. 
$ done 

It’s not shown in this example, but Bacula sometimes displays job IDs with a 
comma (e.g., 4,484). You must omit the comma any time you enter an ID back 
into Bacula; otherwise, Bacula interprets your entry as a comma-separated list.

Bootstrap records written to /var/bacula/working/restore.bsr 
The restore job will require the following Volumes:

000879L3

1 file selected to be restored.

Defined Clients: 
1: bull 
2: harp 
…

Select the Client (1-2): 2

Bacula now writes the bootstrap file that it will use to perform the restore, dis-
plays the names of the tape volumes it requires, and prompts you to select a client 
to which it should restore the files. For this example, we restored the file back to 
the original host harp.

Run Restore Job 
JobName: RestoreFiles
Bootstrap: /bacula/bacula/working/jf-dir.restore.4.bsr 
Where: /var/restore
Replace: always
FileSet: Full Set
Backup Client: harp 
Restore Client: harp 
Storage: LTO3-TL4000 
When: 2009-11-23 15:13:05 
Catalog: MYSQL
Priority: 10
OK to run? (yes/mod/no): 

  



ptg

Backing up Windows clients 333

Ba
ck

up
s

Before we run this particular job, we want to modify the default settings. Specifi-
cally, we need to change the destination of this restore to /tmp to accommodate 
the user’s request.

OK to run? (yes/mod/no): mod
Parameters to modify: 

1: Level 
2: Storage 
3: Job 
4: FileSet 
5: Restore Client 
6: When 
7: Priority 
8: Bootstrap 
9: Where 
10: File Relocation 
11: Replace 
12: JobId

Select parameter to modify (1-12): 9 
Please enter path prefix for restore (/ for none): /tmp 
Run Restore job 
JobName: RestoreFiles
Bootstrap: /var/Bacula/working/restore.bsr 
Where: /tmp
…
OK to run? (yes/mod/no): yes 
Run command submitted. 
Restore command done.

After making the changes, we submit the job to the director, which executes it. We 
could then use the messages command to view the job’s logging output. 

Backing up Windows clients 

You can download prebuilt binaries for Windows clients from bacula.org.

Bacula is great for backing up Windows data files, but it takes an extra step to 
create a bomb-proof level 0 backup of a Windows system. Unfortunately, Bacula 
has no understanding of the Windows registry or system state, and it does not 
understand Windows’ locking of open files. At a minimum, you should configure 
a pre-execution script that triggers Windows’ built-in System Restore feature. Sys-
tem Restore will make a local backup of the system state, and your Bacula backup 
will then receive the current state in its archived form. To capture locked files 
correctly, you may also need to make use of the Windows Volume Shadow Copy 
Service (VSS).

Check the examples directory in the Bacula source tree for other Windows-re-
lated goodies, including a clever script that “pushes” Windows file daemon up-
dates to clients through Bacula’s built-in restore system. The Windows client in 
the latest version of Bacula supports Windows 7 clients and 64-bit clients. It even 
has experimental support for Microsoft Exchange backups.

  



ptg

334 Chapter 10 Backups

Monitoring Bacula configurations

System administration requires vigilance, and backups are the last place to be 
making an exception. Backups will fail, and if not fixed quickly, critical data will 
surely be lost. 

Bacula jobs produce a job report that is routed according to the job’s Message
resource in the director daemon’s configuration file. The report includes basic in-
formation about the volumes used, the number and size of files backed up, and 
any errors that may have occurred. The report usually gives you enough informa-
tion to troubleshoot any minor problems. We recommend that you configure im-
portant messages to go to your email inbox, or perhaps even to your pager.

You can use the console’s status command to query the various Bacula daemons 
for information. The output includes information about upcoming jobs, currently 
running jobs, and jobs that were terminated. The messages command is an easy 
way to review recent log entries.

Bacula includes a contributed Nagios plug-in, which makes it easy to integrate 
backups into your existing monitoring infrastructure. See page 887 for general 
information about Nagios.

Bacula tips and tricks

Two issues that come up frequently are client file daemons that aren’t running and 
storage daemons that cannot find any appendable tape volumes. In the example 
below, the director daemon reports that a backup job terminated with a fatal error 
because it could not communicate with the file daemon on host harp. This error 
can be seen repeatedly at the end of the summary report. 

…
SD termination status: Waiting on FD 
Termination: *** Backup Error ***

11-Nov 21:06 bull-dir JobId 259: Warning: bsock.c:123 Could not connect to 
Client: harp on 192.168.1.3:9102. ERR=Connection refused Retrying ... 

11-Nov 21:31 bull-dir JobId 259: Warning: bsock.c:123 Could not connect to 
Client: harp on 192.168.1.3:9102. ERR=Connection refused

The example below shows the storage daemon reporting that no tape volumes 
from the appropriate pool are available to perform a requested backup. You can 
fix the problem either by adding a new volume to the pool or by purging and 
recycling an existing volume. There’s no need to restart the job; Bacula should 
continue to execute it unless you cancel it explicitly. 

06-May 23:01 bull-sd JobId 1545: Job Southernfur.2009-05-06_19.03.00.07 
waiting. Cannot find any appendable volumes.

Please use the "label"  command to create a new Volume for: 
Storage: "TL4000-Drive0" (/dev/nst0) 
Pool: Full_Pool
Media type: LTO-3

  



ptg

Commercial backup products 335

Ba
ck

up
s

If you ever need to see more detailed information about what the daemons are 
doing, you can have them send a slew of debugging information to the console by 
appending the option -dnnn to the startup command. For example,

$ sudo ./bacula start -d100

The nnn represents the debug level. Typical values range between 50 and 200. The 
higher the number, the more information displayed. You can also enable debug-
ging from within the console with the setdebug command. 

Alternatives to Bacula

Several other free or shareware backup tools are available for download. The fol-
lowing packages are particularly noteworthy; all are still actively developed.

• Amanda: a very popular and proven system that backs up UNIX and 
Linux systems to a single tape drive. See amanda.org.

• rsync: a free tool that runs on all of our example platforms and is 
included by default on many Linux distributions. It can synchronize files 
from one computer to another and can run in conjunction with SSH to 
transfer data securely over the Internet. rsync is smart about only trans-
ferring differences in files, so it uses network bandwidth efficiently. See 
page 725 for additional discussion of rsync. Note that rsync alone usu-
ally isn’t sufficient for backups since it does not save multiple copies. Nor 
does it create off-line backups.

• star: a faster implementation of tar. star is included with Linux and is 
available for all types of UNIX.

• Mondo Rescue: a utility that backs up Linux systems to CD-R, DVD-R, 
tape, or hard disk. This tool is particularly useful for bare-metal recov-
ery. Read more at mondorescue.org.

10.9 COMMERCIAL BACKUP PRODUCTS

We would all like to think that UNIX is the only OS in the world, but unfortu-
nately, that is not the case. When looking at commercial backup solutions, you 
should consider whether they can handle any other operating systems that you are 
responsible for backing up. Most contemporary products address cross-platform 
issues and let you include UNIX, Windows, and Mac OS workstations in your 
backup scheme. You must also consider non-UNIX storage arrays and file servers.

Users’ laptops and other machines that are not consistently connected to your net-
work should also be protected from failure. When looking at commercial prod-
ucts, you may want to ask if each product is smart enough not to back up identical 
files from every laptop. How many copies of command.com do you really need? 

  



ptg

336 Chapter 10 Backups

Since we find that Bacula works well for us, we don’t have much experience with 
commercial products. We asked some of our big-bucks buddies at commercial 
sites for quick impressions of the systems they use. Their comments are repro-
duced here.

ADSM/TSM

The ADSM product was developed by IBM and later purchased by Tivoli. It is 
marketed today as the Tivoli Storage Manager (TSM), although the product is 
once again owned by IBM. TSM is a data management tool that also handles 
backups. More information can be found at ibm.com/tivoli.

Pros:

• Owned by IBM; it’s here to stay
• Attractive pricing and leasing options
• Very low failure rate
• Uses disk cache; useful for backing up slow clients
• Deals with Windows clients
• Excellent documentation (priced separately)

Cons:

• Poorly designed GUI interface
• Every 2 files =1kB in the database
• The design is incremental forever

Veritas NetBackup

Veritas merged with Symantec in 2005. They sell backup solutions for a variety of 
systems. When you visit their web site (symantec.com), make sure you select the 
product that’s appropriate for you. NetBackup is the most enterprise-ish product, 
but smaller shops can probably get away with BackupExec.

Pros: 

• Decent GUI interface
• Connects to storage area networks and NetApp filers
• Push install for UNIX and Windows
• Can write tapes in GNU tar format
• Centralized database, but can support a distributed backup system

Cons:

• Some bugs
• Pricing is confusing and annoying
• Client notorious for security vulnerabilities

  



ptg

Exercises 337

Ba
ck

up
s

EMC NetWorker

Storage behemoth EMC acquired Legato NetWorker back in 2003. At the time, 
Veritas and Legato were the two market leaders for enterprise backup. 

Pros: 

• Competitively priced
• Server software can run on each of our example platforms
• Supports diverse client platforms
• Slick, integrated bare-metal restorations

Cons:

• Significant overlap among EMC products

Other alternatives

W. Curtis Preston, author of the O’Reilly book Backup & Recovery, maintains a 
web page about backup-related topics (disk mirroring products, advanced filesys-
tem products, remote system backup products, off-site data-vaulting products, 
etc.) at backupcentral.com.

10.10 RECOMMENDED READING

PRESTON, W. CURTIS. Backup & Recovery: Inexpensive Backup Solutions for Open 
Systems. Sebastopol, CA: O’Reilly Media, 2007.

10.11 EXERCISES

E10.1 Investigate the backup procedure used at your site. Which machines 
perform the backups? What type of storage devices are used? Where 
are tapes stored? Suggest improvements to the current system.

E10.2 What steps are needed to restore files on a system that uses Bacula? 
How do you find the right tape?

Exercises continue on the next page.

  



ptg

338 Chapter 10 Backups

E10.3 Given the following output from df and /etc/dumpdates, identify the 
steps needed to perform the three restores requested. Enumerate your 
assumptions. Assume that the date of the restore request is January 18.

df output from the machine khaya.cs.colorado.edu:
/dev/hda8 256194 81103 161863 33% /
/dev/hda1 21929 4918 15879 24% /boot
/dev/hda6 3571696 24336 3365924 1% /local
/dev/hda10 131734 5797 119135 5% /tmp
/dev/hda5 1815580 1113348 610004 65% /usr
/dev/hda7 256194 17013 225953 7% /var

/etc/dumpdates from khaya.cs.colorado.edu:
/dev/hda8 2 Sun Jan 17 22:59:23 2010
/dev/hda6 3 Sun Jan 17 22:51:51 2010
/dev/hda7 3 Sun Jan 17 22:50:24 2010
/dev/hda5 9 Sun Jan 17 22:46:25 2010
/dev/hda5 1 Tue Jan 12 22:45:42 2010
/dev/hda7 0 Tue Jan 12 23:14:47 2010
/dev/hda6 1 Tue Jan 12 23:14:32 2010
/dev/hda8 1 Tue Jan 12 23:14:17 2010
/dev/hda6 0 Sun Jan 10 22:47:31 2010
/dev/hda1 1 Fri Jan 8 22:16:05 2010
/dev/hda7 1 Thu Jan 7 22:08:09 2010
/dev/hda1 4 Sun Jan 3 22:51:53 2010
/dev/hda7 2 Thu Dec 24 22:53:52 2009
/dev/hda5 0 Tue Nov 3 22:46:21 2009
/dev/hda1 0 Mon Sep 21 22:46:29 2009
/dev/hda8 0 Mon Aug 24 23:01:24 2009
/dev/hda1 3 Wed Jul 29 22:52:20 2009
/dev/hda6 2 Wed Jul 29 23:01:32 2009

a) “Please restore my entire home directory (/usr/home/clements) 
from some time in the last few days. I seem to have lost the entire 
code base for my senior project.”

b) “Umm, I accidentally did a sudo rm -rf /* on my machine khaya. 
Could you restore all the filesystems from the latest backups?”

c) “All my MP3 files that I have been collecting from BitTorrent over 
the last month are gone. They were stored in /tmp/mp3/. Could 
you please restore them for me?”

  



ptg

Exercises 339

Ba
ck

up
s

E10.4 Design a backup plan for the following scenarios. Assume that each 
computer has a 400GB disk and that users’ home directories are stored 
locally. Choose a backup device that balances cost vs. support needs 
and explain your reasoning. List any assumptions you make.

a) A research facility has 50 machines. Each machine holds a lot of 
important data that changes often.

b) A small software company has 10 machines. Source code is stored 
on a central server that has 4TB of disk space. The source code 
changes throughout the day. Individual users’ home directories do 
not change very often. Cost is of little concern and security is of 
utmost importance.

c) A home network has two machines. Cost is the most important 
consideration, and the users are not system administrators.

E10.5 Design a restore strategy for each of the three situations described in 
Exercise 10.4. 

E10.6 Write Bacula configuration statements that implement the backup 
plans you came up with for Exercise 10.4.

E10.7 Outline the steps you would take to perform a dump to a remote tape 
drive through a secure SSH tunnel.

  



ptg

340

11 Syslog and Log Files

System daemons, the kernel, and various utilities and services all emit data that is 
logged and eventually ends up on your finite-sized disks. Most of that data has a 
limited useful life and needs to be summarized, compressed, archived, and even-
tually thrown away. Access and audit data may need to be managed closely ac-
cording to regulatory retention rules or site security policies. 

Experienced administrators review logs sooner rather than later. Log files often 
contain important hints that point toward the resolution of vexing configuration 
problems. When a daemon refuses to start or a chronic error continues to plague 
a booting system, check the logs first.

UNIX has historically tried to use an integrated system known as syslog for one-
stop log shopping, but this effort has met with mixed success at best. Although the 
syslogd daemon still reigns as the designated king of logging, plenty of applica-
tions, network daemons, startup scripts, and other vigilantes still write to their 
own ad hoc log files. This lawlessness has resulted in a complement of logs that 
varies significantly among flavors of UNIX and even among Linux distributions.

In most cases, a log event is captured as a single line of text that includes the time 
and date, the type and severity of the event, and any other relevant details. The 

Syslog

  



ptg

Finding log files 341

Sy
sl

og

various components of the message may be separated by spaces, tabs, or punctua-
tion, depending on the specific file.

Since most logs are text files, they can be viewed or parsed with standard tools 
such as cat, grep, tail, and Perl. Most modern systems also include log manage-
ment tools that rotate, compress, and monitor log files on a daily or weekly basis. 

Log files managed by syslog usually contain events from multiple sources. For 
example, complaints from the kernel and from a network daemon may appear 
adjacent to each other. At sites that have set up a centralized logging server, events 
from multiple hosts may be aggregated and processed together.

The snippet below shows typical events from a centralized syslog server:
Dec 18 15:12:42 av18.cs.colorado.edu sbatchd[495]: sbatchd/main: ls_info() 

failed: LIM is down; try later; trying …
Dec 18 15:14:28 proxy-1.cs.colorado.edu pop-proxy[27283]: Connection from 

128.138.198.84
Dec 18 15:14:30 mroe.cs.colorado.edu pingem[271]: maltese-

office.cs.colorado.edu has not answered 42 times
Dec 18 15:15:05 schwarz.cs.colorado.edu vmunix: Multiple softerrors: Seen 100 

Corrected Softerrors from SIMM J0201
Dec 18 15:15:16 coyote.cs.colorado.edu PAM_unix[17405]: (sshd) session closed 

for user trent 
Dec 18 15:15:48 proxy-1.cs.colorado.edu pop-proxy[27285]: Connection from 

12.2.209.183 
Dec 18 15:15:50 av18.cs.colorado.edu last message repeated 100 times

See page 908 for more 
information on PAM. 

This example contains entries from several different hosts (av18, proxy-1, mroe, 
schwarz, and coyote) and from several programs: sbatchd, pop-proxy, pingem, 
and the Pluggable Authentication Modules library. 

The importance of having a well-defined, site-wide logging strategy has grown 
along with the adoption of formal IT standards such as COBIT and ISO 27002 as 
well as the maturing of industry regulations. Today, these external standards may 
require you to maintain a centralized, hardened, enterprise-wide repository for 
log activity, with time stamps provided through NTP and a strict retention sched-
ule. We discuss some specific strategies later in this chapter.

11.1 FINDING LOG FILES

UNIX is often criticized for being inconsistent, and indeed it is. Just take a look at 
a directory of log files and you’re sure to find some with names like maillog, some 
like ftp.log, and maybe even some like lpNet, lpd-errs, or console_log. In addi-
tion to having random names, log files are often scattered across directories and 
filesystems. By default, most of these files are found in /var/adm or /var/log.

Linux systems are generally a bit more sane, although each distribution has its 
own way of naming and dividing up the log files. For the most part, Linux pack-
ages send their logging information to files in the /var/log directory. 

  



ptg

342 Chapter 11 Syslog and Log Files

Table 11.1 compiles information about some of the more common log files on our 
example systems. Specifically, it lists the following:

• The log files to archive, summarize, or truncate
• The program that creates each
• An indication of how each filename is specified
• The frequency of cleanup that we consider reasonable
• The systems (among our examples) that use the log file
• A description of the file’s contents

Filenames in Table 11.1 are relative to /var/adm, /var/log, or /var/log/syslog un-
less otherwise noted.

Log files are generally owned by root, although conventions for the ownership 
and mode of log files vary. In some cases, a less privileged daemon such as httpd
or mysqld may require write access and set the ownership and mode appropri-
ately. You may need to use sudo to view sensitive log files that have tight permis-
sions. Alternatively, for log files that don’t contain sensitive system details, it’s usu-
ally safe to change the permissions to be world-readable. We usually recommend 
the latter method for log files that you need to view regularly, such as Apache’s 
logs in /var/log/httpd. 

Syslog maintains many of the log files in Table 11.1, but its default configuration 
varies widely among systems. With a consistent /etc/syslog.conf file, the log files 
would have more in common among operating systems.

Log files can grow large very quickly, especially the logs for busy services such as 
email, web, and DNS servers. An out-of-control log file can fill up the disk and 
bring the system to its knees. For this reason, we like to keep a separate partition 
for the noisiest and busiest log files. On Linux systems, /var or /var/log is a good 
choice. Other systems’ conventions vary, but plan ahead when building a new box.

Files not to manage

Most logs are text files to which lines are written as interesting events occur. But a 
few of the logs listed in Table 11.1 have a rather different context.

wtmp (sometimes wtmpx) contains a record of users’ logins and logouts as well as 
entries that record when the system was rebooted or shut down. It’s a fairly ge-
neric log file in that new entries are simply added to the end of the file. However, 
the wtmp file is maintained in a binary format. Use the last command to decode 
the information. 

See the footnote on 
page 308 for more info 
about sparse files.

lastlog contains similar information to that in wtmp, but it records only the time 
of last login for each user. It is a sparse, binary file that’s indexed by UID. It will 
stay smaller if your UIDs are assigned in some kind of numeric sequence, al-
though this is certainly nothing to lose sleep over in the real world. lastlog doesn’t 
need to be rotated because its size stays constant unless new users log in.

  



ptg

Files not to manage 343

Sy
sl

og

utmp attempts to keep a record of each user that is currently logged in. It is some-
times wrong, usually because a shell was killed with an inappropriate signal and 
the parent of the shell did not clean up properly. utmp is often world-writable.

Table 11.1 Log files on parade

File Program W
h

e
re

a

F
re

q
a

S
y

st
e

m
s

a

Contents

acpid acpid F 64k RZ Power-related events
auth.log sudo, etc.b S M U Authorizations
apache2/* httpd (v2) F D ZU Apache HTTP server logs (v2)
apt* APT F M U Aptitude package installations
boot.log rc scripts Fc M R Output from system startup scripts
boot.msg kernel H – Z Dump of kernel message buffer
cron, cron/log cron S W RAH cron executions and errors
cups/* CUPS F W ZRU Printing-related messages (CUPS)
daemon.log various S W U All daemon facility messages
debug various S D U Debugging output
dmesg kernel H – RU Dump of kernel message buffer 
dpkg.log dpkg F M U Package management log
faillogd login H W RZU Unsuccessful login attempts
httpd/* httpd F D R Apache HTTP server logs (in /etc)
kern.log kernel S W U All kern facility messages
lastlog login H – RZ Last login time per user (binary)
mail* mail-related S W all All mail facility messages
messages various S W RZUS The main system log file
rpmpkgs cron.daily H D R List of installed RPM packages
samba/* smbd, etc. F W – Samba (Windows/CIFS file-sharing)
secure sshd, etc. S M R Private authorization messages
sulog su F – SAH su successes and failures
syslog* various S W SUH The main system log file
warn various S W Z All warning/error-level messages
wpars/* wpar F – A Workload partition events
wtmp login H M all Login records (binary)
xen/* Xen F 1m RZU Xen virtual machine information
Xorg.n.log Xorg F W RS X Windows server errors 
yum.log yum F M R Package management log

a. Where: S = Syslog, H = Hardwired, F = Configuration file 
Freq: D = Daily, W = Weekly, M = Monthly, NN[km] = Size-based, in kB or MB 
Systems: U = Ubuntu, Z = SUSE, R = Red Hat and CentOS, S = Solaris, H = HP-UX, A = AIX

b. passwd, login, and shutdown also write to the authorization log. It’s in /var/adm.
c. Actually logs through syslog, but the facility and level are configured in /etc/initlog.conf.
d. Binary file that must be read with the faillog utility.

  



ptg

344 Chapter 11 Syslog and Log Files

Vendor specifics

Vendors seem to have hidden log files all over the disk. Careful detective work 
with your daemons’ config files and your syslog configuration file will find many 
of them. This section details some of the more obscure nooks and crannies in 
which log files have been hidden.

Linux distributions win the grand prize for simplified log management. Logs are 
clearly named and consistently stored in /var/log. All our example distributions 
also include a superior tool, logrotate, for rotating, truncating, and managing 
them. New software packages can drop a config file into the /etc/logrotate.d di-
rectory to set up a management strategy for their logs. (logrotate is covered in 
detail later in this chapter; see page 356.)

By contrast, Solaris has the most disorganized collection of log files ever. With a 
directory called /var/log it shouldn’t be so hard. A few pointers:

• /var/log/*
• /var/cron/log
• /var/lp/logs/* 
• /var/saf/_log 
• /var/saf/zsmon/log 
• /var/svc/log
• /var/adm/*

You can run the vendor-supplied /usr/lib/newsyslog script out of cron to rotate 
the main log files, /var/adm/messages and /var/log/syslog.

HP-UX log files are in /var/adm. A lot of odd little mystery files live in this direc-
tory, many of which are not logs, so be careful what you touch. nettl.LOG000 is a 
network control and statistics file; see man nettl for details. By default, log entries 
submitted through syslog go into the /var/adm/syslog directory.

11.2 SYSLOG: THE SYSTEM EVENT LOGGER

Syslog, originally written by Eric Allman, is a comprehensive logging system. It 
has two important functions: to liberate programmers from the tedious mechan-
ics of writing log files, and to put administrators in control of logging. Before 
syslog, every program was free to make up its own logging policy. System admin-
istrators had no control over what information was kept or where it was stored.

Syslog is flexible. It lets you sort messages by their source and importance (“sever-
ity level”) and route them to a variety of destinations: log files, users’ terminals, or 
even other machines. Syslog’s ability to centralize the logging for a network is one 
of its most valuable features.

Syslog was long ago adopted by every major variant of UNIX and Linux with the 
exception of AIX. Even AIX includes the syslog daemon and library routines, but 
it supplies no default syslog configuration and uses its own proprietary daemon 

  



ptg

Configuring syslogd 345

Sy
sl

og

for error reporting. See page 353 later in this chapter for details. Since syslog is so 
commonly used by add-on software, we believe that a thorough understanding of 
syslog is important even for AIX administrators. 

Syslog architecture

Syslog consists of three parts:

• syslogd, the logging daemon (and its config file, /etc/syslog.conf)
• openlog et al., library routines that submit messages to syslogd
• logger, a user-level command that submits log entries from the shell

syslogd is started at boot time and runs continuously; it cannot be managed with 
inetd. Programs that are syslog-aware write log entries (by calling the syslog li-
brary routine) to the special file /dev/log, a UNIX domain socket. syslogd reads 
messages from this file, consults its configuration file, and dispatches each mes-
sage to the appropriate destination.

Signals are described 
on page 124. 

A hangup signal (HUP, signal 1) causes syslogd to close its log files, reread its 
configuration file, and start logging again. If you modify /etc/syslog.conf, you 
must send a hangup signal to syslogd to make your changes take effect. A TERM 
signal makes syslogd exit.

syslogd writes its process ID to a file in /var/run (/etc on AIX). This convention 
makes it easy to send signals to syslogd from a script. For example, the following 
command sends a hangup signal:

solaris$ sudo kill -HUP `/bin/cat /var/run/syslogd.pid` 

Trying to compress or rotate a log file that syslogd has open for writing is not 
healthy and has unpredictable results. Refer to page 356 for information on sane 
log rotation with the logrotate utility.

The preferred method of restarting syslogd on AIX is to use refresh:
aix$ sudo refresh -s syslogd

refresh contacts the System Resource Controller, which manages subsystems such 
as logging. See the refresh man page for more information.

Configuring syslogd

The /etc/syslog.conf file controls syslogd’s behavior. It is a text file with a rela-
tively simple format. Blank lines and lines with a pound sign (#) in column one 
are ignored. The basic format is

selector <Tab> action

For example, the line
mail.info      /var/log/maillog

causes messages from the email system to be saved in /var/log/maillog. The selec-
tor and action fields must be separated by one or more tabs; spaces don’t work (in 

  



ptg

346 Chapter 11 Syslog and Log Files

most versions) and become invisible errors that are very hard to track down. Cut-
ting and pasting with your mouse is one way to introduce such errors.

Selectors identify the program (“facility”) that is sending a log message and the 
message’s severity level with the syntax

facility.level

Both facility names and severity levels must be chosen from a short list of defined 
values; programs can’t make up their own. Facilities are defined for the kernel, for 
common groups of utilities, and for locally written programs. Everything else is 
classified under the generic facility “user.”

Selectors can contain the special keywords * and none, meaning all or nothing, 
respectively. A selector can include multiple facilities separated by commas. Mul-
tiple selectors can be combined with semicolons.

In general, selectors are ORed together: a message matching any selector will be 
subject to the line’s action. However, a selector with a level of none excludes the 
listed facilities regardless of what other selectors on the same line may say.

Here are some examples of ways to format and combine selectors:
facility.level action 
facility1,facility2.level action 
facility1.level1;facility2.level2 action
*.level action
*.level;badfacility.none action

Table 11.2 lists the valid facility names. There are currently 21 facilities.

Table 11.2 Syslog facility names

Facility Programs that use it

* All facilities except “mark” 
auth Security and authorization-related commands 
authpriv Sensitive/private authorization messages 
cron The cron daemon 
daemon System daemons 
ftp The FTP daemon, ftpd 

kern The kernel 
local0-7 Eight flavors of local message 
lpr The line printer spooling system 
mail sendmail and other mail-related software 
mark Time stamps generated at regular intervals 
news The Usenet news system (obsolete) 
syslog syslogd internal messages 
user User processes (the default if not specified) 
uucp Obsolete, ignore

  



ptg

Configuring syslogd 347

Sy
sl

og

Don’t take syslog’s distinction between auth and authpriv too seriously. All autho-
rization-related messages are sensitive, and none should be world-readable.

syslogd itself produces time stamp messages, which are logged if the “mark” facil-
ity appears in syslog.conf to specify a destination for them. Time stamps can help 
you figure out that your machine crashed between 3:00 and 3:20 a.m., not just 
“sometime last night.” This information can be a big help when you are debugging 
problems that seem to occur regularly.

Table 11.3 lists syslog’s severity levels in order of descending importance.

The severity level of a message specifies its importance. The distinctions between 
the various levels are sometimes fuzzy. There’s a clear difference between notice 
and warning and between warning and err, but the exact shade of meaning ex-
pressed by alert as opposed to crit is a matter of conjecture. 

In the syslog.conf file, levels indicate the minimum importance that a message 
must have in order to be logged. For example, a message from the mail system at 
level warning would match the selector mail.warning as well as the selectors 
mail.info, mail.notice, mail.debug, *.warning, *.notice, *.info, and *.debug. If 
syslog.conf specifies that mail.info messages be logged to a file, mail.warning
messages will go there also.

As a refinement of the basic syntax, the Linux version of syslog also allows the 
characters = and ! to be prefixed to priority levels to indicate “this priority only” 
and “except this priority and higher,” respectively. Table 11.4 shows examples.

Table 11.3 Syslog severity levels (descending severity)

Level Approximate meaning

emerg Panic situations 
alert Urgent situations 
crit Critical conditions 
err Other error conditions 
warning Warning messages 
notice Things that might merit investigation 
info Informational messages 
debug For debugging only

Table 11.4 Examples of Linux priority level qualifiers in syslog.conf

Selector Meaning

mail.info Mail-related messages of info priority and higher
mail.=info Only messages at info priority
mail.info;mail.!err Only priorities info, notice, and warning 
mail.debug;mail.!=warning All priorities except warning

  



ptg

348 Chapter 11 Syslog and Log Files

The action field tells syslog what to do with each message. The options are listed 
in Table 11.5.

If a filename (or fifoname) action is used, the name should be an absolute path. If 
you specify a nonexistent filename on a Linux system, syslogd will create the file 
when a message is first directed to it. On other systems, the file must already exist; 
syslogd will not create it.

On Linux distributions, you can preface a filename action with a dash to indicate 
that the filesystem should not be synced after each log entry is written. syncing 
helps preserve as much logging information as possible in the event of a crash, but 
for busy log files it can be devastating in terms of system performance. We recom-
mend including the dashes (and thereby inhibiting syncing) as a matter of course. 
Remove the dashes only temporarily when investigating a problem that is causing 
kernel panics.

If you specify a hostname in lieu of an IP address, it must of course be resolvable 
through a translation mechanism such as DNS or NIS. 

Solaris’s syslog implementation runs the syslog.conf file through the m4 macro 
preprocessor. Check your manual pages and use quotes liberally so that your con-
figuration means what you intend. For example, you must quote anything that is 
an m4 keyword or contains a comma. Here is a typical m4-style entry:

auth.notice ifdef(`LOGHOST’, `/var/log/authlog’, `@loghost’)

Note that the quotes used are the back-tick and the single apostrophe. This line 
directs messages to the file /var/log/authlog if LOGHOST is not defined. Other-
wise, messages are forwarded to the machine loghost. m4’s ifdef statements are 
very powerful; they allow sysadmins to create a single syslog.conf that can be 
used on all machines. 

Although multiple facilities and levels are allowed in a selector, there is no provi-
sion for multiple actions. To send a message to two places (such as to a local file 
and to a central logging host), you simply include two lines in the configuration 
file that have the same selectors.

Table 11.5 Syslog actions

Action Meaning

filename Appends the message to a file on the local machine 
@hostname Forwards the message to the syslogd on hostname 
@ipaddress Forwards the message to the syslogd on host ipaddress
| fifoname Writes the message to the named pipe fifoname a

user1,user2,… Writes the message to the screens of users if they are logged in
* Writes the message to all users who are currently logged in

a. See info mkfifo for more information (Linux versions of syslogd only).

  



ptg

Network logging client 349

Sy
sl

og

Because syslog messages can be used to mount a form of denial of service attack, 
the syslogd daemon on most Linux distributions does not accept log messages 
from other machines unless it is started with the -r flag. And by default, syslogd
also refuses to act as a third-party message forwarder; messages that arrive from 
one network host cannot be sent on to another. Use the -h flag to override this 
behavior. Edit the syslog startup scripts to make the change permanent. On 
RHEL, syslog configuration should be edited in /etc/sysconfig/syslog. 

Config file examples

Since it’s relatively easy to read a syslog.conf file, we do not review our example 
systems’ config files in detail; they’re all pretty straightforward. Instead, we look at 
some common ways that you might want to set up logging if you choose to depart 
from or expand on your system’s default.

Below are three sample syslog.conf files that correspond to a stand-alone ma-
chine on a small network, a client machine on a larger network, and the central 
logging host on that same large network. The central host is called netloghost.1

Stand-alone machine
A basic configuration for a stand-alone machine is shown below:

# syslog.conf file for small network or stand-alone machines

# emergencies: tell everyone who is logged on
*.emerg2 *
#  important messages
*.warning;daemon,auth.info;user.none /var/log/messages 
#  printer errors 
lpr.debug /var/log/lpd-errs

The first noncomment line writes emergency messages to the screens of all cur-
rent users. An example of emergency messages are those generated by shutdown
when the system is about to be turned off. 

The second line writes important messages to /var/log/messages. The info level is 
below warning, so the daemon,auth.info clause includes additional logging from 
passwd, su, and daemon programs. The third line writes printer error messages to 
/var/log/lpd-errs.

Network logging client
A network client forwards serious messages to a central logging machine, as 
shown in the example on the next page.

1. More accurately, it uses “netloghost” as one of its hostname aliases. This setup allows the identity of 
the log host to be modified with little reconfiguration. An alias can be added in /etc/hosts or set up 
with a CNAME record in DNS. See page 585 for more information about DNS CNAME records.

2. Unless users running X have the xconsole program running, they won’t get these messages.

  



ptg

350 Chapter 11 Syslog and Log Files

# syslog.conf file for nonmaster machines

# Emergencies: tell everyone who is logged on
*.emerg;user.none *

# Forward important messages to the central logger
*.warning;lpr,local1.none @netloghost 
daemon,auth.info @netloghost

# Send some local stuff to the central logger too 
local2.info;local7.debug @netloghost

# Keep printer errors local 
lpr.debug /var/log/lpd-errs

# sudo logs to local2 - keep a copy here too 
local2.info /var/log/sudo.log

# Keep kernel messages local 
kern.info /var/log/kern.log

This configuration does not keep much log information locally. It’s worth men-
tioning that if netloghost is down or unreachable, log messages will be irretriev-
ably lost. You may want to keep local duplicates of important messages to guard 
against this possibility.

At a site with local software installed, lots of messages can be logged inappropri-
ately to facility user, level emerg. In this example, user/emerg has been specifically 
excluded with the user.none clause in the first noncomment line. 

See page 113 for 
more information 
about sudo.

The second and third lines forward all important messages to the central logging 
host; messages from the printing system and the campus-wide card access system 
(local1) are explicitly excluded. The fourth line forwards a subset of local logging 
information to netloghost as well. The last three entries keep local copies of 
printer errors, sudo messages, and kernel messages.

Central logging host
This example is for netloghost, the central, secure logging host for a moderate-
sized network of about 7,000 hosts.

# syslog.conf file for master logging host

# Emergencies to the console and log file, with timing marks
*.emerg /dev/console
*.err;kern,mark.debug;auth.notice /dev/console
*.err;kern,mark.debug;user.none /var/log/console.log 
auth.notice /var/log/console.log

# Send non-emergency messages to the usual log files
*.err;user.none;kern.debug /var/log/messages 
daemon,auth.notice;mail.crit /var/log/messages
lpr.debug /var/log/lpd-errs
mail.debug /var/log/mail.log

  



ptg

Alternatives to syslog 351

Sy
sl

og

# Local authorization messages, e.g., sudo and npasswd 
local2.debug /var/log/sudo.log
local2.alert /var/log/sudo-errs.log
auth.info /var/log/auth.log

# Other local stuff 
local0.info /var/adm/nbl.log
local4.notice /var/admlog/da.log
local6.debug /var/adm/annex-isn.log
local7.debug /var/admlog/tcp.log

# Local messages (the default if no facility is specified) 
user.info /var/admlog/user.log

Messages arriving from local programs and syslogds on the network are written 
to log files. In some cases, the output from each facility is put into its own file.

The central logging host generates the time stamp for each message as it writes the 
message out. The time stamps do not reflect the time on the originating host. If 
you have machines in several time zones or your system clocks are not synchro-
nized, the time stamps can be somewhat misleading.

Syslog debugging

The logger command is useful for submitting log entries from shell scripts. You 
can also use it to test changes in syslogd’s configuration file. For example, if you 
have just added the line

local5.warning          /tmp/evi.log

and want to verify that it is working, run
hp-ux$ logger -p local5.warning "test message"

A line containing “test message” should be written to /tmp/evi.log. If this doesn’t 
happen, perhaps you forgot to create the evi.log file, to give the file appropriate 
permissions, or to send syslogd a hangup signal. Or perhaps you’ve used spaces 
instead of tabs?

Alternatives to syslog

Although syslog has long been the reigning logging system for UNIX and Linux, 
several alternatives have been developed in an attempt to address some of syslog’s 
shortcomings. One of these, syslog-ng (syslog, next generation), is now used on 
SUSE systems by default. From a configuration standpoint it is quite different 
from the standard syslog, and we do not describe it in detail in this book. It’s 
available from balabit.com if you would like to try it on a non-SUSE system.

Syslog-ng adds additional configuration facilities, filtering based on message con-
tent, message integrity, and better support for firewall restrictions when messages 
are forwarded over the network.

  



ptg

352 Chapter 11 Syslog and Log Files

SDSC Secure Syslog (from the San Diego Supercomputing Center) is also known 
as high-performance syslog. It provides a forensically sound auditing system by 
implementing the specifications of RFC3195 (Reliable Delivery for syslog). It was 
designed with high-traffic sites in mind and contains a number of performance 
optimizations. You can download the source code from SourceForge:

sourceforge.net/projects/sdscsyslog

Rsyslog, another powerful, next-generation alternative, is the default shipped with 
several popular Linux distributions, including Fedora. Rsyslog is multithreaded 
and aims for high reliability and robust security. It supports logging over TCP (as 
opposed to UDP, used by the original syslog) and can use SSL, which may be 
required at some sites for regulatory reasons. Rsyslog can even log to databases. 
Learn more at rsyslog.com. 

Linux kernel and boot-time logging

The kernel and the system startup scripts present some special challenges in the 
domain of logging. In the case of the kernel, the problem is to create a permanent 
record of the boot process and the operation of the kernel without building in 
dependencies on any particular filesystem or filesystem organization. In the case 
of the startup scripts, the challenge is to capture a coherent narrative of the startup 
procedure without permanently tying any of the system daemons to a startup log 
file, interfering with any program’s own logging, or gooping up the startup scripts 
with double entries or output redirections.

Kernel logging is dealt with by having the kernel store its log entries in an internal 
buffer of limited size. The buffer is large enough to accommodate messages about 
all the kernel’s boot-time activities. Once the system has come all the way up, a 
user process accesses the kernel’s log buffer and makes a final disposition of its 
contents. The dmesg command is the best way to view the kernel buffer; the out-
put even contains messages that were generated before init started.

The kernel’s ongoing logging is handled by a daemon called klogd. The functions 
of klogd are actually a superset of those of dmesg; in addition to dumping the 
kernel log and exiting, it can also read messages out of the kernel buffer as they 
are generated and pass them along to a file or to syslog. In normal operation, 
klogd runs in this latter mode. Syslog processes the messages according to the 
instructions for the “kern” facility. They are typically sent to /var/log/messages or 
/var/log/syslog.

Our example distributions’ startup scripts do not use dmesg’s -c flag when they 
make their initial dump of log messages, so the kernel’s message buffer is read but 
not reset. When klogd starts up, it finds the same set of messages seen by dmesg
in the buffer and submits them to syslog. For this reason, some entries appear in 
both the dmesg or boot.msg file and in the system’s primary syslog file.

  



ptg

AIX logging and error handling 353

Sy
sl

og

Another issue in kernel logging is the appropriate management of the system con-
sole. As the system is booting, it’s important for all the output to come to the 
console. However, once the system is up and running, console messages may be 
more an annoyance than a help, particularly if the console is used for logins.

Both dmesg and klogd let you set the kernel’s console logging level with a com-
mand-line flag. For example:

ubuntu$ sudo dmesg -n 2

Level 7 is the most verbose and includes debugging information. Level 1 includes 
only panic messages (the lower-numbered levels are the most severe). All kernel 
messages continue to go to the central buffer (and to syslog) regardless of whether 
they are forwarded to the console.

The kernel provides some control files underneath the /proc/sys directory to al-
low floods of repeated log messages to be choked off at the source. See the section 
Tuning Linux kernel parameters starting on page 421 for more information about 
the general mechanism through which kernel parameters are set. The specific 
control files are /proc/sys/kernel/printk_ratelimit, which specifies the minimum 
number of seconds that must elapse between kernel messages once the choke has 
been activated (default 5), and /proc/sys/kernel/printk_ratelimit_burst, which 
specifies how many grouped messages to let through before activating the choke 
(default 10). These parameters are advisory, so they do not absolutely guarantee 
that a heavy flow of messages will be stanched. They also apply only to messages 
created in the kernel with the printk_ratelimit() function.

Logging for the system startup scripts is unfortunately not as well managed as 
kernel logging. 

Red Hat Enterprise Linux uses an initlog command to capture the output of star-
tup commands and submit it to syslog. Unfortunately, initlog must be mentioned 
explicitly whenever a command is run, so the information comes at the cost of 
some complexity. Messages eventually make their way to /var/log/boot.log.

Our other example systems make no coherent effort to capture a history of the 
startup scripts’ output. Some information is logged by individual commands and 
daemons, but much goes unrecorded.

11.3 AIX LOGGING AND ERROR HANDLING

AIX manages its logs differently from other UNIX systems. Although syslog is 
present in the default installation, it is not configured. Instead, AIX relies on a 
proprietary daemon called errdemon for system error reporting. errdemon is in-
tended to handle system diagnostic messages (such as notifications of hardware 
failures or full filesystems) but not to handle logging for individual daemons. 
Thus, the prudent system administrator will rely on the wisdom of errdemon for 

  



ptg

354 Chapter 11 Syslog and Log Files

AIX-specific diagnostics and on a custom-configured syslog for centralized appli-
cation logs.

errdemon starts at system boot in /etc/rc.bootc and reads error events from the 
special file /dev/error. Both the kernel and some AIX userland applications write 
errors to this file according to predefined templates in /dev/adm/ras/errtmplt. 
errdemon compares new entries to the templates and writes the output in a bi-
nary format to the file /var/adm/ras/errlog. AIX loves binary formats!

errlog is a circular file, so it overwrites the first event with the most recent when 
the file reaches its maximum size, 1MB by default. errdemon also buffers events 
that haven’t yet been written to the log. The settings can be viewed or adjusted by 
running /usr/lib/errdemon directly. See the man page for invocation details.

Because errlog is not a text file, you use another proprietary tool called errpt to 
read its contents. Without any arguments, errpt prints a list of all events in the log 
in a short form. Add the -a argument for detailed output. A sample entry from our 
AIX systems looks like this:

aix$ errpt -a 
---------------------------------------------------------------------------
LABEL: DMPCHK_NOSPACE
IDENTIFIER: F89FB899

Date/Time: Sat Mar 21 15:00:01 MST 2009 
Sequence Number: 224
Machine Id: 0001A4C4D700
Node Id: ibm
Class: O
Type: PEND
WPAR: Global
Resource Name: dumpcheck

Description
The copy directory is too small.

Probable Causes 
There is not enough free space in the file system containing the copy 
directory to accommodate the dump.

Recommended Actions 
Increase the size of that file system.

Detail Data
File system name 
/var/adm/ras

Current free space in kb 
108476

Current estimated dump size in kb 
197836

---------------------------------------------------------------------------
…

  



ptg

Syslog configuration under AIX 355

Sy
sl

og

This particular event indicates that the system dump will not fit in the specified 
destination filesystem. Most of the section labels are self-explanatory, but see man 
errpt for further details.

Although errdemon is a useful source of log data on a stand-alone AIX system, its 
use can interfere with a more broadly defined enterprise logging strategy. You 
may have to do some scripting to capture errdemon events in syslog format or to 
forward them for central archiving. IBM’s extensive on-line documentation also 
shows how to send error reports to syslog through the Object Data Manager.

You may need to delete entries from the error logs, and IBM provides the errclear
command for this purpose. errclear deletes all messages older than the number of 
days specified as an argument. For example, errclear 7 deletes error messages 
older than one week.

Run errclear 0 to clear all error messages or errclear -j identifier 0 to clear a spe-
cific message. 

Syslog configuration under AIX

By default, AIX’s syslog.conf file consists of a long list of comments and no pars-
able configuration data. It’s up to the system administrator to configure syslog in a 
manner consistent with settings on other systems. 

Always the renegade, AIX provides a native log rotation facility within syslogd. 
Logs can be rotated at regular intervals or rotated when they reach a given size. 
They can optionally be compressed and archived to a new location. Although we 
appreciate the convenience of these features, they cannot manage files that are 
outside syslog’s control, such as logs that are generated by non-syslog-aware appli-
cations. To implement comprehensive log management, you’ll probably need a 
combination of the native syslogd rotation features and one of the tools covered 
later in this chapter.

To replicate a Linux-style syslog configuration, append the following lines to 
/etc/syslog.conf and run refresh -s syslogd. Don’t forget to use tabs in place of 
spaces and to create each file in advance.

mail.debug /var/log/mail 
user.debug /var/log/user 
kern.debug /var/log/kern 
syslog.debug /var/log/messages 
daemon.debug /var/log/daemon 
auth.debug /var/log/secure 
local2.debug /var/log/sudo

You specify log rotation in syslog.conf by appending the term rotate to the end of 
a configuration line. Logs can be rotated when they reach a given file size or after 
a given time increment. If you set up both size and time constraints, syslogd 

  



ptg

356 Chapter 11 Syslog and Log Files 

rotates the file as soon as either criterion is met. Furthermore, files can be com-
pressed or archived to a new location. Table 11.6 summarizes these options.

For example, here are some syslog.conf configuration lines from the previous ex-
ample that have been expanded to include rotation options:

# Rotate at 500MB, keep 4 files 
mail.debug /var/log/mail  rotate size 500m files 4

# Rotate after 1 week, keep 10 files, compress the file 
user.debug /var/log/user rotate files 10 time 1w compress

# Rotate after 100KB or 2 months, whichever occurs first, keeping 4 files 
kern.debug /var/log/kern rotate size 100k files 4 time 2m

# Keep 1 year of weekly logs, compress the file, move the file to /logs 
syslog.debug /var/log/messages rotate files 52 time 1w compress archive /logs 

11.4 LOGROTATE: MANAGE LOG FILES

Erik Troan’s excellent logrotate utility implements a variety of log management 
policies and is standard on all our example Linux distributions. It also runs on 
Solaris, HP-UX, and AIX, but you’ll have to install it. We prefer logrotate to the 
inferior logadm package that’s provided with Solaris.

A logrotate configuration file consists of a series of specifications for groups of 
log files to be managed. Options that appear outside the context of a log file spec-
ification (such as errors, rotate, and weekly in the following example) apply to all 
following specifications. They can be overridden within the specification for a 
particular file and can also be respecified later in the file to modify the defaults.

Here’s a somewhat contrived example that handles several different log files:
# Global options 
errors errors@book.admin.com 
rotate 5 
weekly

Table 11.6 AIX log rotation options in syslog.conf

Option Meaning

rotate Indicates that the specified file should be rotated
size N[km]a Rotates when the file reaches the specified sizeb

files N Keeps the specified number of versions in the rotation
time N[hdwmy]c Rotates after the specified time interval has elapsedb

compress Compresses the rotated file with compress

archive location Moves the rotated file to location

a. k = kilobytes, m = megabytes
b. There must be no space between N and the unit. For example, 3m is correct, but 3 m is not.
c. h = hours, d = days, w = weeks, m = months, y = years

  



ptg

logrotate: manage log files 357

Sy
sl

og

# Logfile rotation definitions and options 
/var/log/messages {

postrotate 
/bin/kill -HUP `cat /var/run/syslogd.pid`

endscript 
} 
/var/log/samba/*.log {

notifempty 
copytruncate 
sharedscripts 
postrotate

/bin/kill -HUP `cat /var/lock/samba/*.pid` 
endscript

}

This configuration rotates /var/log/messages every week. It keeps five versions of 
the file and notifies syslogd each time the file is reset. Samba log files (of which 
there may be several) are also rotated weekly, but instead of being moved aside 
and restarted, they are copied and then truncated. The Samba daemons are sent 
HUP signals only after all log files have been rotated.

Table 11.7 lists the most useful logrotate.conf options.

logrotate is normally run out of cron once a day. Its standard configuration file is 
/etc/logrotate.conf, but multiple configuration files (or directories containing 
configuration files) can appear on logrotate’s command line. This feature is used 
to great effect by Linux distributions, which define the /etc/logrotate.d directory 
as a standard place for logrotate config files. logrotate-aware software packages 
(of which there are many) can drop in log management instructions as part of 
their installation procedure, greatly simplifying administration.

Table 11.7 logrotate options

Option Meaning

compress Compresses all noncurrent versions of the log file
daily, weekly, monthly Rotates log files on the specified schedule
delaycompress Compresses all versions but current and next-most-recent
endscript Marks the end of a prerotate or postrotate script
errors emailaddr Emails error notifications to the specified emailaddr
missingok Doesn’t complain if the log file does not exist
notifempty Doesn’t rotate the log file if it is empty
olddir dir Specifies that older versions of the log file be placed in dir
postrotate Introduces a script to run after the log has been rotated
prerotate Introduces a script to run before any changes are made
rotate n Includes n versions of the log in the rotation scheme
sharedscripts Runs scripts only once for the entire log group
size logsize Rotates if log file size > logsize (e.g., 100K, 4M)

  



ptg

358 Chapter 11 Syslog and Log Files

In addition to logrotate, Ubuntu provides a simpler program called savelog that 
manages rotation for individual files. It’s more straightforward than logrotate and 
doesn’t use (or need) a config file. Some packages prefer to use their own savelog
configurations rather than logrotate.

11.5 CONDENSING LOG FILES TO USEFUL INFORMATION

Syslog is great for sorting and routing log messages, but when all is said and done, 
its end product is still a bunch of log files. While they may contain all kinds of 
useful information, those files aren’t going to come and find you when something 
goes wrong. Another layer of software is needed to analyze the logs and make sure 
that important messages don’t get lost amid the chatter.

A variety of free tools are available to fill this niche, and most of them are remark-
ably similar: they scan recent log entries, match them against a database of regular 
expressions, and process the important messages in some attention-getting way. 
Tools differ primarily in their degree of flexibility and in the size of their off-the-
shelf database of patterns.

Two of the more commonly used log postprocessors are Todd Atkins’ swatch and 
Craig Rowland’s logcheck. Both are available from sourceforge.net (logcheck
comes with the sentrytools package: sourceforge.net/projects/sentrytools). 

swatch is a Perl script that gets its marching orders from a configuration file. The 
configuration syntax is fairly flexible, and it provides access to the full pattern-
matching mojo of Perl. While swatch can process an entire file in a single bound, 
it’s primarily intended to be left running so that it can review new messages as 
they arrive, a la tail -f. A disadvantage of swatch is that you must build your own 
configuration essentially from scratch; it doesn’t know about specific systems and 
the actual log messages they might generate.

logcheck is a more basic script written in sh. The distribution also includes a C 
program that logcheck uses to help it record its place within a log file. logcheck
knows how far it has read in a log file, so there is perhaps less chance of a message 
slipping by at startup or shutdown time. In addition, logcheck can run at intervals 
from cron rather than running continuously.

logcheck comes with sample databases for several different versions of UNIX and 
Linux. Even if you don’t want to use the actual script, it’s worth looking over the 
patterns to see if there are any you might want to steal for your own use.

These tools have the disadvantage of working on only a single log file at a time. If 
your syslog configuration sorts messages into many different files, you might 
want to duplicate some of the messages into a central file that is frequently trun-
cated or rotated, then use that summary file to feed a postprocessing script. That’s 
easier than setting up a complicated network of scripts to handle multiple files.

  



ptg

Logging policies 359

Sy
sl

og

Splunk (splunk.com) unites log and status messages from many different sources 
into a single, searchable message database. A basic version is free.

SEC, the Simple Event Correlator, is a different type of log management tool. It’s a 
Perl script that reads lines from files, named pipes, or standard input and converts 
them into various classes of “input events” by matching them to regular expres-
sions. Configuration rules then specify how input events should be transmogri-
fied into output events such as the execution of a particular script or the emission 
of a message to a specified pipe or file.

The SEC distribution is available from kodu.neti.ee/~risto/sec and contains an ex-
tensive man page with examples. Additional examples are available at the web site. 
SEC isn’t as “off the shelf ” as the other tools listed above, but it’s a good base on 
which to build a custom log analysis tool.

No matter what system you use to scan log files, there are a couple of things you 
should be sure to check for:

• Most security-related messages should receive a prompt review. It’s often 
helpful to monitor failed login, su, and sudo attempts in order to catch 
potential break-ins before they happen. If someone has just forgotten his 
password (as is usually the case), a proactive offer of help will make a 
good impression and cement your reputation for clairvoyance.

• Messages about disks that have filled up should be flagged and acted on 
immediately. Full disks often bring useful work to a standstill.

• Events that are repeated many times deserve attention, if only in the 
name of hygiene. 

11.6 LOGGING POLICIES

Over the years, log events have emigrated from the realm of system administra-
tion minutia and become a formidable enterprise event management challenge. 
Security incident handling, IT standards, and legislative edicts may all require a 
holistic and systematic approach to the management of log data.

The log data from a single system has a relatively inconsequential effect on stor-
age, but a centralized register of events from hundreds of servers and dozens of 
applications is a different story entirely. Thanks in large part to the mission-criti-
cal nature of web services, application and daemon logs have become as impor-
tant as those generated by the operating system.

Keep these questions in mind when designing your logging strategy:

• How many systems and applications will be included?
• What type of storage infrastructure is available?
• How long must logs be retained?
• What types of events are important?

  



ptg

360 Chapter 11 Syslog and Log Files

The answers to these questions depend on business requirements and on any ap-
plicable standards or regulations. For example, one standard from the Payment 
Card Industry Security Standards Council requires that logs be retained on an 
easy-access medium (e.g., a locally mounted hard disk) for three months and ar-
chived to long-term storage for at least one year. The same standard also includes 
specific requirements about the types of data that must be included.

However you answer the questions above, be sure to gather input from your infor-
mation security and compliance departments if your organization has them.

UNIX systems and applications have highly configurable log and audit settings. 
Depending on the usage volume, it may be necessary to tone down the verbosity 
of logs. Conversely, a sensitive or important application may require additional 
event-related data. For most applications, consider capturing at least the following 
information:

• Username or user ID
• Event success or failure
• Source address for network events
• Date and time (from an authoritative source, such as NTP)
• Sensitive data added, altered, or removed
• Event details

Most sites today are trending towards a centralized approach to log collection and 
analysis. Such centralization has multiple benefits: simplified storage require-
ments, simpler automated analysis and alerting, and improved security. Copying 
events to a central system also improves the integrity of the logs, since it is much 
harder for an attacker to cover his tracks.

See page 237 for 
more information 
about RAID.

A log server should have a carefully considered storage strategy. For example, logs 
may reside on a local RAID array for 30 days, a locally mounted SAN for an addi-
tional year, and finally be archived to tape for inclusion in the enterprise backup 
rotation for another three years. Storage requirements may evolve over time, and a 
successful implementation will adapt easily to these changing conditions.

Access to centralized log servers should be limited to high-level system adminis-
trators and to software and personnel involved with addressing compliance and 
security issues. These systems have no real role in the organization’s daily business 
beyond satisfying auditability requirements, so application administrators, end 
users, and the help desk have no business accessing them. Access to log files on 
the central servers should itself be logged.

Centralization takes work, and at smaller sites it may not represent a net benefit. 
We suggest twenty servers as a reasonable threshold for considering centraliza-
tion. Below that size, just ensure that logs are rotated properly and are archived 
frequently enough to avoid filling up a disk. Include log files in a monitoring solu-
tion that will alert you if a log file stops growing.

  



ptg

Exercises 361

Sy
sl

og

11.7 EXERCISES

E11.1 What are the main reasons for keeping old log files?

E11.2 What is the difference between lastlog and wtmp? What is a reason-
able rotation policy for each?

E11.3 Dissect and understand the following syslog.conf line:
*.notice;kern.debug;lpr.info;mail.crit;news.err /var/log/messages

Does it seem sensible?

E11.4 Look through your log files for entries from the SSH service. What 
events are logged when a login attempt is successful? What if a login 
attempt fails? What steps would you take to increase the logging ver-
bosity of the SSH daemon?

E11.5 Many IT industry standards and regulations impose logging or audit-
ing requirements. Choose one of these standards and discuss how you 
might tune a syslog configuration to achieve compliance. 

E11.6 Where would you find the boot log for your Linux machine? What 
issues affect logging at boot time? How does klogd solve these issues?

E11.7 Investigate the logging policy in use at your site, including the log file 
rotation policy. How much disk space is dedicated to logging? How 
long are log files kept? Can you foresee circumstances in which your 
site’s policy would not be adequate? What solution would you recom-
mend? (Requires root access.)

E11.8 Some log messages are extremely important and should be reviewed 
by an administrator immediately. What system could you set up to 
make sure that this happens as quickly as possible?

  



ptg

362

12 Software Installation and 
Management

The installation, configuration, and management of software is a large part of 
most sysadmins’ jobs. Administrators respond to installation and configuration 
requests from users, apply updates to fix security problems, and supervise transi-
tions to new software releases that may offer both new features and incompatibil-
ities. Generally speaking, administrators perform all of the following tasks:

• Automating mass installations of operating systems
• Maintaining custom OS configurations for the local environment
• Keeping systems and applications patched and up to date
• Managing add-on software packages

The process of configuring an off-the-shelf distribution or software package to 
conform to your needs (and to your local conventions for security, file placement, 
and network topology) is often referred to as “localization.” This chapter explores 
some techniques and applications that help reduce the pain of software installa-
tion and make these tasks scale more gracefully. We also discuss the installation 
procedure for each of our example operating systems, including some options for 
automated deployment that use common (platform-specific) tools.

Software

  



ptg

Netbooting PCs 363

So
ft

w
ar

e

12.1 INSTALLING LINUX AND OPENSOLARIS

Current Linux distributions all have straightforward procedures for basic installa-
tion. OpenSolaris has adopted many of the same conventions, so its installation 
process is similar, especially on PC hardware.

Installation typically involves booting from a DVD, answering a few basic ques-
tions, optionally configuring disk partitions, and then telling the installer which 
software packages to install. Some systems, such as Ubuntu and OpenSolaris, in-
clude a “live” option on the installation media that lets you run the operating sys-
tem without actually installing it on a local disk. This used to be a big deal, but 
these days it’s becoming a standard feature of most distributions.

Installing the base operating system from local media is fairly trivial thanks to the 
GUI applications that shepherd you through the process. Table 12.1 lists pointers 
to detailed installation instructions for each of our example distributions.

Netbooting PCs

If you have to install the operating system on more than one computer, you will 
quickly reach the limits of interactive installation. It’s time consuming, error 
prone, and boring to repeat the standard installation process on hundreds of sys-
tems. You can minimize human errors by using a localization checklist, but even 
this measure does not remove all potential sources of variation. 

To alleviate some of these problems, most systems include network installation 
options that simplify large-scale deployments. The most common methods use 
DHCP and TFTP to boot the system sans physical media, then retrieve the instal-
lation files from a network server through HTTP, NFS, or FTP. Network installa-
tions are appropriate for sites with more than ten or so systems.

The Preboot eXecution Environment, also known as PXE, is a standard from Intel 
that allows systems to boot from a network interface. PXE acts like a miniature OS 
sitting in a ROM on your network card. It exposes its network capabilities through 
a standardized API for the system BIOS to use. This cooperation makes it possible 
for a single boot loader to netboot any PXE-enabled PC without the need to sup-
ply special drivers for each network card.

Table 12.1 Installation documentation for Linux and OpenSolaris

Distribution Documentation source

Red Hat Enterprise Linux redhat.com/docs/manuals/enterprise
SUSE en.opensuse.org/Installation
Ubuntu help.ubuntu.com/community/Installation
OpenSolaris dlc.sun.com/osol/docs/content/dev/getstart

  



ptg

364 Chapter 12 Software Installation and Management

See page 469 for 
more information 
about DHCP.

The external (network) portion of the PXE protocol is straightforward and is sim-
ilar to the netboot procedures used on other architectures. A host broadcasts a 
DHCP “discover” request with the PXE flag turned on, and a DHCP server or 
proxy responds with a DHCP packet that includes PXE options (the name of a 
boot server and boot file). The client downloads its boot file by using TFTP (or, 
optionally, multicast TFTP) and then executes it. 

Setting up PXE for Linux

Several PXE-based netboot systems exist, but the one that works best at this time 
is H. Peter Anvin’s PXELINUX, which is part of his SYSLINUX suite of boot load-
ers for every occasion. Check it out at syslinux.zytor.com.

PXELINUX provides a boot file that you install in your server’s tftpboot directory 
and that is downloaded to the booting PC when PXE goes into action. The PC 
then executes the boot file and downloads its configuration from the server; the 
configuration specifies which kernel to use. This chain of events can occur with-
out intervention, or you can choose to create a custom boot menu. 

PXELINUX uses the PXE API for its downloads and is therefore hardware inde-
pendent all the way through the boot process. Despite the name, PXELINUX is 
not limited to booting Linux. It can boot other OSes and can even boot older 
image types (such as those made from floppy disks) if you use the MEMDISK 
kernel, which is also part of the SYSLINUX package. 

On the server side, ISC’s (the Internet Systems Consortium’s) DHCP server is 
your best bet for providing PXE information. See also the material at netboot.me 
and boot.kernel.org.

Netbooting non-PCs

PXE is an Intel product and is limited to IA-32 and IA-64 hardware. Other archi-
tectures have their own methods of booting over the net, and these are almost 
always more elegant than PXE. An interesting twist to the netboot story is that 
now that Linux has spread beyond the Intel architecture, many of these “dedi-
cated” UNIX systems now have the option of netbooting Linux instead of their 
native operating systems.

SPARC machines and most PowerPC boxes use Open Firmware, which is easy to 
netboot (type boot net).

IBM and HP systems also have netbooting capabilities, but the procedures are 
heavily dependent on the Network Installation Manager and Ignite-UX software 
packages, respectively. We cover these tools below, but only in the context of mass 
system installations. Refer to the documentation from IBM and HP for netboot 
specifics.

  



ptg

Setting up a Kickstart configuration file 365

So
ft

w
ar

e

Using Kickstart: the automated installer for Red Hat Enterprise Linux

Kickstart is Red Hat’s tool for performing automated installations. It is really just a 
scripting interface to the standard Red Hat installer, Anaconda, and it is depen-
dent on both the base distribution and RPM packages. Kickstart is flexible and 
quite smart about autodetecting the system’s hardware.

Setting up a Kickstart configuration file
Kickstart’s behavior is controlled by a single configuration file, generally called 
ks.cfg. The format of this file is straightforward. If you’re visually inclined, Red 
Hat provides a handy GUI tool called system-config-kickstart that lets you point 
and click your way to ks.cfg nirvana.

The ks.cfg file is also quite easy to generate programmatically. For example, sup-
pose that you wanted to install a different set of packages on servers and clients 
and that you also have two offices that require slightly different customizations. 
You could write a small Perl script that used a master set of parameters to generate 
a config file for the servers and clients in each office. Changing the complement of 
packages would become just a matter of changing this one Perl script rather than 
changing every config file. There may even be some cases in which you need to 
generate an individualized config file for each host. In this situation, you would 
certainly want the files to be automatically generated. 

A Kickstart config file consists of three ordered parts. The first part is the com-
mand section, which specifies options such as the language, keyboard, and time 
zone. This section also specifies the source of the distribution with the url option 
(in the following example, it’s a host called installserver).

Here’s an example of a complete command section:
text 
lang en_US # lang is used during the installation...
langsupport en_US # ...and langsupport at run time. 
keyboard us # Use an American keyboard. 
timezone --utc America/EST # --utc means hardware clock is on UTC (GMT) 
mouse 
rootpw --iscrypted $1$NaCl$X5jRlREy9DqNTCXjHp075/ 
reboot # Reboot after installation. Always a good idea. 
bootloader --location=mbr # Install default boot loader in the MBR. 
install # Install a new system instead of upgrading. 
url --url http://installserver/redhat 
clearpart --all --initlabel # Clear all existing partitions. 
part / --fstype ext3 --size 4096 
part swap --size 1024 
part /var --fstype ext3 -size 1 --grow 
network --bootproto dhcp 
auth --useshadow --enablemd5 
firewall --disabled 
xconfig --defaultdesktop=GNOME --startxonboot --resolution 1280x1024 

--depth 24

  



ptg

366 Chapter 12 Software Installation and Management

Kickstart uses graphical mode by default, which defeats the goal of unattended 
installation. The text keyword at the top of the example fixes this.

The rootpw option sets the new machine’s root password. The default is to specify 
the password in cleartext, which presents a serious security problem. You should 
always use the --iscrypted flag to specify a pre-encrypted password. Password en-
tries from an /etc/shadow file work fine for the encrypted password, or you can 
try the /sbin/grub-md5-crypt tool on an already built system.

The clearpart and part directives specify a list of disk partitions with sizes. You 
can use the --grow option to ask one of the partitions to expand to fill any remain-
ing space on the disk. This feature makes it easy to accommodate systems that 
have different sizes of hard disk. Advanced partitioning options, such as the use of 
LVM, are supported by Kickstart but not by the system-config-kickstart tool. Re-
fer to Red Hat’s on-line documentation for full disk layout options.

The second section is a list of packages to install, beginning with a %packages
directive. The list can contain individual packages, collections such as @ GNOME, 
or the notation @ Everything to include the whole shebang. When selecting indi-
vidual packages, specify only the package name, not the version or the .rpm ex-
tension. Here’s an example:

%packages 
@ Networked Workstation 
@ X Window System 
@ GNOME 
mylocalpackage

In the third section of the Kickstart configuration file, you can specify arbitrary 
shell commands for Kickstart to execute. There are two possible sets of com-
mands: one introduced with %pre that runs before installation, and one intro-
duced with %post that runs afterward. Both sections have some restrictions on 
the ability of the system to resolve hostnames, so it’s safest to use IP addresses if 
you want to access the network. In addition, the postinstall commands are run in 
a chrooted environment, so they cannot access the installation media.

Building a Kickstart server
Kickstart expects its installation files to be laid out as they are on the distribution 
CD, with packages stored in a directory called RedHat/RPMS on the server. You 
can easily add your own packages to this directory. There are, however, a couple of 
issues to be aware of.

First, if you tell Kickstart to install all packages (with an @ Everything in the pack-
ages section of your ks.cfg), it installs the add-on packages in alphabetical order 
after the base packages have been laid down. If your package depends on other 
packages that are not in the base set, you may want to call your package some-
thing like zzmypackage.rpm to make sure that it gets installed last.

  



ptg

Using AutoYaST: SUSE’s automated installation tool 367

So
ft

w
ar

e

If you don’t want to install all packages, either list your supplemental packages 
individually in the %packages section of the ks.cfg file or add your packages to 
one or more of the collection lists. Collection lists are specified by entries such as 
@ GNOME and stand for a predefined set of packages whose members are enu-
merated in the file RedHat/base/comps on the server. Unfortunately, the comps
file format is not well documented. The collections are the lines that begin with 0 
or 1; the number specifies whether the collection is selected by default. In general, 
it’s not a good idea to tamper with the standard collections. We suggest that you 
leave them as Red Hat defined them and explicitly name all your supplemental 
packages in the ks.cfg file.

Pointing Kickstart at your config file
Once you’ve created a config file, you have a couple of ways to get Kickstart to use 
it. The officially sanctioned method is to boot with a DVD and ask for a Kickstart 
installation by specifying linux ks at the initial boot: prompt. If you don’t specify 
additional arguments, the system determines its network address by using DHCP. 
It then obtains the DHCP boot server and boot file options, attempts to mount the 
boot server with NFS, and uses the value of the boot file option as its Kickstart 
configuration file. If no boot file has been specified, the system looks for a file 
called /kickstart/host_ip_address-kickstart.

Alternatively, you can tell Kickstart to get its configuration file in some other way 
by providing a path as an argument to the ks option. There are several possibili-
ties. The instruction

boot: linux ks=http:server:/path

tells Kickstart to use HTTP to download the file instead of NFS. Using ks=floppy
tells Kickstart to look for ks.cfg on a local floppy drive.

To eliminate the use of boot media entirely, you’ll need to graduate to PXE. See 
page 363 for more information about that.

Using AutoYaST: SUSE’s automated installation tool

YaST2 is SUSE’s all-in-one installation and configuration tool. It comes with a 
nice GUI and is fun to use when installing a single system. AutoYaST, its auto-
mated equivalent, is the most powerful automated installation software of all the 
distributions described in this book. You can download detailed documentation 
from suse.com/~ug/autoyast_doc.

SUSE splits the autoinstallation process into three phases: preparation, installa-
tion, and configuration. Initial preparation is performed with the YaST2 Auto-
YaST module:

suse$ /sbin/yast2 autoyast

This module helps you define the details of your desired setup. The result of 
running it is an XML control file that tells the installer how to configure a SUSE 

  



ptg

368 Chapter 12 Software Installation and Management

system. The structure of the file is described in the on-line documentation men-
tioned above.

A couple of shortcuts can speed the configuration process. The AutoYaST module 
can read Kickstart configuration files to help you upgrade from “legacy” systems. 
If you want to duplicate the configuration of the machine you are currently work-
ing on, an option automates this as well.

To perform an actual installation, you need three network services:

• A DHCP server on the same subnet as the machine you want to set up
• A SUSE installation server or package repository
• A server that provides the configuration information for the installation

The last of these servers can supply the configuration files through your choice of 
HTTP, NFS, or TFTP.

In the most basic setup, you produce a control file for each machine you want to 
install. AutoYaST uses the IP address of the client to determine which control file 
to use. This approach is not especially efficient if you have to install a series of 
slightly different machines. 

You can create more complex setups by using a rules system. Different control 
files are matched to the target system based on system properties such as disk size, 
host ID, or PCMCIA availability. The contents of all selected control files are 
merged, with the last control file overriding earlier ones in the case of conflicts. (A 
control file does not have to specify all aspects of a system’s configuration, so this 
merging does make sense.)

Control files can also define “classes” of machines based on hostnames or IP ad-
dress ranges, and each class may have yet another subsidiary control file associ-
ated with it. Machines can belong to zero, one, or multiple classes, and their con-
figurations will incorporate the contents of all the appropriate class control files.

Thanks to its ability to integrate the contents of multiple control files, the Auto-
YaST structure allows complex setups to be defined with minimal redundancy. 
The XML control files are somewhat cumbersome for humans to read, but the 
files are simple to process and edit with any of the commonly available XML pro-
cessing tools.

Automating installation with the Ubuntu installer

Ubuntu relies on the underlying Debian installer (named, appropriately enough, 
debian-installer) for “preseeding,” the recommended method for automated in-
stallation. As in Kickstart, a preconfiguration file answers questions asked by the 
installer. Preseeded installations cannot use existing partitions; they must either 
use existing free space or repartition the entire disk.

All the interactive parts of the Debian installer use the debconf utility to decide 
which questions to ask and what default answers to use. By providing debconf 

  



ptg

Automating installation with the Ubuntu installer 369

So
ft

w
ar

e

with a database of preformulated answers, you fully automate the installer. You 
can either generate the database by hand (it’s a text file), or you can perform an 
interactive installation on an example system and then dump out your debconf
answers with the following commands:

ubuntu$ sudo debconf-get-selections --installer > preseed.cfg 
ubuntu$ sudo debconf-get-selections >> preseed.cfg

Make the config file available on the net and then pass it to the kernel at installa-
tion time with the following kernel argument:

preseed/url=http://host/path/to/preseed

The syntax of the preseed file, usually called preseed.cfg, is simple and reminis-
cent of Red Hat’s ks.cfg. The sample below has been shortened for simplicity.

d-i debian-installer/locale string en_US 
d-i console-setup/ask_detect boolean false 
d-i console-setup/layoutcode string us 
d-i netcfg/choose_interface select auto 
d-i netcfg/get_hostname string unassigned-hostname 
d-i netcfg/get_domain string unassigned-domain 
d-i netcfg/wireless_wep string 
… 
d-i partman-auto/disk string /dev/sda 
d-i partman-auto/method string lvm 
d-i partman-auto/choose_recipe select atomic 
… 
d-i passwd/user-fullname string Daffy Duck 
d-i passwd/username string dduck 
d-i passwd/user-password-crypted password $1$/mkq9/$G//i6tN.x6670.95lVSM/ 
d-i user-setup/encrypt-home boolean false 
tasksel tasksel/first multiselect ubuntu-desktop 
d-i grub-installer/only_debian boolean true 
d-i grub-installer/with_other_os boolean true 
d-i finish-install/reboot_in_progress note 
xserver-xorg xserver-xorg/autodetect_monitor boolean true 
…

Several options in this list simply disable dialogs that would normally require user 
interaction. For example, the ask_detect disables keymap selection. Similarly, the 
wireless_wep option forestalls a question about WEP keys.

This configuration tries to identify a network interface that’s actually connected to 
a network (choose_interface select auto) and obtains network information 
through DHCP. The system hostname and domain values are presumed to be pro-
vided by DHCP and are not overridden. 

The partman* lines are evidence that the partman-auto package is being used for 
disk partitioning. You must specify a disk to install to unless the system has only 
one. In this case, /dev/sda is used.

  



ptg

370 Chapter 12 Software Installation and Management

Several partitioning “recipes” are provided:

• atomic puts all the system’s files in one partition.
• home creates a separate partition for /home.
• multi creates separate partitions for /home, /usr, /var, and /tmp.

You can create users through the passwd series of directives. As with Kickstart 
configuration, we strongly recommend providing MD5 hashed password values. 
Preseed files are often stored on HTTP servers and are apt to be discovered by 
curious users. (Of course, an MD5 password is still subject to brute force attack.)

The task selection (tasksel) option chooses the type of Ubuntu system to install. 
Available values include standard, ubuntu-desktop, dns-server, lamp-server, 
kubuntu-desktop, edubuntu-desktop, and xubuntu-desktop.

The sample preseed file shown above comes from the Ubuntu installation docu-
mentation found at help.ubuntu.com. The guide contains full documentation for 
the syntax and usage of the preseed file.

Although Ubuntu does not descend from the Red Hat lineage, it has grafted com-
patibility with Kickstart control files onto its own underlying installer. Ubuntu 
also includes the system-config-kickstart tool for creating these files. The Kick-
start functionality in Ubuntu’s installer is missing a number of important features 
that are supported by Red Hat’s Anaconda, such as LVM and firewall configura-
tion. We recommend sticking with the Debian installer unless you have a good 
reason to choose Kickstart.

12.2 INSTALLING SOLARIS

Like most hardware vendors, Sun ships new servers with Solaris preinstalled. Ad-
ministrators need only answer a few quick questions and reboot the server before 
the operating system is ready for localization. We’ve appreciated this preinstalla-
tion feature over the years because the Solaris installer was abysmal. The OpenSo-
laris team has seen the light, however, and the new installer (originally code 
named “Caiman”) is the bee’s knees.

The Solaris media is now a live CD that provides a “try before you buy” experi-
ence, similar to Ubuntu. The installation process is extremely straightforward and 
asks only a few questions before installing to the local drive. 

As in the Linux world, Solaris administrators need a way to implement mass de-
ployments over the network. Solaris systems running Intel processors can use 
PXE servers for network boot assistance, like their Linux-wielding siblings. Sys-
tems with SPARC processors use the OpenBoot PROM, aka OBP. The OBP is 
usually accessed with the STOP+A key combination on Sun keyboards. It identi-
fies and tests hardware, detects error conditions, and hands over the boot process 
to a more sophisticated boot loader, much like the BIOS on Intel systems. OBP 
has more features than most PC BIOSes, however, including built-in support for 
booting over a network.

  



ptg

Network installations with JumpStart 371

So
ft

w
ar

e

The network boot feature obtains an IP address through DHCP or RARP, then 
downloads a kernel via TFTP. When booted for automated installation, the kernel 
connects to an HTTP server or mounts an NFS share to download an appropriate 
system image and start the installation. 

Solaris offers two automatic network installation methods:

• JumpStart, the traditional installer service developed by Sun
• Automated Installer, a replacement service used by OpenSolaris

JumpStart is a veteran installation tool that first appeared in Solaris 2.6 and can be 
used in all releases through Solaris 10. Like most automatic installation methods, 
JumpStart uses a predefined answers file and rule-based client selection to make 
installation choices automatically. 

The biggest drawback to JumpStart is its poor scalability. Each client must be 
manually added to the install server by MAC address. Configuration files specify 
installation types, configuration values, and other parameters on a per-client ba-
sis. This gives the administrator power and flexibility, but it becomes cumber-
some when you have hundreds or thousands of systems.

The Automated Installer (sometimes referred to as AI) is the new kid on the 
block. Its primary development goals were improved scalability and reduced con-
figuration. AI has its roots in JumpStart but distances itself in part through the use 
of new terminology. At the time of this writing, AI remains a work in progress, 
but it’s more or less ready for production use. Notably, AI is limited to recent re-
leases of OpenSolaris and currently does not work at all with traditional Solaris.

Network installations with JumpStart

JumpStart’s original purpose was just to allow Solaris to be installed over a net-
work, but it does have some facilities for automatic installation as well. Over the 
years, Sun realized that more granular control was needed over the automated 
installations, so they added the advanced features that are now dubbed Custom 
JumpStart. An automated Custom JumpStart network installation involves several 
components:

• An install server that hosts the installation media. A single install server 
can host media for more than one installation type; for example, differ-
ent versions of Solaris or support for multiple platforms.

• A boot server that helps clients boot and points them toward the install 
servers. A boot server is only needed when the client system and the 
install server are on different subnets.

• A series of files that identify clients, answer configuration questions, and 
select packages.

• An NFS or HTTP server that shares packages, installation files, and con-
figuration information.

  



ptg

372 Chapter 12 Software Installation and Management

Server-side components can all be located on the same machine. The servers are 
release- and platform independent. For example, a SPARC-based Solaris 9 boot 
and install server can offer installation services for x86 Solaris 10 clients.

Since netboot parameters can be included in DHCP responses, you can use a 
DHCP server as an alternative to a dedicated JumpStart boot server. DHCP is 
probably the better option for x86 systems that use PXE booting and for client 
systems on a different subnet from the install server. We discuss only the same-
subnet case here; refer to docs.sun.com/doc/817-5504 for more details.

Setting up an install server is straightforward. The setup tools are on the Solaris 
CD or DVD media. Insert the Solaris medium into the drive on the install server 
and run commands such as the following to configure a simple install server:

solaris$ sudo mkdir -p /jumpstart/s10sparc 
solaris$ cd /cdrom/cdrom0/s0/Solaris_10/Tools 
solaris$ sudo ./setup_install_server /jumpstart/s10sparc 

Here, we transfer the SPARC installation files to the /jumpstart/s10sparc direc-
tory on the install server. The setup_install_server script copies the files and adds 
the appropriate hooks for network-based installations. If only CD media are avail-
able, use the add_to_install_server command to replicate the contents of multi-
ple CDs to the server.

Several files configure the automated installation tasks:

• A rules file identifies clients and assigns installation profiles.
• Individual profile files specify disk partition layout, packages to install, 

and other system details.
• A sysidcfg file provides preconfigured answers to installation questions.
• Optionally, shell scripts can run before and after the installation process.

When a client requests a network installation, JumpStart uses the rules file to 
identify it according to attributes such as the client’s hostname, subnet, or model. 
If the attributes match, JumpStart reads installation details from the appropriate 
profile, answers installation questions with sysidcfg, and executes any custom 
scripts before and after installation.

The first step in creating a JumpStart configuration is to create a directory to hold 
all the various configuration files:

solaris$ sudo mkdir -m 755 /jumpstart/config

This directory must be shared through NFS or HTTP so that clients can access it. 
For example, to share by NFS, add the line

share -F nfs /jumpstart

to /etc/dfs/dfstab and run shareall to initiate NFS service.

  



ptg

Network installations with JumpStart 373

So
ft

w
ar

e

The syntax of the rules file is simple but powerful. Systems can be identified by 
network, hostname, model, domain name, or by many other attributes.1 The fol-
lowing rules file specifies one profile for systems on the 192.168.10.0 network and 
another profile for SPARC systems that have 2–4 GiB of memory:

network 192.168.10.0 - profile_a -
arch sparc && memsize 2048-4096 begin profile_b end

In the network example, there are no custom scripts, and the installation profile 
called profile_a is used. The other example uses scripts called begin and end and 
a profile file named profile_b.

Profile files are also simple. Keywords (of which there are many) specify filesys-
tems and installation types. A sample profile might look something like this:

install_type initial_install 
system_type standalone 
partitioning default 
filesys any 512 swap # Specify size of /swap 
cluster SUNWCpall 

An initial_install starts with a clean slate, as opposed to performing an upgrade. 
This profile uses a default disk partitioning scheme. The cluster SUNWCpall line 
identifies an “installation group” of packages to install—in this case, all available 
Solaris packages.

The sysidcfg file, which preconfigures other aspects of the installation, consists of 
lines of the form

keyword=value

Keywords are case insensitive and, except for the network_interface keyword, 
can only be used once. If a keyword appears more than once, only the first in-
stance takes effect.

Some keywords depend on others and are enclosed in curly braces. These depen-
dent keywords cannot be used unless the corresponding parent (independent) 
keyword has also been specified. Table 12.2 on the next page lists the independent 
keywords. See the man page for sysidcfg for information about dependent key-
words.

As an alternative to sysidcfg, a limited set of preconfiguration options can also be 
specified through DHCP or a network service such as DNS. However, we recom-
mend the use of sysidcfg because of the limited number of options available 
through the alternative pathways.

The following sysidcfg example configures a system called sake that has one net-
work interface.

1. Google “Custom JumpStart and Advanced Installations” to access Sun’s guide, which contains full 
details on the rules and profiles files.

  



ptg

374 Chapter 12 Software Installation and Management

keyboard=US-English 
system_locale=en_US 
timezone=US/Mountain 
terminal=sun-cmd 
timeserver=time.nist.gov 
name_service=DNS {domain_name=solaris.booklab.atrust.com 

name_server=192.168.2.10 
search=atrust.com,booklab.atrust.com} 

nfs4_domain=dynamic 
root_password=m4QPOWNY 
network_interface=e1000g0 {hostname=sake 

default_route=192.168.10.254 
ip_address=192.168.10.15 
netmask=255.255.255.0}

If you’re distributing the same sysidcfg file to many clients, the IP address will of 
course need to differ between systems. You can leave out the network interface 
details to force them to be configured the first time the system boots. Or, to obtain 
a network address from DHCP rather than assigning it statically, use the line

network_interface=e1000g0 {dhcp}

After you’ve set up the rules file, the sysidcfg file, and your profiles, copy them all 
to the /jumpstart/config directory and run Sun’s check tool, which validates the 
configuration. The check script should be run from the config directory, and its 
use is mandatory; it creates a rules.ok file that certifies to JumpStart that the files 
are syntactically acceptable. Do not skip this step or JumpStart will not work.

solaris$ sudo cp /jumpstart/s10sparc/Solaris_10/Misc/jumpstart_sample/check 
/jumpstart/config

solaris $ sudo ./check
Validating rules... 
Validating profile profile_A...
The custom JumpStart configuration is ok.

Table 12.2 Independent keywords for the JumpStart sysidcfg file

Keyword What it specifies

keyboard Keyboard layout and language 
name_service Name service configuration for NIS, DNS, or LDAP 
network_interface Net connection details: hostname, IP address, etc. 
nfs4_domain Domain to use for NFS version 4 
root_password Encrypted root password 
security_policy Kerberos network authentication 
service_profile Available network services 
system_locale System language
terminal Terminal type 
timeserver Network date and time server
timezone System time zone

  



ptg

Network installations with the Automated Installer 375

So
ft

w
ar

e

At the end of the configuration process, your /jumpstart/config directory should 
look something like this:

solaris$ ls -l 
-rwxr-xr-x 1 root root 52152 Aug 23 19:42 check 
-rw-r--r-- 1 root root 413 Aug 23 19:29 profile_a
-rw-r--r-- 1 root root 48 Aug 23 19:13 rules
-rw-r--r-- 1 root root 62 Aug 23 19:43 rules.ok
-rw-r--r-- 1 root root 314 Aug 23 17:35 sysidcfg

You must add each client to be set up through JumpStart to the install server; this 
is a two-step process. First, add the MAC address of the client to the server’s 
/etc/ethers file. Second, run the add_install_client tool to add the client to the 
configuration database, as shown here:

solaris$ cd /jumpstart/s10sparc/Solaris_10/Tools 
solaris$ sudo ./add_install_client -c server:/jumpstart sake sun4v

In this case, the client called sake will use the JumpStart NFS share on the host 
server for installation. You start the actual network installation on the client from 
the OBP prompt:

ok boot net - install

This complicated process allows for highly customized and flexible installations at 
the expense of a few brain cells.

Network installations with the Automated Installer

The OpenSolaris developers assessed the complexity of JumpStart and decided to 
create a new deployment tool for OpenSolaris. This tool, the Automated Installer, 
mirrors the style of JumpStart in several ways but abstracts away some of the com-
plexity through a convenient tool called installadm. In its simplest form, server 
installation can now be achieved with a single command. All the files you need to 
get started with AI are contained in the SUNWinstalladm-tools package.

An AI server offers one or more “installation services,” each of which represents 
an OS installation option and is discovered by clients at boot time through multi-
cast DNS. Different services might serve different installation needs; for example, 
one service for site-specific web servers and another for database servers. 

Once a client locates an installer, it searches for a configuration, or manifest, that 
matches its system description. The client performs an installation with data from 
the manifest files. No client configuration is required, although custom client in-
stallations are available if you need them.

An AI server installation bundles all the necessary parts together in a convenient 
package, including DHCP and TFTP services. Be sure to check with your network 
administrator before adding these to the network.

  



ptg

376 Chapter 12 Software Installation and Management

Behind the scenes, AI creates three XML-formatted manifest files.

• The AI manifest file contains disk partitioning and packaging details, 
roughly equivalent to a JumpStart profile file.

• The SC manifest file contains system configuration details, such as time 
zone and account information, much like JumpStart’s sysidcfg file.

• The criteria manifest file matches the other two manifest files to client 
devices, just like the rules file in JumpStart.

If you find XML intellectually stimulating, you can edit the manifests by hand to 
create custom configurations. Normally, you just run installadm to add, remove, 
enable, disable, and list new installation services and to create custom client con-
figurations. 

For example, the following installadm command creates a new installation ser-
vice that you can use to install a client. In this example, the OpenSolaris 0906 
release ISO image is used as an installation source. The -c 10 option makes the 
DHCP server offer up to 10 dynamic addresses starting at 192.168.1.200. The in-
stallation image is copied to /export/install.

solaris$ sudo installadm create-service -s ~/osol-0906-x86.iso 
-i 192.168.1.200 -c 10 /export/install

Setting up the target image at /export/install ...
Warning: Using default manifest </usr/share/auto_install/default.xml> 
Registering the service _install_service_46501._OSInstall._tcp.local 
Creating DHCP Server 
Created DHCP configuration file.
Created dhcptab.
Added "Locale" macro to dhcptab.
Added server macro to dhcptab - opensolaris.
DHCP server started. 
dhtadm: Unable to signal the daemon to reload the dhcptab 
Added network macro to dhcptab - 192.168.1.0.
Created network table. 
adding tftp to /etc/inetd.conf 
Converting /etc/inetd.conf 
copying boot file to /tftpboot/pxegrub.I86PC.OpenSolaris-1 
Service discovery fallback mechanism set up

To install the client, perform a network boot as usual. The server uses the pre-
defined rules to pick an installation image, download it to the client, and start the 
installation.

Automated Installer is changing rapidly. After installing the package, refer to 
/usr/share/doc/auto_install/index.html for current details.

  



ptg

Installing HP-UX 377

So
ft

w
ar

e

12.3 INSTALLING HP-UX

As a server-oriented operating system aimed almost exclusively at large applica-
tions that require a lot of heavy lifting, HP-UX does not attempt to provide a 
flashy, next-generation installation process. Its text-based installation software is 
utilitarian and guides you through the basic configuration options: disk partition-
ing, network settings, software to install, etc.

For sites that need network-based and automated installations, HP’s Ignite-UX 
option is available. Ignite-UX can install multiple HP-UX systems simultaneously 
over the network. PA-RISC clients boot by using BOOTP, and Itanium systems 
use DHCP. You can configure multiple software repositories. For example, instal-
lation packages might be provided from one location, patches from another, and 
application packages from a third. As an added bonus, Ignite-UX also includes a 
recovery service that restores a machine’s configuration from a recent image. 

The following steps are needed to set up Ignite-UX:

• Install the Ignite-UX software and HP-UX packages on the server.
• Configure Ignite-UX to offer the appropriate installation options.
• Enable Ignite-UX service dependencies, such as NFS and BOOTP.
• Add client MAC and IP addresses to the server.

After you’ve configured the server, you can add a boot option on the client sys-
tems (through HP’s EFI Boot Manager) to make them install HP-UX from an 
Ignite-UX server. Alternatively, for systems already running HP-UX, you can use 
the bootsys command to push the installation from the server to the client.

On our example system, Ignite-UX came preinstalled, but if your system doesn’t 
have it, try the command swinstall -s /dvdrom Ignite-UX. Here, /dvdrom is the 
mount point for a DVD that contains the operating system media, or “operating 
environment” in HP’s terminology. The installation results in a number of in-
stalled packages, some of which are listed below.

hp-ux$ sudo swlist Ignite-UX 
… 
# Ignite-UX C.7.5.142 HP-UX System Installation Services 
Ignite-UX.BOOT-COMMON-IA C.7.5.142 Boot Components for IPF clients 
Ignite-UX.BOOT-COMMON-PA C.7.5.142 Boot Components for PA-RISC clients 
Ignite-UX.BOOT-KRN-11-11 C.7.5.142 Boot Kernel for B.11.11 clients 
Ignite-UX.BOOT-KRN-11-23 C.7.5.142 Boot Kernel for B.11.23 clients 
Ignite-UX.BOOT-KRN-11-31 C.7.5.142 Boot Kernel for B.11.31 clients 
Ignite-UX.BOOT-SERVICES C.7.5.142 Boot Services for Installations 
…

Ignite-UX scatters its configuration files and binaries haphazardly across the file-
system. Table 12.3 on the next page lists the most important components.

  



ptg

378 Chapter 12 Software Installation and Management

The make_depots command extracts installation packages and sets them up as 
an operating environment depot for installation to clients. After you create a de-
pot, run make_config to read the depot’s contents and create a configuration file 
that describes them. The configuration becomes known to Ignite-UX by way of 
the manage_index command, which adds configurations to an INDEX file. A 
sample series of commands for version 11i v3 is shown below.

hp-ux$ cd /opt/ignite/bin 
hp-ux$ sudo ./make_depots -s /dev/dsk/c2t2d0 

-d /var/opt/ignite/depots/Rel_B.11.31/oe_media
hp-ux$ sudo ./make_config -s /var/opt/ignite/depots/Rel_B.11.31/core_media
  -c /var/opt/ignite/data/Rel_B.11.31/oe_media_cfg 
hp-ux$ sudo ./manage_index -n "HP-UX B.11.31 Default" -c "11i v3"
hp-ux$ sudo ./manage_index -a 

-f /var/opt/ignite/data/Rel_B.11.31/oe_media_cfg -c "11i v3" 

Before the server can be used by clients, you must enable BOOTP and share the 
clients directory. Individual clients must also be added to the instl_boottab or 
bootptab file, depending upon whether they are PA-RISC or Itanium machines. 

To share the config directory via NFS, just run /opt/ignite/lbin/setup_server. Be-
hind the scenes, this command just creates an NFS share in /etc/dfs/sharetab. 

You can turn on BOOTP by uncommenting the bootps line in /etc/inetd.conf. 
Then ask inetd to reread its configuration by running /usr/sbin/inetd -c.

Before Ignite-UX will offer installation services to a client, it must normally rec-
ognize the client by MAC address. However, to lighten your administrative bur-
den, we recommend that you use HP’s concept of “anonymous clients,” which are 
not associated with particular MAC addresses.

PA-RISC and Itanium systems rely on different boot mechanisms, and the two 
services are configured slightly differently. To configure Ignite-UX boot services 

Table 12.3 Important binaries, directories, and configuration files used by Ignite-UX

Filename Purpose

/etc/bootptab Acts as a plain-text “database” for bootpd 

/etc/opt/ignite/instl_boottab Records IP addresses for booting PA-RISC clients 
/opt/ignite/bin/bootsys Updates clients that are already running HP-UX 
/opt/ignite/bin/make_config Creates config info file using an installation depot 
/opt/ignite/bin/make_depots Creates install depots from some source media 
/opt/ignite/bin/manage_index Adds a depot to the Ignite-UX index 
/opt/ignite/lbin/setup_server Shares /var/opt/ignite/clients over NFS 
/var/opt/ignite/clients Stores client configuration files (dir)
/var/opt/ignite/data Traditionally used for installation depots (dir)
/var/opt/ignite/INDEX Indexes all installation depots known to Ignite-UX

  



ptg

Automating Ignite-UX installations 379

So
ft

w
ar

e

for PA-RISC systems, edit the file /etc/opt/ignite/instl_boottab. Lines in this file 
are of the form: 

IP_address :MAC_address:datetime_last_used [ :reserve ]

The IP_address field assigns an IP address for the new client to use while access-
ing installation services. The optional MAC_address field identifies a specific cli-
ent machine; if you leave it out, any client can use this IP address (but note the 
interaction with the reserve keyword). The third field is used and maintained by 
Ignite-UX; leave it blank when adding new entries.

If the keyword reserve is present in the last column, the IP address is reserved for 
the use of the client whose MAC address appears in field two. If reserve is not 
specified, field two simply shows the last MAC address that used that IP address.

The /etc/bootptab and /etc/dhcptab files, used to boot Itanium systems, have a 
very different format. The files are well commented and littered liberally with ex-
amples, which we won’t repeat here. (Note that a single daemon, bootpd, serves 
both BOOTP and DHCP requests on HP-UX systems.) DHCP is the preferred 
boot method for Itanium systems since it can provide anonymous client services. 
See the comments in /etc/bootptab and /etc/dhcpv6tab for full details.

Once you’ve configured an Ignite-UX server as discussed above, clients can boot 
from it over the network. On the client side, interrupt the normal boot process, 
enter the EFI Boot Manager, and add a network device. The client will request an 
IP address, and the Ignite-UX server will respond and begin the installation. 

This method works best for systems that share a subnet with the Ignite-UX server. 
For configurations in which the client is not on the server’s subnet, HP lists a 
number of options in the Ignite-UX Administration Guide.

Automating Ignite-UX installations

Ignite-UX network boot configuration is a prerequisite for automated installation, 
but configuring Ignite-UX without specifying automatic boot details results in an 
interactive installation. Ignite-UX can also

• Use the saved configuration from a previous installation to automate 
future installations.

• Rely on configuration files that can be set up per client, per release, or at 
the whim of the administrator.

• Specify default values for some configuration options, such as DNS serv-
ers, and leave others to be selected during interactive installation.

The automated installation files are located in /opt/ignite/data, and several exam-
ples and sample configurations are included in the Ignite-UX installation package. 
The release and example subdirectories are a good place to get started.

  



ptg

380 Chapter 12 Software Installation and Management

12.4 INSTALLING AIX WITH THE NETWORK INSTALLATION MANAGER

Network Installation Manager, or NIM, is AIX’s answer to Kickstart, JumpStart, 
and Ignite-UX. Versions of NIM since AIX 5.3 can also install Linux systems. A 
NIM “master” server installs clients from one or more installation images, where a 
client can be a stand-alone machine, a diskless or dataless workstation, or a work-
load partition.2 Installations rely on TFTP, NFS, and DHCP or BOOTP, much as 
on other systems.3 NIM is included on the standard AIX installation media.

All NIM environments have at least one “resource server” that offers some set of 
software to be used by clients. The resource server may or may not be the same 
system as the master. Environments that have complex network topologies or geo-
graphically separated locations should use localized resource servers to improve 
installation performance.

There are three ways to configure NIM:

• By using the web-based system manager
• By using the smit nim or smit eznim fast paths
• From the command line with the nim tool

We find SMIT to be the fastest and most convenient interface for configuring a 
NIM environment. The “EZ” version covers most of the common NIM tasks such 
as quick setup of a master server, updating, backing up, or reinstalling existing 
clients, and configuring new clients. The full-featured smit nim version adds 
some complexity over EZ NIM but adds more configuration options, such as the 
ability to include custom software packages and more granular control over the 
installed clients.

If you insist on command-line operation, the nim_master_setup tool is the best 
place to get started. (SMIT’s EZ-NIM options for configuring a master server re-
ally just call nim_master_setup with the specified options.) This tool initializes 
filesystems for the NIM software resources, creates the necessary configuration 
files, and copies in a sample client configuration file that you can edit for your 
local clients. 

The most basic usage is nim_master_setup -a device=/dev/cd0, where /dev/cd0
is the drive that contains the installation media for the target AIX release. Unlike 
most of the other installation systems described in this chapter, a NIM master 
server can install releases of AIX only at the same revision level or earlier; an AIX 
5.2 server cannot install AIX 6.1 releases.

Table 12.4 lists some of the most useful NIM-related command-line tools.

2. A diskless client has no hard disk for local filesystems and relies on network services for storage. A 
dataless client has only has local swap space and perhaps /tmp and /home filesystems.

3. Since vendors all use approximately the same protocols and architectures, aren’t you glad that they 
cooperated and settled on a standard installation system? :-)

  



ptg

Managing packages 381

So
ft

w
ar

e

12.5 MANAGING PACKAGES 

UNIX and Linux variants all use some form of packaging system to facilitate the 
job of software management. Packages have traditionally been used to distribute 
software, but they can be used to wrap configuration files and administrative data 
as well. They have several advantages over the traditional unstructured .tar.gz ar-
chives. Perhaps most importantly, they try to make the installation process as 
atomic as possible. If an error occurs, the package can be backed out or reapplied.

Package installers are typically aware of configuration files and will not normally 
overwrite local customizations performed by a system administrator. They will 
either back up the existing config files that they change or provide example config 
files under a different name (e.g., pkg.conf.rpmnew). If you find that a newly 
installed package breaks something on your system, you can, at least in theory, 
back it out to restore your system to its original state. Of course, theory != prac-
tice, so don’t try this out on a production system without testing it first.

Packaging systems define a dependency model that allows package maintainers to 
ensure that the libraries and support infrastructure on which their applications 
depend are properly installed. Some packaging systems do a more complete job of 
dependency management than others.

Packages can also run scripts at various points during the installation, so they can 
do much more than just disgorge new files.

Packages are also a nice way to distribute your own localizations. You can create a 
package that, when installed, reads localization information about a machine (or 
gets it from central database) and uses that information to set up local configura-
tion files. You can also bundle up your local applications as packages, complete 
with dependencies, or make packages for third-party applications that aren’t nor-
mally distributed in package format. You can versionize your packages and use 
the dependency mechanism to upgrade machines automatically when a new ver-
sion of your localization package is installed.

You can also use the dependency mechanism to create groups of packages. For 
example, it’s possible to create a package that installs nothing of its own but de-
pends on many other patches. Installing the package with dependencies turned 
on results in all the patches being installed in a single step.

Table 12.4 NIM command-line tools

Tool What it does 

nim_master_setup Installs and configures a NIM master server 
nim_update_all Updates installation resources and clients 
nim_clients_setup Defines new clients and initiates OS installation 
nim_master_recover Restores the master NIM database to a new server 
nim Multiple: configures resources, defines clients, etc.
nimclient Pulls resources (e.g., updates) from a server (run on clients)

  



ptg

382 Chapter 12 Software Installation and Management

12.6 MANAGING LINUX PACKAGES 

Two package formats are in common use on Linux systems. Red Hat, SUSE, and 
several other distributions use RPM, the Red Hat Package Manager. Ubuntu uses 
the separate but equally popular .deb format (named after the Debian distribution 
on which Ubuntu was originally based). The two formats are functionally similar. 

It’s easy to convert between the two package formats with a tool such as alien
from kitenet.net/programs/alien. alien knows nothing about the software inside a 
package, so if the contents are not already compatible with your distribution, 
alien will not help. In general, it’s best to stick with the native package mechanism 
used by your distribution. 

Both the RPM and .deb packaging systems now function as dual-layer soup-to-
nuts configuration management tools. At the lowest level are the tools that install, 
uninstall, and query packages: rpm for RPM and dpkg for .deb.

On top of these commands are systems that know how to find packages on the 
Internet, analyze interpackage dependencies, and upgrade all the packages on a 
system. yum, the Yellowdog Updater, Modified, works with the RPM system. The 
Red Hat Network is specific to Red Hat Enterprise Linux and uses RPM. The Ad-
vanced Package Tool (APT) originated in the .deb universe but works well with 
both .deb and RPM packages.

On the next couple of pages, we review the low-level commands rpm and dpkg. 
In the section Using high-level Linux package management systems starting on 
page 384, we discuss the comprehensive update systems (e.g., APT and yum) that 
build on these low-level facilities.

rpm: manage RPM packages

The rpm command installs, verifies, and queries the status of packages. It for-
merly built them as well, but this function has now been broken out into a sepa-
rate command called rpmbuild. rpm options have complex interactions and can 
be used together only in certain combinations. It’s most useful to think of rpm as 
if it were several different commands that happen to share the same name.

The mode you tell rpm to enter (such as -i or -q) specifies which of rpm’s multiple 
personalities you are hoping to access. rpm --help lists all the options broken 
down by mode, but it’s worth your time to read the man page in some detail if you 
will frequently be dealing with RPM packages.

The bread-and-butter options are -i (install), -U (upgrade), -e (erase), and -q
(query). The -q option is a bit tricky in that it serves only to enable other options; 
you must supply an additional command-line flag to pose a specific question. For 
example, the command rpm -qa lists all the packages installed on the system.

Let’s look at an example. Suppose you need to install a new version of OpenSSH 
because of a recent security fix. Once you’ve downloaded the package, you could 
run rpm -U to replace the older version with the newer.

  



ptg

dpkg: manage .deb packages in Ubuntu 383

So
ft

w
ar

e

redhat$ sudo rpm -U openssh-2.9p2-12.i386.rpm 
error: failed dependencies: 
openssh = 2.9p2-7 is needed by openssh-askpass-2.9p2-7 
openssh = 2.9p2-7 is needed by openssh-askpass-gnome-2.9p2-7 
openssh = 2.9p2-7 is needed by openssh-clients-2.9p2-7 
openssh = 2.9p2-7 is needed by openssh-server-2.9p2-7

D’oh! Perhaps it’s not so simple after all. Here we see that the currently installed 
version of OpenSSH, 2.9p2-7, is required by a number of other packages. rpm
won’t let us upgrade OpenSSH because the change might affect the operation of 
these other packages. This type of conflict happens all the time, and it’s a major 
motivation for the development of systems like APT and yum. In real life we 
wouldn’t attempt to untangle the dependencies by hand, but let’s continue with 
rpm alone for the purpose of this example.

We could force the upgrade with the --force option, but that’s usually a bad idea. 
The dependency information is there to save you time and trouble, not just to get 
in your way. There’s nothing like a broken SSH on a remote system to ruin a sys-
admin’s morning.

Instead, we’ll grab updated versions of the dependent packages as well. If we were 
smart, we could have determined that other packages depended on OpenSSH be-
fore we even attempted the upgrade:

redhat$ rpm -q --whatrequires openssh
openssh-askpass-2.9p2-7 
openssh-askpass-gnome-2.9p2-7 
openssh-clients-2.9p2-7 
openssh-server-2.9p2-7

Suppose that we’ve obtained updated copies of all the packages. We could install 
them one at a time, but rpm is smart enough to handle them all at once. If you list 
multiple RPMs on the command line, rpm sorts them by dependency before in-
stallation.

redhat$ sudo rpm -U openssh-*

Cool! Looks like it succeeded, and sure enough:
redhat$ rpm -q openssh 
openssh-2.9p2-12

Note that rpm understands which package we are talking about even though we 
didn’t specify the package’s full name or version.

dpkg: manage .deb packages in Ubuntu

Just as RPM packages have the all-in-one rpm command, Debian packages have 
the dpkg command. Useful options include --install, --remove, and -l to list the 
packages that have been installed on the system. A dpkg --install of a package 
that’s already on the system removes the previous version before installing. 

  



ptg

384 Chapter 12 Software Installation and Management

Running dpkg -l | grep package is a convenient way to determine if a particular 
package is installed. For example, to search for an HTTP server, try:

ubuntu$ dpkg -l | grep -i http 
ii  lighttpd 1.4.13-9ubuntu4 A fast webserver with minimal memory footpri

This search found the lighttpd software, an excellent open source, lightweight 
web server. The leading ii indicates that the software is installed.

Suppose that the Ubuntu security team recently released a fix to nvi to patch a 
potential security problem. After grabbing the patch, we run dpkg to install it. As 
you can see, it’s much chattier than rpm and tells us exactly what it’s doing:

ubuntu$ sudo dpkg --install ./nvi_1.79-16a.1_i386.deb 
(Reading database ... 24368 files and directories currently installed.) 
Preparing to replace nvi 1.79-14 (using ./nvi_1.79-16a.1_i386.deb) ... 
Unpacking replacement nvi ... 
Setting up nvi (1.79-16a.1) ... 
Checking available versions of ex, updating links in /etc/alternatives ... 
(You may modify the symlinks there yourself if desired - see 'man ln'.) 
Leaving ex (/usr/bin/ex) pointing to /usr/bin/nex. 
Leaving ex.1.gz (/usr/share/man/man1/ex.1.gz) pointing to 

/usr/share/man/man1/nex.1.gz. 
…

We can now use dpkg -l to verify that the installation worked. The -l flag accepts 
an optional prefix pattern to match, so we can just search for nvi:

ubuntu$ dpkg -l nvi 
Desired=Unknown/Install/Remove/Purge 
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed 
| / Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad) 
| | / Name Version Description 
+++-===========-==============-================================ 
i i nvi 1.79-16a.1 4.4BSD re-implementation of vi.

Our installation seems to have gone smoothly.

12.7 USING HIGH-LEVEL LINUX PACKAGE MANAGEMENT SYSTEMS

Metapackage management systems such as APT, yum, and the Red Hat Network 
share several goals:

• To simplify the task of locating and downloading packages
• To automate the process of updating or upgrading systems
• To facilitate the management of interpackage dependencies

Clearly, there is more to these systems than just client-side commands. They all 
require that distribution maintainers organize their offerings in an agreed-upon 
way so that the software can be accessed and reasoned about by clients.

  



ptg

Package repositories 385

So
ft

w
ar

e

Since no single supplier can encompass the entire “world of Linux software,” the 
systems all allow for the existence of multiple software repositories. Repositories 
can be local to your network, so these systems make a dandy foundation for creat-
ing your own internal distribution system.

The Red Hat Network is closely tied to Red Hat Enterprise Linux. It’s a commer-
cial service that costs money and offers more in terms of attractive GUIs and au-
tomation ability than do APT and yum. The Red Hat Network is a shiny, public 
version of Red Hat’s expensive and proprietary Satellite Server. The client side can 
reference yum and APT repositories, and this ability has allowed distributions 
such as CentOS to adapt the client GUI for nonproprietary use.

APT is better documented than the Red Hat Network, is significantly more porta-
ble, and is free. It’s also more flexible in terms of what you can do with it. APT 
originated in the world of Debian and dpkg, but it has been extended to encom-
pass RPMs, and versions that work with all of our example distributions are avail-
able. It’s the closest thing we have at this point to a universal standard for software 
distribution. 

yum is an RPM-specific analog of APT. It’s the default package manager for Red 
Hat Enterprise Linux version 5, although it runs on any RPM-based system, pro-
vided that you can point it toward appropriately formatted repositories. 

We like APT and consider it a solid choice if you want to set up your own auto-
mated package distribution network. See the section APT: the Advanced Package 
Tool on page 387 for more information. However, in most cases it’s safest to stick 
with the package management tool that ships with your distribution of choice.

SUSE implements its own RPM-based package management tool known as ZYpp, 
with a command-line interface called Zypper. In addition to the usual features 
such as repository configuration, package installation, and status queries, Zypper 
shines in its implementation of dependency resolution. Zypper 1.0 was released 
with openSUSE 11.1. We discuss Zypper beginning on page 392.

Package repositories

Linux distributors maintain software repositories that work hand-in-hand with 
their chosen package management systems. The default configuration for the 
package management system usually points to one or more well-known web or 
FTP servers that are under the distributor’s control. 

However, it isn’t immediately obvious what such repositories should contain. 
Should they include only the sets of packages blessed as formal, major releases? 
Formal releases plus current security updates? Up-to-date versions of all the pack-
ages that existed in the formal releases? Useful third-party software not officially 
supported by the distributor? Source code? Binaries for multiple hardware archi-
tectures? When you run apt-get upgrade, yum upgrade, or zypper dup to bring 
the system up to date, what exactly should that mean?

  



ptg

386 Chapter 12 Software Installation and Management

In general, package management systems must answer all these questions and 
must make it easy for sites to select the cross-sections they want to include in their 
software “world.” The following concepts help structure this process.

• A “release” is a self-consistent snapshot of the package universe. Before 
the Internet era, named OS releases were more or less immutable and 
were associated with one specific point in time; security patches were 
made available separately. These days, a release is a more nebulous con-
cept. Releases evolve over time as packages are updated. Some releases, 
such as Red Hat Enterprise Linux, are specifically designed to evolve 
slowly; by default, only security updates are incorporated. Other 
releases, such as beta versions, change frequently and dramatically. But 
in all cases, the release is the baseline, the target, the “thing I want to 
update my system to look like.”

• A “component” is a subset of the software within a release. Distributions 
partition themselves differently, but one common distinction is that 
between core software blessed by the distributor and extra software 
made available by the broader community. Another distinction that’s 
common in the Linux world is the one between the free, open source 
portions of a release and the parts that are tainted by some kind of 
restrictive licensing agreement.

Of particular note from an administrative standpoint are minimally 
active components that include only security fixes. Some releases allow 
you to combine a security component with an immutable baseline com-
ponent to create a relatively stable version of the distribution, even 
though the mainline distribution may evolve much faster.

• An “architecture” represents a specific class of hardware. The expecta-
tion is that machines within an architecture class will be similar enough 
that they can all run the same binaries. Architectures are specific 
instances of releases, for example, “Ubuntu Karmic Koala for x86_64.” 
Since components are subdivisions of releases, there’s a corresponding 
architecture-specific instance for each of them as well. 

• Individual packages are the elements that make up components, and 
therefore, indirectly, releases. Packages are usually architecture specific 
and are versioned independently of the main release and of other pack-
ages. The correspondence between packages and releases is implicit in 
the way the network repository is set up.

The existence of components that aren’t maintained by the distributor (e.g., 
Ubuntu’s “universe” and “multiverse”) raises the question of how these compo-
nents relate to the core OS release. Can they really be said to be “a component” of 
the specific release, or are they some other kind of animal entirely? From a pack-
age management perspective, the answer is clear: extras are a true component. 
They are associated with a specific release, and they evolve in tandem with it. The 

  



ptg

APT: the Advanced Package Tool 387

So
ft

w
ar

e

separation of control is interesting from an administrative standpoint, but it 
doesn’t affect the package distribution systems, except that they may need to be 
manually added by the administrator.

RHN: the Red Hat Network

With Red Hat having gracefully departed from the consumer Linux business, the 
Red Hat Network has become the system management platform for Red Hat En-
terprise Linux. You purchase the right to access the Red Hat Network by subscrib-
ing. At its simplest, you can use the Red Hat Network as a glorified web portal and 
mailing list. Used in this way, the Red Hat Network is not much different from the 
patch notification mailing lists that have been run by various UNIX vendors for 
years. But more features are available if you’re willing to pay for them. For current 
pricing and features, see rhn.redhat.com.

The Red Hat Network provides a web-based interface for downloading new pack-
ages as well as a command-line alternative. Starting with Red Hat Enterprise 5, the 
CLI tool is yum; before that it was the unwieldy, dependency-headache-inducing 
tool called up2date. yum even lets you download and install new packages with-
out human intervention. Once you register, your machines get all the patches and 
bug fixes that they need without you ever having to intervene.

The downside of automatic registration is that Red Hat decides what updates you 
need. You might consider how much you really trust Red Hat (and the software 
maintainers whose products they package) not to screw things up. Given some of 
the interesting choices Red Hat has made in the past when it comes to little things 
like which compiler to ship, some folks might remain skeptical. 

A reasonable compromise might be to sign up one machine in your organization 
for automatic updates. You can take snapshots from that machine at periodic in-
tervals to test as possible candidates for internal releases. 

APT: the Advanced Package Tool

APT is one of the most mature package management systems. It’s possible to up-
grade an entire system full of software with a single apt-get command or even (as 
with the Red Hat Network) to have your boxes continuously keep themselves up 
to date without human intervention.

The first rule of using apt-get on Ubuntu systems (and indeed all management of 
Debian packages) is to ignore the existence of dselect, which acts as a front end 
for the Debian package system. It’s not a bad idea, but the user interface is poor 
and can be intimidating to the novice user. Some documentation will try to steer 
you toward dselect, but stay strong and stick with APT.

If you are using apt-get to manage a stock Ubuntu installation from a standard 
mirror, the easiest way to see the available packages is to visit the master list at 
packages.ubuntu.com. The web site includes a nice search interface. If you set up 
your own apt-get server (see page 390), then of course you will know what pack-
ages you have made available and you can list them in whatever way you want.

  



ptg

388 Chapter 12 Software Installation and Management

Distributions commonly include dummy packages that exist only to claim other 
packages as prerequisites. apt-get downloads and upgrades prerequisite packages 
as needed, so the dummy packages make it easy to install or upgrade several pack-
ages as a block. For example, installing the gnome-desktop-environment pack-
age obtains and installs all the packages necessary to run the GNOME UI.

Once you have set up your /etc/apt/sources.list file (described in detail below) 
and know the name of a package that you want, the only remaining task is to run 
apt-get update to refresh apt-get’s cache of package information. After that, just 
run apt-get install package-name as a privileged user to install the package. The 
same command updates a package that has already been installed.

Suppose we want to install a new version of the sudo package that fixes a security 
bug. First, it’s always wise to do an apt-get update: 

ubuntu$ sudo apt-get update 
Get:1 http://http.us.debian.org stable/main Packages [824kB] 
Get:2 http://non-us.debian.org stable/non-US/main Release [102B] 
…

Now we can actually fetch the package. Note that we are using sudo as we fetch 
the new sudo package—apt-get can even upgrade packages that are in use!

ubuntu$ sudo apt-get install sudo 
Reading Package Lists... Done 
Building Dependency Tree... Done 
1 packages upgraded, 0 newly installed, 0 to remove and 191 not upgraded. 
Need to get 0B/122kB of archives. After unpacking 131kB will be used. 
(Reading database ... 24359 files and directories currently installed.) 
Preparing to replace sudo 1.6.1-1 (using .../sudo_1.6.9p10-1ubuntu3.4_i386.deb) 

... 
Unpacking replacement sudo ... 
Setting up sudo (1.6.2p2-2) ... 
Installing new version of config file /etc/pam.d/sudo ... 

apt-get configuration

Configuring apt-get is straightforward; pretty much everything you need to know 
can be found in Ubuntu’s community documentation on package management:

help.ubuntu.com/community/AptGet/Howto

The most important apt-get configuration file is /etc/apt/sources.list, which tells 
apt-get where to get its packages. Each line specifies the following: 

• A type of package, currently deb or deb-src for Debian-style packages or 
rpm or rpm-src for RPMs

• A URL that points to a file, CD-ROM, HTTP server, or FTP server from 
which to fetch packages

  



ptg

An example /etc/apt/sources.list file 389

So
ft

w
ar

e

• A “distribution” (really, a release name) that lets you deliver multiple ver-
sions of packages. Distributors use this for major releases, but you can 
use it however you want for internal distribution systems.

• A potential list of components (categories of packages within a release)

Unless you want to set up your own APT repository or cache, the default configu-
ration generally works fine. Source packages are downloaded from the entries be-
ginning with deb-src. 

On Ubuntu systems, you’ll almost certainly want to include the “universe” com-
ponent, which gives access to the larger world of Linux open source software. The 
“multiverse” packages include non-open-source content, such as some VMware 
tools and components.

As long as you’re editing the sources.list file, you should retarget the individual 
entries to point to your closest mirror. A full list of Ubuntu mirrors can be found 
at launchpad.net/ubuntu/+archivemirrors. This is a dynamic (and long) list of 
mirrors that changes regularly, so be sure to keep an eye on it between releases.

Make sure that security.ubuntu.com is listed as a source so that you have access to 
the latest security patches.

An example /etc/apt/sources.list file

The following example uses us.archive.ubuntu.com as a package source for the 
“main” components of Ubuntu (those that are fully supported by the Ubuntu 
team). In addition, this sources.list includes unsupported but open source “uni-
verse” packages, and non-free, unsupported packages in the “multiverse” compo-
nent. There is also a repository for updates, or bug-fixed packages, in each com-
ponent. Finally, the last six lines are for security updates.

# General format: type uri distribution [components] 
deb http://us.archive.ubuntu.com/ubuntu/ karmic main restricted 
deb-src http://us.archive.ubuntu.com/ubuntu/ karmic main restricted 
deb http://us.archive.ubuntu.com/ubuntu/ karmic-updates main restricted 
deb-src http://us.archive.ubuntu.com/ubuntu/ karmic-updates main restricted 
deb http://us.archive.ubuntu.com/ubuntu/ karmic universe 
deb-src http://us.archive.ubuntu.com/ubuntu/ karmic universe 
deb http://us.archive.ubuntu.com/ubuntu/ karmic-updates universe 
deb-src http://us.archive.ubuntu.com/ubuntu/ karmic-updates universe 
deb http://us.archive.ubuntu.com/ubuntu/ karmic multiverse 
deb-src http://us.archive.ubuntu.com/ubuntu/ karmic multiverse 
deb http://us.archive.ubuntu.com/ubuntu/ karmic-updates multiverse 
deb-src http://us.archive.ubuntu.com/ubuntu/ karmic-updates multiverse 
deb http://security.ubuntu.com/ubuntu karmic-security main restricted 
deb-src http://security.ubuntu.com/ubuntu karmic-security main restricted 
deb http://security.ubuntu.com/ubuntu karmic-security universe 
deb-src http://security.ubuntu.com/ubuntu karmic-security universe 
deb http://security.ubuntu.com/ubuntu karmic-security multiverse 
deb-src http://security.ubuntu.com/ubuntu karmic-security multiverse

  



ptg

390 Chapter 12 Software Installation and Management

The distribution and components fields help apt-get navigate the fileystem hierar-
chy of the Ubuntu repository, which has a standardized layout. The root distribu-
tion is the working title given to each release, such as intrepid, jaunty, or karmic. 
The available components are typically called main, universe, multiverse, and 
restricted. Only add the universe and multiverse repositories if you are comfort-
able having unsupported (and license restricted, in the case of multiverse) soft-
ware in your environment.

Creation of a local repository mirror

If you plan to use apt-get on a large number of machines, you will probably want 
to cache packages locally—downloading a copy of each package for every ma-
chine is not a sensible use of external bandwidth. A mirror of the repository is 
easy to configure and convenient for local administration. Just make sure to keep 
it updated with the latest security patches.

The best tool for the job is the handy apt-mirror package, which is available from 
apt-mirror.sourceforge.net. You can also install the package from the universe
component with sudo apt-get install apt-mirror. 

Once installed, apt-mirror drops a file called mirror.list in /etc/apt. It’s a shadow 
version of sources.list, but it’s used only as a source for mirroring operations. By 
default, mirror.list conveniently contains all the repositories for the running ver-
sion of Ubuntu. 

To actually mirror the repositories in mirror.list, just run apt-mirror as root:
ubuntu$ sudo apt-mirror
Downloading 57 index files using 20 threads... 
Begin time: Sat Aug 29 18:53:44 2009
[20]... [19]... [18]... [17]... [16]... [15]... [14]...

By default, apt-mirror puts its repository copies in /var/spool/apt-mirror. Feel 
free to change this by uncommenting the set base_path directive in mirror.list, 
but be aware that you must then create mirror, skel, and var subdirectories under 
the new mirror root. 

apt-mirror takes a long time to run on its first pass because it is mirroring many 
gigabytes of data (currently ~40 GB per Ubuntu release). Subsequent executions 
are faster and should be run automatically out of cron. You can run the clean.sh
script from the var subdirectory of your mirror to clean out obsolete files.

To start using your mirror, share the base directory via HTTP using a web server 
of your choice. We like to use symbolic links to the web root. For instance:

ln -s /var/spool/apt-mirror/us.archive.ubuntu.com/ubuntu /var/www/ubuntu

To make clients use your local mirror, edit their sources.list files just as if you 
were selecting a nonlocal mirror.

  



ptg

yum: release management for RPM 391

So
ft

w
ar

e

apt-get automation

You can run apt-get on a regular schedule from cron. Even if you don’t install 
packages automatically, you may want to run apt-get update regularly to keep 
your package summaries up to date.

apt-get dist-upgrade downloads and installs new versions of any packages that 
are currently installed on the local machine. dist-upgrade is similar to upgrade
but has slightly more intelligent dependency handling. dist-upgrade may want to 
delete some packages that it views as irreconcilably incompatible with the up-
graded system, so be prepared for potential surprises.

If you really want to play with fire, have machines perform the upgrade in an 
unattended fashion by using the -yes option. It answers any confirmation ques-
tions that apt-get might ask with an enthusiastic “Yes!” Be aware that some up-
dates, such as kernel packages, may not take effect until after a system reboot.

It’s probably not a good idea to perform automated upgrades directly from a dis-
tribution’s mirror. However, in concert with your own APT servers, packages, and 
release control system, this is a perfect way to keep clients in sync. A quickie shell 
script like the following keeps a box up to date with its APT server:

#!/bin/sh 
apt-get update 
apt-get -yes dist-upgrade

Call this script from a cron job if you want to run it nightly. You can also refer to 
it from a system startup script to make the machine update at boot time. See 
Chapter 9, Periodic Processes, for more information about cron; see Chapter 3, 
Booting and Shutting Down, for more information about startup scripts. 

If you run updates out of cron on many machines, it’s a good idea to use time 
randomization to make sure that everyone doesn’t try to update at once. The short 
Perl script on page 727 can help with this task.

If you don’t quite trust your source of packages, consider automatically download-
ing all changed packages without installing them. Use apt-get’s --download-only
option to request this behavior, then review the packages by hand and install the 
ones you want to update. Downloaded packages are put in /var/cache/apt, and 
over time this directory can grow to be quite large. Clean out the unused files 
from this directory with apt-get autoclean.

yum: release management for RPM

yum, the Yellowdog Updater, Modified, is a metapackage manager based on 
RPM.4 It may be a bit unfair to call yum an apt-get clone, but it’s thematically and 
implementationally similar, although cleaner and slower in practice. yum is the 
official package management system for Red Hat Enterprise Linux and comes 

4. Not to be confused with Yum Fish Bait with Live Prey Technology (LPT), yum3x.com.

  



ptg

392 Chapter 12 Software Installation and Management

preinstalled on many other distributions. If necessary, you can obtain the latest 
version from the distribution’s repository of packages.

As with apt-get, a server-side command (yum-arch) compiles a database of 
header information from a large set of packages (often an entire release). The 
header database is then shared along with the packages through HTTP or FTP. 
Clients use the yum command to fetch and install packages; yum figures out de-
pendency constraints and does whatever additional work is needed to complete 
the installation of the requested packages. If a requested package depends on 
other packages, yum downloads and installs those packages as well.

The similarities between apt-get and yum extend to the command-line options 
they understand. For example, yum install foo downloads and installs the most 
recent version of the foo package (and its dependencies, if necessary). There is at 
least one treacherous difference, though: apt-get update refreshes apt-get’s pack-
age information cache, but yum update updates every package on the system (it’s 
analogous to apt-get upgrade). To add to the confusion, yum upgrade is the 
same as yum update but with obsolescence processing enabled.

yum does not match on partial package names unless you include shell globbing 
characters (such as * and ?) to explicitly request this behavior. For example, yum 
update 'perl*' refreshes all packages whose name starts with “perl”. Remember to 
quote the globbing characters so the shell doesn’t interfere with them.

Unlike apt-get, yum defaults to validating its package information cache against 
the contents of the network repository every time you run it. Use the -C option to 
prevent the validation and yum makecache to update the local cache (it takes a 
while to run). Unfortunately, the -C option doesn’t do much to improve yum’s 
sluggish performance.

yum’s configuration file is /etc/yum.conf. It includes general options and pointers 
to package repositories. Multiple repositories can be active at once, and each re-
pository can be associated with multiple URLs.

Zypper package management for SUSE: now with more ZYpp!

After years of fairly lax package management, SUSE systems now offer a best-of-
breed option in the form of Zypper, a full-featured, next-generation package man-
ager based on RPM. Of all the tools covered here, Zypper offers the most flexible 
and powerful options for installing, removing, and querying packages. It is also 
the only tool that includes repository management from the command line.

Getting to know the tool is easy for anyone that understands apt-get or yum. 
Table 12.5 shows the basic zypper commands, which should be eerily familiar.

In the example below, we’ve used zypper sh to open a Zypper shell where com-
mands can be typed directly.

  



ptg

Managing packages for UNIX 393

So
ft

w
ar

e

suse$ zypper sh 
zypper> repos 
# | Alias | Name | Enabled | Refresh 
--+------------------------+---------------------------------+------------+-----------
1 | openSUSE 11.1-0 | openSUSE 11.1-0 | Yes | No
2 | repo-debug | openSUSE-11.1-Debug | No | Yes
3 | repo-non-oss | openSUSE-11.1-Non-Oss | Yes | Yes
4 | repo-oss | openSUSE-11.1-Oss | Yes | Yes
5 | repo-source | openSUSE-11.1-Source | No | Yes
6 | repo-update | openSUSE-11.1-Update | Yes | Yes

Rather than having to run zypper refresh by hand to ensure that package data is 
up to date, you can enable automatic refreshing with zypper -f. 

Zypper configuration files, including software repository configuration, are found 
in /etc/zypp. Most administrators won’t need to touch these files, but they’re ver-
bosely commented if the need arises.

12.8 MANAGING PACKAGES FOR UNIX

Software installation and packaging is one area in which Linux has a clear advan-
tage over traditional UNIX operating systems. Installing, upgrading, and search-
ing for software on a Linux system is an almost trivial task for the end user or 
administrator. The search features are powerful, the user communities are large, 
and the active developers number in the thousands. 

By contrast, UNIX systems leave administrators with far fewer packages to choose 
from and looser control over those that do exist. In this section, we examine the 
packaging software that’s prevalent on each of our example UNIX systems.

Table 12.5 Zypper commands

Command What it does 

zypper addrepo uri Adds a repository to the working set 
zypper dist-upgrade Updates to the current distribution release 
zypper info packages Displays information about packages 
zypper install packages Downloads and installs packages 
zypper list-updates Lists all updated packages in the repository 
zypper modifyrepo uri Modifies the properties of a repository
zypper refresh Updates the local cache’s repository metadata 
zypper remove packages Uninstalls packages 
zypper repos Lists repositories in the current working set 
zypper search string Searches for packages with matching names 
zypper shell (or sh) Starts an interactive zypper session
zypper update Installs updated versions of all current packages

  



ptg

394 Chapter 12 Software Installation and Management

Solaris packaging

Since SunOS 2.0, Solaris packaging was traditionally managed by SVR4 with 
some incremental improvements that kept the system hobbling along for twenty 
years or so. Unfortunately, SVR4 is deficient in many areas, including dependency 
management, usability, support for new technologies such as ZFS, and support for 
network repositories. For OpenSolaris, the developers decided to scrap the old 
system and start fresh.

OpenSolaris now uses the Image Packaging System (IPS), which is a great leap 
forward over SVR4. It incorporates network repositories as a key architectural 
theme. In addition to standard package management functionality, the system of-
fers tools for package developers that simplify the creation and centralization of 
packages. IPS also offers backward compatibility with legacy SVR4 packages.

At the moment, IPS packages are markedly dissimilar to those in formats such as 
.deb or RPM. An IPS package is not a single file that you can easily copy among 
systems. Rather, a package is a collection of files, dependencies, and other data 
that must be served from a repository by IPS’s pkg.depotd daemon. IPS remains 
under development, and a more palatable format is promised someday.

You use the pkg command for most IPS operations—installation, removal, 
searching, status queries, etc. pkg also manages repositories, though they’re re-
ferred to as “publishers” in the pkg documentation and command syntax.5 pkg 
install, pkg uninstall, pkg search, and pkg info all perform the expected func-
tions. The pkg image-update command is similar to APT’s dist-upgrade; it up-
dates all installed packages to the latest available versions. 

By default, the OpenSolaris release repository is the default publisher. It currently 
hosts around 1,700 packages.6

solaris$ pkg publisher
PUBLISHER TYPE STATUS URI 
opensolaris.org (preferred) origin online http://pkg.opensolaris.org/rele…

See man -s5 pkg for further details on IPS, or man pkg for information on the 
pkg command.

HP-UX packaging

HP’s packaging system, formally known as Software Distributor or SD, has offered 
HP-UX users robust package management since version 10. It’s a no-nonsense 
tool with a bundle of features that’s sure to make any system administrator giddy 
with excitement:

• Most tools offer graphical, curses-based, and command-line operating 
modes, depending on how they are invoked.

5. The development team distinguishes between the terms “repository” and “publisher,” but we’ll treat 
them as equivalent here.

6. Contrast with more than 30,000 in Ubuntu Karmic Koala.

  



ptg

HP-UX packaging 395

So
ft

w
ar

e

• Software can be managed on remote systems by way of swagentd, a dae-
mon that starts at boot time and speaks over either UDP and TCP.7

• Software depots can be located on local media or in network directories.

• A job browser lets administrators monitor remote systems’ installation 
status in real time.

A series of executables whose names begin with sw (well, mostly) make up the SD 
toolkit. Table 12.6 lists the individual tools and their functions.

Most of the SD commands support a peculiar -x flag that modifies default options 
specific to that tool. For example, among the options for the swinstall command 
are allow_incompatible, which permits installation of a package meant for a dif-
ferent architecture, and autoreboot, which reboots the system after installation if 
necessary. The full list of options for each tool is given in its man page or in the 
file /usr/lib/sw/sys.defaults. Even more strangely, per-user defaults can be con-
figured in a ~/.swdefaults file.

The swinstall command is most often used by administrators, especially those 
that diligently install security patches as they are released. swinstall -i forces an 
interactive installation. The GUI starts if X is running; otherwise, you get the text 
interface.

7. Actually, swagentd invokes swagent, but this process is transparent to the user.

Table 12.6 Software Distributor command list

Command GUI? What it does 

install-sd – Reinstalls the Software Distributor system
sd Ya Manages remote jobs: creation, scheduling, monitoring 
swacl – Configures SD security options
swask – Runs interactive installation scripts 
swconfig – Configures (or reconfigures) installed software
swcopy Y Copies packages to a repository for future installation 
swinstall Y Installs software packages from a repository 
swjob – Command-line alternative to the sd command 
swlist Y Lists installed software or software located in a depot 
swmodify – Modifies the catalog of software installed on the systemb

swpackage – Creates new software packages 
swreg – Registers a software depot 
swremove Y Removes packages from the system or from a depot 
swverify – Confirms the integrity of installed software 
swagentd – Acts as the SD command agent (starts at boot time)

a. This tool is GUI-only; it has no command line. swjob is the command-line equivalent.
b. Also known as the installed products database or IPD

  



ptg

396 Chapter 12 Software Installation and Management

Sadly, HP-UX does not have a convenient on-line software repository from which 
you can easily install patches. The closest thing to it is the HP-UX Software Assis-
tant tool, which analyzes the system with reference to an HP-provided catalog of 
patches, downloads the appropriate patch bundles, and builds a software depot 
from which you can use swinstall to patch the system.

Let’s look at a few examples. To install security patch PHKL_40197 from an NFS-
based software depot on the host hpux.booklab, we’d run the command

hp-ux$ sudo swinstall -s hpux.booklab:/hpux/patches PHKL_40197

swinstall runs configuration scripts automatically during installation. If you later 
need to reconfigure a package, use the swconfig command. swconfig customizes 
a software package for the local system (e.g., by making modifications to a file in 
/etc or changing the permissions on a directory). To reconfigure the sudo pack-
age, we’d run the following command:

hp-ux$ sudo swconfig -x reconfigure=true sudo

To remove this package, we’d run swremove sudo. swverify examines a package 
and performs an integrity check on its essential components. Use swverify to fix 
problems such as broken defaults files or missing directories.

swlist shows you the software installed on the system or available in a depot. The 
interactive interface is generally handier for searching, but here’s a simple com-
mand line that lists the Java-related packages on our example HP-UX system:

hp-ux$ sudo swlist 'Java*' 
# Initializing... 
# Contacting target "hpux11"...

# Target:  hpux11:/

# Java15JDK 1.5.0.11.00 Java 1.5 JDK for HP-UX 
Java15JDK.Jdk15 1.5.0.11.00 Java 1.5 JDK 
Java15JDK.Jre15 1.5.0.11.00 Java 1.5 JRE

# Java15JRE 1.5.0.11.00 Java 1.5 JRE for HP-UX 
Java15JRE.Jre15 1.5.0.11.00 Java 1.5 JRE

Remote operation is a powerful feature of Software Distributor. The remote fea-
tures allows sysadmins to push software to remote systems (optionally, on a pre-
defined schedule). Most commands support remote operations, and some, such as 
swinstall, also support them in their GUIs. Remote operations are performed 
with remote procedure calls (RPC), and security is controlled with access control 
lists. See man 5 sd to configure remote operations.

Software management in AIX

Most UNIX vendors have at least attempted to keep up with Linux in the software 
management space, but IBM has opted for something of a Stone Age approach in 
AIX. The SMIT install_software fastpath is recommended in most cases; behind 

  



ptg

Backup file creation 397

So
ft

w
ar

e

the curtains, it invokes the installp command. The SMIT easy_install fastpath is 
another option that requires fewer keystrokes than install_software.

installp processes an IBM-proprietary package format called Backup File Format, 
or .bff, as well as an older version of the RPM format used by many Linux sys-
tems. Unfortunately, installp is missing many features that spoiled administrators 
have come to take for granted, such as package installation from a network depot 
and even effective package querying. We always use smit install_software or smit 
easy_install when we add packages to our AIX systems.

AIX’s lslpp command lists the installed software packages, which IBM refers to as 
“filesets.” lslpp -L all lists all software products on the system—you can also use 
the smit list_installed_sw fastpath to similar effect. Installed software has state 
and type codes that indicate the condition and origin of each package. The state 
can be one of applied, broken, committed, locked, obsolete, or inconsistent. 
The type is an installp fileset, product, component, feature, RPM, or fix.

12.9 REVISION CONTROL

Mistakes are a fact of life. Therefore, it’s important to keep track of the configura-
tion changes you make so that when these changes cause problems, you can easily 
revert to a known-good configuration. In this section we discuss some common 
ways of managing changes at the level of individual files. Choose the tools that 
match your needs and the complexity of your site.

Backup file creation

This command probably looks familiar:
$ cp bigfile.conf bigfile.bak

It probably seems a bit shameful, as well—surely, real system administrators do 
something more sophisticated?

In fact, there’s much to be said in favor of this kind of impromptu backup. Backup 
files are simple to create, easy to diff, and they create an audit trail, at least to the 
extent that backup files can be ordered by modification time. They require no 
additional software, and there’s no possibility that someone will leave the backup 
system in an ambiguous state.

We suggest a couple of tweaks, however. It’s best to create backup files by moving 
the original file aside to its new name with mv and then copying it back to its 
original name. Use cp -p to preserve the file’s attribute settings. This procedure 
preserves the original file’s modification time and handles cases in which a pro-
cess has an open reference to the original file.

Better yet, add a short scriptlet like the one below to your ~/.bash_profile or 
~/.profile file. It defines a backup “command” (a bash function, really) that picks 
a backup filename and does the switcheroo for you.

  



ptg

398 Chapter 12 Software Installation and Management

function backup () { 
newname=$1.`date +%Y%m%d.%H%M.bak`; 
mv $1 $newname; 
echo "Backed up $1 to $newname."; 
cp -p $newname $1;

}

For example:
$ backup hello.py
Backed up hello.py to hello.py.20091030.1612.bak.

The filename encodes the date and time at which the backup occurred, and the 
file’s modification time records the time at which the contents were last changed 
prior to your new (still-to-be-made) updates. Both pieces of information are po-
tentially useful. This script encodes the time in such a way that an alpha sort of 
the filenames also sorts the backup files correctly by date.

Systems that are regularly backed up to tape can still benefit from the use of man-
ually created backup files. Recovery from a backup file is faster and easier than 
recovery from a tape, and manual backups preserve an additional layer of history.

Formal revision control systems

At the next level of complexity and robustness are formal revision control sys-
tems, which are software packages that track, archive, and provide access to mul-
tiple revisions of files. These packages originated in the world of software devel-
opment, but they are quite useful for system administrators, too.

Revision control systems address several problems. First, they provide an orga-
nized way to trace the history of modifications to a file so that changes can be 
understood in context and so that earlier versions can be recovered. Second, they 
extend the concept of versioning beyond the level of individual files. Related 
groups of files can be versioned together in a manner that takes account of their 
interdependencies. Finally, revision control systems coordinate the activities of 
multiple editors so that race conditions cannot cause anyone’s changes to be per-
manently lost8 and so that incompatible changes from multiple editors do not be-
come active simultaneously.

The last few years have witnessed a boom in open source version control systems, 
and the available choices have expanded by almost an order of magnitude. Major 
contenders among the newer systems include Arch, Mercurial, and Bazaar-NG. 
Git, originally developed by Linux creator Linus Torvalds, has gained quick trac-
tion in the open source community and is now used for management of the Linux 
kernel source code. A time-tested system called Subversion from the previous 
generation remains in wide use and offers an outstanding Windows GUI.

8. For example, suppose that sysadmins Alice and Bob both edit the same file and that each makes some 
changes. Alice saves first. When Bob saves his copy of the file, it overwrites Alice’s version. If Alice has 
quit from the editor, her changes are completely gone and unrecoverable.

  



ptg

Subversion 399

So
ft

w
ar

e

Several commercial revision control systems are also available. You may already 
have access to one of them if you work in a development shop, and you might be 
tempted to use it for administrative data. Tread carefully, though; our experience 
has been that these commercial systems are usually overkill for sysadmin use.

The most popular systems today are Subversion and Git. Either system works well 
for system administration, but Git has an edge in that it makes setting up new 
repositories a fast and simple operation. For other advantages of Git, see Scott 
Chacon’s whygitisbetterthanx.com web site.

Subversion

In the Subversion model, a central server or directory acts as a project’s authorita-
tive repository. By default, the Subversion server is a module in the Apache web 
server, which is convenient for distributed software development but maybe not 
so good for administrative uses. Fortunately, the Subversion folks provide an al-
ternative type of server in the form of a daemon called svnserve. You can run 
svnserve from your home directory while experimenting with Subversion, but in 
production use it should have its own user account and be run from inetd.

Setting up a repository is easy. For example, the following steps create a new Sub-
version repository called admin:

# cd /home/svn 
# mkdir repositories 
# cd repositories 
# svnadmin create admin 
# chmod 700 admin

If you peek inside the admin directory, you will find a well-organized repository 
structure, including a README file. The configuration file svnserve.conf can be 
found in the conf subdirectory. This file tells the server daemon how to provide 
access to the new repository. Here’s an example configuration appropriate for ad-
ministrative files:

[general] 
anon-access = none 
auth-access = write 
password-db = passwd 
realm = The Sysadmin Repository

Because one of Subversion’s design goals was to facilitate collaboration among 
people at different sites, it has an access control model that is separate from that of 
the operating system. The file passwd (in the same directory) contains a list of 
users and their plaintext (!) passwords. The plaintext bit is not nice, but the saving 
grace is that the passwords are never transmitted over the network. They are also 
never typed from memory by users, so you may as well assign passwords that are 
long enough and random enough to be secure. 

  



ptg

400 Chapter 12 Software Installation and Management

For example:
[users] 
tobi = lkadslfkjasdljkhe8938uhau7623rhkdfndf 
evi = 09uqalkhlkasdgfprghkjhsdfjj83yyouhfuhe 
fritz = kd939hjahkjaj3hkuyasdfaadfk3ijdkjhf

Naturally, permissions on the passwd file should be set restrictively.

All that remains is to start the server on the new repository:
# svnserve --daemon --root /home/svn/repositories

As an unprivileged user, you can now check out the admin archive from any-
where on the network.

$ svn checkout --username tobi svn://server.atrust.com/admin checkout

Authentication realm: <svn://server.atrust.com:3690> The Sysadmin Repository 
Password for 'tobi': <password>

When you enter the password for the first time, Subversion squirrels away a copy 
in a .subversion directory that it creates in your home. To add or move files 
within your local copy of the project, use the svn command: 

$ cd checkout 
$ vi foo.c 
$ svn add foo.c

Once you are done, commit your changes to the repository:
$ svn commit -m “Initial checkin; added foo.c”

It is not necessary to list the changed files you want to commit, although you can 
do so if you wish; svn will figure it out on its own. If you omit the -m option, svn
starts an editor for you so that you can edit the commit message.

To get the latest updates from the repository, run svn update within the project. 
Subversion performs a merge operation on any files that have been modified in 
both your local copy of the project and the master repository. Files with unresolv-
able conflicts are marked as “conflicted,” and Subversion does not allow you to 
check them in until you have fixed the problems and told Subversion that the 
conflicts have been resolved:

$ svn resolved foo.c

If you want to know who has changed which lines in a file, you can ask Subversion 
to dish out the blame:

$ svn blame bar.c

This command prints an annotated version of the file that shows when and by 
whom each line was last modified. (Those of a more forgiving or optimistic nature 
can use the synonym svn praise.) It’s also easy to get diffs relative to a particular 

  



ptg

Git 401

So
ft

w
ar

e

date or version. For example, if you want to know what has changed in foo.c since 
July 4, 2010, the following command will tell you:

$ svn diff -r "{2010-07-04}" foo.c

You can download the latest version of Subversion from subversion.tigris.org. The 
standard documentation is the book Version Control with Subversion, published 
by O’Reilly. The full text is available on-line at svnbook.red-bean.com.

Subversion’s exceptionally good Windows GUI is called TortoiseSVN; we used it 
to manage the source files for this book. See tortoisesvn.tigris.org for details.

Git

Git’s shtick is that it has no central repository. Instead of checking out a particular 
version of a project’s files, you simply copy the repository (including its entire 
history) and carry it around with you like a hermit crab lugging its shell. Your 
commits to the repository are local operations, so they’re fast and you don’t have 
to worry about communicating with a central server.

Git uses an intelligent compression system to reduce the cost of storing the entire 
history, and in most cases this system is quite effective. In many cases, working 
requirements for storage space are even lower than with Subversion.

Git is great for developers because they can pile their source code onto a laptop 
and work without being connected to a network while still making use of all the 
benefits of revision control. When the time comes to integrate multiple develop-
ers’ work, their changes can be integrated from one copy of the repository to an-
other in any fashion that suits the organization’s workflow. It’s always possible to 
unwind two copies of a repository back to their common ancestor state, no matter 
how many changes and iterations have occurred after the split.

Git’s promiscuous copying-and-branching strategy isn’t terribly relevant to the 
context of system administration, but its use of a local repository is a big leap 
forward for system administrators—or perhaps more accurately, it’s a big leap 
backward, but in a good way. Early revision control systems (e.g., RCS and CVS) 
used local repositories but were unable to handle collaboration, change merging, 
and independent development. Now we’ve come full circle to a point where put-
ting files under revision control is once again a fast, simple, local operation. At the 
same time, all of Git’s advanced collaboration features are available for use in situ-
ations that require them.

Before you start using Git, set your name and email address:
$ git config --global user.name "John Q. Ulsah" 
$ git config --global user.email "ulsah@book.admin.com"

To track garden-variety changes to configuration files, you’ll generally want to use 
in-situ repositories that are never duplicated and therefore never need to be rec-
onciled or integrated. This convention makes the Git wrangling pretty simple, but 

  



ptg

402 Chapter 12 Software Installation and Management

since commits will be done as root, it’s important to make sure that all potential 
committers set their names and email addresses as shown above. (Git uses your 
personal information for log entries even when you’re running it through sudo.)

To create a repository that covers the /etc directory, you’d run these commands:
$ cd /etc 
$ sudo git init 
Initialized empty Git repository in /etc/.git/ 
$ sudo git add . 
$ sudo git commit -m "Initial commit"
Created initial commit ed25c29: Initial commit 
2538 files changed, 259122 insertions(+), 0 deletions(-)

create mode 100644 .java/.systemPrefs/.system.lock 
create mode 100644 .java/.systemPrefs/.systemRootModFile

…

In the sequence above, git init creates the repository’s infrastructure in the 
/etc/.git directory. git add . puts /etc and everything beneath it on Git’s “staging” 
list, which is the list of files to be committed by the next git commit operation. 
The -m flag to git commit includes the log message on the command line. If you 
leave it out, git starts up an editor with which you can compose the log message.

Let’s now make a change and check it into the repository.
$ sudo vi mdadm/mdadm.conf 
$ sudo git commit mdadm/mdadm.conf -m "Added spare to svr4west array" 
Created commit 901bd39: Added spare to svr4west array

1 files changed, 1 insertions(+), 0 deletions(-)

Naming modified files on the git commit command line bypasses Git’s normal 
use of the staging area and creates a revision that includes only changes to the 
named files. The existing staging area remains unchanged, and Git ignores any 
other files that may have been modified.

If a change involves multiple files, you have a couple of options. If you know ex-
actly which files were changed, you can always list them all on the command line 
as shown above. If you’re lazy, you can run git commit -a to make Git add all 
modified files to the staging area before doing the commit. This last option has a 
couple of pitfalls, however.

First, there may be modified files that have nothing to do with your changes. For 
example, the /etc/mtab file on Linux systems is maintained by the system, so it 
can change even in the absence of configuration changes. Allowing this file to 
participate in the commit sets you up for problems in the future because it’s not 
really part of your current changes. If you later have to revert your changes, it 
would be a mistake to revert the mtab file as well.

The second pitfall is that git commit -a only checks for changes to files that are 
currently under revision control. It does not pick up new files.

  



ptg

Git 403

So
ft

w
ar

e

To avoid these stumbling blocks, run git status and assess the situation manually. 
This command informs you of new files, modified files, and staged files all at 
once. For example, suppose that we edited /etc/mdadm/mdadm.conf as in the 
previous example and also installed a new system daemon, foobard, whose con-
figuration file is /etc/foobard/foobard.conf. Git might show the following:9

$ sudo git status 
# On branch master 
# Changed but not updated: 
# (use "git add <file>..." to update what will be committed) 
# 
# modified: mdadm/mdadm.conf
# modified: mtab
# modified: passwd 
# Untracked files: 
# (use "git add <file>..." to include in what will be committed) 
# 
# foobard/ 
no changes added to commit (use "git add" and/or "git commit -a")

The foobard.conf file is not listed by name because Git doesn’t yet see beneath the 
foobard directory that contains it. We can see that both mtab and passwd have 
unexpected changes. The mtab changes are certainly spurious, but the passwd
changes might or might not be. Perhaps the installation script for foobard created 
a dedicated system account for it, or perhaps someone else edited the passwd file 
and forgot to commit their changes to the repository.

To resolve the question, you can run git diff passwd to see the actual changes in 
the passwd file. Let’s assume that in this case the passwd changes are unrelated to 
our recent activities. Therefore, we’ll probably want to check in these changes sep-
arately from the ones we just made:

$ sudo git commit passwd -m "Checking in existing passwd changes" 
Created commit 6f7853c: Checking in existing passwd changes

1 files changed, 1 insertions(+), 0 deletions(-)

We can make Git ignore the mtab file, now and forever; however, two steps are 
required. First, we’ll “delete” mtab from the current repository image:

$ sudo git rm --cached mtab 
rm 'mtab'

The --cached option prevents Git from actually deleting the mtab file, so don’t 
leave it out! In essence, we’re stuffing a virtual file deletion operation into Git’s 
staging area. Git will behave as if we had deleted the file with rm.

The second step to eradicating mtab from Git’s universe is to add it to Git’s list of 
files to ignore in the future. That’s done by creating or editing a .gitignore file.

9. Even though this command makes no changes, it must still be run as root because it creates lock files 
in the .git directory.

  



ptg

404 Chapter 12 Software Installation and Management

$ sudo sh -c "echo mtab >> .gitignore"10

Finally, we’ll commit all the remaining changes:
$ sudo git add . 
$ sudo git commit -m "Installed foobard; added RAID spare" 
Created commit 32978e6: Installed foobard; added RAID spare

4 files changed, 3 insertions(+), 1 deletion(-) 
create mode 100644 .gitignore 
create mode 100644 foobard/foobard.conf 
delete mode 100644 mtab

Note that the .gitignore file itself becomes part of the managed set of files. It’s fine 
to re-add files that are already under management, so git add . is an easy way to 
say “I want to make the new repository image look like the current directory.” You 
couldn’t just do a git commit -a in this situation because that would pick up nei-
ther foobard.conf nor .gitignore; these files are new to management by Git and 
must be explicitly added.

In an effort to fool you into thinking that it manages files’ permissions as well as 
their contents, Git shows you file modes when adding new files to the repository. 
It’s lying; Git does not track modes, owners, or modification times. If you use Git 
to revert changes to system files, double-check that their attributes remain OK. A 
corollary is that you can’t count on using Git to recover complex file hierarchies 
from scratch in situations where the ownerships and permissions are important.

Using Git for basic revision control isn’t significantly more painful than making 
manual backup copies. The hard part is getting your entire administrative team 
up to speed with the system and making sure that it’s used consistently.

12.10 SOFTWARE LOCALIZATION AND CONFIGURATION

Adapting computers to your local environment is one of the prime battlegrounds 
of system administration: tell the system about all the printers available on the 
network, start the special licensing daemon, add the cron job that cleans the 
/scratch directory once a week, integrate support for that special scanner they use 
over in the graphics department, and on and on. Taking care of these issues in a 
structured and reproducible way is a central goal of architectural thinking.

Keep the following points in mind:

• Users do not have root privileges. Any need for root privileges in the 
course of normal operations is suspicious and probably indicates that 
something is fishy with your local configuration.

• Users do not wreck the system intentionally. Design internal security so 
that it guards against unintentional errors and the widespread dissemi-
nation of administrative privileges. 

10. The explicit call to sh forces the redirection operator to be evaluated in the context of a root shell. If we 
simply typed echo mtab >> .gitignore, the shell would try to open .gitignore before running sudo.

  



ptg

Organizing your localization 405

So
ft

w
ar

e

• Users that misbehave in minor ways should be interviewed before being 
chastised. Users frequently respond to inefficient administrative proce-
dures by attempting to subvert them, so consider the possibility that 
noncompliance is an indication of architectural problems.

• Be customer-centered. Talk to users and ask them which tasks they find 
difficult. Find ways to make these tasks simpler.

• Your personal preferences are yours. Let your users have their own. 
Offer choices wherever possible. 

• When administrative decisions affect users’ experience of the system, be 
aware of the reasons for your decisions. Let your reasons be known.

• Keep your local documentation up to date and easily accessible. See page 
1200 for more information on this topic.

Organizing your localization

If your site has a thousand computers and each computer has its own configura-
tion, you will spend a major portion of your working time figuring out why one 
box has a particular problem and another doesn’t. Clearly, the solution is to make 
every computer the same—right? But real-world constraints and the varying 
needs of your users typically make this impossible.

There’s a big difference in administrability between multiple configurations and 
countless configurations. The trick is to split your setup into manageable bits. You 
will find that some parts of the localization apply to all managed hosts, others 
apply to only a few, and still others are specific to individual boxes.

In addition to performing installations from scratch, you will also need to contin-
ually roll out updates. Keep in mind that individual hosts have different needs for 
currency, stability, and uptime. 

A prudent system administrator should not roll out new software releases en 
masse. Instead, rollouts should be staged according to a gradual plan that accom-
modates other groups’ needs and allows time for problems to be discovered while 
their potential to cause damage is still limited. Never update critical servers until 
you have some confidence in the changes you are contemplating, and avoid Fri-
days unless you’re prepared for a long weekend in front of the terminal.11 

However you design your localization system, make sure that all original data is 
kept in a revision control system. This precaution lets you keep track of which 
changes have been thoroughly tested and are ready for deployment. In addition, it 
lets you identify the originator of any problematic changes. The more people in-
volved in the process, the more important this last consideration becomes.

11. Security patches are a possible exception to this rule. Plug security holes as soon as they are found. On 
the other hand, security patches do sometimes introduce bugs.

  



ptg

406 Chapter 12 Software Installation and Management

It is advantageous to separate the base OS release from the localization release. 
Depending on the stability needs of your environment, you may use minor local 
releases only for bug fixing. However, we have found that adding new features in 
small doses yields a smoother operation than queuing up changes into “horse pill” 
releases that risk a major disruption of service.

It’s often a good idea to specify a maximum number of “releases” you are willing 
to have in play at any given time. Some administrators believe that there is no 
reason to fix software that isn’t broken. They point out that gratuitously upgrading 
systems costs time and money and that “cutting edge” all too often means “bleed-
ing edge.” Those who put these principles into practice must be willing to collect 
an extensive catalog of active releases. 

By contrast, the “lean and mean” crowd point to the inherent complexity of re-
leases and the difficulty of comprehending (let alone managing) a random collec-
tion of releases dating years into the past. Their trump cards are security patches, 
which must typically be applied universally and on a tight schedule. Patching out-
dated versions of the operating system is often infeasible, so administrators are 
faced with the choice of skipping updates on some computers or crash-upgrading 
these machines to a newer internal release. Not good.

Neither of these perspectives is provably correct, but we tend to side with those 
who favor a limited number of releases. Better to perform your upgrades on your 
own schedule rather than one dictated by an external emergency.

Testing

It’s important to test changes before unleashing them on the world. At a mini-
mum, this means that you need to test your own local configuration changes. 
However, you should really test the software that your vendor releases as well. A 
major UNIX vendor once released a patch that, when applied a certain way, per-
formed an rm -rf /. Imagine installing this patch throughout your organization 
without testing it first. 

Testing is an especially pertinent issue if you use a service that offers an automatic 
patching capability, such as most of the packaging systems discussed in this chap-
ter. Mission-critical systems should never be directly connected to a vendor-spon-
sored update service. Identify a sacrificial machine to be connected to the service, 
and roll out the changes from this box to other machines at your site only after 
appropriate testing. Disable updates during your testing phase; otherwise, up-
stream changes can sneak their way prematurely onto your production systems in 
the middle of the testing process.

See page 1191 for more 
information about 
trouble tracking.

If you foresee that an update may cause user-visible problems or changes, notify 
users well in advance and give them a chance to communicate with you if they 
have concerns regarding your intended changes or timing. Make sure that users 
have an easy way to report bugs.

  



ptg

Compiling locally 407

So
ft

w
ar

e

If your organization is geographically distributed, make sure that other offices 
help with testing. International participation is particularly valuable in multilin-
gual environments. If no one in the U.S. office speaks Japanese, for example, you 
had better get the Tokyo office to test anything that might affect kanji support. A 
surprising number of system parameters vary with location. Does the U.S. office 
test changes to the printing infrastructure with A4 paper, or will the non-U.S. of-
fices be in for a surprise? 

Compiling locally 

In the old days of UNIX, when there were many different architectures, programs 
were generally distributed in the form of source archives, usually .tar.gz files that 
you would uncompress and then compile. Once the program was built, you would 
then install the software in a location such as /usr/local. Today, the use of package 
management systems means that fewer programs need to be installed this way. It 
also means that administrators make fewer decisions since packages specify 
where their contents are installed. 

Even with easy package management, some people still prefer to compile their 
own software.12 Running your own build gives you more control over the soft-
ware’s compiled-in options. It also lets you be more paranoid because you can 
inspect the source code you are compiling. Some people seem to think that this 
once-over is important, but unless you’ve got the time and skill to inspect every 
line of a 20,000-line software package, the added security value is minimal.

Since not every piece of software in the world has been packaged for every Linux 
distribution and UNIX flavor, it’s likely that you will run across at least a few pro-
grams that you need to compile and install yourself, especially if your computers 
are not 32-bit Intel systems. What’s more, if yours is a development site, you will 
have to consider where to put your site’s own locally developed software.

Historically, the most common location for local software has been /usr/local, 
and this convention is still widely followed today. The UNIX/Linux Filesystem 
Hierarchy Standard (FHS) specifies that /usr/local be present and empty after the 
initial OS installation, and many packages expect to install themselves there.

Although /usr/local is traditional, many sites find it to be an unmanageable 
dumping ground. The traditional way it’s laid out (basically the same as /usr, with 
binaries in /usr/local/bin, man pages in /usr/local/man, and so on) creates a raft 
of problems in some environments: it’s hard to have multiple versions of the same 
software installed, the directories can be large, it’s a pain to manage multiple ar-
chitectures, etc. 

12. Hard-core compile-it-yourselfers should check out the Gentoo Linux distribution, which is designed 
to be recompiled from scratch on the destination system.

  



ptg

408 Chapter 12 Software Installation and Management

Distributing localizations

A localization system must handle both initial installation and incremental up-
dates. The updates can be especially tricky. Efficiency is a major concern since you 
probably do not want to repeat the entire localization dance to update the permis-
sions of a single file. Even though the process is automated, the rebuild-from-
scratch model makes updates an expensive and time-consuming process. 

A simple and scalable way to organize localizations is to maintain files in a tree 
structure that mimics the (skeletonized) filesystem of a production machine. A 
dedicated installation script can copy the tree to the destination machine and per-
form any additional editing that is required.

This type of setup has several advantages. You can maintain as many localization 
trees as are necessary to implement your local administrative scheme. Some of the 
trees will be alternatives, with each machine getting only one of the available 
choices. Other trees will be overlays that can be copied on top of the trees that 
came before them. Localization trees can overwrite files if necessary, or they can 
be completely disjoint. Each tree that is potentially installed independently should 
be represented by a separate revision control project.

The overlay-tree approach allows flexibility in implementation. If you use a pack-
aging system to distribute your local customizations, the overlays can simply be 
rolled up into independent packages. The appropriate customization scripts can 
be included in the package and set to run as part of the installation process.

Another good implementation idea is to use rsync to bring destination machines 
into compliance with their overlay trees. rsync copies only files that are out of 
date, so it can be very efficient for distributing incremental changes. This behavior 
is hard to simulate with a packaging system alone. Refer to page 725 for more 
information about rsync.

12.11 USING CONFIGURATION MANAGEMENT TOOLS

Localization systems tend to be home-grown. Part of the reason for this is that all 
sites are different and each has its own bizarre quirks. However, the “not invented 
here” syndrome is also a significant contributor. Perhaps the lack of a dominant 
open source tool for performing configuration management has conditioned us 
to think of this problem as lying outside the domain of standardized tools. 

Nevertheless, the tools exist and are worth your review, if only to give yourself 
some clarity about why you choose not to make use of them. The following sec-
tions outline a few common systems in rough order of popularity and similarity.

cfengine: computer immune system

One of the best-known localization tools is Mark Burgess’ cfengine. It was envi-
sioned as a sort of “computer immune system” that bases its operation on a model 
of how the system should be configured. When it detects a discrepancy between 

  



ptg

LCFG: a large-scale configuration system 409

So
ft

w
ar

e

the model and the reality, cfengine takes the appropriate steps to bring the system 
into compliance. Because of this underlying model, cfengine is useful for ongoing 
configuration maintenance.

cfengine can make backup copies of the files it modifies and can keep a detailed 
log of its changes. It can also be run in a no-action mode in which it describes the 
changes it would make without actually implementing them.

You use cfengine’s own special language to describe how you want your comput-
ers to be configured. You can specify rules such as, “The file xyz must exist in /etc, 
have permissions 644, and belong to root.” You can also write rules regarding the 
content of individual files. For example, you can specify that /etc/hosts must con-
tain the line “router 192.168.0.1”. cfengine then adds this line if it is missing.

cfengine’s configuration language lets you turn on individual rules depending on 
factors such as the hostname, the OS, or the subnet. This feature makes it easy to 
write a single configuration file that covers the needs of all the machines in your 
administrative domain.

The following is a simple example from the UNIX world. It makes sure that /bin is 
a symlink to /usr/bin on Suns, does some additional link checking on legacy OSF 
boxes, and removes everything from /var/scratch that is older than seven days:

control: 
actionsequence = ( links tidy ) 
links:

sun4:: 
/bin -> /usr/bin 
# other links

osf::
# some osf specific links 

tidy:
/var/scratch pattern=* age=7 recurse=inf

See the cfengine home page at cfengine.org for more information.

LCFG: a large-scale configuration system

LCFG was originally developed by Paul Anderson at Edinburgh University in 
1993. In its latest incarnation it is known as LCFG(ng) and has gained a number 
of users outside the university. LCFG is primarily geared toward managing large 
Solaris or Linux installations. The LCFG web site is lcfg.org.

Like cfengine, LCFG defines a specialized configuration language. The configura-
tions of all managed machines are stored on a central server in a set of master 
configuration files. From these, LCFG generates customized XML files that de-
scribe the configuration of each managed host. A daemon on the central server 
monitors the master configuration files for changes and regenerates the XML files 
as required.

  



ptg

410 Chapter 12 Software Installation and Management

The XML files are published on an internal web server from which clients can 
then pull their own configurations. The clients use a variety of component scripts 
to configure themselves according to the XML blueprints.

Template Tree 2: cfengine helper

Template Tree 2 was created at the Swiss Federal Institute of Technology (ETH) by 
Tobias Oetiker. It is a component-based system driven by a central configuration. 
It reduces complexity by taking a two-level approach to defining a site’s configura-
tion and can deal with the relocated root directories of diskless machines. 

On the lower level, the system consists of a number of “feature packs.” A feature 
pack is a collection of files accompanied by a META file that describes how these 
files must be installed on the target system. A feature can be anything from a net-
work configuration to the latest version of OpenSSH. Features can expose config-
urable parameters that can be set in the master configuration file.

The upper level of configuration is a master site configuration file in which you 
pull the features together and associate them to machines or groups of machines. 
At this level, you must specify values for the unbound configuration parameters 
exposed by each feature. For example, one of the parameters for a mail server 
feature might be the name of the mail domain.

Template Tree 2 combines the information from the master configuration file and 
the individual features’ META files to generate a cfengine configuration file for 
the whole site. Because each feature must contain documentation about its pur-
pose and usage, Template Tree 2 can also generate composite documentation.

DMTF/CIM: the Common Information Model

The Distributed Management Task Force (DMTF), a coalition of “more than 
3,000 active participants,” has been working since 1992 to develop its Common 
Information Model (CIM) in an attempt to create standards for an object-ori-
ented, cross-platform management system.

In DMTF’s own words, CIM is “a management schema…provided to establish a 
common conceptual framework at the level of a fundamental topology both with 
respect to classification and association, and with respect to the basic set of classes 
intended to establish a common framework for a description of the managed en-
vironment.” Or whatever.

All major vendors from Microsoft to Sun are members of the DMTF. Unfortu-
nately, the standards they have produced demonstrate an impressive mastery of 
the arts of obfuscation and buzzword husbandry. The companies involved seem 
eager to demonstrate their willingness to standardize no matter what. The stan-
dards center on XML and object orientation. However, we have yet to see a sensi-
ble product built on top of them.

If there is an upside to this quagmire, it is that the DMTF efforts at least require 
vendors to provide programmatically accessible configuration interfaces to their 

  



ptg

Package namespaces 411

So
ft

w
ar

e

systems based on an open standard. For UNIX and Linux environments this is 
nothing new, but the DMTF is not a UNIX creature. It includes Cisco, Microsoft, 
Symantec, and many other companies with little history of providing sensible 
ways of scripting their systems. Giving these products a configuration API is a 
good thing, even if the implementations are still lacking. 

12.12 SHARING SOFTWARE OVER NFS

Where should extra software actually be installed: on individual clients or on a 
central file server from which it can be shared over NFS? The standard answer is 
“on the clients,” but the NFS solution makes updates quicker (it’s faster and more 
reliable to update ten NFS servers than 1,000 clients) and saves disk space on cli-
ents (not that this matters much in the world of 1TB disks).

The question really boils down to manageability versus reliability. Network file-
system-based access is centralized and easier to manage from day to day, and it 
makes bug fixes and new packages instantaneously available on all clients. How-
ever, running over the network may be a bit slower than accessing a local disk. In 
addition, the network server model adds dependencies on the network and the 
file server, not only because it adds potential points of failure but also because it 
requires that clients and servers agree on such things as the shared libraries that 
will be available and the version of those libraries that will be installed. The bot-
tom line is that NFS software libraries are an advanced administrative technique 
and should only be attempted in environments that allow for a high degree of 
central coordination. 

In general, networks of heterogeneous systems derive the most benefit from 
shared software repositories. If your site has standardized on one operating sys-
tem and that operating system provides reasonable package management facili-
ties, you’re likely to be better off sticking with the native system.

Package namespaces

Traditional UNIX sprays the contents of new packages across multiple directories. 
Libraries go to /usr/lib, binaries to /usr/bin, documentation to /usr/share/docs, 
and so on. Linux inherits more or less the same system, although the Filesystem 
Hierarchy Standard helps make the locations somewhat more predictable. (See 
pathname.com/fhs for more information about the FHS.)

The advantage of this convention is that files show up in well-known places. As 
long your PATH environment variable points to /usr/bin and the other standard 
binary directories, for example, newly installed programs will be readily available. 

The downsides are that the origins of files must be explicitly tracked (by means of 
package management systems) and that the scattered files are difficult to share on 
a network. Fortunately, sysadmins willing to put in some extra work have a rea-
sonable way out of this dilemma: package namespaces.

  



ptg

412 Chapter 12 Software Installation and Management

The gist of the scheme is to install every package into its own separate root direc-
tory. For example, you might install gimp into /tools/graphics/gimp, with the 
binary being located at /tools/graphics/gimp/bin/gimp. You can then recreate an 
aggregate binary directory for your collection of tools by placing symbolic links 
into a directory such as /tools/bin:

/tools/bin/gimp -> /tools/graphics/gimp/bin/gimp

Users can then add the directory /tools/bin to their PATH variables to be assured 
of picking up all the shared tools.

There are various options for structuring the /tools directory. A hierarchical ap-
proach (e.g., /tools/graphics, /tools/editors, etc.) facilitates browsing and speeds 
performance. You may want to include the software version, hardware architec-
ture, operating system, or responsible person’s initials in your naming conven-
tions to allow the same collection of tools to be served to many types of clients. 
For example, Solaris users might include /tools/sun4/bin in their PATHs, and 
Ubuntu users include /tools/ubuntu/bin.

When you install a new version of a major tool, it’s a good idea to keep older 
versions around indefinitely, particularly when users may have significant time 
and effort invested in projects that use the tool. Ideally, new versions of tools 
would be backward compatible with old data files and software, but in practice, 
disasters are common. It’s fine to require users to go through some configuration 
trouble to access an older version of a package; it’s not fine to just break their 
existing work and make them deal with the consequences.

Dependency management

Some packages depend on libraries or on other software packages. When you in-
stall software locally through a package-management system, you get lots of help 
with resolving these issues. However, when you build your own site-wide network 
software repository, you must address these issues explicitly.

If you manage libraries in the same way you manage applications, you can com-
pile your tools to use libraries from within the shared /tools directory. This con-
vention lets you keep multiple versions of a library active simultaneously. Because 
dependent applications are linked against specific versions of the library, the setup 
remains stable even when new versions of the library are released. The downside 
is that this type of setup can be quite complicated to use and maintain over time.

Resist the temptation to link against a global /tools/lib directory that contains 
generically named links to common libraries. If you change the links, you may 
run into unexpected and difficult-to-diagnose problems. Shared library systems 
are designed to address some of the potential headbutts, but it makes sense to play 
it safe in a complicated setup.

  



ptg

Recommended reading 413

So
ft

w
ar

e

The exact steps needed to make the linker use a specific version of a shared library 
vary from system to system. Under Linux, you can set the LD_LIBRARY_PATH 
environment variable or use the linker’s -R option.

Wrapper scripts

Unfortunately, library-level compatibility is only half the story. The fact that tools 
invoke one another directly raises another opportunity for conflict. For example, 
suppose the utility named foo makes frequent use of the utility named bar. If you 
update the default version of bar, you may find that foo suddenly stops working. 
In this case, you can conclude that foo depended on some behavior of bar that is 
no longer supported (or at least is no longer the default).

If your software repository supports multiple versions (e.g., /tools/util/bar-1.0
and /tools/util/bar-2.0), you can fix this problem by moving the original version 
of foo to foo.real and replacing it with a little wrapper script:

#!/bin/sh 
# make sure the program finds any files co-packaged with it 
# first even if it does not use an explicit path. 
PATH=/tools/util/bar-1.0/bin:$PATH 
export PATH 
exec /tools/util/foo-1.0/bin/foo.real "$@"

Now foo will be launched with a customized PATH environment variable, and it 
will call the old version of bar in preference to the new one.

Wrappers are a powerful tool that can address not only package dependencies but 
also issues such as security, architecture- or OS-dependence, and usage tracking. 
Some sites wrap all shared binaries.

12.13 RECOMMENDED READING

INTEL CORPORATION AND SYSTEMSOFT. Preboot Execution Environment (PXE) 
Specification, v2.1. 1999. pix.net/software/pxeboot/archive/pxespec.pdf

PXELinux Questions. syslinux.zytor.com/wiki/index.php/PXELINUX

RODIN, JOSIP. Debian New Maintainers’ Guide. debian.org/doc/maint-guide 
This document contains good information about .deb packages.

SILVA, GUSTAVO NORONHA. APT HOWTO. debian.org/doc/manuals/apt-howto

HOHNDEL, DIRK, AND FABIAN HERSCHEL. Automated Installation of Linux Systems 
Using YaST. usenix.org/events/lisa99/full_papers/hohndel/hohndel_html

STÜCKELBERG, MARC VUILLEUMIER, AND DAVID CLERC. Linux Remote-Boot mini-
HOWTO: Configuring Remote-Boot Workstations with Linux, DOS, Windows 
95/98 and Windows NT. 1999. tldp.org/HOWTO/Remote-Boot.html

The Red Hat Enterprise Linux System Administration Guide. redhat.com/docs

  



ptg

414 Chapter 12 Software Installation and Management

WACHSMANN, ALF. How to Install Red Hat Linux via PXE and Kickstart. 
stanford.edu/~alfw/PXE-Kickstart/PXE-Kickstart.html

BURGESS, MARK. Cfengine: A Site Configuration Engine. USENIX Computing Sys-
tems, Vol 8, No 3. 1995. cfengine.org

HP Ignite-UX Administration Guide. docs.hp.com/en/5992-5309/5992-5309.pdf

NIM from A to Z. www.redbooks.ibm.com/redbooks/pdfs/sg247296.pdf. This is a 
thorough Network Installation Manager guide. 

Solaris Advanced Installation Guide. docs.sun.com/app/docs/doc/802-5740

12.14 EXERCISES

E12.1 Outline the differences between Kickstart, JumpStart, and Ignite-UX. 
What are some of the advantages and disadvantages of each?

E12.2 Install Subversion from subversion.tigris.org. Set up svnserve and 
create a repository. How can you make the repository usable from 
anywhere on the local network but still maintain reasonable security?

E12.3 Review the way that local software is organized at your site. Will the 
system scale? Is it easy to use? Discuss.

E12.4 What are some of the most important features of a configuration 
management system? What are the security implications of distribut-
ing configuration files over the network?

E12.5 Set up the network installer of your choice and install a new machine 
by using your server. Outline all the steps needed to perform this task. 
What were some of the stumbling blocks? What are some of the scal-
ability issues you discovered with the installer you chose?

  

www.redbooks.ibm.com/redbooks/pdfs/sg247296.pdf


ptg

415

D
riv

er
s/

Ke
rn

el

13 Drivers and the Kernel

The kernel hides the system’s hardware underneath an abstract, high-level pro-
gramming interface. It furnishes many of the facilities that users and user-level 
programs take for granted. For example, the kernel creates all the following con-
cepts from lower-level hardware features:

• Processes (time-sharing, protected address spaces)
• Signals and semaphores 
• Virtual memory (swapping, paging, mapping)
• The filesystem (files, directories, namespace)
• General input/output (specialty hardware, keyboard, mouse, USB)
• Interprocess communication (pipes and network connections)

The kernel incorporates device drivers that manage its interaction with specific 
pieces of hardware; the rest of the kernel is, to a large degree, device independent. 
The relationship between the kernel and its device drivers is similar to the rela-
tionship between user-level processes and the kernel. When a process asks the 
kernel to “Read the first 64 bytes of /etc/passwd,” the kernel (or more accurately, a 
filesystem driver) might translate this request into a device driver instruction 
such as “Fetch block 3,348 from device 3.” The disk driver would further break up 
this command into bit patterns to be presented to the device’s control registers.

Drivers/Kernel

  



ptg

416 Chapter 13 Drivers and the Kernel

The kernel is written mostly in C, with a sprinkling of assembly language to help it 
interface with hardware- or chip-specific functions that are not accessible through 
normal compiler directives. 

One of the advantages of Linux and other open source environments is that the 
availability of source code makes it relatively easy to roll your own device drivers 
and kernel modules. In the early days of Linux, having skills in this area was a 
necessity because it was difficult to administer Linux systems without being able 
to mold the system to a specific environment. Development for other flavors of 
UNIX is more difficult without specialized knowledge. (Kudos to IBM for having 
excellent driver development documentation, as they do in many other areas.)

Fortunately, sysadmins can be perfectly effective without ever soiling their hands 
with kernel code. In fact, such activities are better left to kernel and driver devel-
opers. Administrators should focus more on the overall needs of the user commu-
nity. Sysadmins can tune the kernel or add preexisting modules as described in 
this chapter, but they don’t need to take a crash course in C or assembly language 
programming to survive. (This was not always true!)

13.1 KERNEL ADAPTATION

All the UNIX platforms covered in this book run monolithic kernels, in which the 
entire operating system runs in kernel space, a section of memory reserved for 
privileged operating system functions. In a monolithic kernel, services such as 
device drivers, interprocess communication, virtual memory, and scheduling run 
in the same address space. This approach contrasts with a “microkernel” architec-
ture, in which many of these services run in user mode (i.e., as regular processes). 
The pros and cons of the two architectures have been hotly debated for years, but 
most kernel developers agree that both approaches have merit.

Linux is also a monolithic kernel at heart, but it allows user-space drivers for 
many devices. The Gelato, UIO, FUSE, and FUSD projects each provide interfaces 
to devices in user space. Nevertheless, most drivers are still implemented in kernel 
mode, generally for performance reasons.

Modern monolithic kernels support on-demand loading of modules, so you can 
incorporate device drivers and other kernel functions as needed without rebuild-
ing the kernel and rebooting. Drivers, filesystems, and new system calls are all 
commonly implemented as modules. The memory used by a module is allocated 
and freed as the code is loaded or removed. This feature is particularly useful for 
embedded systems with limited memory since developers can tune the kernel to 
eliminate unneeded devices. 

A kernel can learn about the system’s hardware in several ways. The most basic 
way is that you explicitly inform the kernel about the hardware it should expect to 
find (or pretend not to find, as the case may be). In addition, the kernel prospects 
for many devices on its own, either at boot time or dynamically (once the system 

  



ptg

Drivers and device files 417

D
riv

er
s/

Ke
rn

el

is running). The latter method is the most typical for USB devices: memory sticks, 
digital cameras, printers, and so on. Linux has reasonable support for a wide array 
of such devices. AIX and HP-UX have very limited support, and Solaris falls 
somewhere in between. 

Table 13.1 shows the location of the kernel build directory and the standard name 
of the installed kernel on each of our example systems. 

13.2 DRIVERS AND DEVICE FILES

A device driver is a program that manages the system’s interaction with a particu-
lar type of hardware. The driver translates between the hardware commands un-
derstood by the device and the stylized programming interface used by the kernel. 
The driver layer helps keep the kernel reasonably device independent.

In most cases, device drivers are part of the kernel; they are not user processes. 
However, a driver can be accessed both from within the kernel and from user 
space. User-level access to devices is usually through special device files that live 
in the /dev directory. The kernel maps operations on these files into calls to the 
code of the driver.

With the remarkable pace at which new hardware is developed, it is practically 
impossible to keep mainline OS distributions up to date with the latest hardware. 
Ergo, you will occasionally need to add a device driver to your system to support a 
new piece of hardware.

Device drivers are system specific, and they are often specific to a particular range 
of kernel revisions as well. Drivers for other operating systems (e.g., Windows) 
will not work, so keep this in mind when you purchase new hardware.1 In addi-
tion, devices vary in their degree of compatibility and functionality when used 
with various Linux distributions, so it’s wise to pay some attention to the results 
other sites have obtained with any hardware you are considering.

Table 13.1 Kernel build directory and location by system

System Build directory Kernel

Linux /usr/src/linux /vmlinuz or /boot/vmlinuz

Solaris –a /platform/hardware-class-name/unix 

HP-UX /stand /stand/vmunix

AIX –b /usr/lib/boot/unix

a. Administrators rarely build Solaris kernels, and when they do, the administrator 
creates an arbitrary build directory.

b. The AIX kernel is never rebuilt, even when new modules and devices are added.

1. The NDISwrapper project enables Windows drivers for some networking devices to be used under 
Linux. See sourceforge.net/projects/ndiswrapper for full details.

  



ptg

418 Chapter 13 Drivers and the Kernel

Hardware vendors are becoming more aware of the UNIX and Linux markets, 
and they sometimes provide UNIX and Linux drivers for their products. In the 
optimal case, your vendor furnishes you with both drivers and installation in-
structions. Occasionally, you only find the driver you need on some sketchy-look-
ing and uncommented web page. For either case, this section shows you what is 
really going on when you add a driver to your system.

Device files and device numbers

Most devices have a corresponding file in /dev; network devices are notable ex-
ceptions on modern operating systems. Complex servers may support hundreds 
of devices. Solaris handles this complexity quite nicely by using a separate subdi-
rectory of /dev for each type of device: disk, cdrom, terminal, etc. 

By virtue of being device files, the files in /dev each have a major and minor de-
vice number associated with them. The kernel uses these numbers to map device-
file references to the corresponding driver.

The major device number identifies the driver with which the file is associated (in 
other words, the type of device). The minor device number usually identifies 
which particular instance of a given device type is to be addressed. The minor 
device number is sometimes called the unit number.

You can see the major and minor number of a device file with ls -l:
linux$ ls -l /dev/sda 
brw-rw----  1 root disk 8, 0 Jul 13 01:38 /dev/sda

This example shows the first SCSI disk on a Linux system. It has a major number 
of 8 and a minor number of 0.

The minor device number is sometimes used by the driver to select or enable 
certain characteristics particular to that device. For example, a tape drive can have 
one file in /dev that rewinds the drive automatically when it is closed and another 
file that does not. The driver is free to interpret the minor device number in what-
ever way it wants. Look up the man page for the driver to determine what conven-
tion it’s using.

There are actually two primary types of device files: block device files and charac-
ter device files. A block device is read or written one block (a group of bytes, 
usually a multiple of 512) at a time; a character device can be read or written one 
byte at a time. Disks and tapes lead dual lives; terminals and printers do not.

Device drivers present a standard interface to the kernel. Each driver has routines 
for performing some or all of the following functions: 

attach close dump ioctl open probe
psize read receive reset select stop
strategy timeout transmit write

  



ptg

Device file creation 419

D
riv

er
s/

Ke
rn

el

It is sometimes convenient to implement an abstraction as a device driver even 
when it controls no actual device. Such phantom devices are known as pseudo-
devices. For example, a user who logs in over the network is assigned a PTY 
(pseudo-TTY) that looks, feels, and smells like a serial port from the perspective 
of high-level software. This trick allows programs written in the days when every-
one used a terminal to continue to function in the world of windows and net-
works. /dev/zero, /dev/null, and /dev/random are some other examples of 
pseudo-devices.

When a program performs an operation on a device file, the kernel intercepts the 
reference, looks up the appropriate function name in a table, and transfers control 
to the appropriate part of the driver. To perform an unusual operation that doesn’t 
have a direct analog in the filesystem model (for example, ejecting a floppy disk), 
a program can use the ioctl system call to pass a message directly from user space 
into the driver.

Device file creation

Device files can be created manually with the mknod command, with the syntax
mknod filename type major minor 

where filename is the device file to be created, type is c for a character device or b
for a block device, and major and minor are the major and minor device numbers. 
If you are manually creating a device file that refers to a driver that’s already pres-
ent in your kernel, check the documentation for the driver to find the appropriate 
major and minor device numbers.

Under Linux, the udev system dynamically manages the creation and removal of 
device files according to the actual presence (or absence) of devices. The udevd
daemon listens for messages from the kernel regarding device status changes. 
Based on configuration information in /etc/udev and /lib/udev, udevd can take a 
variety of actions when a device is discovered or disconnected. By default, it just 
creates device files in /dev. Udev is covered in detail beginning on page 437.

On Solaris systems, /dev is actually composed of symbolic links to files in the 
/devices directory, which is a separate filesystem. The Device File System (devfs) 
manages the device files in /devices. These files are created automatically at boot 
time by devfsadmd, which continues to run after boot to handle update notifica-
tions from the kernel. Administrators can use devfsadm to tweak this process, but 
most administrators will not need to use it.

The HP-UX kernel creates devices files at boot time. If new devices are attached 
later, administrators must create the device files manually by running the mksf, 
insf, and mknod commands. The smh tool also incorporates a limited interface 
for viewing device information. 

In AIX, the cfgmgr command runs at boot time to configure devices and to install 
drivers for devices that weren’t formerly present. It prints warnings for any devices 

  



ptg

420 Chapter 13 Drivers and the Kernel

for which the software or drivers are not installed. Once a device is detected, AIX 
remembers it by placing an identifier in the Object Data Manager, which we dis-
cuss on page 432. cfgmgr creates files in /dev for devices that are successfully 
detected and initialized.

Given the existence of these various tools for automating the creation of device 
files, system administrators running current releases of UNIX and Linux should 
never need to manually manage device files with mknod.

Naming conventions for devices

Naming conventions for devices are somewhat random. They are often holdovers 
from the way things were done under UNIX on a DEC PDP-11, as archaic as that 
may sound in this day and age. 

For devices that have both block and character identities, the character device 
name is usually prefaced with the letter r for “raw” (e.g., /dev/da0 vs. /dev/rda0). 
An alternative convention is to store character device files in a subdirectory that 
has a name that starts with r (e.g., /dev/dsk/dks0d3s0 vs. /dev/rdsk/dks0d3s0). 
However, an r does not always imply a raw device file.

See Chapter 31 for 
more information 
about serial ports.

Serial device files are usually named tty followed by a sequence of letters that 
identify the interface the port is attached to. TTYs are sometimes represented by 
more than one device file; the extra files usually afford access to alternative flow 
control methods or locking protocols.

The names of tape devices often include not only a reference to the drive itself but 
also an indication of whether the device rewinds after the tape device is closed. 
Each vendor has a different scheme.

The naming conventions for the files that represent hard disks and SSDs are 
rather complex on most systems. See Disk device files on page 224 for details.

Custom kernels versus loadable modules

When the system is installed, it comes with a generic kernel that’s designed to run 
most applications on most hardware. The generic kernel includes many different 
device drivers and option packages. Some drivers may also be dynamically in-
serted into the running kernel. On Linux, the udev system can also manage real-
time device changes, such as the insertion of a USB device. 

There are various schools of thought on whether production servers should have 
custom-built kernels. Although there is some potential for performance gains, es-
pecially in embedded systems without much memory, the manageability tradeoff 
for patching and system upgrades is usually a deal breaker. Unless there’s a legiti-
mate need to wring every last ounce of performance out of the system, we recom-
mend using the vendor’s stock kernel.

When it comes to kernel device support, the wise administrator is usually also the 
laziest. Use the dynamic module approach whenever possible. Avoid building a 

  



ptg

Tuning Linux kernel parameters 421

D
riv

er
s/

Ke
rn

el

custom kernel unless it is strictly necessary. On Linux systems, most USB devices 
can be attached with no administrator intervention.

13.3 LINUX KERNEL CONFIGURATION

You can use any one of four basic methods to configure a Linux kernel. Chances 
are you’ll have the opportunity to try all of them eventually. The methods are

• Modifying tunable (dynamic) kernel configuration parameters
• Building a kernel from scratch (really, this means compiling it from the 

source code, possibly with modifications and additions)
• Loading new drivers and modules into an existing kernel on the fly
• Providing operational directives at boot time through the kernel loader, 

GRUB. See page 82 for more information.

These methods are each applicable in slightly different situations. Modifying tun-
able parameters is the easiest and most common, whereas building a kernel from 
source files is the hardest and least often required. Fortunately, all these ap-
proaches become second nature with a little practice.

Tuning Linux kernel parameters

Many modules and drivers in the kernel were designed with the knowledge that 
one size doesn’t fit all. To increase flexibility, special hooks allow parameters such 
as an internal table’s size or the kernel’s behavior in a particular circumstance to be 
adjusted on the fly by the system administrator. These hooks are accessible 
through an extensive kernel-to-userland interface represented by files in the /proc
filesystem (aka procfs). In some cases, a large user-level application (especially an 
“infrastructure” application such as a database) may require a sysadmin to adjust 
kernel parameters to accommodate its needs.

You can view and set kernel options at run time through special files in /proc/sys. 
These files mimic standard Linux files, but they are really back doors into the 
kernel. If a file in /proc/sys contains a value you want to change, you can try writ-
ing to it. Unfortunately, not all files are writable (regardless of their apparent per-
missions), and not much documentation is available. If you have the kernel source 
tree installed, you may be able to read about some of the values and their mean-
ings in the subdirectory Documentation/syscnt.

For example, to change the maximum number of files the system can have open at 
once, try something like 

linux$ cat /proc/sys/fs/file-max 
34916 
linux$ sudo sh -c "echo 32768 > /proc/sys/fs/file-max"

Once you get used to this unorthodox interface, you’ll find it quite useful. A word 
of caution, however: changes are not remembered across reboots.

  



ptg

422 Chapter 13 Drivers and the Kernel

Table 13.2 lists some commonly tuned parameters. Default values vary widely 
among distributions.

A more permanent way to modify these same parameters is to use the sysctl com-
mand. sysctl can set individual variables either from the command line or by 
reading a list of variable=value pairs from a file. By default, /etc/sysctl.conf is read 
at boot time and its contents are used to set initial (custom) parameter values.

Table 13.2 Files in /proc/sys for some tunable kernel parameters

Dir a File Function and commentary

C autoeject Autoejects CD-ROM on dismount
F file-max Sets the maximum number of open files; on a 

system that handles a large number of files, try 
increasing this to 16384

F inode-max Sets the maximum number of open inodes per 
process; useful to tinker with if an app opens 
tens of thousands of file handles

K ctrl-alt-del Reboots on Ctrl-Alt-Delete sequence; may be a 
matter of personal preference or may increase 
security on unsecured consoles

K printk_ratelimit Minimum seconds between kernel messages 
K printk_ratelimit_burst Sets the number of messages in succession 

before the printk rate limit is actually enforced
K shmmax Sets the maximum amount of shared memory 
N conf/default/rp_filter Enables IP source route verification; this anti-

spoofing mechanism makes the kernel drop 
packets received from “impossible” paths

N icmp_echo_ignore_all Ignores ICMP pings when set to 1
N icmp_echo_ignore_broadcasts Ignores broadcast pings when set to 1; almost 

always a good idea to set this to 1
N ip_forward Allows IP forwarding when set to 1; only set to 1 

if you’re using your Linux box as a router
N ip_local_port_range Specifies local port range allocated during con-

nection setup; for servers that initiate many out-
bound connections, enlarge this to 1024–65000 
for improved performance

N tcp_fin_timeout Specifies seconds to wait for a final FIN packet; 
set to a lower value (~20) on high-traffic servers 
to increase peformance

N tcp_syncookies Protects against SYN flood attacks; turn on if 
you suspect denial of service (DOS) attacks

a. F = /proc/sys/fs, N = /proc/sys/net/ipv4, K = /proc/sys/kernel, C = /proc/sys/dev/cdrom

  



ptg

Configuring kernel options 423

D
riv

er
s/

Ke
rn

el

For example, the command 
linux$ sudo sysctl net.ipv4.ip_forward=0

turns off IP forwarding. (Alternatively, you can just edit /etc/sysctl.conf manu-
ally.) You form the variable names used by sysctl by replacing the slashes in the 
/proc/sys directory structure with dots.

Building a Linux kernel

Because Linux evolves rapidly, it is likely that you’ll eventually be faced with the 
need to build a Linux kernel. Kernel patches, device drivers, and new functional-
ity continually arrive on the scene. This is really something of a mixed blessing. 
On one hand, it’s convenient to always support the “latest and greatest,” but on the 
other hand, it can become quite time consuming to keep up with the constant 
flow of new material.

It’s less likely that you’ll need to build a kernel on your own if you’re running a 
“stable” version. Originally, Linux adopted a versioning scheme in which the sec-
ond part of the version number indicated whether the kernel was stable (even 
numbers) or in development (odd numbers). For example, kernel version 2.6.6 
would be a “stable” kernel, whereas 2.7.4 would be a “development” kernel. Today, 
this scheme isn’t religiously followed, so you’d best check the home page at ker-
nel.org for the official word on this issue. The kernel.org site is also the best source 
for Linux kernel source code if you aren’t relying on a particular distribution (or 
vendor) to provide you with a kernel.

If it ain’t broke, don’t fix it

A good system administrator carefully weighs needs and risks when planning ker-
nel upgrades and patches. Sure, the new release may be the latest and greatest, but 
is it as stable as the current version? Could the upgrade or patch be delayed and 
installed with another group of patches at the end of the month? It’s important to 
resist the temptation to let “keeping up with the Joneses” (in this case, the kernel 
hacking community) dominate the best interests of your user community. 

A good rule of thumb is to upgrade or apply patches only when the productivity 
gains you expect to obtain (usually measured in terms of reliability and perfor-
mance) will exceed the effort and lost time required to perform the installation. If 
you’re having trouble quantifying the specific gain, that’s a good sign that the 
patch can wait for another day. (Of course, security-related patches should be in-
stalled promptly.)

Configuring kernel options

In this chapter we use path_to_kernel_src as a placeholder for whichever directory 
you choose for kernel source code. Most distributions install kernel source files in 
/usr/src. In all cases, you need to install the kernel source package before you can 
build a kernel on your system; see page 380 for tips on package installation.

  



ptg

424 Chapter 13 Drivers and the Kernel

The kernel configuration process revolves around the .config file at the root of the 
kernel source directory. All the kernel configuration information is specified in 
this file, but its format is somewhat cryptic. Use the decoding guide in

path_to_kernel_src/Documentation/Configure.help

to find out what the various options mean.

To save folks from having to edit the .config file directly, Linux has several make
targets that let you configure the kernel with different interfaces. If you are run-
ning KDE, the prettiest configuration interface is provided by make xconfig. 
Likewise, if you’re running GNOME, make gconfig is probably the best option. 
These commands bring up a graphical configuration screen on which you can 
pick the devices to add to your kernel (or compile as loadable modules).

If you are not running KDE or GNOME, you can use a terminal-based alternative 
invoked with make menuconfig. Finally, the older-style make config prompts 
you to respond to every single configuration option available without letting you 
later go back if you change your mind. We recommend make xconfig or make 
gconfig if your environment supports them; otherwise, use make menuconfig. 
Avoid make config, the least flexible and most painful text-based make target.

If you’re migrating an existing kernel configuration to a new kernel version (or 
tree), you can use the make oldconfig target to read in the previous config file 
and to ask only the questions that are new.

These tools are straightforward as far as the options you can turn on, but unfortu-
nately they are painful to use if you want to maintain several versions of the kernel 
for multiple architectures or hardware configurations. 

The various configuration interfaces described above all generate a .config file 
that looks something like this:

# Automatically generated make config: don't edit 
# Code maturity level options

CONFIG_EXPERIMENTAL=y

# Processor type and features

# CONFIG_M386 is not set 
# CONFIG_M486 is not set 
# CONFIG_M586 is not set 
# CONFIG_M586TSC is not set 
CONFIG_M686=y 
CONFIG_X86_WP_WORKS_OK=y 
CONFIG_X86_INVLPG=y 
CONFIG_X86_BSWAP=y 
CONFIG_X86_POPAD_OK=y 
CONFIG_X86_TSC=y 
CONFIG_X86_GOOD_APIC=y 
…

  



ptg

Adding a Linux device driver 425

D
riv

er
s/

Ke
rn

el

As you can see, the contents are cryptic and do not describe what the CONFIG tags 
mean. Each CONFIG line refers to a specific kernel configuration option. The 
value y compiles the option into the kernel; the value m enables the option as a 
loadable module.

Some things can be configured as modules and some can’t. You just have to know 
which is which; it’s not clear from the .config file. Nor are the CONFIG tags easily 
mapped to meaningful information. 

Building the kernel binary

Setting up an appropriate .config file is the most important part of the Linux ker-
nel configuration process, but you must jump through several more hoops to turn 
that file into a finished kernel.

Here’s an outline of the entire process:

• Change directory (cd) to the top level of the kernel source directory.
• Run make xconfig, make gconfig, or make menuconfig.
• Run make dep (not required for kernels 2.6.x and later).
• Run make clean.
• Run make.
• Run make modules_install.
• Copy arch/i386/boot/bzImage to /boot/vmlinuz.
• Copy arch/i386/boot/System.map to /boot/System.map.
• Add a configuration line for the new kernel to /boot/grub/grub.conf.

The make clean step is not always strictly necessary, but it is generally a good idea 
to start with a clean build environment. In practice, many problems can be traced 
back to this step having been skipped.

Adding a Linux device driver 

On Linux systems, device drivers are typically distributed in one of three forms:

• A patch against a specific kernel version
• A loadable module
• An installation script or package that installs the driver

The most common form is the installation script or package. If you’re lucky 
enough to have one of these for your new device, you should be able to follow the 
standard procedure for installing new software.

In situations where you have a patch against a specific kernel version, you can in 
most cases install the patch with the following procedure:

linux# cd path_to_kernel_src ; patch -p1 < patch_file

If neither of these cases applies, you are likely in a situation in which you must 
manually integrate the new device driver into the kernel source tree. In the follow-
ing pages, we demonstrate how to manually add a hypothetical network “snarf ” 

  



ptg

426 Chapter 13 Drivers and the Kernel

driver to the kernel. Linux actually makes this a rather tedious process, especially 
when compared to some other versions of UNIX.

Within the drivers subdirectory of the kernel source tree, find the subdirectory 
that corresponds to the type of device you are dealing with. A directory listing of 
drivers looks like this:

linux$ ls -F path_to_kernel_src/drivers 
acorn/ char/ i2c/ Makefile net/ s390/ telephony/
acpi/ dio/ ide/ md/ nubus/ sbus/ usb/
atm/ fc4/ ieee1394/ media/ parport/ scsi/ video/
block/ gsc/ input/ message/ pci/ sgi/ zorro/
bluetooth/ hil/ isdn/ misc/ pcmcia/ sound/
cdrom/ hotplug/ macintosh/ mtd/ pnp/ tc/

The most common directories to which drivers are added are block, char, net, 
scsi, sound, and usb. These directories contain drivers for block devices (such as 
IDE disk drives), character devices (such as serial ports), network devices, SCSI 
cards, sound cards, and USB devices, respectively. Some of the other directories 
contain drivers for the buses themselves (e.g., pci, nubus, and zorro); it’s unlikely 
that you will need to add drivers to these directories. Some directories contain 
platform-specific drivers, such as macintosh, s390, and acorn.

Since our example device is a network-related device, we add the driver to the 
directory drivers/net. We modify the following files:

• drivers/net/Makefile so that our driver will be compiled
• drivers/net/Kconfig so that our device will appear in the config options

After putting the .c and .h files for the driver in drivers/net/snarf, we add the 
driver to drivers/net/Makefile. The line we add (near the end of the file) is

obj-$(CONFIG_SNARF_DEV) += snarf/

This configuration adds the snarf driver (stored in the snarf/ directory) to the 
build process.

After adding the device to the Makefile, we have to make sure we can configure 
the device when we configure the kernel. All network devices must be listed in the 
file drivers/net/Kconfig. To add the device so that it can be built either as a mod-
ule or as part of the kernel (consistent with what we claimed in the Makefile), we 
add the following line: 

config SNARF_DEV
tristate 'Snarf device support'

The first token after config is the configuration macro, which must match the 
token following CONFIG_ in the Makefile. The tristate keyword means that we 
can build the device as a module. If the device cannot be built as a module, we 
would use the keyword bool instead of tristate. The next token is the string to 

  



ptg

The Solaris kernel area 427

D
riv

er
s/

Ke
rn

el

display on the configuration screen. It can be any arbitrary text, but it should 
identify the device that is being configured. 

Having managed to link a new device driver into the kernel, how do you tell the 
kernel it needs to use the new driver? In kernel versions before 2.6, this was a 
tedious task that required programming knowledge. As part of the recent archi-
tectural changes made to the device driver model, there is now a standard way for 
drivers to associate themselves with the kernel.

It’s beyond the scope of this chapter to explain how that happens in detail, but the 
result is that device drivers written for version 2.6 (and later) register themselves 
with the macro MODULE_DEVICE_TABLE. This macro makes the appropriate be-
hind-the-scenes connections so that other utilities such as modprobe (discussed 
in the Loadable kernel modules section starting on page 434) can enable new de-
vices in the kernel. 

13.4 SOLARIS KERNEL CONFIGURATION

At boot time, the Solaris kernel probes for devices and initializes a driver for each 
device it finds. It makes extensive use of loadable modules and loads code only for 
the devices that are actually present, unless forced to do otherwise.

Depending on your point of view, this automatic configuration makes configur-
ing a custom kernel more or less of a necessity under Solaris than on other sys-
tems. In an ideal world, the kernel would correctly identify its hardware environ-
ment 100% of the time. Unfortunately, flaky, nonstandard, or just plain buggy 
hardware (or drivers) can occasionally turn this creature comfort into a torment. 

That said, let’s look at how to custom-configure a Solaris kernel, should you ever 
need to do so.

The Solaris kernel area

To make on-demand module loading work correctly, Solaris relies heavily on a 
particular directory organization. Solaris expects to find certain directories in cer-
tain places, and these directories must contain specific types of modules:

• /kernel – modules common to machines that share an instruction set

• /platform/platform-name/kernel – modules specific to one type of 
machine, such as a Sun Fire T200

• /platform/hardware-class-name/kernel – modules specific to one class 
of hardware; for example, all sun4u machines

• /usr/kernel – similar to /kernel

You can determine your platform-name and hardware-class-name with uname -i
and uname -m, respectively. 

  



ptg

428 Chapter 13 Drivers and the Kernel

Here’s an example:
solaris$ uname -i
SUNW,Sun-Fire-T200 
solaris$ uname -m 
sun4v

When Solaris boots, it searches the path 

/platform/platform-name/kernel:/kernel:/usr/kernel

in an attempt to find a kernel. It first looks for files named unix, and then it looks 
for files named genunix. genunix is a generic kernel that represents the platform-
independent portion of the base kernel.

Each of the directories listed above can contain several standard subdirectories, 
listed in Table 13.3. Since the subdirectories can exist within any of the kernel 
directories, we use the generic name KERNEL to symbolize any and all kernel 
directories.

You should not normally have to change any files in these directories unless you 
install a new device driver. The one exception to this rule may be the .conf files in 
the KERNEL/drv directory, which specify device-specific configuration parame-
ters. It’s rarely necessary to change them, however, and you should really only do it 
if a device’s manufacturer tells you to.

Configuring the kernel with /etc/system

Solaris’s /etc/system file serves as the master configuration file for the kernel. Ta-
ble 13.4 shows the directives and variables that can appear in this file. Directives 
are keywords in their own right; variables must be assigned a value with the set
directive.

Table 13.3 Subdirectories of Solaris kernel directories

Subdir What it contains 

drv Loadable object files for device drivers
Configuration files that list probe addresses for each device

misc Loadable object files for miscellaneous kernel routines 
cpu CPU-specific module for UltraSPARC 
strmod STREAMS modules 
sparcv9 The 64-bit kernel 
fs Filesystem-related kernel modules 
exec Modules for decoding executable file formats 
sched Operating system schedulers 
sys Loadable system calls 
genunix Generic platform-independent kernel 
unix The base platform-specific kernel

  



ptg

Configuring the kernel with /etc/system 429

D
riv

er
s/

Ke
rn

el

/etc/system is consulted at boot time and can be so badly mutilated that the sys-
tem no longer boots. boot -a lets you specify a backup copy of /etc/system if you 
made one. (If you don’t have a backup copy and your existing one doesn’t work, 
you can use /dev/null.)

Let’s look at a sample /etc/system file for a simple kernel.
rootfs:ufs 
rootdev:/sbus@1,f8000000/esp@0,800000/sd@3,0:a

These lines specify that the root filesystem will be of type UFS (UNIX File Sys-
tem) and that it will reside on the sd3a disk partition. The syntax used to specify 
the root device is identical to that used by Sun’s openprom monitor. It varies from 
platform to platform, so consult your hardware manual or follow the symlinks in 
/dev that map the weird names to sensible ones. An ls -l after the link has been 
followed will show the exact long name.

moddir: /platform/SUNW,Sun-Fire-T200/kernel:/platform/sun4v/kernel:/kernel: 
/usr/kernel

This line (which has been wrapped to fit the page) specifies the search path for 
loadable modules. This value is suggested by the kernel man page; however, it is 
not the default, so you must specify it explicitly.

exclude: lofs
forceload: drv/sd

The first line excludes the loopback filesystem from the kernel, and the second 
forces the generic SCSI driver (sd) to be loaded. 

set maxusers=64

This line sizes the kernel’s tables appropriately for 64 simultaneous logins.

Table 13.4 Directives and variables used in /etc/system

Name Typea Meaning

rootfs D Specifies the filesystem type of the root partition
rootdev D Specifies the location of the root partition
forceload D Specifies drivers (“modules”) that should be loaded
exclude D Specifies modules that should not be loaded
moddir D Specifies a new path to modules
set D Sets kernel tuning variables (such as maxusers) 
maxusers V Controls table sizes and various other parameters
pt_cnt V Sets the number of available PTYs 
max_nproc V Sets the maximum number of processes
maxuprc V Sets the maximum number of user processes

a. D = directive, V = variable

  



ptg

430 Chapter 13 Drivers and the Kernel

Adding a Solaris device driver 

Solaris drivers are usually distributed as packages. Use pkgadd to add the device 
driver to the system. When drivers are not distributed as a package or when pack-
age addition fails, it’s trivial to add the drivers by hand because they are all imple-
mented as loadable kernel modules.

Solaris drivers are almost always distributed as object files, not as source code as is 
common on Linux systems. In this example, we add the device “snarf ” to Solaris. 
The snarf driver should come with at least two files, including snarf.o (the actual 
driver) and snarf.conf (a configuration file). Both files should go into the direc-
tory /platform/‘uname -m‘/kernel/drv.

Once the .conf file has been copied over, you can edit it to specify particular de-
vice parameters. You should not normally need to do this, but sometimes config-
uration options are available for fine-tuning the device for your application.

After the files have been copied into place, you need to load the module with the 
add_drv command. (More on loadable kernel modules later in this chapter.) In 
this case, we load snarf into the kernel by running the command add_drv snarf. 
That’s it! This is definitely the least painful of our examples.

Debugging a Solaris configuration

Since Solaris makes up its view of the world on the fly, debugging a troubled ma-
chine can be frustrating. Fortunately, Solaris provides several tools that display 
the machine’s current configuration.

The prtconf command prints the machine’s general configuration, including its 
machine type, model number, amount of memory, and some information about 
the configured hardware devices. Lines that describe devices (drivers, really) are 
indented to show the dependencies among them. The handy prtconf -D option 
shows the name of the driver for each device.

In the following snippet of prtconf output, several lines state “driver not attached.” 
This message can have multiple meanings: there is no driver for a device, the de-
vice is configured but not attached to the system, or the device is unused and no 
driver has been loaded.

solaris$ sudo prtconf 
System Configuration:  Sun Microsystems  i86pc 
Memory size: 580 Megabytes 
System Peripherals (Software Nodes):

i86pc 
scsi_vhci, instance #0 
isa, instance #0

i8042, instance #0 
keyboard, instance #0 
mouse, instance #0

lp, instance #0 (driver not attached)

  



ptg

HP-UX kernel configuration 431

D
riv

er
s/

Ke
rn

el

asy, instance #0 (driver not attached) 
asy, instance #1 (driver not attached) 
fdc, instance #0

fd, instance #0 (driver not attached) 
pit_beep, instance #0

The prtconf -D display shows which drivers to load in /etc/system.
solaris$ sudo prtconf -D 
System Configuration:  Sun Microsystems  i86pc 
Memory size: 580 Megabytes 
System Peripherals (Software Nodes):

i86pc (driver name: rootnex) 
scsi_vhci, instance #0 (driver name: scsi_vhci) 
isa, instance #0 (driver name: isa)

i8042, instance #0 (driver name: i8042) 
keyboard, instance #0 (driver name: kb8042) 
mouse, instance #0 (driver name: mouse8042)

lp, instance #0 (driver name: ecpp) 
asy, instance #0 (driver name: asy) 
asy, instance #1 (driver name: asy) 
fdc, instance #0 (driver name: fdc)

fd, instance #0 (driver name: fd) 
pit_beep, instance #0 (driver name: pit_beep)

sysdef is prtconf on steroids. In addition to the information given by prtconf, it 
also lists pseudo-device drivers, tunable kernel parameters, and the filenames of 
loaded modules. If you modify the default kernel for an important machine, con-
sider including the output of sysdef in your documentation for the machine.

The modinfo command reports information about dynamically loaded modules. 
Solaris dynamically loads device drivers, STREAMS modules, and filesystem 
drivers, among other things. Don’t be surprised if modinfo’s output contains 
more than 200 entries. See page 435 for more information about modinfo.

13.5 HP-UX KERNEL CONFIGURATION

HP-UX’s kernel is the most monolithic among our example operating systems, 
and it prefers to load most modules statically. It also has a complex and confusing 
configuration file. Fortunately, HP provides a handy configuration tool known as 
kcweb, which runs as a GUI if X Windows and a browser are available, or on the 
command line otherwise. To force command-line operation, use kcweb -t.

HP-UX reads kernel configuration parameters (such as modules and tunable val-
ues) from the /stand/system file. This file is maintained by kcweb and other tools, 
and administrators should not modify it directly. 

Modules and configuration options can be static or dynamic. A static value or 
module is one that requires a kernel rebuild and a reboot to change or install. 

  



ptg

432 Chapter 13 Drivers and the Kernel

Dynamic modules are loaded and unloaded as they are used, without requiring a 
reboot. Likewise, dynamically tunable values take effect immediately.

Table 13.5 lists a few of the more useful tunable properties of the HP-UX kernel.

If you request changes to static modules or static tunable values, kcweb automati-
cally runs the mk_kernel command to build a new kernel. The new kernel takes 
effect at the next system reboot. 

13.6 MANAGEMENT OF THE AIX KERNEL

The AIX kernel never requires a rebuild. New devices are configured dynamically 
through IBM’s mysterious black box known as the Object Data Manager (ODM).

It’s an enigmatic setup. Many parameters that are commonly tunable on other ker-
nels, such as shared memory settings, cannot be tuned at all on AIX. Instead, they 
are managed independently by the kernel. Other configurable options are man-
aged through a series of six tuning commands.

The Object Data Manager

Rather than keeping device configuration information in text files or scripts, AIX 
squirrels it away in the Object Data Manager (ODM) attribute/value database. 
Another layer of glue associates these property lists with specific devices (driver 
instances, really) and binds the drivers to the configuration information.

AIX’s intent is to support persistence for device configuration. Rather than having 
one way to configure devices on the fly (e.g., ifconfig or ndd) and a parallel sys-
tem of configuration files and scripts that do configuration at boot time, AIX’s 
scheme attempts to unify these functions so that most device changes are auto-
matically sticky across reboots.

However, if you take the red pill and look at what’s actually going on within the 
system, the underlying complexity can be daunting. The system has more entry 

Table 13.5 HP-UX kernel tunable configuration values (useful ones)

Variable Type Default Meaning

maxfiles_lim Dynamic 4096 Hard limit on open files per process
maxfiles Static 2048 Soft limit on open files per process
maxuprc Dynamic 256 Maximum number of user processes
nproc Dynamic 4200 Maximum number of processes
nflocks Dynamic 4096 Maximum number of file locks
ninode Static 8192 Maximum number of open inodes
npty Static 60 Maximum number of PTYs
nstrtel Static 60 Maximum number of telnet session devices
nkthread Dynamic 8416 Maximum number of kernel threads

  



ptg

The Object Data Manager 433

D
riv

er
s/

Ke
rn

el

points than traditional UNIX, and the interactions among the components aren’t 
always obvious. Here’s an outline of the various layers:

• The Object Data Manager is a configuration repository that’s analogous 
to the registry in Microsoft Windows. It’s actually a bit more sophisti-
cated than the Windows registry in that it has the concept of object sche-
mas and instances rather than just arbitrary property lists.

• Programs access ODM through library routines, but you can also work 
with the ODM database through the odmadd, odmcreate, odmdrop, 
odmshow, odmget, odmchange, and odmdelete commands.2

• The command family chdev, lsdev, lsattr, mkdev, rmdev, lsconn, and 
lsparent maps ODM configuration information to specific devices. 
AIX’s chdev is actually quite similar to the Solaris and HP-UX ndd com-
mand (see page 498), but by default chdev writes your changes both to 
the active driver and to the ODM configuration database. Even common 
parameters such as the system hostname and the details of static routes 
are stored as device attributes (the device in this case being an instance 
of the “inet” driver).

• Several administration utilities provide front ends to the chdev family. 
For example, mktcpip is sort of like a persistent ifconfig that converts its 
arguments into a series of chdev calls on network interfaces, affecting 
both the active and saved configurations. (Would you guess that its syn-
tax mirrors that of ifconfig? You guessed wrong.)

• ODM is a user-level facility, so drivers don’t access it directly. Just as with 
traditional text-file configuration, some software must read the ODM 
configurations at boot time and poke the appropriate values into the 
running drivers.

Fortunately, most administrators need not touch the complexities of ODM thanks 
to SMIT and to higher-level tools such as mktcpip. 

One indispensable utility for managing AIX devices is the cfgmgr command. Run 
it as root with no arguments after adding new hardware to the system; the new 
hardware will miraculously be recognized and become available for use. Well, 
usually. If the device drivers haven’t already been loaded into the ODM database, 
cfgmgr will helpfully suggest a package for you to install from the AIX installation 
media. See the cfgmgr man page for further details.

2. Dan Foster, one of our technical reviewers, commented, “Direct manipulation of the ODM with the 
odm* tools is not recommended if you don’t know exactly what you’re doing. These commands do no 
error checking on the data you modify, whereas the normal ch*/mk*/rm* tools validate data prior to 
making changes. The odm* tools are like a loaded AK-47 with no safety mechanism: one quick touch, 
and you’ve discharged several rounds into an eviscerated target.”

  



ptg

434 Chapter 13 Drivers and the Kernel

Kernel tuning 

AIX has six categories of tunable values and supplies six corresponding com-
mands for tweaking them. Most of the values relate to performance optimization. 
Table 13.6 captures each command and its purpose. Breaking from standard AIX 
convention, the commands share a common syntax. The parameters can also be 
managed through the SMIT interface with the incantation smit tuning. See the 
man page for each command for detailed information.

The commands are simple to use. To enable IP forwarding, for example, run
aix$ sudo no -o ipforwarding=1

To list all available tunables for the I/O subsystem, type
aix$ sudo ioo -a

You can add the -r flag to any of the commands to ensure that your changes per-
sist after a reboot.

13.7 LOADABLE KERNEL MODULES 

Loadable kernel modules (LKMs) are now common to nearly all flavors of UNIX. 
Each of our example systems implements some form of dynamic loading facility, 
although the exact implementations vary.

Loadable kernel module support allows a device driver—or any other kernel ser-
vice—to be linked into and removed from the kernel while it is running. This 
facility makes the installation of drivers much easier since the kernel binary does 
not need to be changed. It also allows the kernel to be smaller because drivers are 
not loaded unless they are needed.

Table 13.6 Commands for setting tunable kernel parameters in AIX

Command Domain Examples of things you can configure

vmo Virtual memory Minimum number of free pages
ioo Input/Output Asynchronous I/O behavior

JFS2 configuration
schedo Process scheduling Process time slices and priorities

Virtual process management
no Network IP forwarding

TCP and UDP socket buffer sizes 
Packet time-to-live values

nfso NFS UTF-8 support
Delegation support 
Maximum number of NFS connections

raso Reliability Only a few tunables, none of which are 
particularly valuable to administrators

  



ptg

Loadable kernel modules in Linux 435

D
riv

er
s/

Ke
rn

el

Although loadable drivers are convenient, they are not 100% safe. Any time you 
load or unload a module, you risk causing a kernel panic. So don’t try out an 
untested module when you are not willing to crash the machine.

Like other aspects of device and driver management, the implementation of load-
able modules is OS dependent. The sections below outline the commands and 
caveats appropriate for Solaris and Linux, which support more devices and allow 
more administrator configuration than do our other example systems.

Loadable kernel modules in Linux

Linux is both more and less sophisticated than Solaris in its handling of loadable 
kernel modules, at least from the system administrator’s point of view. Under Li-
nux, almost anything can be built as a loadable kernel module. The exceptions are 
the root filesystem type, the device on which the root filesystem resides, and the 
PS/2 mouse driver.

Loadable kernel modules are conventionally stored under /lib/modules/version, 
where version is the version of your Linux kernel as returned by uname -r. You 
can inspect the currently loaded modules with the lsmod command:

redhat$ sudo /sbin/lsmod 
Module Size Used by 
ipmi_devintf 13064 2 
ipmi_si 36648 1 
ipmi_msghandler 31848 2 ipmi_devintf,ipmi_si 
iptable_filter 6721 0 
ip_tables 21441 1 iptable_filter
…

Loaded on this machine are the Intelligent Platform Management Interface mod-
ules and the iptables firewall.

As an example of manually loading a kernel module, here’s how we would insert 
the snarf module that we set up in the previous section:

redhat$ sudo insmod /path/to/snarf.ko

We can also pass parameters to loadable kernel modules; for example, 
redhat$ sudo insmod /path/to/snarf.ko io=0xXXX irq=X

Once a loadable kernel module has been manually inserted into the kernel, it can 
only be removed if you explicitly request its removal or if the system is rebooted. 
We could use rmmod snarf to remove our snarf module.

You can use rmmod at any time, but it works only if the number of current refer-
ences to the module (listed in the Used by column of lsmod’s output) is 0.

You can also load Linux LKMs semiautomatically with modprobe, a wrapper for 
insmod that understands dependencies, options, and installation and removal 
procedures. modprobe uses the /etc/modprobe.conf file to figure out how to 
handle each individual module.

  



ptg

436 Chapter 13 Drivers and the Kernel

You can dynamically generate an /etc/modprobe.conf file that corresponds to all 
your currently installed modules by running modprobe -c. This command gener-
ates a long file that looks like this:

#This file was generated by: modprobe -c 
path[pcmcia]=/lib/modules/preferred 
path[pcmcia]=/lib/modules/default 
path[pcmcia]=/lib/modules/2.6.6 
path[misc]=/lib/modules/2.6.6 
… 
# Aliases 
alias block-major-1 rd 
alias block-major-2 floppy 
… 
alias char-major-4 serial 
alias char-major-5 serial 
alias char-major-6 lp 
… 
alias dos msdos 
alias plip0 plip 
alias ppp0 ppp 
options ne io=x0340 irq=9

The path statements tell where a particular module can be found. You can modify 
or add entries of this type if you want to keep your modules in a nonstandard 
location.

The alias statement maps between block major device numbers, character major 
device numbers, filesystems, network devices, and network protocols and their 
corresponding module names. 

The options lines are not dynamically generated but rather must be manually 
added by an administrator. They specify options that should be passed to a mod-
ule when it is loaded. For example, we could use the following line to tell the snarf 
module its proper I/O address and interrupt vector:3

options snarf io=0xXXX irq=X

modprobe also understands the statements install and remove. These statements 
allow commands to be executed when a specific module is inserted into or re-
moved from the running kernel.

Loadable kernel modules in Solaris

In Solaris, virtually everything is a loadable module. The modinfo command lists 
the modules that are currently loaded.

3. If you’re using really oddball PC hardware, it can be a challenge to create a configuration in which 
device interrupt request vectors (IRQs) and I/O ports do not overlap. You can view the current assign-
ments on your system by examining the contents of /proc/interrupts and /proc/ioports, respectively. 
The overlap isn’t typically an issue with current mainstream PC hardware.

  



ptg

Linux udev for fun and profit 437

D
riv

er
s/

Ke
rn

el

The output looks like this: 
solaris$ modinfo
Id Loadaddr Size Info Rev ModuleName 
1 ff07e000 3ba0 1 1 specfs (filesystem for specfs)
2 ff086000 1340 - 1 swapgeneric (root/swap config)
3 ff082000 1a56 1 1 TS (time sharing sched class)
4 ff084000 49c - 1 TS_DPTBL (Timesharing dispatch)
5 ff095000 15248 2 1 ufs (filesystem for ufs)
6 ff0b8000 20e0 1 1 rootnex (sun4c root nexus)
7 ff084a00 170 57 1 options (options driver)
8 ff08dc00 2f4 62 1 dma (Direct Memory Access)
9 ff08c000 968 59 1 sbus (SBus nexus driver)

 … 

On our Solaris system, the list continued for 80-odd lines. Many elements that are 
hardwired into the kernel on other versions of UNIX (such as UFS, the local file-
system) are loadable drivers in Solaris. This organization should make it much 
easier for third parties to write packages that integrate easily and seamlessly into 
the kernel, at least in theory.

As described in Linux kernel configuration earlier in this chapter, you can add a 
driver with the add_drv command. This command loads the driver into the ker-
nel and makes the appropriate device links (all links are rebuilt each time the ker-
nel boots). Once you add_drv a driver, it remains a part of the system until you 
actively remove it. You can unload drivers by hand with rem_drv.

Whenever you add a driver by running add_drv, it is a good idea to also run 
drvconfig. This command reconfigures the /devices directory and adds any files 
that are appropriate for the newly loaded driver.

Loadable modules that are not accessed through device files can be loaded and 
unloaded with modload and modunload.

13.8 LINUX UDEV FOR FUN AND PROFIT

Device files have been a tricky problem for many years. When systems supported 
only a few types of devices, manual maintenance of device files was manageable. 
As the number of available devices has grown, however, the /dev filesystem has 
become cluttered, often with files irrelevant to the current system. Red Hat Enter-
prise Linux version 3 included more than 18,000 device files, one for every possi-
ble device that could be attached to the system! The creation of static device files 
quickly became a crushing problem and an evolutionary dead end.

USB, FireWire, PCMCIA, and other device interfaces introduce additional wrin-
kles. For example, if a user connects two external hard drives, it would be conve-
nient for the system to recognize and automount each drive with a persistent de-
vice name. Ideally, a drive that is initially recognized as /dev/sda would remain 
available as /dev/sda despite intermittent disconnections and regardless of the 

  



ptg

438 Chapter 13 Drivers and the Kernel

activity of other devices and buses. The presence of dynamic devices such as cam-
eras, printers, scanners, and other types of removable media clouds the water and 
makes the persistent identity problem even worse.

Udev is an elegant solution to these issues. It is a device management system im-
plemented in user space (rather than inside the kernel) that informs end-user ap-
plications about devices as they are attached and removed. Udev relies on sysfs, 
described below, to learn what’s going on with the system’s devices, and it uses a 
series of udev-specific rules to understand appropriate naming conventions. Udev 
maintains device files in /dev automatically and with minimal disruption. Only 
devices that are currently available to the system have files in /dev.

Linux administrators should understand how udev’s rule system works and 
should know how to use the udevadm command. Before peering into those de-
tails, however, let’s first review the underlying technology of sysfs.

Linux sysfs: a window into the souls of devices

Sysfs was added to the Linux kernel at version 2.6. It is a virtual, in-memory file-
system that provides detailed and well-organized information about the system’s 
available devices, their configurations, and their state. Sysfs device information is 
accessible both from within the kernel and from user space.

You can explore the /sys directory, where sysfs is typically mounted, to find out 
everything from what IRQ a device is using to how many blocks have been 
queued for writing on a disk controller. One of the guiding principles of sysfs is 
that each file in /sys should represent only one attribute of the underlying device. 
This convention imposes a certain amount of structure on an otherwise chaotic 
data set.

Table 13.7 shows the directories in the /sys root directory, each of which is a sub-
system that is registered with sysfs. These directories vary slightly by distribution.

Table 13.7 Subdirectories of /sys

Directory Description 

block Information about block devices such as hard disks 
bus Buses known to the kernel: PCI-E, SCSI, USB, and others 
class A tree organized by functional types of devices, e.g., sound and 

graphic cards, input devices, and network interfaces
dev Device information split between character and block devices 
devices An ancestrally correct representation of all discovered devices 
firmware Interfaces to platform-specific subsystems such as ACPI 
fs A directory for some, but not all, filesystems known to the kernel 
kernel Kernel internals such as cache and virtual memory status 
module Dynamic modules loaded by the kernel 
power A few details about the system’s power state; mostly unused

  



ptg

Constructing rules and persistent names 439

D
riv

er
s/

Ke
rn

el

Originally, if information about device configuration was available at all, it was 
found in the /proc filesystem. Although /proc continues to hold run-time infor-
mation about processes and the kernel, we anticipate that all device-specific infor-
mation will move to /sys over time. 

Exploring devices with udevadm

The udevadm command queries device information, triggers events, controls the 
udevd daemon, and monitors udev and kernel events. Its primary use for admin-
istrators is to build and test rules, which are covered in the next section. 

udevadm expects one of six commands as its first argument: info, trigger, settle, 
control, monitor, or test. Of particular interest to system administrators are info, 
which prints device-specific information, and control, which starts and stops 
udev or forces it to reload its rules files. The monitor command displays events as 
they occur.

The following command shows all udev attributes for the device sdb. The output 
is truncated here, but in reality it goes on to list all parent devices—such as the 
USB bus—that are ancestors of sdb in the device tree.

linux$ udevadm info -a -n sdb 
… 
looking at device '/devices/pci0000:00/0000:00:11.0/0000:02:03.0/usb1/1-1/1-1:

1.0/host6/target6:0:0/6:0:0:0/block/sdb': 
KERNEL=="sdb"
SUBSYSTEM=="block"
DRIVER==""
ATTR{range}=="16"
ATTR{ext_range}=="256"
ATTR{removable}=="1"
ATTR{ro}=="0"
ATTR{size}=="1974271"
ATTR{capability}=="53"
ATTR{stat}=="      71      986     1561      860        1        0        1       

12        0      592      872" 
…

All paths in udevadm output, such as /devices/pci0000:00/…, are relative to /sys.

The output is formatted so that you can feed it back to udev when constructing 
rules. For example, if the ATTR{size}=="1974271" clause were unique to this de-
vice, you could copy that snippet into a rule as the identifying criteria. 

Refer to the man page on udevadm for additional options and syntax.

Constructing rules and persistent names

Udev relies on a set of rules to guide its management and naming of devices. The 
default rules reside in the /lib/udev/rules.d directory, but local rules belong in 
/etc/udev/rules.d. There is no need to edit or delete the default rules—you can 

  



ptg

440 Chapter 13 Drivers and the Kernel

ignore or override a file of default rules by creating a new file with the same name 
in the custom rules directory.

The master configuration file for udev is /etc/udev/udev.conf; however, the de-
fault behaviors are reasonable. The udev.conf files on our example distributions 
contain only comments, with the exception of one line that enables error logging.

Sadly, because of political bickering among distributors and developers, there is 
little rule synergy among distributions. Many of the filenames in the default rules 
directory are the same from distribution to distribution, but the contents of the 
files differ significantly.

Rule files are named according to the pattern nn-description.rules, where nn is 
usually a two-digit number. Files are processed in lexical order, so lower numbers 
are processed first. Files from the two rules directories are combined before the 
udev daemon, udevd, parses them. The .rules suffix is mandatory; files without it 
are ignored.

Rules are of the form
match_clause, [match_clause, …] assignment_clause [,assignment_clause …]

The match_clauses define the situations in which the rule is to be applied. Each 
match clause consists of a key, an operator, and a value. For example, the clause 
ATTR{size}=="1974271" was referred to above as a potential component of a rule; 
it selects all devices whose size attribute is exactly 1,974,271.

Most match keys refer to device properties (which udevd obtains from the /sys
filesystem), but some refer to other context-dependent attributes, such as the op-
eration being handled (e.g., device addition or removal). All match clauses must 
match in order for a rule to be activated.

Table 13.8 shows the match keys understood by udev. 

Table 13.8 Udev match keys

Match key Function

ACTION Matches the event type, e.g., add or remove 
DEVPATH Matches a specific device path
KERNELa Matches the kernel’s name for the device 
SUBSYSTEM a Matches a specific subsystem
DRIVERa Matches the driver used by a device
ATTR{filename}a Matches a device’s sysfs values; the filename is a leaf in the 

sysfs tree that corresponds to a specific attribute
ENV{key} Matches the value of an environment variable 
TEST{omask} Tests whether a file exists; the omask is optional 
PROGRAM Runs an external command; matches if the return code is 0
RESULT Matches the output of the last call through PROGRAM

a. A plural version is also available. It searches up the device path to match the value. 

  



ptg

Constructing rules and persistent names 441

D
riv

er
s/

Ke
rn

el

For matching rules, the assignment_clauses specify the actions udevd should take 
to handle the event. Their format is similar to that for match clauses. 

The most important assignment key is NAME, which indicates what udev should 
name the device. The optional SYMLINK assignment key creates a symbolic link 
to the device through its desired path in /dev.

Let’s put these components together with an example: a USB flash drive. Suppose 
that we want to make the drive’s device name persist across insertions and that we 
want the drive to be mounted and unmounted automatically. 

To start with, we insert the flash drive and check to see how the kernel identifies 
it. There are a couple of ways to do this. By running the lsusb command, we can 
inspect the USB bus directly:

ubuntu$ lsusb
Bus 001 Device 007: ID 1307:0163 Transcend, Inc. USB Flash Drive 
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub 
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Alternatively, we can check for log entries submitted to /var/log/messages. In our 
case, the attachment leaves an extensive audit trail:

Aug  9 19:50:03 ubuntu kernel: [42689.253554] scsi 8:0:0:0: Direct-Access     
Ut163    USB2FlashStorage 0.00 PQ: 0 ANSI: 2 

Aug  9 19:50:03 ubuntu kernel: [42689.292226] sd 8:0:0:0: [sdb] 1974271 512-
byte hardware sectors: (1.01 GB/963 MiB) 

…
Aug  9 19:50:03 ubuntu kernel: [42689.304749] sd 8:0:0:0: [sdb] 1974271 512-

byte hardware sectors: (1.01 GB/963 MiB)
Aug  9 19:50:03 ubuntu kernel: [42689.307182]  sdb: sdb1 
Aug  9 19:50:03 ubuntu kernel: [42689.427785] sd 8:0:0:0: [sdb] Attached SCSI 

removable disk
Aug  9 19:50:03 ubuntu kernel: [42689.428405] sd 8:0:0:0: Attached scsi generic 

sg3 type 0

The log messages above indicate that the drive was recognized as sdb, which gives 
us an easy way to identify the device in /sys. We can now examine the /sys filesys-
tem with udevadm in search of some rule snippets that are characteristic of the 
device and might be usable in udev rules.

ubuntu$ udevadm info -a -p /block/sdb/sdb1 
looking at device '/devices/pci0000:00/0000:00:11.0/0000:02:03.0/usb1/1-1/1-1:

1.0/host30/target30:0:0/30:0:0:0/block/sdb/sdb1': 
KERNEL=="sdb1"
SUBSYSTEM=="block"
DRIVER==""
ATTR{partition}=="1"
ATTR{start}=="63"
ATTR{size}=="1974208"
ATTR{stat}=="      71      792     1857      808        0        0        0        

0        0      512      808"

  



ptg

442 Chapter 13 Drivers and the Kernel

  looking at parent device '/devices/pci0000:00/0000:00:11.0/0000:02:03.0/usb1/1-
1/1-1:1.0/host30/target30:0:0/30:0:0:0/block/sdb':

KERNELS=="sdb"
SUBSYSTEMS=="block" 
DRIVERS==""

… 
ATTRS{scsi_level}=="3" 
ATTRS{vendor}=="Ut163   " 
ATTRS{model}=="USB2FlashStorage"

…

The output from udevadm show several opportunities for matching. One possi-
bility is the size field, which is likely to be unique to this device. However, if the 
size of the partition were to change, the device would not be recognized. Instead, 
we can use a combination of two values: the kernel’s naming convention of sd plus 
an additional letter, and the contents of the model attribute, USB2FlashStorage. 
For creating rules specific to this particular flash drive, another good choice 
would be the device’s serial number (not displayed here).

We’ll put our rules for this device in the file /etc/udev/rules.d/10-local.rules. Be-
cause we have multiple objectives in mind, we need a series of rules.

First, we take care of creating device symlinks in /dev. The following rule uses our 
knowledge of the ATTRS and KERNEL match keys, gleaned from udevadm, to 
identify the device:

ATTRS{model}=="USB2FlashStorage", KERNEL=="sd[a-z]1", SYMLINK+="ate-
flash%n"

When the rule triggers, udevd sets up /dev/ate-flashN as a symlink to the device. 
We don’t really expect more than one of these devices to appear on the system. If 
more copies do appear, they receive unique names in /dev, but the exact names 
depend on the insertion order of the devices.

Next, we use the ACTION key to run some commands whenever the device ap-
pears on the USB bus. The RUN assignment key lets us create an appropriate 
mount point directory and mount the device there.

ACTION=="add", ATTRS{model}=="USB2FlashStorage", KERNEL=="sd[a-z]1", 
RUN+="/bin/mkdir -p /mnt/ate-flash%n"

ACTION=="add", ATTRS{model}=="USB2FlashStorage", KERNEL=="sd[a-z]1", 
PROGRAM=="/lib/udev/vol_id -t %N", RESULT=="vfat", RUN+="/bin/mount 
-t vfat /dev/%k /mnt/ate-flash%n"

The PROGRAM and RUN keys look similar, but PROGRAM is a match key that’s 
active during the rule selection phase, whereas RUN is an assignment key that’s 
part of the rule’s actions once triggered. The second rule above verifies that the 
flash drive contains a Windows filesystem before mounting it with the -t vfat op-
tion to the mount command.

  



ptg

Recommended reading 443

D
riv

er
s/

Ke
rn

el

Similar rules clean up when the device is removed:
ACTION=="remove", ATTRS{model}=="USB2FlashStorage", KERNEL=="sd[a-z]1", 

RUN+="/bin/umount -l /mnt/ate-flash%n"
ACTION=="remove", ATTRS{model}=="USB2FlashStorage", KERNEL=="sd[a-z]1", 

RUN+="/bin/rmdir /mnt/ate-flash%n"

Now that our rules are in place, we must notify udevd of our changes. udevadm’s 
control command is one of the few that require root privileges.

ubuntu$ sudo udevadm control --reload-rules

Typos are silently ignored after a reload, even with the --debug flag, so be sure to 
double-check the rules’ syntax.

That’s it! Now when the flash drive is plugged into a USB port, udevd creates a 
symbolic link called /dev/ate-flash1 and mounts the drive as /mnt/ate-flash1.

ubuntu$ ls -l /dev/ate* 
lrwxrwxrwx 1 root root 4 2009-08-09 21:22 /dev/ate-flash1 -> sdb1

ubuntu$ mount | grep ate 
/dev/sdb1 on /mnt/ate-flash1 type vfat (rw)

13.9 RECOMMENDED READING

BOVET, DANIEL P., AND MARCO CESATI. Understanding the Linux Kernel (3rd Edi-
tion). Sebastopol, CA: O’Reilly Media, 2006.

CORBET, JONATHAN, ET AL. Linux Device Drivers (3rd Edition). Sebastopol, CA: 
O’Reilly Media, 2005. This book is also available on-line at lwn.net/Kernel/LDD3.

LOVE, ROBERT. Linux Kernel Development (2nd Edition). Indianapolis, IN: Novell 
Press, 2005.

MCDOUGALL, RICHARD, AND JIM MAURO. Solaris Internals: Solaris 10 and Open-
Solaris Kernel Architecture (2nd Edition). Upper Saddle River, NJ: Prentice Hall 
PTR, 2006.

  



ptg

444 Chapter 13 Drivers and the Kernel

13.10 EXERCISES

E13.1 Describe what the kernel does. Explain the difference between load-
ing a driver as a module and linking it statically into the kernel.

E13.2 A process on an HP-UX system crashed and reported a cryptic error: 
“Too many open files: file permissions deny server access.” What 
might be the cause of this error? What change needs to occur to fix 
the underlying issue?

E13.3 Do AIX systems offer loadable kernel modules? How would a devel-
oper add support for a new filesystem or for new system calls to an 
AIX kernel? When might this functionality be needed?

E13.4 At a local flea market, you get a great deal on a laptop card that gives 
you Ethernet connectivity through a parallel port. What steps would 
you need to perform to make Linux recognize this new card? Should 
you compile support directly into the kernel or add it as a module? 
Why? (Bonus question: if your hourly consulting fee is $80, estimate 
the value of the labor needed to get this cheapie Ethernet interface 
working.)

E13.5 In the lab, configure a Linux kernel with xconfig or menuconfig and 
build a kernel binary. Install and run the new system. Turn in dmesg
output from the old and new kernels and highlight the differences. 
(Requires root access.)

  



ptg

SECTION TWO 

NETWORKING

  



ptg

This page intentionally left blank 

  



ptg

447

IP
 N

et
w

or
ki

ng

14 TCP/IP Networking

It would be hard to overstate the importance of networks to modern computing, 
although that doesn’t seem to stop people from trying. At many sites—perhaps 
even the majority—web and email access are the primary uses of computers. As of 
2010, internetworldstats.com estimates the Internet to have nearly 1.5 billion us-
ers, or more than 21% of the world’s population. In North America, Internet pen-
etration approaches 75%.

TCP/IP is the networking system that underlies the Internet. TCP/IP does not 
depend on any particular hardware or operating system, so devices that speak 
TCP/IP can all exchange data (“interoperate”) despite their many differences. 

TCP/IP works on networks of any size or topology, whether or not they are con-
nected to the outside world. This chapter introduces the TCP/IP protocols in the 
political and technical context of the Internet, but stand-alone networks are quite 
similar at the TCP/IP level.

14.1 TCP/IP AND ITS RELATIONSHIP TO THE INTERNET

TCP/IP and the Internet share a history that goes back several decades. The tech-
nical success of the Internet is due largely to the elegant and flexible design of 

IP Networking

  



ptg

448 Chapter 14 TCP/IP Networking

TCP/IP and to the fact that TCP/IP is an open and nonproprietary protocol suite. 
In turn, the leverage provided by the Internet has helped TCP/IP prevail over sev-
eral competing protocol suites that were favored at one time or another for politi-
cal or commercial reasons. 

The progenitor of the modern Internet was a research network called ARPANET 
established in 1969 by the U.S. Department of Defense. By the end of the 1980s 
the network was no longer a research project and we transitioned to the commer-
cial Internet. Today’s Internet is a collection of private networks owned by Inter-
net service providers (ISPs) that interconnect at many so-called peering points.

Who runs the Internet?

Oversight of the Internet and the Internet protocols has long been a cooperative 
and open effort, but its exact structure has changed as the Internet has evolved 
into a public utility and a driving force in the world economy. Current Internet 
governance is split roughly into administrative, technical, and political wings, but 
the boundaries between these functions are often vague. The major players are 
listed below:

• ICANN, the Internet Corporation for Assigned Names and Numbers: if 
any one group can be said to be in charge of the Internet, this is probably 
it. It’s the only group with any sort of actual enforcement capability. 
ICANN controls the allocation of Internet addresses and domain names, 
along with various other snippets such as protocol port numbers. It is 
organized as a nonprofit corporation headquartered in California and 
operates under a memorandum of understanding with the U.S. Depart-
ment of Commerce. (icann.org)

• ISOC, the Internet Society: ISOC is an open-membership organization 
that represents Internet users. Although it has educational and policy 
functions, it’s best known as the umbrella organization for the technical 
development of the Internet. In particular, it is the parent organization of 
the Internet Engineering Task Force (ietf.org), which oversees most 
technical work. ISOC is an international nonprofit organization with 
offices in Washington, D.C. and Geneva. (isoc.org)

• IGF, the Internet Governance Forum: a relative newcomer, the IGF was 
created by the United Nations in 2005 to establish a home for interna-
tional and policy-oriented discussions related to the Internet. It’s cur-
rently structured as a yearly conference series, but its importance is 
likely to grow over time as governments attempt to exert more control 
over the operation of the Internet. (intgovforum.org)

Of these groups, ICANN has the toughest job: establishing itself as the authority 
in charge of the Internet, undoing the mistakes of the past, and foreseeing the 
future, all while keeping users, governments, and business interests happy.

  



ptg

Network standards and documentation 449

IP
 N

et
w

or
ki

ng

Network standards and documentation

If your eyes haven’t glazed over just from reading the title of this section, you’ve 
probably already had several cups of coffee. Nonetheless, accessing the Internet’s 
authoritative technical documentation is a crucial skill for system administrators, 
and it’s more entertaining than it sounds.

The technical activities of the Internet community are summarized in documents 
known as Requests for Comments or RFCs. Protocol standards, proposed 
changes, and informational bulletins all usually end up as RFCs. RFCs start their 
lives as Internet Drafts, and after lots of email wrangling and IETF meetings they 
either die or are promoted to the RFC series. Anyone who has comments on a 
draft or proposed RFC is encouraged to reply. In addition to standardizing the 
Internet protocols, the RFC mechanism sometimes just documents or explains 
aspects of existing practice.

RFCs are numbered sequentially; currently, there are about 5,600. RFCs also have 
descriptive titles (e.g., Algorithms for Synchronizing Network Clocks), but to fore-
stall ambiguity they are usually cited by number. Once distributed, the contents of 
an RFC are never changed. Updates are distributed as new RFCs with their own 
reference numbers. Updates may either extend and clarify existing RFCs or super-
sede them entirely.

RFCs are available from numerous sources, but rfc-editor.org is dispatch central 
and will always have the most up-to-date information. Look up the status of an 
RFC at rfc-editor.org before investing the time to read it; it may no longer be the 
most current document on that subject.

The Internet standards process itself is detailed in RFC2026. Another useful 
meta-RFC is RFC5540, 40 Years of RFCs, which describes some of the cultural and 
technical context of the RFC system.

Don’t be scared away by the wealth of technical detail found in RFCs. Most con-
tain introductions, summaries, and rationales that are useful for system adminis-
trators even when the technical details are not. Some RFCs are specifically written 
as overviews or general introductions. RFCs may not be the gentlest way to learn 
about a topic, but they are authoritative, concise, and free.

Not all RFCs are full of boring technical details. Here are some of our favorites on 
the lighter side (usually written on April 1st):

• RFC1149 – Standard for Transmission of IP Datagrams on Avian Carriers1 
• RFC1925 – The Twelve Networking Truths
• RFC3251 – Electricity over IP
• RFC3514 – The Security Flag in the IPv4 Header
• RFC4041 – Requirements for Morality Sections in Routing Area Drafts

1. A group of Linux enthusiasts from BLUG, the Bergen (Norway) Linux User Group, actually imple-
mented the Carrier Pigeon Internet Protocol (CPIP) as specified in RFC1149. For details, see the web 
site blug.linux.no/rfc1149.

  



ptg

450 Chapter 14 TCP/IP Networking

In addition to being assigned its own serial number, an RFC can also be assigned 
an FYI (For Your Information) number, a BCP (Best Current Practice) number, or 
a STD (Standard) number. FYIs, STDs, and BCPs are subseries of the RFCs that 
include documents of special interest or importance.

FYIs are introductory or informational documents intended for a broad audience. 
They can be a good place to start research on an unfamiliar topic if you can find 
one that’s relevant. Unfortunately, this series has languished recently and not 
many of the FYIs are up to date.

BCPs document recommended procedures for Internet sites; they consist of ad-
ministrative suggestions and for system administrators are often the most valu-
able of the RFC subseries.

STDs document Internet protocols that have completed the IETF’s review and 
testing process and have been formally adopted as standards. 

RFCs, FYIs, BCPs, and STDs are numbered sequentially within their own series, 
so a document can bear several different identifying numbers. For example, 
RFC1713, Tools for DNS Debugging, is also known as FYI27.

14.2 NETWORKING ROAD MAP

Now that we’ve provided a bit of context, let’s look at the TCP/IP protocols them-
selves. TCP/IP is a protocol “suite,” a set of network protocols designed to work 
smoothly together. It includes several components, each defined by a standards-
track RFC or series of RFCs:

• IP, the Internet Protocol, which routes data packets from one machine to 
another (RFC791)

• ICMP, the Internet Control Message Protocol, which provides several 
kinds of low-level support for IP, including error messages, routing assis-
tance, and debugging help (RFC792)

• ARP, the Address Resolution Protocol, which translates IP addresses to 
hardware addresses (RFC826)2

• UDP, the User Datagram Protocol, which provides unverified, one-way 
data delivery (RFC768)

• TCP, the Transmission Control Protocol, which implements reliable, full 
duplex, flow-controlled, error-corrected conversations (RFC793)

These protocols are arranged in a hierarchy or “stack”, with the higher-level proto-
cols making use of the protocols beneath them. TCP/IP is conventionally de-
scribed as a five-layer system (as shown in Exhibit A), but the actual TCP/IP pro-
tocols inhabit only three of these layers. 

2. This is actually a little white lie. ARP is not really part of TCP/IP and can be used with other protocol 
suites. However, it’s an integral part of the way TCP/IP works on most LAN media.

  



ptg

IPv4 and IPv6 451

IP
 N

et
w

or
ki

ng

Exhibit A TCP/IP layering model

IPv4 and IPv6

The version of TCP/IP that has been in widespread use for three decades is proto-
col revision 4, aka IPv4. It uses four-byte IP addresses. A modernized version, 
IPv6, expands the IP address space to 16 bytes and incorporates several other les-
sons learned from the use of IPv4. It removes several features of IP that experi-
ence has shown to be of little value, making the protocol potentially faster and 
easier to implement. IPv6 also integrates security and authentication into the ba-
sic protocol.

All modern operating systems and many network devices already support IPv6. 
However, active use of IPv6 remains essentially zero in the real world.3 Experience 
suggests that it’s probably best for administrators to defer production use of IPv6 
to the extent that this is possible. Everyone will eventually be forced to switch to 
IPv6, but as of 2010 that day is still years away. At the same time, the transition is 
not so far in the future that you can ignore it when purchasing new network de-
vices. Insist on IPv6 compatibility for new acquisitions.

The development of IPv6 was to a large extent motivated by the concern that we 
are running out of 4-byte IPv4 address space. And indeed we are: projections in-
dicate that the current IPv4 allocation system will collapse some time around 
2011. (See ipv4.potaroo.net for a daily update.) Even so, mainstream adoption of 
IPv6 throughout the Internet is probably still not in the cards anytime soon.

More likely, another round of stopgap measures on the part of ISPs and ICANN 
(or more specifically, its subsidiary IANA, the Internet Assigned Numbers Au-
thority) will extend the dominance of IPv4 for another few years. We expect to see 
wider use of IPv6 on the Internet backbone, but outside of large ISPs, academic 
sites involved in Internet research, and universal providers such as Google, our 

APPLICATION

TRANSPORT

NETWORK

LINK

PHYSICAL

LAYER

LAYER

LAYER

LAYER

LAYER

IP ICMP

ARP, device drivers

Copper, optical fiber, radio waves

UDPTCP

DNS, Halo 3 tracerouteSSH, FTP, HTTParp

3. A Google study presented at RIPE 57 in October 2008 indicated that overall IPv6 penetration (actual 
use, not capability) was 0.24%. No country had IPv6 penetration greater than 0.76%.

  



ptg

452 Chapter 14 TCP/IP Networking 

guess is that IPv6 will not be directly affecting most sysadmins’ work in the imme-
diate future.

The IPv4 address shortage is felt more acutely outside the United States, and so 
IPv6 has received a warmer welcome there. In the United States, it may take a 
killer application to boost IPv6 over the hill: for example, a new generation of cell 
phones that map an IPv6 address to a telephone number. (Voice-over-IP systems 
would also benefit from a closer correspondence between phone numbers and 
IPv6 addresses.)

In this book, we focus on IPv4 as the mainstream version of TCP/IP. IPv6-specific 
material is explicitly marked. Fortunately for sysadmins, IPv4 and IPv6 are highly 
analogous. If you understand IPv4, you already know most of what you need to 
know about IPv6. The main difference between the versions lies in their address-
ing schemes. In addition to longer addresses, IPv6 introduces a few additional 
addressing concepts and some new notation. But that’s about it.

Packets and encapsulation

TCP/IP supports a variety of physical networks and transport systems, including 
Ethernet, token ring, MPLS (Multiprotocol Label Switching), wireless Ethernet, 
and serial-line-based systems. Hardware is managed within the link layer of the 
TCP/IP architecture, and higher-level protocols do not know or care about the 
specific hardware being used.

Data travels on a network in the form of packets, bursts of data with a maximum 
length imposed by the link layer. Each packet consists of a header and a payload. 
The header tells where the packet came from and where it’s going. It can also 
include checksums, protocol-specific information, or other handling instructions. 
The payload is the data to be transferred.

The name of the primitive data unit depends on the layer of the protocol. At the 
link layer it is called a frame, at the IP layer a packet, and at the TCP layer a seg-
ment. In this book, we use “packet” as a generic term that encompasses these var-
ious cases.

As a packet travels down the protocol stack (from TCP or UDP transport to IP to 
Ethernet to the physical wire) in preparation for being sent, each protocol adds its 
own header information. Each protocol’s finished packet becomes the payload 
part of the packet generated by the next protocol. This nesting is known as encap-
sulation. On the receiving machine, the encapsulation is reversed as the packet 
travels back up the protocol stack.

For example, a UDP packet being transmitted over Ethernet contains three differ-
ent wrappers or envelopes. On the Ethernet wire, it is framed with a simple header 
that lists the source and next-hop destination hardware addresses, the length of 
the frame, and the frame’s checksum (CRC). The Ethernet frame’s payload is an IP 
packet, the IP packet’s payload is a UDP packet, and the UDP packet’s payload is 
the data being transmitted. Exhibit B shows the components of such a frame.

  



ptg

Maximum transfer unit 453

IP
 N

et
w

or
ki

ng

Exhibit B A typical network packet4

Ethernet framing

One of the main chores of the link layer is to add headers to packets and to put 
separators between them. The headers contain each packet’s link-layer addressing 
information and checksums, and the separators ensure that receivers can tell 
where one packet stops and the next one begins. The process of adding these extra 
bits is known generically as framing.

The link layer is actually divided into two parts: MAC, the Media Access Control 
sublayer, and LLC, the Link Layer Control sublayer. The MAC layer deals with the 
media and transmits packets onto the wire. The LLC layer handles the framing.

Today, a single standard for Ethernet framing is in common use: DIX Ethernet II. 
Historically, several slightly different standards based on IEEE 802.2 were also 
used, especially on Novell networks.

Maximum transfer unit

The size of packets on a network may be limited both by hardware specifications 
and by protocol conventions. For example, the payload of a standard Ethernet 
frame is traditionally 1,500 bytes. The size limit is associated with the link-layer 
protocol and is called the maximum transfer unit or MTU. Table 14.1 shows some 
typical values for the MTU.

4. For specificity, RFCs that describe protocols often use the term “octet” instead of “byte.” 

Ethernet frame (146 bytes)

Ethernet 
header

IPv4 
header

UDP 
header 

Application data

14 bytes 20 bytes 8 bytes

Ethernet 
CRC

4 bytes100 bytes

IPv4 packet (128 bytes)

UDP packet (108 bytes)

Table 14.1 MTUs for various types of network

Network type Maximum transfer unit

Ethernet 1,500 bytes (1,492 with 802.2 framing)a

FDDI 4,470 bytes (4,352 for IP/FDDI)
Token ring Configurable b

PPP modem link Configurable, often 512 or 576 bytes 
Point-to-point WAN links (T1, T3) Configurable, often 1,500 or 4,500 bytes

a. See page 541 for some comments on “jumbo” Ethernet packets.
b. Common values are 552; 1,064; 2,088; 4,508; and 8,232. Sometimes 1,500 to match Ethernet.

  



ptg

454 Chapter 14 TCP/IP Networking

The IP layer splits packets to conform to the MTU of a particular network link. If 
a packet is routed through several networks, one of the intermediate networks 
may have a smaller MTU than the network of origin. In this case, an IPv4 router 
that forwards the packet onto the small-MTU network further subdivides the 
packet in a process called fragmentation. 

Fragmentation of in-flight packets is an unwelcome chore for a busy router, so 
IPv6 largely removes this feature. Packets can still be fragmented, but the originat-
ing host must do the work itself. 

Senders can discover the lowest-MTU link through which a packet must pass by 
setting the packet’s “do not fragment” flag. If the packet reaches an intermediate 
router that cannot forward the packet without fragmenting it, the router returns 
an ICMP error message to the sender. The ICMP packet includes the MTU of the 
network that’s demanding smaller packets, and this MTU then becomes the gov-
erning packet size for communication with that destination.

The TCP protocol does path MTU discovery automatically, even in IPv4. UDP is 
not so nice and is happy to shunt extra work to the IP layer.

Fragmentation problems can be insidious. Although path MTU discovery should 
automatically resolve MTU conflicts, an administrator must occasionally inter-
vene. If you are using a tunneled architecture for a virtual private network, for 
example, you should look at the size of the packets that are traversing the tunnel. 
They are often 1,500 bytes to start with, but once the tunneling header is added, 
they become 1,540 bytes or so and must be fragmented. Setting the MTU of the 
link to a smaller value averts fragmentation and increases the overall performance 
of the tunneled network. Consult the ifconfig man page to see how to set an inter-
face’s MTU.

14.3 PACKET ADDRESSING

Like letters or email messages, network packets must be properly addressed in 
order to reach their destinations. Several addressing schemes are used in combi-
nation:

• MAC (media access control) addresses for use by hardware
• IPv4 and IPv6 network addresses for use by software
• Hostnames for use by people

Hardware (MAC) addressing

Each of a host’s network interfaces usually has one link-layer MAC address that 
distinguishes it from other machines on the physical network, plus one or more IP 
addresses that identify the interface on the global Internet. This last part bears 
repeating: IP addresses identify network interfaces, not machines. (To users the 
distinction is irrelevant, but administrators must know the truth.)

  



ptg

IP addressing 455

IP
 N

et
w

or
ki

ng

The lowest level of addressing is dictated by network hardware. For example, 
Ethernet devices are assigned a unique 6-byte hardware address at the time of 
manufacture. These addresses are traditionally written as a series of 2-digit hex 
bytes separated by colons; for example, 00:50:8D:9A:3B:DF.

Token ring interfaces have a similar address that is also six bytes long. Some 
point-to-point networks (such as PPP) need no hardware addresses at all; the 
identity of the destination is specified as the link is established.

A 6-byte Ethernet address is divided into two parts. The first three bytes identify 
the manufacturer of the hardware, and the last three bytes are a unique serial 
number that the manufacturer assigns. Sysadmins can sometimes identify the 
brand of machine that is trashing a network by looking up the 3-byte identifier in 
a table of vendor IDs. A current vendor table is available from

iana.org/assignments/ethernet-numbers

The 3-byte codes are actually IEEE Organizationally Unique Identifiers (OUIs), 
so you can also look up them up directly in the IEEE’s database at

standards.ieee.org/regauth/oui

Of course, the relationships among the manufacturers of chipsets, components, 
and systems are complex, so the vendor ID embedded in a MAC address can be 
misleading, too.

In theory, Ethernet hardware addresses are permanently assigned and immutable. 
However, many network interfaces now let you override the hardware address and 
set one of your own choosing. This feature can be handy if you have to replace a 
broken machine or network card and for some reason must use the old MAC 
address (e.g., all your switches filter it, or your DHCP server hands out addresses 
based on MAC addresses, or your MAC address is also a software license key). 
Spoofable MAC addresses are also helpful if you need to infiltrate a wireless net-
work that uses MAC-based access control. But for simplicity, it’s generally advis-
able to preserve the uniqueness of MAC addresses.

IP addressing

At the next level up from the hardware, Internet addressing (more commonly 
known as IP addressing) is used. IP addresses are globally unique5 and hardware 
independent.

See page 468 for 
more information 
about ARP.

The mapping from IP addresses to hardware addresses is implemented at the link 
layer of the TCP/IP model. On networks such as Ethernet that support broadcast-
ing (that is, networks that allow packets to be addressed to “all hosts on this 

5. In general, an IP address identifies a specific and unique destination. However, several special cases 
muddy the water. NAT (page 462) uses one interface’s IP address to handle traffic for multiple 
machines. IP private address spaces (page 462) are addresses that multiple sites can use at once, as long 
as the addresses are not visible to the Internet. Anycast addressing shares one IP address among sev-
eral machines.

  



ptg

456 Chapter 14 TCP/IP Networking 

physical network”), senders use the ARP protocol to discover mappings without 
assistance from a system administrator. In IPv6, an interface’s MAC address can 
be used as part of the IP address, making the translation between IP and hardware 
addressing virtually automatic.

Hostname “addressing”

See Chapter 17 for 
more information 
about DNS.

IP addresses are sequences of numbers, so they are hard for people to remember. 
Operating systems allow one or more hostnames to be associated with an IP ad-
dress so that users can type rfc-editor.org instead of 128.9.160.27. Under UNIX 
and Linux, this mapping can be set up in several ways, ranging from a static file 
(/etc/hosts) to the LDAP database system to DNS, the world-wide Domain Name 
System. Keep in mind that hostnames are really just a convenient shorthand for IP 
addresses, and as such, they refer to network interfaces rather than computers.

Ports

IP addresses identify a machine’s network interfaces, but they are not specific 
enough to address individual processes or services, many of which may be ac-
tively using the network at once. TCP and UDP extend IP addresses with a con-
cept known as a port, a 16-bit number that supplements an IP address to specify a 
particular communication channel. Standard services such as email, FTP, and 
HTTP associate themselves with “well known” ports defined in /etc/services.6 To 
help prevent impersonation of these services, UNIX systems restrict server pro-
grams from binding to port numbers under 1,024 unless they are run as root. 
(Anyone can communicate with a server running on a low port number; the re-
striction applies only to the program listening on the port.)

Address types

The IP layer defines several broad types of address, some of which have direct 
counterparts at the link layer:

• Unicast – addresses that refer to a single network interface
• Multicast – addresses that simultaneously target a group of hosts
• Broadcast – addresses that include all hosts on the local subnet
• Anycast – addresses that resolve to any one of a group of hosts

Multicast addressing facilitates applications such as video conferencing in which 
the same set of packets must be sent to all participants. The Internet Group Man-
agement Protocol (IGMP) constructs and manages sets of hosts that are treated as 
one multicast destination.

Multicast is largely unused on today’s Internet, but it’s slightly more mainstream 
in IPv6. IPv6 broadcast addresses are really just specialized forms of multicast 
addressing.

6. You can find a full list of assigned ports at iana.org/assignments/port-numbers.

  



ptg

IPv4 address classes 457

IP
 N

et
w

or
ki

ng

Anycast addresses bring load balancing to the network layer by allowing packets 
to be delivered to whichever of several destinations is closest in terms of network 
routing. You might expect that they’d be implemented similarly to multicast ad-
dresses, but in fact they are more like unicast addresses.

Most of the implementation details for anycast support are handled at the level of 
routing rather than IP. The novelty of anycast addressing is really just the relax-
ation of the traditional requirement that IP addresses identify unique destina-
tions. Anycast addressing is formally described for IPv6, but the same tricks can 
be applied to IPv4, too—for example, as is done for root DNS name servers.

14.4 IP ADDRESSES: THE GORY DETAILS

With the exception of multicast addresses, Internet addresses consist of a network 
portion and a host portion. The network portion identifies a logical network to 
which the address refers, and the host portion identifies a node on that network. 
In IPv4, addresses are four bytes long and the boundary between network and 
host portions is set administratively. In IPv6, addresses are 16 bytes long and the 
network portion and host portion are always eight bytes each.

IPv4 addresses are written as decimal numbers, one for each byte, separated by 
periods; for example, 209.85.171.147. The leftmost byte is the most significant 
and is always part of the network portion.

When 127 is the first byte of an address, it denotes the “loopback network,” a 
fictitious network that has no real hardware interface and only one host. The 
loopback address 127.0.0.1 always refers to the current host. Its symbolic name is 
“localhost”. (This is another small violation of IP address uniqueness since every 
host thinks 127.0.0.1 is a different computer: itself.)

IPv6 addresses and their text-formatted equivalents are a bit more complicated. 
They’re discussed in the section IPv6 addressing starting on page 464.

An interface’s IP address and other parameters are set with the ifconfig com-
mand. Jump ahead to page 478 for a detailed description of ifconfig.

IPv4 address classes

Historically, IP addresses had an inherent “class” that depended on the first bits of 
the leftmost byte. The class determined which bytes of the address were in the 
network portion and which were in the host portion. Today, an explicit mask 
identifies the network portion, and the boundary can fall between two adjacent 
bits, not just between bytes. However, the traditional classes are still used as de-
faults when no explicit division is specified.

Classes A, B, and C denote regular IP addresses. Classes D and E are used for 
multicasting and research addresses. Table 14.2 on the next page describes the 
characteristics of each class. The network portion of an address is denoted by N, 
and the host portion by H.

  



ptg

458 Chapter 14 TCP/IP Networking

It’s rare for a single physical network to have more than 100 computers attached to 
it, so class A and class B addresses (which allow for 16,777,214 hosts and 65,534 
hosts per network, respectively) are really quite silly and wasteful. For example, 
the 127 class A networks use up half the available address space. Who knew that 
IPv4 address space would become so precious!

Subnetting

To make better use of these addresses, you can now reassign part of the host por-
tion to the network portion by specifying an explicit 4-byte “subnet mask” or 
“netmask” in which the 1s correspond to the desired network portion and the 0s 
correspond to the host portion. The 1s must be leftmost and contiguous. At least 
eight bits must be allocated to the network part and at least two bits to the host 
part. Ergo, there are really only 22 possible values for an IPv4 netmask.

For example, the four bytes of a class B address would normally be interpreted as 
N.N.H.H. The implicit netmask for class B is therefore 255.255.0.0 in decimal no-
tation. With a netmask of 255.255.255.0, however, the address would be inter-
preted as N.N.N.H. Use of the mask turns a single class B network address into 
256 distinct class-C-like networks, each of which can support 254 hosts.

See page 478 for 
more information 
about ifconfig.

Netmasks are assigned with the ifconfig command as each network interface is 
set up. By default, ifconfig uses the inherent class of an address to figure out 
which bits are in the network part. When you set an explicit mask, you simply 
override this behavior.

Netmasks that do not end at a byte boundary can be annoying to decode and are 
often written as /XX, where XX is the number of bits in the network portion of the 
address. This is sometimes called CIDR (Classless Inter-Domain Routing; see 
page 460) notation. For example, the network address 128.138.243.0/26 refers to 
the first of four networks whose first bytes are 128.138.243. The other three net-
works have 64, 128, and 192 as their fourth bytes. The netmask associated with 
these networks is 255.255.255.192 or 0xFFFFFFC0; in binary, it’s 26 ones followed 
by 6 zeros. Exhibit C breaks out these numbers in a bit more detail.

Table 14.2 Historical Internet address classes

Class 1st bytea Format Comments

A 1-127 N.H.H.H Very early networks, or reserved for DoD
B 128-191 N.N.H.H Large sites, usually subnetted, were hard to get
C 192-223 N.N.N.H Easy to get, often obtained in sets
D 224-239 – Multicast addresses, not permanently assigned
E 240-255 – Experimental addresses

a. The value 0 is special and is not used as the first byte of regular IP addresses. 127 is reserved for 
the loopback address.

  



ptg

Tricks and tools for subnet arithmetic 459

IP
 N

et
w

or
ki

ng

Exhibit C Netmask base conversion

A /26 network has 6 bits left (32 – 26 = 6) to number hosts. 26 is 64, so the network 
has 64 potential host addresses. However, it can only accommodate 62 actual 
hosts because the all-0 and all-1 host addresses are reserved (they are the network 
and broadcast addresses, respectively).

In our 128.138.243.0/26 example, the extra two bits of network address obtained 
by subnetting can take on the values 00, 01, 10, and 11. The 128.138.243.0/24 net-
work has thus been divided into four /26 networks:

• 128.138.243.0/26 (0 in decimal is 00000000 in binary)
• 128.138.243.64/26 (64 in decimal is 01000000 in binary)
• 128.138.243.128/26 (128 in decimal is 10000000 in binary)
• 128.138.243.192/26 (192 in decimal is 11000000 in binary)

The boldfaced bits of the last byte of each address are the bits that belong to the 
network portion of that byte.

Tricks and tools for subnet arithmetic

It’s confusing to do all this bit twiddling in your head, but some tricks can make it 
simpler. The number of hosts per network and the value of the last byte in the 
netmask always add up to 256:

last netmask byte = 256 – net size

For example, 256 – 64 = 192, which is the final byte of the netmask in the preced-
ing example. Another arithmetic fact is that the last byte of an actual network 
address (as opposed to a netmask) must be evenly divisible by the number of 
hosts per network. We see this fact in action in the 128.138.243.0/26 example, 
where the last bytes of the networks are 0, 64, 128, and 192—all divisible by 64.7

Given an IP address (say, 128.138.243.100), we cannot tell without the associated 
netmask what the network address and broadcast address will be. Table 14.3 on 
the next page shows the possibilities for /16 (the default for a class B address), /24 
(a plausible value), and /26 (a reasonable value for a small network).

The network address and broadcast address steal two hosts from each network, so 
it would seem that the smallest meaningful network would have four possible 

IP address

Decimal netmask 

Hex netmask 

Binary netmask

128 138 243 0

255 

f       f

1111     1111

255 

f      f

1111     1111

255 

f      f

1111     1111

192 

c      0

1100     0000

. . .

. 

. 

.

. 

. 

.

. 

. 

.

7. Of course, 0 counts as being divisible by any number…

  



ptg

460 Chapter 14 TCP/IP Networking

hosts: two real hosts—usually at either end of a point-to-point link—and the net-
work and broadcast addresses. To have four values for hosts requires two bits in 
the host portion, so such a network would be a /30 network with netmask 
255.255.255.252 or 0xFFFFFFFC. However, a /31 network is in fact treated as a 
special case (see RFC3021) and has no network or broadcast address; both of its 
two addresses are used for hosts, and its netmask is 255.255.255.254.

A handy web site called the IP Calculator by Krischan Jodies (it’s available at 
jodies.de/ipcalc) helps with binary/hex/mask arithmetic. IP Calculator displays 
everything you might need to know about a network address and its netmask, 
broadcast address, hosts, etc. A tarball for a command-line version of the tool, 
ipcalc, is also available. 

On Ubuntu you can install ipcalc through apt-get.

Here’s some sample IP Calculator output, munged a bit to help with formatting: 
Address: 24.8.175.69 00011000.00001000.10101111 .01000101 
Netmask: 255.255.255.0 = 24 11111111.11111111.11111111 .00000000 
Wildcard: 0.0.0.255 00000000.00000000.00000000 .11111111
=>
Network: 24.8.175.0/24 00011000.00001000.10101111 .00000000 (Class A) 
Broadcast: 24.8.175.255 00011000.00001000.10101111 .11111111 
HostMin: 24.8.175.1 00011000.00001000.10101111 .00000001 
HostMax: 24.8.175.254 00011000.00001000.10101111 .11111110

The output provides both easy-to-understand versions of the addresses and “cut 
and paste” versions. Very useful.

Red Hat includes a similar but unrelated program that’s also called ipcalc. How-
ever, it’s relatively useless because it only understands default IP address classes.

If a dedicated IP calculator isn’t available, the standard utility bc makes a good 
backup utility since it can do arithmetic in any base. Set the input and output 
bases with the ibase and obase directives. Set the obase first; otherwise, it’s inter-
preted relative to the new ibase.

CIDR: Classless Inter-Domain Routing

CIDR is defined 
in RFC1519. 

Like subnetting, of which it is a direct extension, CIDR relies on an explicit net-
mask to define the boundary between the network and host parts of an address. 
But unlike subnetting, CIDR allows the network portion to be made smaller than 
would be implied by an address’s implicit class. A short CIDR mask may have the 

Table 14.3 Example IPv4 address decodings

IP address Netmask Network Broadcast

128.138.243.100/16 255.255.0.0 128.138.0.0 128.138.255.255
128.138.243.100/24 255.255.255.0 128.138.243.0 128.138.243.255 
128.138.243.100/26 255.255.255.192 128.138.243.64 128.138.243.127

  



ptg

Address allocation 461

IP
 N

et
w

or
ki

ng

effect of aggregating several networks for purposes of routing. Hence, CIDR is 
sometimes referred to as supernetting.

CIDR simplifies routing information and imposes hierarchy on the routing pro-
cess. Although CIDR was only intended as an interim solution along the road to 
IPv6, it has proved to be sufficiently powerful to handle the Internet’s growth 
problems for the better part of a decade.

For example, suppose that a site has been given a block of eight class C addresses 
numbered 192.144.0.0 through 192.144.7.0 (in CIDR notation, 192.144.0.0/21). 
Internally, the site could use them as

• 1 network of length /21 with 2,046 hosts, netmask 255.255.248.0
• 8 networks of length /24 with 254 hosts each, netmask 255.255.255.0
• 16 networks of length /25 with 126 hosts each, netmask 255.255.255.128
• 32 networks of length /26 with 62 hosts each, netmask 255.255.255.192

and so on. But from the perspective of the Internet, it’s not necessary to have 32, 
16, or even 8 routing table entries for these addresses. They all refer to the same 
organization, and all the packets go to the same ISP. A single routing entry for 
192.144.0.0/21 suffices. CIDR makes it easy to allocate portions of class A and B 
addresses and thus increases the number of available addresses manyfold.

Inside your network, you can mix and match regions of different subnet lengths as 
long as all the pieces fit together without overlaps. This is called variable length 
subnetting. For example, an ISP with the 192.144.0.0/21 allocation could define 
some /30 networks for point-to-point customers, some /24s for large customers, 
and some /27s for smaller folks.

All the hosts on a network must be configured with the same netmask. You can’t 
tell one host that it is a /24 and another host on the same network that it is a /25.

Address allocation

Only network numbers are formally assigned; sites must define their own host 
numbers to form complete IP addresses. You can subdivide the address space that 
has been assigned to you into subnets in whatever manner you like.

Administratively, ICANN (the Internet Corporation for Assigned Names and 
Numbers) has delegated blocks of addresses to five regional Internet registries, 
and these regional authorities are responsible for doling out subblocks to ISPs 
within their regions (see Table 14.4 on the next page). These ISPs in turn divide 
up their blocks and hand out pieces to individual clients. Only large ISPs should 
ever have to deal directly with one of the ICANN-sponsored address registries.

The delegation from ICANN to regional registries and then to national or re-
gional ISPs has allowed for further aggregation in the backbone routing tables. 
ISP customers who have been allocated address space within the ISP’s block do 
not need individual routing entries on the backbone. A single entry for the aggre-
gated block that points to the ISP suffices.

  



ptg

462 Chapter 14 TCP/IP Networking

Private addresses and network address translation (NAT)

Another factor that has helped decelerate the rate at which IPv4 addresses are 
consumed is the use of private IP address spaces, described in RFC1918. These 
addresses are used by your site internally but are never shown to the Internet (or 
at least, not intentionally). A border router translates between your private ad-
dress space and the address space assigned by your ISP. 

RFC1918 sets aside 1 class A network, 16 class B networks, and 256 class C net-
works that will never be globally allocated and can be used internally by any site. 
Table 14.5 shows the options. (The “CIDR range” column shows each range in the 
more compact CIDR notation; it does not add additional information.)

The original idea was that sites would choose an address class from among these 
options to fit the size of their organizations. But now that CIDR and subnetting 
are universal, it probably makes the most sense to use the class A address (subnet-
ted, of course) for all new private networks.

To allow hosts that use these private addresses to talk to the Internet, the site’s 
border router runs a system called NAT (Network Address Translation). NAT in-
tercepts packets addressed with these internal addresses and rewrites their source 
addresses, using a real external IP address and perhaps a different source port 
number. It also maintains a table of the mappings it has made between internal 
and external address/port pairs so that the translation can be performed in re-
verse when answering packets arrive from the Internet.

NAT’s use of port number mapping multiplexes several conversations onto the 
same IP address so that a single external address can be shared by many internal 
hosts. In some cases, a site can get by with only one “real” IP address. For example, 

Table 14.4 Regional Internet registries

Name Site Region covered

ARIN arin.net North America, part of the Caribbean
APNIC apnic.net Asia/Pacific region, including Australia and New Zealand 
AfriNIC afrinic.net Africa 
LACNIC lacnic.net Central and South America, part of the Caribbean 
RIPE NCC ripe.net Europe and surrounding areas

Table 14.5 IP addresses reserved for private use

IP class From To CIDR range

Class A 10.0.0.0 10.255.255.255 10.0.0.0/8
Class B 172.16.0.0 172.31.255.255 172.16.0.0/12
Class C 192.168.0.0 192.168.255.255 192.168.0.0/16

  



ptg

Private addresses and network address translation (NAT) 463

IP
 N

et
w

or
ki

ng

this is the default configuration for most mass-market routers used with cable and 
DSL modems.

A site that uses NAT must still request a small section of address space from its 
ISP, but most of the addresses thus obtained are used for NAT mappings and are 
not assigned to individual hosts. If the site later wants to choose another ISP, only 
the border router and its NAT configuration need be updated, not the configura-
tions of the individual hosts. 

Large organizations that use NAT and RFC1918 addresses must institute some 
form of central coordination so that all hosts, independently of their department 
or administrative group, have unique IP addresses. The situation can become 
complicated when one company that uses RFC1918 address space acquires or 
merges with another company that’s doing the same thing. Parts of the combined 
organization must often renumber. 

It is possible to have a UNIX or Linux box perform the NAT function, but most 
sites prefer to delegate this task to their routers or network connection devices.8 
See the vendor-specific sections later in this chapter for details.

An incorrect NAT configuration can let private-address-space packets escape 
onto the Internet. The packets may get to their destinations, but answering pack-
ets won’t be able to get back. CAIDA,9 an organization that collects operational 
data from the Internet backbone, finds that 0.1% to 0.2% of the packets on the 
backbone have either private addresses or bad checksums. This sounds like a tiny 
percentage, but it represents thousands of packets every minute on a busy circuit. 
See caida.org for other interesting statistics and network measurement tools.

One issue raised by NAT is that an arbitrary host on the Internet cannot initiate 
connections to your site’s internal machines. To get around this limitation, NAT 
implementations let you preconfigure externally visible “tunnels” that connect to 
specific internal hosts and ports.10

Another issue is that some applications embed IP addresses in the data portion of 
packets; these applications are foiled or confused by NAT. Examples include some 
media streaming systems, routing protocols, and FTP commands. NAT some-
times breaks VPNs (virtual private networks), too. 

NAT hides interior structure. This secrecy feels like a security win, but the secu-
rity folks say NAT doesn’t really help for security and does not replace the need 
for a firewall. Unfortunately, NAT also foils attempts to measure the size and 

8. Of course, many routers now run embedded Linux kernels. Even so, these dedicated systems are still 
generally more proficient and more secure than general-purpose computers that also forward packets.

9. CAIDA, pronounced “kay duh,” is the Cooperative Association for Internet Data Analysis at the San 
Diego Supercomputer Center on the UCSD campus (caida.org).

10. Many routers also support the Universal Plug and Play (UPnP) standards promoted by Microsoft, one 
feature of which allows interior hosts to set up their own dynamic NAT tunnels. This can be either a 
godsend or a security risk, depending on your perspective. The feature is easily disabled at the router if 
you wish to do so.

  



ptg

464 Chapter 14 TCP/IP Networking

topology of the Internet. See RFC4864, Local Network Protection for IPv6, for a 
good discussion of both the real and illusory benefits of NAT in IPv4.

IPv6 addressing 

IPv6 addresses are 128 bits long. These long addresses were originally intended to 
solve the problem of IP address exhaustion. But now that they’re here, they are 
being exploited to help with issues of routing, mobility, and locality of reference. 

IPv4 addresses were not designed to be geographically clustered in the manner of 
phone numbers or zip codes, but clustering was added after the fact in the form of 
the CIDR conventions. (Of course, the relevant “geography” is really routing space 
rather than physical location.) CIDR was so technically successful that hierarchi-
cal subassignment of network addresses is now assumed throughout IPv6. Your 
IPv6 ISP assigns you an address prefix that you simply prepend to the local parts 
of your addresses, usually at your border router.

The boundary between the network portion and the host portion of an IPv6 ad-
dress is fixed at /64, so there can be no disagreement or confusion about how long 
an address’s network portion “really” is. Stated another way, true subnetting no 
longer exists in the IPv6 world, although the term “subnet” lives on as a synonym 
for “local network.” Even though network numbers are always 64 bits long, routers 
needn’t pay attention to all 64 bits when making routing decisions. They can route 
packets based on prefixes, just as they do under CIDR.

An early scheme outlined in RFC2374 called for four standardized subdivision 
levels within the network portion of an IPv6 address. But in light of the positive 
experience with letting ISPs manage their own IPv4 address subdivisions, that 
plan was withdrawn in RFC3587. ISPs are now free to set delegation boundaries 
wherever they wish.

The 64-bit host ID can potentially be derived from the hardware interface’s 48-bit 
MAC address.11 This scheme allows for automatic host numbering, which is a nice 
feature for sysadmins since only the subnet needs to be managed.

The fact that the MAC address can be seen at the IP layer has both good and bad 
implications. The good part is that host number configuration can be completely 
automatic. The bad part is that the brand and model of interface card are encoded 
in the first half of the MAC address, so prying eyes and hackers with code for a 
particular architecture will be helped along. The IPv6 standards point out that 
sites are not required to use MAC addresses to derive host IDs; they can use what-
ever numbering system they want.

11. More specifically, it is the MAC address with the two bytes 0xFFFE inserted in the middle and one bit 
(bit 6 of the first byte, numbering bits from the left, starting at 0) complemented; see RFC4291. The 
standard for converting 48-bit MAC addresses into 64-bit IP host numbers is known as EUI-64.

  



ptg

Routing 465

IP
 N

et
w

or
ki

ng

Here are some useful sources of additional IPv6 information:

• ipv6tf.org – An IPv6 information portal
• ipv6.org – FAQs and technical information
• ipv6forum.com – Marketing folks and IPv6 propaganda

• RFC3587 – IPv6 Global Unicast Address Format
• RFC4291 – IP Version 6 Addressing Architecture

Various schemes have been proposed to ease the transition from IPv4 to IPv6, 
mostly focusing on ways to tunnel IPv6 traffic through the IPv4 network to com-
pensate for gaps in IPv6 support. The two tunneling systems in common use are 
called 6to4 and Teredo; the latter, named after a family of wood-boring ship-
worms, can be used on systems behind a NAT device.

14.5 ROUTING

Routing is the process of directing a packet through the maze of networks that 
stand between its source and its destination. In the TCP/IP system, it is similar to 
asking for directions in an unfamiliar country. The first person you talk to might 
point you toward the right city. Once you were a bit closer to your destination, the 
next person might be able to tell you how to get to the right street. Eventually, you 
get close enough that someone can identify the building you’re looking for.

Routing information takes the form of rules (“routes”), such as “To reach network 
A, send packets through machine C.” There can also be a default route that tells 
what to do with packets bound for a network to which there is no explicit route.

Routing information is stored in a table in the kernel. Each table entry has several 
parameters, including a mask for each listed network. To route a packet to a par-
ticular address, the kernel picks the most specific of the matching routes—that is, 
the one with the longest mask. If the kernel finds no relevant route and no default 
route, then it returns a “network unreachable” ICMP error to the sender.

The word “routing” is commonly used to mean two distinct things: 

• Looking up a network address in the routing table to forward a packet 
toward its destination

• Building the routing table in the first place

In this section we examine the forwarding function and look at how routes can be 
manually added to or deleted from the routing table. We defer the more compli-
cated topic of routing protocols that build and maintain the routing table until 
Chapter 15.

  



ptg

466 Chapter 14 TCP/IP Networking

Routing tables

You can examine a machine’s routing table with netstat -r. Use netstat -rn to 
avoid DNS lookups and present all the information numerically, which is gener-
ally more useful. We discuss netstat in more detail starting on page 868, but here 
is a short example to give you a better idea of what routes look like:

redhat$ netstat -rn
Kernel IP routing table 
Destination Genmask Gateway Fl MSS Iface
132.236.227.0 255.255.255.0 132.236.227.93 U 1500 eth0
default 0.0.0.0 132.236.227.1 UG 1500 eth0 
132.236.212.0 255.255.255.192 132.236.212.1 U 1500 eth1 
132.236.220.64 255.255.255.192 132.236.212.6 UG 1500 eth1
127.0.0.1 255.255.255.255 127.0.0.1 U 3584 lo

This host has two network interfaces: 132.236.227.93 (eth0) on the network 
132.236.227.0/24 and 132.236.212.1 (eth1) on the network 132.236.212.0/26.

The destination field is usually a network address, although you can also add 
host-specific routes (their genmask is 255.255.255.255 since all bits are con-
sulted). An entry’s gateway field must contain the full IP address of a local net-
work interface or adjacent host; on Linux kernels it can be 0.0.0.0 to invoke the 
default gateway.

For example, the fourth route in the table above says that to reach the network 
132.236.220.64/26, packets must be sent to the gateway 132.236.212.6 through in-
terface eth1. The second entry is a default route; packets not explicitly addressed 
to any of the three networks listed (or to the machine itself) are sent to the default 
gateway host, 132.236.227.1.

A host can only route packets to gateway machines that are reachable through a 
directly connected network. The local host’s job is limited to moving packets one 
hop closer to their destinations, so it is pointless to include information about 
nonadjacent gateways in the local routing table. Each gateway that a packet visits 
makes a fresh next-hop routing decision based on its own local routing database.12

See page 481 for more 
information about the 
route command.

Routing tables can be configured statically, dynamically, or with a combination of 
the two approaches. A static route is one that you enter explicitly with the route
command. Static routes remain in the routing table as long as the system is up; 
they are often set up at boot time from one of the system startup scripts. For ex-
ample, the Linux commands

# route add -net 132.236.220.64 netmask 255.255.255.192 
gw 132.236.212.6 eth1 

# route add default gw 132.236.227.1 eth0 

12. The IP source routing feature is an exception to this rule; see page 473.

  



ptg

ICMP redirects 467

IP
 N

et
w

or
ki

ng

add the fourth and second routes displayed by netstat -rn above. (The first and 
third routes in that display were added by ifconfig when the eth0 and eth1 inter-
faces were configured.)

The final route is also added at boot time. It configures the loopback interface, 
which prevents packets sent from the host to itself from going out on the network. 
Instead, they are transferred directly from the network output queue to the net-
work input queue inside the kernel. 

In a stable local network, static routing is an efficient solution. It is easy to manage 
and reliable. However, it requires that the system administrator know the topol-
ogy of the network accurately at boot time and that the topology not change often.

Most machines on a local area network have only one way to get out to the rest of 
the network, so the routing problem is easy. A default route added at boot time 
suffices to point toward the way out. Hosts that use DHCP (see page 469) to get 
their IP addresses can also obtain a default route with DHCP.

For more complicated network topologies, dynamic routing is required. Dynamic 
routing is implemented by a daemon process that maintains and modifies the 
routing table. Routing daemons on different hosts communicate to discover the 
topology of the network and to figure out how to reach distant destinations. Sev-
eral routing daemons are available. See Chapter 15, Routing, for details.

ICMP redirects

Although IP generally does not concern itself with the management of routing 
information, it does define a naive damage control feature called an ICMP redi-
rect. When a router forwards a packet to a machine on the same network from 
which the packet was originally received, something is clearly wrong. Since the 
sender, the router, and the next-hop router are all on the same network, the packet 
could have been forwarded in one hop rather than two. The router can conclude 
that the sender’s routing tables are inaccurate or incomplete.

In this situation, the router can notify the sender of its problem by sending an 
ICMP redirect packet. In effect, a redirect says, “You should not be sending pack-
ets for host xxx to me; you should send them to host yyy instead.”

In theory, the recipient of a redirect can adjust its routing table to fix the problem. 
In practice, redirects contain no authentication information and are therefore un-
trustworthy. Dedicated routers usually ignore redirects, but most UNIX and Li-
nux systems accept them and act on them by default. You’ll need to consider the 
possible sources of redirects in your network and disable their acceptance if they 
could pose a problem.

Under Linux, the variable accept_redirects in the /proc hierarchy controls the 
acceptance of ICMP redirects. See page 504 for instructions on examining and 
resetting this variable.

  



ptg

468 Chapter 14 TCP/IP Networking

On Solaris, use ndd -set /dev/ip ip_ignore_redirect 1 to disregard ICMP redi-
rects. See page 498 for more details.

Although HP-UX also uses the ndd command to control its IP protocol stack, the 
underlying IP implementation lacks the ability to ignore ICMP redirects. How-
ever, you can arrange to have the routes that result from these redirects deleted 
from the routing table a second later with

ndd -set /dev/ip ip_ire_redirect_interval 1000 

Some versions of HP-UX have enforced minima of 5 or 60 seconds on this param-
eter (which is expressed in milliseconds), but HP-UX 11 appears to accept smaller 
values without complaint.

On AIX, the command to ignore ICMP redirects is no -p -o ipignoreredirects=1. 
The -p option makes it a permanent change; omit this to test the change tempo-
rarily. See page 507 for more details.

14.6 ARP: THE ADDRESS RESOLUTION PROTOCOL

ARP is defined 
in RFC826. 

Although IP addresses are hardware-independent, hardware addresses must still 
be used to actually transport data across a network’s link layer.13 ARP, the Address 
Resolution Protocol, discovers the hardware address associated with a particular 
IP address. It can be used on any kind of network that supports broadcasting but 
is most commonly described in terms of Ethernet.

If host A wants to send a packet to host B on the same Ethernet, it uses ARP to 
discover B’s hardware address. If B is not on the same network as A, host A uses 
the routing system to determine the next-hop router along the route to B and then 
uses ARP to find that router’s hardware address. Since ARP uses broadcast pack-
ets, which cannot cross networks,14 it can only be used to find the hardware ad-
dresses of machines directly connected to the sending host’s local network.

Every machine maintains a table in memory called the ARP cache, which con-
tains the results of recent ARP queries. Under normal circumstances, many of the 
addresses a host needs are discovered soon after booting, so ARP does not ac-
count for a lot of network traffic.

ARP works by broadcasting a packet of the form “Does anyone know the hard-
ware address for 128.138.116.4?” The machine being searched for recognizes its 
own IP address and replies, “Yes, that’s the IP address assigned to one of my net-
work interfaces, and the corresponding Ethernet address is 8:0:20:0:fb:6a.”

The original query includes the IP and Ethernet addresses of the requestor so that 
the machine being sought can reply without issuing an ARP query of its own. 

13. Except on point-to-point links, on which the identity of the destination is sometimes implicit.
14. Routers can in fact be configured to flood broadcast packets to other networks, but this is generally a 

bad idea. If you find yourself wanting to forward broadcasts, there is most likely something amiss with 
your network or server architecture.

  



ptg

DHCP: the Dynamic Host Configuration Protocol 469

IP
 N

et
w

or
ki

ng

Thus, the two machines learn each other’s ARP mappings with only one exchange 
of packets. Other machines that overhear the requestor’s initial broadcast can re-
cord its address mapping, too.

The arp command examines and manipulates the kernel’s ARP cache, adds or 
deletes entries, and flushes or shows the table. arp -a displays the contents of the 
ARP cache; output formats vary.

The arp command is generally useful only for debugging and for situations that 
involve special hardware. For example, if two hosts on a network are using the 
same IP address, one has the right ARP table entry and one is wrong. You can use 
the arp command to track down the offending machine.

14.7 DHCP: THE DYNAMIC HOST CONFIGURATION PROTOCOL

DHCP is defined in 
RFCs 2131 and 2132.

When you plug a device or computer into a network, it usually obtains an IP ad-
dress for itself on the local network, sets up an appropriate default route, and con-
nects itself to a local DNS server. The Dynamic Host Configuration Protocol 
(DHCP) is the hidden Svengali that makes this magic happen.

The protocol lets a DHCP client “lease” a variety of network and administrative 
parameters from a central server that is authorized to distribute them. The leasing 
paradigm is particularly convenient for PCs that are turned off when not in use 
and for networks that must support transient guests such as laptops.

Leasable parameters include 

• IP addresses and netmasks
• Gateways (default routes)
• DNS name servers
• Syslog hosts
• WINS servers, X font servers, proxy servers, NTP servers
• TFTP servers (for loading a boot image)

There are dozens more—see RFC2132. Real-world use of the more exotic param-
eters is rare, however.

Clients must report back to the DHCP server periodically to renew their leases. If 
a lease is not renewed, it eventually expires. The DHCP server is then free to as-
sign the address (or whatever was being leased) to a different client. The lease 
period is configurable, but it’s usually quite long (hours or days).

Even if you want each host to have its own permanent IP address, DHCP can save 
you time and suffering. Once the server is up and running, clients can use it to 
obtain their network configuration at boot time. No fuss, no mess, and most im-
portantly, a minimum of local configuration on the client machines.

  



ptg

470 Chapter 14 TCP/IP Networking

DHCP software

ISC, the Internet Systems Consortium, maintains a very nice open source refer-
ence implementation of DHCP. Major versions 2, 3, and 4 of ISC’s software are all 
in common use, and all of these versions work fine for basic service. Version 3 
supports backup DHCP servers, and version 4 supports IPv6. Server, client, and 
relay agents are all available from isc.org.

Major Linux distributions all use some version of the ISC software, although you 
may have to install the server portion explicitly. The server package is called dhcp
on Red Hat, dhcp3-server on Ubuntu, and dhcp-server on SUSE.

Non-Linux systems often have their own home-grown DCHP implementations, 
and unfortunately all our example UNIX systems fall into this category.

It’s best not to tamper with the client side of DHCP, since that part of the code is 
relatively simple and comes preconfigured and ready to use. Changing the client 
side of DHCP is not trivial.

However, if you need to run a DHCP server, we recommend the ISC package over 
vendor-specific implementations. In a typical heterogeneous network environ-
ment, administration is greatly simplified by standardizing on a single implemen-
tation. The ISC software provides a reliable, open source solution that builds 
without incident on most versions of UNIX.

In the next few sections, we briefly discuss the DHCP protocol, explain how to set 
up the ISC server that implements it, and review some client configuration issues.

How DHCP works

DHCP is a backward-compatible extension of BOOTP, a protocol originally de-
vised to help diskless UNIX workstations boot. DHCP generalizes the parameters 
that can be supplied and adds the concept of a lease period for assigned values.

A DHCP client begins its interaction with a DHCP server by broadcasting a 
“Help! Who am I?” message.15 If a DHCP server is present on the local network, it 
negotiates with the client to provide an IP address and other networking parame-
ters. If there is no DHCP server on the local net, servers on different subnets can 
receive the initial broadcast message through a separate piece of DHCP software 
that acts as a relay agent.

When the client’s lease time is half over, it attempts to renew its lease. The server is 
obliged to keep track of the addresses it has handed out, and this information 
must persist across reboots. Clients are supposed to keep their lease state across 
reboots too, although many do not. The goal is to maximize stability in network 
configuration. In theory, all software should be prepared for network configura-
tions to change at a moment’s notice, but a lot of software still makes unwarranted 
assumptions about the continuity of the network.

15. Clients initiate conversations with the DHCP server by using the generic all-ones broadcast address. 
The clients don’t yet know their subnet masks and therefore can’t use the subnet broadcast address.

  



ptg

ISC’s DHCP software 471

IP
 N

et
w

or
ki

ng

ISC’s DHCP software

ISC’s server daemon is called dhcpd, and its configuration file is dhcpd.conf, 
usually found in /etc or /etc/dhcp3. The format of the config file is a bit fragile; 
leave out a semicolon and you may receive a cryptic, unhelpful error message.

When setting up a new DHCP server, you must also make sure that an empty 
lease database file has been created. Check the summary at the end of the man 
page for dhcpd to find the correct location for the lease file on your system. It’s 
usually somewhere underneath /var.

To set up the dhcpd.conf file, you need the following information:

• The subnets for which dhcpd should manage IP addresses, and the 
ranges of addresses to dole out

• A list of static IP address assignments you want to make (if any), along 
with the MAC (hardware) addresses of the recipients

• The initial and maximum lease durations, in seconds

• Any other options the server should pass to DHCP clients: netmask, 
default route, DNS domain, name servers, etc.

The dhcpd man page outlines the configuration process, and the dhcpd.conf
man page covers the exact syntax of the config file. In addition to setting up your 
configuration, make sure dhcpd is started automatically at boot time. (See Chap-
ter 3, Booting and Shutting Down, for instructions.) It’s helpful to make startup of 
the daemon conditional on the existence of the dhcpd.conf file if your system 
doesn’t do this for you automatically.

Below is a sample dhcpd.conf file from a Linux box with two interfaces, one in-
ternal and one that connects to the Internet. This machine performs NAT transla-
tion for the internal network (see page 462) and leases out a range of 10 IP ad-
dresses on this network as well.

Every subnet must be declared, even if no DHCP service is provided on it, so this 
dhcpd.conf file contains a dummy entry for the external interface. It also includes 
a host entry for one particular machine that needs a fixed address.

# global options

option domain-name "synack.net"; 
option domain-name-servers gw.synack.net; 
option subnet-mask 255.255.255.0; 
default-lease-time 600; 
max-lease-time 7200;

subnet 192.168.1.0 netmask 255.255.255.0 { 
range 192.168.1.51 192.168.1.60; 
option broadcast-address 192.168.1.255; 
option routers gw.synack.net;

}

  



ptg

472 Chapter 14 TCP/IP Networking

subnet 209.180.251.0 netmask 255.255.255.0 { 
}

host gandalf { 
hardware ethernet 08:00:07:12:34:56; 
fixed-address gandalf.synack.net;

}

See Chapter 17 for 
more information 
about DNS.

Unless you make static IP address assignments such as the one for gandalf above, 
you’ll need to consider how your DHCP configuration will interact with DNS. 
The easy option is to assign a generic name to each dynamically leased address 
(e.g., dhcp1.synack.net) and allow the names of individual machines to float along 
with their IP addresses. Alternatively, you can configure dhcpd to update the 
DNS database as it hands out addresses. The dynamic update solution is more 
complicated, but it has the advantage of preserving each machine’s hostname.

ISC’s DHCP relay agent is a separate daemon called dhcrelay. It’s a simple pro-
gram with no configuration file of its own, although Linux distributions often add 
a startup harness that feeds it the appropriate command-line arguments for your 
site. dhcrelay listens for DHCP requests on local networks and forwards them to a 
set of remote DHCP servers that you specify. It’s handy both for centralizing the 
management of DHCP service and for provisioning backup DHCP servers.

ISC’s DHCP client is similarly configuration free. It stores status files for each 
connection in the directory /var/lib/dhcp or /var/lib/dhclient. The files are 
named after the interfaces they describe. For example, dhclient-eth0.leases
would contain all the networking parameters that dhclient had set up on behalf of 
the eth0 interface.

14.8 SECURITY ISSUES

We address the topic of security in a chapter of its own (Chapter 22), but several 
security issues relevant to IP networking merit discussion here. In this section, we 
briefly look at a few networking features that have acquired a reputation for caus-
ing security problems and recommend ways to minimize their impact. The details 
of our example systems’ default behavior on these issues (and the appropriate 
methods for changing them) vary considerably and are discussed in the system-
specific material starting on page 484.

IP forwarding

A UNIX or Linux system that has IP forwarding enabled can act as a router. That 
is, it can accept third-party packets on one network interface, match them to a 
gateway or destination host on another interface, and retransmit the packets.

Unless your system has multiple network interfaces and is actually supposed to 
function as a router, it’s advisable to turn this feature off. Hosts that forward pack-
ets can sometimes be coerced into compromising security by making external 

  



ptg

IP spoofing 473

IP
 N

et
w

or
ki

ng

packets appear to have come from inside your network. This subterfuge can help 
an intruder’s packets evade network scanners and packet filters.

It is perfectly acceptable for a host to use multiple network interfaces for its own 
traffic without forwarding third-party traffic.

ICMP redirects

ICMP redirects (see page 467) can maliciously reroute traffic and tamper with 
your routing tables. Most operating systems listen to ICMP redirects and follow 
their instructions by default. It would be bad if all your traffic were rerouted to a 
competitor’s network for a few hours, especially while backups were running! We 
recommend that you configure your routers (and hosts acting as routers) to ig-
nore and perhaps log ICMP redirect attempts.

Source routing

IP’s source routing mechanism lets you specify an explicit series of gateways for a 
packet to transit on the way to its destination. Source routing bypasses the next-
hop routing algorithm that’s normally run at each gateway to determine how a 
packet should be forwarded.

Source routing was part of the original IP specification; it was intended primarily 
to facilitate testing. It can create security problems because packets are often fil-
tered according to their origin. If someone can cleverly route a packet to make it 
appear to have originated within your network instead of the Internet, it might 
slip through your firewall. We recommend that you neither accept nor forward 
source-routed packets.

Broadcast pings and other directed broadcasts

Ping packets addressed to a network’s broadcast address (instead of to a particular 
host address) are typically delivered to every host on the network. Such packets 
have been used in denial of service attacks; for example, the so-called Smurf at-
tacks. (The “Smurf attacks” Wikipedia article has details.)

Broadcast pings are a form of “directed broadcast” in that they are packets sent to 
the broadcast address of a distant network. The default handling of such packets 
has been gradually changing. For example, versions of Cisco’s IOS up through 
11.x forwarded directed broadcast packets by default, but IOS releases since 12.0 
do not. It is usually possible to convince your TCP/IP stack to ignore broadcast 
packets that come from afar, but since this behavior must be set on each interface, 
the task can be nontrivial at a large site.

IP spoofing

The source address on an IP packet is normally filled in by the kernel’s TCP/IP 
implementation and is the IP address of the host from which the packet was sent. 
However, if the software creating the packet uses a raw socket, it can fill in any 
source address it likes. This is called IP spoofing and is usually associated with 

  



ptg

474 Chapter 14 TCP/IP Networking

some kind of malicious network behavior. The machine identified by the spoofed 
source IP address (if it is a real address at all) is often the victim in the scheme. 
Error and return packets can disrupt or flood the victim’s network connections.

You should deny IP spoofing at your border router by blocking outgoing packets 
whose source address is not within your address space. This precaution is espe-
cially important if your site is a university where students like to experiment and 
may be tempted to carry out digital vendettas.

If you are using private address space internally, you can filter at the same time to 
catch any internal addresses escaping to the Internet. Such packets can never be 
answered (because they lack a backbone route) and always indicate that your site 
has an internal configuration error.

In addition to detecting outbound packets with bogus source addresses, you must 
also protect against a attacker’s forging the source address on external packets to 
fool your firewall into thinking that they originated on your internal network. A 
heuristic known as “unicast reverse path forwarding” (uRPF) helps with this. It 
makes IP gateways discard packets that arrive on an interface that is different 
from the one on which they would be transmitted if the source address were the 
destination. It’s a quick sanity check that uses the normal IP routing table as a way 
to validate the origin of network packets. Dedicated routers implement uRPF, but 
so does the Linux kernel. On Linux, it’s enabled by default.

If your site has multiple connections to the Internet, it may be perfectly reason-
able for inbound and outbound routes to be different. In this situation, you’ll have 
to turn off uRPF to make your routing work properly. If your site has only one 
way out to the Internet, then turning on uRPF is usually safe and appropriate.

Host-based firewalls

Traditionally, a network packet filter or firewall connects your local network to 
the outside world and controls traffic according to a site-wide policy. Unfortu-
nately, Microsoft has warped everyone’s perception of how a firewall should work 
with its notoriously insecure Windows systems. The last few Windows releases all 
come with their own personal firewalls, and they complain bitterly if you try to 
turn the firewall off.

Our example systems all include packet filtering software, but you should not in-
fer from this that every UNIX or Linux machine needs its own firewall. It does 
not. The packet filtering features are there to allow these machines to serve as 
network gateways.

However, we don’t recommend using a workstation as a firewall. Even with metic-
ulous hardening, full-fledged operating systems are too complex to be fully trust-
worthy. Dedicated network equipment is more predictable and more reliable— 
even if it secretly runs Linux.

  



ptg

Virtual private networks 475

IP
 N

et
w

or
ki

ng

Even sophisticated software solutions like those offered by Check Point (whose 
products run on UNIX, Linux, and Windows hosts) are not as secure as a dedi-
cated device such as Cisco’s Adaptive Security Appliance series. The software-only 
solutions are nearly the same price, to boot.

A more thorough discussion of firewall-related issues begins on page 932.

Virtual private networks

Many organizations that have offices in several locations would like to have all 
those locations connected to one big private network. Such organizations can use 
the Internet as if it were a private network by establishing a series of secure, en-
crypted “tunnels” among their various locations. A network that includes such 
tunnels is known as a virtual private network or VPN.

VPN facilities are also needed when employees must connect to your private net-
work from their homes or from the field. A VPN system doesn’t eliminate every 
possible security issue relating to such ad hoc connections, but it’s secure enough 
for many purposes.

See page 943 for 
more information 
about IPsec.

Some VPN systems use the IPsec protocol, which was standardized by the IETF in 
1998 as a relatively low-level adjunct to IP. Others, such as OpenVPN, implement 
VPN security on top of TCP using Transport Layer Security (TLS), formerly 
known as the Secure Sockets Layer (SSL). TLS is also on the IETF’s standards 
track, although it hasn’t yet been fully adopted. 

A variety of proprietary VPN implementations are also available. These systems 
generally don’t interoperate with each other or with the standards-based VPN sys-
tems, but that’s not necessarily a major drawback if all the endpoints are under 
your control.

The TLS-based VPN solutions seem to be the marketplace winners at this point. 
They are just as secure as IPsec and considerably less complicated. Having a free 
implementation in the form of OpenVPN doesn’t hurt either. (Unfortunately, it 
doesn’t run on HP-UX or AIX yet.)

To support home and portable users, a common paradigm is for users to down-
load a small Java or ActiveX component through their web browser. This compo-
nent then provides VPN connectivity back to the enterprise network. The mecha-
nism is convenient for users, but be aware that the browser-based systems differ 
widely in their implementations: some provide VPN service through a pseudo-
network-interface, while others forward only specific ports. Still others are little 
more than glorified web proxies.

Be sure you understand the underlying technology of the solutions you’re consid-
ering, and don’t expect the impossible. True VPN service (that is, full IP-layer 
connectivity through a network interface) requires administrative privileges and 
software installation on the client, whether that client is Windows or a UNIX 

  



ptg

476 Chapter 14 TCP/IP Networking

laptop. Check browser compatibility too, since the voodoo involved in imple-
menting browser-based VPN solutions often doesn’t translate among browsers.

14.9 PPP: THE POINT-TO-POINT PROTOCOL

PPP is defined 
in RFC1331. 

PPP represents an underlying communication channel as a virtual network inter-
face. However, since the underlying channel need not have any of the features of 
an actual network, communication is restricted to the two hosts at the ends of the 
link—a virtual network of two. PPP has the distinction of being used on both the 
slowest and the fastest IP links, but for different reasons.

In its asynchronous form, PPP is best known as the protocol used to provide dial-
up Internet service over phone lines and serial links. These channels are not in-
herently packet oriented, so the PPP device driver encodes network packets into a 
unified data stream and adds link-level headers and markers to separate packets.

In its synchronous form, PPP is the encapsulation protocol used on high-speed 
circuits that have routers at either end. It’s also commonly used as part of the im-
plementation of DSL and cable modems for broadband service. In these latter sit-
uations, PPP not only converts the underlying network system (often ATM in the 
case of DSL) to an IP-friendly form, but it also provides authentication and access 
control for the link itself. In a surreal, down-the-rabbit-hole twist, PPP can imple-
ment Ethernet-like semantics on top of an actual Ethernet, a configuration known 
as “PPP over Ethernet” or PPPoE.

Designed by committee, PPP is the “everything and the kitchen sink” encapsula-
tion protocol. In addition to specifying how the link is established, maintained, 
and torn down, PPP implements error checking, authentication, encryption, and 
compression. These features make it adaptable to a variety of situations.

PPP as a dial-up technology was once an important topic for UNIX and Linux 
system administrators, but the widespread availability of broadband has made 
dial-up configuration largely irrelevant. At the same time, the high-end applica-
tions of PPP have mostly retreated into various pieces of dedicated network hard-
ware. These days, the primary use of PPP is to connect through cellular modems.

14.10 BASIC NETWORK CONFIGURATION

Only a few steps are involved in adding a new machine to an existing local area 
network, but every system does it slightly differently. Systems typically provide a 
control panel GUI for basic network configuration, but more elaborate (or auto-
mated) setups may require you to edit the configuration files directly.

Before bringing up a new machine on a network that is connected to the Internet, 
secure it (Chapter 22, Security) so that you are not inadvertently inviting attackers 
onto your local network.

  



ptg

Hostname and IP address assignment 477

IP
 N

et
w

or
ki

ng

The basic steps to add a new machine to a local network are as follows:

• Assign a unique IP address and hostname.
• Make sure network interfaces are properly configured at boot time.
• Set up a default route and perhaps fancier routing.
• Point to a DNS name server to allow access to the rest of the Internet.

If you rely on DHCP for basic provisioning, most of the configuration chores for a 
new machine are performed on the DHCP server rather than on the new machine 
itself. New OS installations typically default to getting their configuration through 
DHCP, so new machines may require no network configuration at all. Refer to the 
DHCP section starting on page 469 for general information.

After any change that might affect booting, you should always reboot to verify 
that the machine comes up correctly. Six months later when the power has failed 
and the machine refuses to boot, it’s hard to remember what change you made 
that might have caused the problem. (Refer also to Chapter 21, Network Manage-
ment and Debugging.)

The process of designing and installing a physical network is touched on in Chap-
ter 16, Network Hardware. If you are dealing with an existing network and have a 
general idea of how it is set up, it may not be necessary for you to read too much 
more about the physical aspects of networking unless you plan to extend the exist-
ing network.

In this section, we review the various commands and issues involved in manual 
network configuration. This material is general enough to apply to any UNIX or 
Linux system. In the vendor-specific sections starting on page 484, we address the 
unique twists that distinguish UNIX from Linux and separate the various ven-
dors’ systems.

As you work through basic network configuration on any machine, you’ll find it 
helpful to test your connectivity with basic tools such as ping and traceroute. 
Those tools are actually described in the Network Management and Debugging
chapter; see the sections starting on page 861 for more details.

Hostname and IP address assignment

See Chapter 17 for 
more information 
about DNS.

Administrators have various heartfelt theories about how the mapping from host-
names to IP addresses is best maintained: through the hosts file, LDAP, the DNS 
system, or perhaps some combination of those options. The conflicting goals are 
scalability, consistency, and maintainability versus a system that is flexible enough 
to allow machines to boot and function when not all services are available. Priori-
tizing sources of administrative information starting on page 739 describes how the 
various options can be combined.

Another consideration you might take into account when designing your address-
ing system is the possible need to renumber your hosts in the future. Unless you 
are using RFC1918 private addresses (see page 462), your site’s IP addresses may 

  



ptg

478 Chapter 14 TCP/IP Networking

change when you switch ISPs. Such a transition becomes daunting if you must 
visit each host on the network to reconfigure its address. To expedite renumber-
ing, you can use hostnames in configuration files and confine address mappings 
to a few centralized locations such as the DNS database and your DHCP configu-
ration files.

The /etc/hosts file is the oldest and simplest way to map names to IP addresses. 
Each line starts with an IP address and continues with the various symbolic 
names by which that address is known.

Here is a typical /etc/hosts file for the host lollipop:
127.0.0.1 localhost 
192.108.21.48 lollipop.atrust.com lollipop loghost 
192.108.21.254 chimchim-gw.atrust.com chimchim-gw 
192.108.21.1 ns.atrust.com ns 
192.225.33.5 licenses.atrust.com license-server

A minimalist version would contain only the first two lines. localhost is com-
monly the first entry in the /etc/hosts file; this entry is unnecessary on many sys-
tems, but it doesn’t hurt to include it. IPv6 addresses can go in this file as well.

Because /etc/hosts contains only local mappings and must be maintained on each 
client system, it’s best reserved for mappings that are needed at boot time (e.g., the 
host itself, the default gateway, and name servers). Use DNS or LDAP to find 
mappings for the rest of the local network and the rest of the world. You can also 
use /etc/hosts to specify mappings that you do not want the rest of the world to 
know about and therefore do not publish in DNS.16

The hostname command assigns a hostname to a machine. hostname is typically 
run at boot time from one of the startup scripts, which obtains the name to be 
assigned from a configuration file. (Of course, each system does this slightly dif-
ferently. See the system-specific sections beginning on page 484 for details.) The 
hostname should be fully qualified: that is, it should include both the hostname 
and the DNS domain name, such as anchor.cs.colorado.edu.

See page 728 for 
more information 
about LDAP.

At a small site, you can easily dole out hostnames and IP addresses by hand. But 
when many networks and many different administrative groups are involved, it 
helps to have some central coordination to ensure uniqueness. For dynamically 
assigned networking parameters, DHCP takes care of the uniqueness issues. Some 
sites now use LDAP databases to manage their hostnames and IP addresses as-
signments.

ifconfig: configure network interfaces

ifconfig enables or disables a network interface, sets its IP address and subnet 
mask, and sets various other options and parameters. It is usually run at boot time 
with command-line parameters taken from config files, but you can also run it by 

16. You can also use a split DNS configuration to achieve this goal; see page 617.

  



ptg

ifconfig: configure network interfaces 479

IP
 N

et
w

or
ki

ng

hand to make changes on the fly. Be careful if you are making ifconfig changes 
and are logged in remotely—many a sysadmin has been locked out this way and 
had to drive in to fix things.

An ifconfig command most commonly has the form
ifconfig interface [family] address options… 

For example, the command
ifconfig eth0 192.168.1.13 netmask 255.255.255.0 up 

sets the IPv4 address and netmask associated with the interface eth0 and readies 
the interface for use.

interface identifies the hardware interface to which the command applies. It is 
usually a two- or three-character name followed by a number, but Solaris interface 
names can be longer. Some common names are ie0, le0, le1, ln0, en0, we0, qe0, 
hme0, eth0, and lan0. The loopback interface is lo on Linux and lo0 on Solaris, 
HP-UX, and AIX. On most systems, ifconfig -a lists the system’s network inter-
faces and summarizes their current settings. Use netstat -i for this on HP-UX.

Under Solaris, network interfaces must be “attached” with ifconfig interface
plumb before they become configurable and visible to ifconfig -a. You can use the 
dladm command to list interfaces regardless of whether they have been plumbed.

The family parameter tells ifconfig which network protocol (“address family”) 
you want to configure. You can set up multiple protocols on an interface and use 
them all simultaneously, but they must be configured separately. The main op-
tions here are inet for IPv4 and inet6 for IPv6; inet is assumed if you leave the 
parameter out. Linux systems support a handful of other legacy protocols such as 
AppleTalk and Novell IPX.

The address parameter specifies the interface’s IP address. A hostname is also ac-
ceptable here, but the hostname must be resolvable to an IP address at boot time. 
For a machine’s primary interface, this means that the hostname must appear in 
the local hosts file, since other name resolution methods depend on the network 
having been initialized.

The keyword up turns the interface on; down turns it off. When an ifconfig com-
mand assigns an IP address to an interface, as in the example above, the up pa-
rameter is implicit and does not need to be mentioned by name.

ifconfig understands lots of other options. The most common ones are men-
tioned below, but as always, consult your man pages for the final word on your 
particular system. ifconfig options all have symbolic names. Some options re-
quire an argument, which should be placed immediately after the option name 
and separated from the option name by a space.

The netmask option sets the subnet mask for the interface and is required if the 
network is not subnetted according to its address class (A, B, or C). The mask can 

  



ptg

480 Chapter 14 TCP/IP Networking

be specified in dotted decimal notation or as a 4-byte hexadecimal number begin-
ning with 0x. As usual, bits set to 1 are part of the network number, and bits set to 
0 are part of the host number.

The broadcast option specifies the IP broadcast address for the interface, ex-
pressed in either hex or dotted quad notation. The default broadcast address is 
one in which the host part is set to all 1s. In the ifconfig example above, the auto-
configured broadcast address is 192.168.1.255.

You can set the broadcast address to any IP address that’s valid for the network to 
which the host is attached. Some sites have chosen weird values for the broadcast 
address in the hope of avoiding certain types of denial of service attacks that are 
based on broadcast pings, but this is risky and probably overkill. Failure to prop-
erly configure every machine’s broadcast address can lead to broadcast storms, in 
which packets travel from machine to machine until their TTLs expire.17

A better way to avoid problems with broadcast pings is to prevent your border 
routers from forwarding them and to tell individual hosts not to respond to them. 
See Chapter 22, Security, for instructions on how to implement these constraints.

Solaris integrates the ifconfig command with its DHCP client daemon. ifconfig
interface dhcp configures the named interface with parameters leased from a local 
DHCP server, then starts dhcpagent to manage the leases over the long term. 
Other systems keep ifconfig ignorant of DHCP, with the DHCP software operat-
ing as a separate layer.

You can also get the configuration for a single interface with ifconfig interface:
solaris$ ifconfig e1000g0

e1000g0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 
index 2 inet 192.168.10.10 netmask ffffff00 broadcast 192.168.10.255

redhat$ ifconfig eth0 
eth0 Link encap:Ethernet  HWaddr 00:02:B3:19:C8:86

inet addr:192.168.1.13  Bcast:192.168.1.255  Mask:255.255.255.0 
UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 
RX packets:206983 errors:0 dropped:0 overruns:0 frame:0 
TX packets:218292 errors:0 dropped:0 overruns:0 carrier:0 
collisions:0 txqueuelen:100 
Interrupt:7 Base address:0xef00

The lack of collisions on the Ethernet interface in the second example may indi-
cate a very lightly loaded network or, more likely, a switched network. On a shared 

17. Broadcast storms occur because the same link-layer broadcast address must be used to transport pack-
ets no matter what the IP broadcast address has been set to. For example, suppose that machine X 
thinks the broadcast address is A1 and machine Y thinks it is A2. If X sends a packet to address A1, Y 
will receive the packet (because the link-layer destination address is the broadcast address), will see 
that the packet is not for itself and also not for the broadcast address (because Y thinks the broadcast 
address is A2), and may then forward the packet back to the net. If two machines are in Y’s state, the 
packet circulates until its TTL expires. Broadcast storms can erode your bandwidth, especially on a 
large switched net.

  



ptg

route: configure static routes 481

IP
 N

et
w

or
ki

ng

network (one built with hubs instead of switches, or one that uses old-style coaxial 
Ethernet), check this number to ensure that it is below about 5% of the output 
packets. Lots of collisions indicate a loaded network that needs to be watched and 
possibly split into multiple subnets or migrated to a switched infrastructure.

Now that you know how to configure a network interface by hand, you need to 
figure out how the parameters to ifconfig are set when the machine boots, and 
you need to make sure that the new values are entered correctly. You normally do 
this by editing one or more configuration files; see the vendor-specific sections 
starting on page 484 for more information.

One additional comment regarding ifconfig: you can assign more than one IP 
address to an interface by making use of the concept of “virtual network inter-
faces” or “IP aliases.” Administrators can do this to allow one machine to host 
several web sites. See page 967 for more information.

Network hardware options

Network hardware often has configurable options that are specific to its media 
type and have little to do with TCP/IP per se. One common example of this is 
modern-day Ethernet, wherein an interface card may support 10, 100, 1000, or 
even 10000 Mb/s in either half-duplex or full-duplex mode. Most equipment de-
faults to autonegotiation mode, in which both the card and its upstream connec-
tion (usually a switch port) try to guess what the other wants to use.

Historically, autonegotiation has worked about as well as a blindfolded cowpoke 
trying to rope a calf. Modern network devices play better together, but autonego-
tiation is still a common source of failure. High packet loss rates (especially for 
large packets) are a common artifact of failed autonegotiation.

If you’re having problems with mysterious packet loss, turn off autonegotiation 
everywhere as your first course of action. Lock the interface speed and duplex on 
both servers and the switch ports to which they are connected. Autonegotiation is 
useful for ports in public areas where roving laptops may stop for a visit, but it 
serves no useful purpose for statically attached hosts other than avoiding a small 
amount of administration. 

The exact method by which hardware options like autonegotiation are set varies 
widely, so we defer discussion of those details to the system-specific sections 
starting on page 484.

route: configure static routes 

The route command defines static routes, explicit routing table entries that never 
change, even if you run a routing daemon. When you add a new machine to a 
local area network, you usually need to specify only a default route.

This book’s discussion of routing is split between this section and Chapter 15, 
Routing. Although most of the basic information about routing and the route 

  



ptg

482 Chapter 14 TCP/IP Networking

command is found in this section, you might find it helpful to read the first few 
sections of Chapter 15 if you need more information.

Routing is performed at the IP layer. When a packet bound for some other host 
arrives, the packet’s destination IP address is compared with the routes in the ker-
nel’s routing table. If the address matches a route in the table, the packet is for-
warded to the next-hop gateway IP address associated with that route.

There are two special cases. First, a packet may be destined for some host on a 
directly connected network. In this case, the “next-hop gateway” address in the 
routing table is one of the local host’s own interfaces, and the packet is sent di-
rectly to its destination. This type of route is added to the routing table for you by 
the ifconfig command when you configure an interface.

Second, it may be that no route matches the destination address. In this case, the 
default route is invoked if one exists. Otherwise, an ICMP “network unreachable” 
or “host unreachable” message is returned to the sender.

Many local area networks have only one way out, so all they need is a single de-
fault route that points to the exit. On the Internet backbone, the routers do not 
have default routes. If there is no routing entry for a destination, that destination 
cannot be reached.

Each route command adds or removes one route. Unfortunately, route is one of a 
handful of UNIX commands that function identically across systems and yet have 
somewhat different syntax everywhere. Here’s a prototypical route command that 
works almost everywhere:

# route add -net 192.168.45.128/25 zulu-gw.atrust.net 

This command adds a route to the 192.168.45.128/25 network through the gate-
way router zulu-gw.atrust.net, which must be either an adjacent host or one of the 
local host’s own interfaces. (Linux requires the option name gw in front of the 
gateway address.) Naturally, route must be able to resolve zulu-gw.atrust.net into 
an IP address. Use a numeric IP address if your DNS server is on the other side of 
the gateway!

Linux also accepts an interface name (e.g., eth0) as the destination for a route. It 
has the same effect as specifying the interface’s primary IP address as the gateway 
address. That is, the IP stack attempts direct delivery on that interface rather than 
forwarding to a separate gateway. Routing entries that were set up this way show 
their gateway addresses as 0.0.0.0 in netstat -r output. You can tell where the route 
really goes by looking in the Iface column for the interface name.

Destination networks were traditionally specified with separate IP addresses and 
netmasks, but all versions of route except that of HP-UX now understand CIDR 
notation (e.g., 128.138.176.0/20). CIDR notation is clearer and relieves you of the 
need to fuss over some of the system-specific syntax issues. Even Linux accepts 
CIDR notation, although the Linux man page for route doesn’t admit this.

  



ptg

DNS configuration 483

IP
 N

et
w

or
ki

ng

Solaris has a nifty -p option to route that makes your changes persistent across 
reboots. In addition to being entered in the kernel’s routing table, the changes are 
recorded in /etc/inet/static_routes and restored at boot time.

Some other tricks:

• To inspect existing routes, use the command netstat -nr, or netstat -r if 
you want to see names instead of numbers. Numbers are often better if 
you are debugging, since the name lookup may be the thing that is bro-
ken. An example of netstat output is shown on page 466.

• Use the keyword default instead of an address or network name to set 
the system’s default route.

• Use route delete or route del to remove entries from the routing table.

• UNIX systems use route -f or route flush to initialize the routing table 
and start over. Linux does not support this option.

• IPv6 routes are set up similarly to IPv4 routes. You’ll need to tell route
that you’re working in IPv6 space with the -inet6 or -A inet6 option.

• /etc/networks maps names to network numbers, much like the hosts file 
maps hostnames to IP addresses. Commands such as route that expect a 
network number can accept a name if it is listed in the networks file. 
Network names can also be listed in an NIS database or in DNS; see 
RFC1101.

• You can use route add -host to set up a route that’s specific to a single IP 
address. It’s essentially the same as a route with a netmask of 
255.255.255.255, but it’s flagged separately in the routing table.

DNS configuration

To configure a machine as a DNS client, you need only set up the /etc/resolv.conf
file. DNS service is not, strictly speaking, required (see page 739), but it’s hard to 
imagine a situation in which you’d want to eliminate it completely.

The resolv.conf file lists the DNS domains that should be searched to resolve 
names that are incomplete (that is, not fully qualified, such as anchor instead of 
anchor.cs.colorado.edu) and the IP addresses of the name servers to contact for 
name lookups. A sample is shown here; for more details, see page 561.

search cs.colorado.edu colorado.edu 
nameserver 128.138.242.1 
nameserver 128.138.243.151 
nameserver 192.108.21.1

/etc/resolv.conf should list the “closest” stable name server first. Servers are con-
tacted in order, and the timeout after which the next server in line is tried can be 
quite long. You can have up to three nameserver entries. If possible, you should 
always have more than one.

  



ptg

484 Chapter 14 TCP/IP Networking

If the local host obtains the addresses of its DNS servers through DHCP, the 
DHCP client software stuffs these addresses into the resolv.conf file for you when 
it obtains the leases. Since DHCP configuration is the default for most systems, 
you generally do not need to configure the resolv.conf file manually if your 
DHCP server has been set up correctly.

Many sites use Microsoft’s Active Directory DNS server implementation. That 
works fine with the standard UNIX and Linux resolv.conf; there’s no need to do 
anything differently.

14.11 SYSTEM-SPECIFIC NETWORK CONFIGURATION

On early UNIX systems, you configured the network by editing the system startup 
scripts and directly changing the commands they contained. Modern systems 
have read-only scripts; they cover a variety of configuration scenarios and choose 
among them by reusing information from other system files or consulting config-
uration files of their own.

Although this separation of configuration and implementation is a good idea, ev-
ery system does it a little bit differently. The format and use of the /etc/hosts and 
/etc/resolv.conf files are relatively consistent among UNIX and Linux systems, 
but that’s about all you can count on for sure.

Most systems provide some sort of GUI interface for basic configuration tasks, 
but the mapping between the visual interface and the configuration files behind 
the scenes is often unclear. In addition, the GUIs tend to ignore advanced config-
urations, and they are relatively inconvenient for remote and automated adminis-
tration. In the next sections, we pick apart some of the variations among our ex-
ample systems, describe what’s going on under the hood, and cover the details of 
network configuration for each of our supported operating systems. In particular, 
we cover

• Basic configuration
• DHCP client configuration
• Dynamic reconfiguration and tuning
• Security, firewalls, filtering, and NAT configuration
• Quirks

However, not all of our operating systems need discussion for each topic. 

Keep in mind that most network configuration happens at boot time, so there’s 
some overlap between the information here and the information presented in 
Chapter 3, Booting and Shutting Down.

14.12 LINUX NETWORKING

Linux is always one of the first networking stacks to include new features. The 
Linux folks are sometimes so quick that the rest of the networking infrastructure 

  



ptg

NetworkManager 485

IP
 N

et
w

or
ki

ng

cannot interoperate. For example, the Linux implementation of explicit conges-
tion notification (ECN), specified in RFC2481, collided with incorrect default set-
tings on an older Cisco firewall product, causing all packets with the ECN bit set 
to be dropped. Oops. 

Linux developers love to tinker, and they often implement features and algorithms 
that aren’t yet accepted standards. One example is the Linux kernel’s addition of 
pluggable congestion control algorithms in release 2.6.13. The several options in-
clude variations for lossy networks, high-speed WANs with lots of packet loss, 
satellite links, and more. The standard TCP “reno” mechanism (slow start, con-
gestion avoidance, fast retransmit, and fast recovery) is still used by default, but a 
variant may be more appropriate for your environment.

After any change to a file that controls network configuration at boot time, you 
may need to either reboot or bring the network interface down and then up again 
for your change to take effect. You can use ifdown interface and ifup interface for 
this purpose on most Linux systems, although the implementations are not iden-
tical. (Under SUSE, ifup and ifdown only work when networking is not under the 
control of NetworkManager.)

NetworkManager

Linux support for mobile networking was relatively scattershot until the advent of 
NetworkManager in 2004. It consists of a service that’s designed to be run contin-
uously, along with a system tray app for configuring individual network inter-
faces. In addition to various kinds of wired network, NetworkManager also han-
dles transient wireless networks, wireless broadband, and VPNs. It continually 
assesses the available networks and shifts service to “preferred” networks as they 
become available. Wired networks are most preferred, followed by familiar wire-
less networks.

This system represents quite a change for Linux network configuration. In addi-
tion to being more fluid than the traditional static configuration, it’s also designed 
to be run and managed by users rather than system administrators. NetworkMan-
ager has been widely adopted by Linux distributions, including all of our exam-
ples, but in an effort to avoid breaking existing scripts and setups, it’s usually made 
available as a sort of “parallel universe” of network configuration in addition to 
whatever traditional network configuration was used in the past. 

SUSE makes you choose whether you want to live in the NetworkManager world 
or use the legacy configuration system, which is managed through YaST. Ubuntu 
runs NetworkManager by default, but keeps the statically configured network in-
terfaces out of the NetworkManager domain. Red Hat Enterprise Linux doesn’t 
run NetworkManager by default at all.

NetworkManager is primarily of use on laptops, since their network environment 
may change frequently. For servers and desktop systems, NetworkManager isn’t 

  



ptg

486 Chapter 14 TCP/IP Networking

necessary and may in fact complicate administration. In these environments, it 
should be ignored or configured out.

Ubuntu network configuration

As shown in Table 14.6, Ubuntu configures the network in /etc/hostname and 
/etc/network/interfaces, with a bit of help from the file /etc/network/options.

The hostname is set in /etc/hostname. The name in this file should be fully quali-
fied; its value is used in a variety of contexts, some of which require qualification. 

The IP address, netmask, and default gateway are set in /etc/network/interfaces. 
A line starting with the iface keyword introduces each interface. The iface line 
can be followed by indented lines that specify additional parameters. For example:

auto lo eth0 
iface lo inet loopback 
iface eth0 inet static

address 192.168.1.102 
netmask 255.255.255.0 
gateway 192.168.1.254

The ifup and ifdown commands read this file and bring the interfaces up or down 
by calling lower-level commands (such as ifconfig) with the appropriate parame-
ters. The auto clause specifies the interfaces to be brought up at boot time or 
whenever ifup -a is run.

The inet keyword in the iface line is the address family a la ifconfig. The keyword 
static is called a “method” and specifies that the IP address and netmask for eth0 
are directly assigned. The address and netmask lines are required for static con-
figurations; earlier versions of the Linux kernel also required the network address 
to be specified, but now the kernel is smarter and can figure out the network ad-
dress from the IP address and netmask. The gateway line specifies the address of 
the default network gateway and is used to install a default route.

SUSE network configuration

SUSE makes you choose between NetworkManager and the traditional configura-
tion system. You make the choice inside of YaST; you can also use the YaST GUI 
to configure the traditional system. Here, we assume the traditional system. In 
addition to configuring network interfaces, YaST provides straightforward UIs for 
the /etc/hosts file, static routes, and DNS configuration. Table 14.7 shows the un-
derlying configuration files.

Table 14.6 Ubuntu network configuration files in /etc

File What’s set there 

hostname Hostname 
network/interfaces IP address, netmask, default route

  



ptg

Red Hat network configuration 487

IP
 N

et
w

or
ki

ng

With the exceptions of DNS parameters and the system hostname, SUSE sets most 
networking options in ifcfg-interface files in the /etc/sysconfig/network direc-
tory. One file should be present for each interface on the system.

In addition to specifying the IP address, gateway, and broadcast information for 
an interface, the ifcfg-* files can tune many other network dials. Take a look at the 
ifcfg.template file for a well-commented rundown of the possible parameters. 
Here’s a simple example with our comments:

BOOTPROTO='static' # Static is implied but it doesn't hurt to be verbose. 
IPADDR='192.168.1.4/24' # The /24 defines the NETWORK and NETMASK vars 
NAME='AMD PCnet - Fast 79C971' # Used to start and stop the interface. 
STARTMODE='auto' # Start automatically at boot 
USERCONTROL='no' # Disable control through kinternet/cinternet GUI

Global static routing information for a SUSE system (including the default route) 
is stored in the routes file. Each line in this file is like a route command with the 
option names omitted and includes destination, gateway, netmask, interface, and 
optional extra parameters to be stored in the routing table for use by routing dae-
mons. For the host configured above, which has only a default route, the routes
file contains the line

default 192.168.1.254 - -

Routes unique to specific interfaces are kept in ifroute-interface files, where the 
nomenclature of the interface component is the same as for the ifcfg-* files. The 
contents have the same format as the routes file.

Red Hat network configuration

Red Hat’s network configuration GUI is called system-config-network; it’s also 
accessible from the System->Administration menu under the name Network. 
This tool provides a simple UI for configuring individual network interfaces and 
static routes. It also has panels for setting up IPsec tunnels, configuring DNS, and 
adding /etc/hosts entries.

Table 14.8 shows the underlying configuration files that this GUI edits.

You set the machine’s hostname in /etc/sysconfig/network, which also contains 
lines that specify the machine’s DNS domain and default gateway.

Table 14.7 SUSE network configuration files in /etc/sysconfig/network

File What’s set there 

ifcfg-interface Hostname, IP address, netmask, and more 
ifroute-interface Interface-specific route definitions 
routes Default route and static routes for all interfaces
config Lots of less commonly used network variables

  



ptg

488 Chapter 14 TCP/IP Networking

For example, here is a network file for a host with a single Ethernet interface:
NETWORKING=yes
NETWORKING_IPV6=no 
HOSTNAME=redhat.toadranch.com 
DOMAINNAME=toadranch.com ### optional
GATEWAY=192.168.1.254

Interface-specific data is stored in /etc/sysconfig/network-scripts/ifcfg-ifname, 
where ifname is the name of the network interface. These configuration files set 
the IP address, netmask, network, and broadcast address for each interface. They 
also include a line that specifies whether the interface should be configured “up” 
at boot time.

A generic machine will have files for an Ethernet interface (eth0) and for the loop-
back interface (lo). For example,

DEVICE=eth0
IPADDR=192.168.1.13 
NETMASK=255.255.255.0 
NETWORK=192.168.1.0 
BROADCAST=192.168.1.255 
ONBOOT=yes

and
DEVICE=lo
IPADDR=127.0.0.1 
NETMASK=255.0.0.0 
NETWORK=127.0.0.0 
BROADCAST=127.255.255.255 
ONBOOT=yes 
NAME=loopback

are the ifcfg-eth0 and ifcfg-lo files for the machine redhat.toadranch.com de-
scribed in the network file above. A DHCP-based setup for eth0 is even simpler:

DEVICE=eth0
BOOTPROTO=dhcp 
ONBOOT=yes

After changing configuration information in /etc/sysconfig, run ifdown ifname
followed by ifup ifname for the appropriate interface. If you reconfigure multiple 
interfaces at once, you can use the command service network restart to reset all 

Table 14.8 Red Hat network configuration files in /etc/sysconfig

File What’s set there

network Hostname, default route
static-routes Static routes 
network-scripts/ifcfg-ifname Per-interface parameters: IP address, netmask, etc.

  



ptg

Linux network hardware options 489

IP
 N

et
w

or
ki

ng

networking. (This is really just a shorthand way to run /etc/rc.d/init.d/network, 
which is invoked at boot time with the start argument.)

The startup scripts can also configure static routes. Any routes added to the file 
/etc/sysconfig/static-routes are entered into the routing table at boot time. The 
entries specify arguments to route add, although in a different order:

eth0 net 130.225.204.48 netmask 255.255.255.248 gw 130.225.204.49 
eth1 net 192.38.8.0 netmask 255.255.255.224 gw 192.38.8.129

The interface is specified first, but it is actually shuffled to the end of the route
command line, where it forces the route to be associated with the given interface. 
(You’ll see this architecture in the GUI as well, where the routes are configured as 
part of the setup for each interface.) The rest of the line consists of route argu-
ments. The static-routes example above would produce the following commands:

route add -net 130.225.204.48 netmask 255.255.255.248 gw 130.225.204.49 eth0 
route add -net 192.38.8.0 netmask 255.255.255.224 gw 192.38.8.129 eth1

Current Linux kernels do not use the metric parameter to route, but they allow it 
to be entered into the routing table for use by routing daemons.

Linux network hardware options

The ethtool command queries and sets a network interface’s media-specific pa-
rameters such as link speed and duplex. It replaces the old mii-tool command, 
but some systems still include both.

You can query the status of an interface just by naming it. For example, this eth0 
interface (a generic NIC on a PC motherboard) has autonegotiation enabled and 
is currently running at full speed:

ubuntu# ethtool eth0
Settings for eth0: 

Supported ports: [ TP MII ]
Supported link modes: 10baseT/Half 10baseT/Full 
                        100baseT/Half 100baseT/Full 
                        1000baseT/Half 1000baseT/Full 
Supports auto-negotiation: Yes 
Advertised link modes: 10baseT/Half 10baseT/Full 
                      100baseT/Half 100baseT/Full 
                      1000baseT/Half 1000baseT/Full 
Advertised auto-negotiation: Yes 
Speed: 1000Mb/s 
Duplex: Full 
Port: MII 
PHYAD: 0 
Transceiver: internal 
Auto-negotiation: on 
Supports Wake-on: pumbg 
Wake-on: g 
Current message level: 0x00000033 (51)
Link detected: yes

  



ptg

490 Chapter 14 TCP/IP Networking

To lock this interface to 100 Mb/s full duplex, use the command
ubuntu# ethtool -s eth0 speed 100 duplex full

If you are trying to determine whether autonegotiation is reliable in your environ-
ment, you may also find ethtool -r helpful. It forces the parameters of the link to 
be renegotiated immediately.

Another useful option is -k, which shows what protocol-related tasks have been 
assigned to the network interface rather than being performed by the kernel. Most 
interfaces can calculate checksums, and some can assist with segmentation as 
well. Unless you have reason to think that a network interface is not doing these 
tasks reliably, it’s always better to offload them. You can use ethtool -K in combi-
nation with various suboptions to force or disable specific types of offloading. 
(The -k option shows current values and the -K option sets them.)

Any changes you make with ethtool are transient. If you want them to be en-
forced consistently, you’ll have to make sure that ethtool gets run as part of the 
system’s network configuration. It’s best to do this as part of the per-interface con-
figuration; if you just arrange to have some ethtool commands run at boot time, 
your configuration will not properly cover cases in which the interfaces are re-
started without a reboot of the system.

On Red Hat systems, you can include an ETHTOOL_OPTS= line in the configura-
tion file for the interface underneath /etc/sysconfig/network-scripts. ifup passes 
the entire line as arguments to ethtool.

SUSE’s provision for running ethtool is similar to Red Hat’s, but the option is 
called ETHTOOL_OPTIONS and the per-interface configuration files are kept in 
/etc/sysconfig/network.

In Ubuntu, you can run the ethtool commands from a post-up script specified in 
the interface’s configuration in /etc/network/interfaces.

Linux TCP/IP options

Linux puts a representation of each tunable kernel variable into the /proc virtual 
filesystem. The networking variables are in /proc/sys/net/ipv4. Here’s a trimmed 
list of some of the most interesting ones for illustration:

ubuntu$ cd /proc/sys/net/ipv4; ls -F 
… … tcp_no_metrics_save
conf/ tcp_congestion_control tcp_orphan_retries 
icmp_echo_ignore_all tcp_dma_copybreak tcp_reordering
icmp_echo_ignore_broadcasts tcp_dsack tcp_retrans_collapse
… tcp_ecn tcp_retries1
icmp_ratelimit tcp_fack tcp_retries2
icmp_ratemask tcp_fin_timeout tcp_rfc1337
igmp_max_memberships tcp_frto tcp_rmem
igmp_max_msf tcp_frto_response tcp_sack
inet_peer_gc_maxtime tcp_keepalive_intvl ,,,
inet_peer_gc_mintime tcp_keepalive_probes tcp_stdurg

  



ptg

Linux TCP/IP options 491

IP
 N

et
w

or
ki

ng

inet_peer_maxttl tcp_keepalive_time tcp_synack_retries
inet_peer_minttl tcp_low_latency tcp_syncookies
inet_peer_threshold tcp_max_orphans tcp_syn_retries
ip_default_ttl tcp_max_ssthresh tcp_timestamps
ip_dynaddr tcp_max_syn_backlog …
ip_forward tcp_max_tw_buckets udp_mem
… tcp_mem udp_rmem_min
neigh/ tcp_moderate_rcvbuf udp_wmem_min
route/ tcp_mtu_probing

Many of the variables with rate and max in their names are used to thwart denial 
of service attacks. The conf subdirectory contains variables that are set per inter-
face. It contains subdirectories all and default and a subdirectory for each inter-
face (including the loopback). Each subdirectory contains the same set of files.

ubuntu$ cd conf/default; ls -F 
accept_redirects disable_policy promote_secondaries
accept_source_route disable_xfrm proxy_arp
arp_accept force_igmp_version rp_filter 
arp_announce forwarding secure_redirects
arp_filter log_martians send_redirects
arp_ignore mc_forwarding shared_media
bootp_relay medium_id tag

If you change a variable in the conf/eth0 subdirectory, for example, your change 
applies to that interface only. If you change the value in the conf/all directory, you 
might expect it to set the corresponding value for all existing interfaces, but this is 
not in fact what happens. Each variable has its own rules for accepting changes via 
all. Some values are ORed with the current values, some are ANDed, and still 
others are MAXed or MINed. As far as we are aware, there is no documentation 
for this process outside of the kernel source code, so the whole debacle is probably 
best avoided. Just confine your modifications to individual interfaces.

If you change a variable in the conf/default directory, the new value propagates to 
any interfaces that are later configured. On the other hand, it’s nice to keep the 
defaults unmolested as reference information; they make a nice sanity check if 
you want to undo other changes.

The /proc/sys/net/ipv4/neigh directory also contains a subdirectory for each in-
terface. The files in each subdirectory control ARP table management and IPv6 
neighbor discovery for that interface. Here is the list of variables; the ones starting 
with gc (for garbage collection) determine how ARP table entries are timed out 
and discarded.

ubuntu$ cd neigh/default; ls -F 
anycast_delay gc_stale_time proxy_delay
app_solicit gc_thresh1 proxy_qlen
base_reachable_time gc_thresh2 retrans_time
base_reachable_time_ms gc_thresh3 retrans_time_ms
delay_first_probe_time locktime ucast_solicit
gc_interval mcast_solicit unres_qlen

  



ptg

492 Chapter 14 TCP/IP Networking

To see the value of a variable, use cat; to set it, use echo redirected to the proper 
filename. For example, the command

ubuntu$ cat icmp_echo_ignore_broadcasts 
0

shows that this variable’s value is 0, meaning that broadcast pings are not ignored. 
To set it to 1 (and avoid falling prey to Smurf-type denial of service attacks), run

ubuntu$ sudo sh -c "echo 1 > icmp_echo_ignore_broadcasts"18

from the /proc/sys/net directory. 

You are typically logged in over the same network you are tweaking as you adjust 
these variables, so be careful! You can mess things up badly enough to require a 
reboot from the console to recover, which might be inconvenient if the system 
happens to be in Point Barrow, Alaska, and it’s January. Test-tune these variables 
on your desktop system before you even think of tweaking a production machine.

To change any of these parameters permanently (or more accurately, to reset them 
every time the system boots), add the appropriate variables to /etc/sysctl.conf, 
which is read by the sysctl command at boot time. The format of the sysctl.conf
file is variable=value rather than echo value > variable as you would run from the 
shell to change the variable by hand. Variable names are pathnames relative to 
/proc/sys; you can also use dots instead of slashes if you prefer. For example, ei-
ther of the lines

net.ipv4.ip_forward=0 
net/ipv4/ip_forward=0

in the /etc/sysctl.conf file would turn off IP forwarding on this host. 

Some of the options under /proc are better documented than others. Your best bet 
is to look at the man page for the protocol in question in section 7 of the manuals. 
For example, man 7 icmp documents four of the six available options. (You must 
have man pages for the Linux kernel installed to see man pages about protocols.) 

You can also take a look at the ip-sysctl.txt file in the kernel source distribution 
for some good comments. If you don’t have kernel source installed, just google for 
ip-sysctl-txt to reach the same document.

Security-related kernel variables

Table 14.9 shows Linux’s default behavior with regard to various touchy network 
issues. For a brief description of the implications of these behaviors, see page 472. 
We recommend that you verify the values of these variables so that you do not 
answer broadcast pings, do not listen to routing redirects, and do not accept 

18. If you try this command in the form sudo echo 1 > icmp_echo_ignore_broadcasts, you just generate 
a “permission denied” message—your shell attempts to open the output file before it runs sudo. You 
want the sudo to apply to both the echo command and the redirection. Ergo, you must create a root 
subshell in which to execute the entire command. 

  



ptg

Linux NAT and packet filtering 493

IP
 N

et
w

or
ki

ng

source-routed packets. These should be the defaults on current distributions ex-
cept for accept_redirects and sometimes accept_source_route.

Linux NAT and packet filtering

Linux traditionally implements only a limited form of Network Address Transla-
tion (NAT) that is more properly called Port Address Translation, or PAT. Instead 
of using a range of IP addresses as a true NAT implementation would, PAT multi-
plexes all connections onto a single address. The details and differences aren’t of 
much practical importance, though.

iptables implements not only NAT but also packet filtering. In earlier versions of 
Linux this functionality was a bit of a mess, but iptables makes a much cleaner 
separation between the NAT and filtering features.

Packet filtering features are covered in more detail in the Security chapter starting 
on page 932. If you use NAT to let local hosts access the Internet, you must use a 
full complement of firewall filters when running NAT. The fact that NAT “isn’t 
really IP routing” doesn’t make a Linux NAT gateway any more secure than a 
Linux router. For brevity, we describe only the actual NAT configuration here; 
however, this is but a small part of a full configuration.

To make NAT work, you must enable IP forwarding in the kernel by setting the 
/proc/sys/net/ipv4/ip_forward kernel variable to 1. Additionally, you must insert 
the appropriate kernel modules:

ubuntu$ sudo /sbin/modprobe iptable_nat 
ubuntu$ sudo /sbin/modprobe ip_conntrack 
ubuntu$ sudo /sbin/modprobe ip_conntrack_ftp

Many other connection-tracking modules exist; see the net/netfilter subdirectory 
underneath /lib/modules for a more complete list and enable the ones you need.

The iptables command to route packets using NAT is of the form
sudo iptables -t nat -A POSTROUTING -o eth1 -j SNAT --to 63.173.189.1

Table 14.9 Default security-related network behaviors in Linux

Feature Host Gateway Control file (in /proc/sys/net/ipv4)

IP forwarding off on ip_forward for the whole system 
conf/interface/forwarding per interfacea

ICMP redirects obeys ignores conf/interface/accept_redirects 
Source routing varies varies conf/interface/accept_source_route 
Broadcast ping ignores ignores icmp_echo_ignore_broadcasts

a. The interface can be either a specific interface name or all.

  



ptg

494 Chapter 14 TCP/IP Networking

In this example, eth0 is the interface connected to the Internet. The eth0 interface 
does not appear directly in the command line above, but its IP address is the one 
that appears as the argument to --to. The eth1 interface is the one connected to 
the internal network.

To Internet hosts, it appears that all packets from hosts on the internal network 
have eth0’s IP address. The host performing NAT receives incoming packets, 
looks up their true destinations, rewrites them with the appropriate internal net-
work IP address, and sends them on their merry way.

14.13 SOLARIS NETWORKING

Solaris comes with a bounteous supply of startup scripts. At a trade show, we once 
scored a tear-off calendar with sysadmin trivia questions on each day’s page. The 
question for January 1 was to name all the files you had to touch to change the 
hostname and IP address on a machine running Solaris. A quick peek at the an-
swers showed six files. This is modularization taken to bizarre extremes. That 
said, let’s look at Solaris network configuration.

Solaris basic network configuration

Solaris stashes some network configuration files in /etc and some in /etc/inet. 
Many are duplicated through the magic of symbolic links, with the actual files 
living in /etc/inet and the links in /etc. 

To set the hostname, enter it into the file /etc/nodename. The change will take 
effect when the machine is rebooted. Some sites use just the short hostname; oth-
ers use the fully qualified domain name.

See page 739 for more 
information about the 
name service switch.

The /etc/defaultdomain file’s name suggests that it might be used to specify the 
DNS domain, but it actually specifies the NIS or NIS+ domain name. The DNS 
domain is specified in /etc/resolv.conf as usual.

Solaris uses /etc/nsswitch.conf to set the order in which /etc/hosts, NIS, NIS+, 
and DNS are consulted for hostname resolution. We recommend looking at the 
hosts file, then DNS for easy booting. The line from nsswitch.conf would be

hosts:   files  dns

This is the default configuration if the host receives the addresses of its DNS serv-
ers through DHCP.

Solaris networking can run in traditional mode or in “Network Auto-Magic” 
(NWAM) mode, where networking is managed autonomously by the nwamd dae-
mon. NWAM mode is fine for workstations, but it has limited configurability and 
allows only one network interface to be active at a time. The discussion below 
assumes traditional mode.

To see which networking mode is active, run svcs svc:/network/physical. There 
should be two configuration lines, one for NWAM and one for the traditional 

  



ptg

Solaris basic network configuration 495

IP
 N

et
w

or
ki

ng

mode (“default”). Run svcadm to switch the configuration. For example, the fol-
lowing exchange shows the system being taken from NWAM to traditional mode.

solaris$ svcs svc:/network/physical
STATE STIME FMRI
disabled Mar_31 svc:/network/physical:default
online Mar_31 svc:/network/physical:nwam 
solaris$ sudo svcadm disable svc:/network/physical:nwam 
solaris$ sudo svcadm enable svc:/network/physical:default

Solaris configures the IP address of each network interface through a file called 
/etc/hostname.interface, where interface is the usual name of the interface. These 
files can contain either a hostname that appears in the hosts file or an IP address. 
The value in a hostname.interface file is used as the address parameter to ifconfig, 
so it’s safest to use an address, even though the configuration filename implies 
that a hostname is expected.

Any special ifconfig options can also be put in the hostname.interface file on the 
same line as the hostname or IP address; it is all one big ifconfig command line. 
The startup scripts try to discover the IP addresses of any interfaces without cor-
responding hostname files by using DHCP.19

As shipped, the Solaris startup files rely on using the ifconfig options netmask +
and broadcast +. The pluses mean to look in /etc/netmasks for the netmask value 
and to figure out the broadcast address value from it. The /etc/netmasks file lists 
network numbers and their corresponding netmask values. Any network that is 
subnetted differently from its inherent network class (A, B, or C) must be repre-
sented in the file. Here is an example of a netmasks file:

# CS Department network masks database 
# Network netmask 
# ======= =======
# 
128.138.0.0 255.255.255.192 # default for dept.
# 
128.138.192.64 255.255.255.192 # drag 
128.138.192.192 255.255.255.192 # csops 
128.138.193.0 255.255.255.224 # bcrg 
128.138.193.32 255.255.255.224 # database 
128.138.198.0 255.255.255.0 # slip
…

The first line sets a default of /26 for the class B address 128.138.0.0, which is then 
overridden with specific masks that vary from the default. All networks are listed, 
even though many use the default value and could in fact be left out. On the sys-
tems from which this example is taken, the netmasks file is centrally maintained 
and distributed to all hosts. No single host has interfaces on all these networks. 

19. Solaris network interfaces must be scoped out with ifconfig plumb to make them accessible. You 
might have to run this command by hand when performing manual configuration.

  



ptg

496 Chapter 14 TCP/IP Networking

In older versions of Solaris, the network startup scripts were files in /etc/init.d
(chiefly rootusr, inetinit, sysid.net, and inetsvc). Solaris 10 radically restructured 
the way that startup files and system services are managed. The scripts have been 
refactored and now live in /lib/svc/method. See page 97 for an overview of So-
laris’s Service Management Facility.

If /etc/defaultrouter exists, it is assumed to contain the identity (which again can 
be either a hostname or a numeric address) of the default gateway, and no further 
routing configuration is performed. As usual, a numeric address is preferable; us-
ing a name requires an /etc/hosts entry or a DNS server on the local network.

Solaris used to run routed (which it actually called in.routed) whenever no de-
fault gateway was specified, but in Solaris 10 and later you must enable routed
explicitly with svcadm enable routing/route. Use the command svcs route to de-
termine the service’s current state.

Beware: routed will go into server (talkative) mode automatically if the machine 
has more than one network interface or the file /etc/gateways exists. This is gen-
erally not what you want. You can prevent routed from squawking by turning on 
the “quiet mode” flag:

solaris# svccfg -s routing/route:default setprop routing/quiet_mode = true

Solaris configuration examples

Here are some examples of the commands needed to bring up a Solaris interface 
and add a route to a default gateway:

solaris$ sudo ifconfig e1000g0 plumb 
solaris$ sudo ifconfig e1000g0 192.108.21.48 netmask 255.255.255.0 up
solaris$ sudo route add default 192.108.21.254 

The following examples show how to see the status of network interfaces and 
routing tables. Commands prefaced with sudo must be run as root. The final ex-
ample shows a feature of the Solaris route command that is not present on our 
other architectures: the get argument shows the next hop to a particular destina-
tion. We have taken some liberties to make the examples fit on the page.

solaris$ ifconfig -a 
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> 

mtu 8232 index 1 inet 127.0.0.1 netmask ff000000 
e1000g0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 

index 2 inet 192.108.21.48 netmask ffffff00 broadcast 192.108.21.255

solaris$ sudo ifconfig e1000g0 
e1000g0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 

index 2 inet 192.108.21.48 netmask ffffff00 broadcast 192.108.21.255 
ether 0:14:4f:e:e6:1c 

Notice that when run as root, ifconfig shows the hardware address, but when run 
as a user, it does not.

  



ptg

Solaris DHCP configuration 497

IP
 N

et
w

or
ki

ng

solaris$ netstat -nr 
Routing Table: IPv4 
Destination Gateway Flags Ref Use Interface 
---------------- -------------------- ------- ----- ------ --------- 
default 192.108.21.254 UG 1 9959
192.108.21.0 192.108.21.48 U 1 4985 e1000g0
127.0.0.1 127.0.0.1 UH 1 107 lo0

solaris$ sudo route get google.com 
route to: gw-in-f100.google.com

destination: default 
mask: default

gateway: 192.108.21.254 
interface: e1000g0

flags: <UP,GATEWAY,DONE,STATIC> 
recvpipe sendpipe ssthresh rtt,ms rttvar,ms hopcount mtu expire

0 0 0 0 0 0 1500 0 

Solaris DHCP configuration

Solaris includes a DHCP client and wins the prize for the easiest and most sensi-
ble DHCP client configuration:

solaris$ sudo ifconfig interface dhcp

It just works! ifconfig calls the dhcpagent program to get the parameters for the 
interface from DHCP and to configure the interface with them. You can include 
several options on the ifconfig command line to specify the interface as the pri-
mary one, set timeouts, increase lease times, or display the status of the interface. 
To manually unconfigure DHCP, just run

solaris$ sudo ifconfig interface drop

This is all very nice, but you probably want DHCP to be automatically consulted 
at boot time. You can set this up either by providing no configuration files for an 
interface at all (thus relying on autoconfiguration, similar to Linux’s Network-
Manager) or by creating an /etc/dhcp.interface file to go with the corresponding 
/etc/hostname.interface file. If you like, the dhcp.interface file can contain addi-
tional command-line parameters to be passed to the ifconfig command.

The hostname.interface file must still exist to get the interface to be plumbed; 
however, it can be left empty. If the hostname.interface file is not empty, the start-
up scripts will first statically configure the interface by using its contents and then 
later reconfigure the interface by using DHCP.

dhcpagent manages the interface from DHCP’s point of view. Among other tasks, 
it negotiates extensions to leases and cancels leases when they are no longer 
needed. If an interface that has been configured with DHCP is later reconfigured 
by hand, dhcpagent will discontinue management of that interface.

dhcpagent collects the leased values from the DHCP server (default route, do-
main, name servers, etc.), but it does not act on most of them directly. Instead, it 

  



ptg

498 Chapter 14 TCP/IP Networking

makes the parameters available through the dhcpinfo command. The service 
management scripts consult dhcpinfo for various pieces of information, which 
are then used as arguments to route, put into the resolv.conf file, etc.

dhcpagent transmits errors to syslog with facility daemon and priorities info 
through critical. Debug-level syslog output is available with the -d flag.

You can check the files in /etc/dhcp to view the configuration of a particular in-
terface. However, the existence of an interface.dhc file for an interface does not 
necessarily mean that dhcpagent is currently controlling the interface—the lease 
may have expired.

ndd: TCP/IP and interface tuning for Solaris

Solaris’s ndd command reconfigures the TCP/IP protocol stack on a running sys-
tem. Perhaps “reconfigure” is too strong a word; each module exposes parameters 
that can be examined and in some cases adjusted on the fly.

The basic syntax is
ndd [-set] device ? | variable [value]

If you give the argument ? (which must be protected from the shell as \?), ndd
returns a list of variables understood by the driver for the specified device. If you 
supply the name of a variable, ndd returns the value of that variable. If you use the 
-set flag and supply a value, the specified variable is set to the value you specify. 

Unfortunately, the ndd man page doesn’t tell you the possible names of devices, 
and it doesn’t tell you that you must be root to run ndd on some devices (ip and 
hme, for example) and not on others (tcp and udp). Table 14.10 slips you a quick 
cheat sheet. 

Interface-specific variable names in the /dev/ip category control IP forwarding on 
specific network interfaces. For example, e1000g0:ip_forwarding controls IP for-
warding on /dev/e1000g0. There’s a global ip_forwarding variable, too.

If you have access to an HP-UX machine, run ndd there with the -h flag (for help) 
and it will give you device names, variable names, and the meaning of each of the 

Table 14.10 Devices you can probe with Solaris’s ndd command

Device Description Variable names

/dev/tcp TCP protocol variables tcp_*
/dev/udp UDP protocol variables udp_*
/dev/ip IP protocol variables ip_* and ip6_*
/dev/icmp ICMP protocol variables icmp_* 
/dev/rawip Identical to /dev/icmp icmp_*
/dev/arp ARP protocol variables arp_*

  



ptg

Solaris firewalls and filtering 499

IP
 N

et
w

or
ki

ng

variables. Many variable names are the same, so you can partially work around 
Sun’s minimal ndd man page.

Interface-specific options such as link speed, autonegotiation, and jumbo packet 
support are also set with ndd; run ndd directly on the device file for the interface 
(e.g., /dev/e1000g0). Unfortunately, the way Sun has set up this convention makes 
the names of the configuration parameters dependent on the specific driver, so 
there isn’t a universal recipe for, say, locking a network interface to 100 Mb/s.

To change speeds, you’ll need to identify the writable “capability” variables for 
each speed (usually named *_cap) and turn off (set to zero) all the ones you want 
to disallow. Turn off the *_autoneg_cap variable, too, to disable autonegotiation. 
For example, the following script sets /dev/e1000g0 to 100 Mb/s full duplex on 
one of our lab machines:

#!/bin/sh 
ndd -set /dev/e1000g0 adv_autoneg_cap 0 
ndd -set /dev/e1000g0 adv_1000fdx_cap 0 
ndd -set /dev/e1000g0 adv_100fdx_cap 1 
ndd -set /dev/e1000g0 adv_100hdx_cap 0 
ndd -set /dev/e1000g0 adv_10fdx_cap 0 
ndd -set /dev/e1000g0 adv_10hdx_cap 0

Solaris security

Table 14.11 shows Solaris’s default behavior with regard to various touchy net-
work issues. For a brief description of the implications of these behaviors, see Se-
curity issues starting on page 472. You can adjust most of these settings with ndd. 

Solaris firewalls and filtering

As mentioned in the Security issues section, you generally shouldn’t use a UNIX, 
Linux, or Windows box as a firewall or NAT gateway. Use a dedicated piece of 
network hardware instead. Solaris used to make it easy to follow this rule by not 
including any filtering software, but Darren Reed’s free IPFilter software has now 
been bundled into the basic distribution. If you must use a UNIX-based filter, this 
is a good choice—it was always our favorite of the add-on filters for Solaris.

Table 14.11 Security-related network behaviors in Solaris

Feature Default ndd variable

IP forwarding off ip_forwarding
ICMP redirects obeys Can’t be changed a

Source routing ignores ip_forward_src_routed 
Broadcast ping (respond) on ip_respond_to_echo_broadcast 
Broadcast ping (forward) off ip_forward_directed_broadcasts

a. You can only modify the entries’ time-to-live.

  



ptg

500 Chapter 14 TCP/IP Networking

The IPFilter suite implements IP filtering, NAT, and transparent port forwarding. 
It is free, open source, and works on either SPARC or Intel hardware. The IPFilter 
package includes ipf for configuring a firewall, ipfstat for printing out the filter-
ing rules that have been installed, and ipnat for implementing NAT. 

See Chapter 22, Security, for details on packet filtering with IPFilter. The section 
about this topic starts on page 939. Here, we discuss only IPFilter’s NAT features.

Solaris NAT

To make NAT work, you must tell the kernel what addresses to map from, what 
addresses to map to, and what port range to use to extend the address space. See 
page 462 for a general discussion of NAT and the mechanisms it uses to bridge 
from private to public address space.

To configure NAT, you supply rules to the ipnat command. The rules are similar 
to those used with ipf to implement packet filtering. But beware: like ipf rules, 
ipnat rules are ordered. However, they have opposite precedence. Just to keep you 
on your toes, the first matching rule is selected, not the last.

Below are some examples of ipnat rules. To be activated at boot time, these would 
go in the /etc/ipf/ipnat.conf file:

map eth1 192.168.1.0/24 -> 128.138.198.0/26 portmap tcp/udp 20000:65000 
map eth1 192.168.1.0/24 -> 128.138.198.0/26

We have assumed that eth1 is our interface to the Internet and that our internal 
network is numbered with the class C private address space range. These rules 
map addresses from a /24 network into addresses from a /26 network. Since a /26 
network can accommodate only one-quarter of the hosts that a /24 network can, 
it’s potentially possible to run out of target addresses in this configuration. But the 
portmap clause extends the address range by allowing each address to be used 
with 45,000 different source ports. 

The first rule above covers all TCP and UDP traffic but does not affect ICMP; 
ICMP does not use the concept of a port. The second rule catches ICMP messages 
and tries to get them routed back to the right host. If the kernel can’t unambigu-
ously determine who should receive a particular ICMP message, it sends the 
packet out as a broadcast; machines that receive it out of context can just ignore it.

On a home machine, you might be assigned just a single real IP address by your 
ISP or your ISP’s DHCP server. If you’re given a static address assignment, just 
give the target network in the map line a /32 designation and a large enough port 
range to accommodate the needs of all your local hosts. If you get a different dy-
namic address each time you connect, use the notation 0/32 in the map line; it 
will make ipnat read the address directly from the network interface. For exam-
ple, here is a line you might use for a single, dynamically assigned address:

map eth1 192.168.1.0/24 -> 0/32 portmap tcp/udp 20000:65000

  



ptg

Basic network configuration for HP-UX 501

IP
 N

et
w

or
ki

ng

To test out the configuration, run
solaris$ sudo ipnat -CF -f /etc/ipf/ipnat.conf

These options first delete all existing rules and then load the complete set of rules 
from the /etc/ipf/ipnat.conf file.

Solaris networking quirks

The output of ifconfig -a is different when it is run as root than when it is run as a 
regular user. When run as root, it shows the link-level Ethernet addresses in addi-
tion to the IP addresses and parameters.

Solaris lets you change the link-level (MAC) address of a network interface with 
the ifconfig command and the address family ether. This feature can be useful if 
you need to worm your way onto a MAC-restricted wireless network.

14.14 HP-UX NETWORKING

HP-UX network configuration is easy: all configuration parameters are set in the 
file /etc/rc.config.d/netconf. The values in this file (and all the other files in the 
rc.config.d directory) are read into the environment at boot time and used by the 
/sbin/rc script as the machine boots. netconf is liberally scattered with comments 
that tell you just which variables must be set and what they mean. 

Basic network configuration for HP-UX

To assign a hostname to a machine and configure its first network interface, edit 
the netconf file and assign a value to the following variables:

HOSTNAME
INTERFACE_NAME[0] 
IP_ADDRESS[0] 
SUBNET_MASK[0]

For example:
HOSTNAME=disaster 
INTERFACE_NAME[0]=lan0 
IP_ADDRESS[0]=192.108.21.99 
SUBNET_MASK[0]=255.255.255.0

A second network interface would have subscript 1, and its existence would be 
indicated by the variable NET_CARDS being set to 2.

The netconf file also contains variables to configure static routes and start a rout-
ing daemon. To establish a default route, set the following variables:

ROUTE_DESTINATION[0]=default 
ROUTE_MASK[0]="" 
ROUTE_GATEWAY[0]=192.108.21.254 
ROUTE_COUNT[0]=1

  



ptg

502 Chapter 14 TCP/IP Networking

The ROUTE_MASK variable is needed for a network in which the netmask dif-
fered from the default for the class of addresses used. The ROUTE_COUNT vari-
able should be 0 if the gateway is the local machine and 1 if it is remote. To add 
more static routes, just enter their parameters to a set of ROUTE_* variables with 
indexes [1], [2], etc. These arguments are passed directly to the route command. 
For example, the destination parameter can be the word default as above or net
netaddr or host hostaddr.

HP-UX supplies gated but not routed; to use gated, set the variable GATED to 1 
and GATED_ARGS to the arguments you want gated started with. See Chapter 15, 
Routing, for a bit more information about gated. The HP-UX man page on rout-
ing (man routing) contains a lot of good background information.

Many fields in the netconf file can contain either a hostname or an IP address. If a 
hostname is used, it must be defined in /etc/hosts. At boot time, HP-UX looks 
only at /etc/hosts and does not use any other name lookup mechanism. The ma-
chines in /etc/hosts should have their fully qualified domain names listed first, 
followed by their short names and any aliases.

HP uses the lanscan command to show information about the network interfaces 
on a machine. ifconfig -a does not work, but ifconfig interface does. Network 
interface names begin with either “lan” or “snap”: lan for Ethernet link-layer en-
capsulation and snap for IEEE 802.3 encapsulation. The first interface is lan0, the 
second is lan1, and so on.

HP-UX has the same sort of “plumbing” concept that Solaris does, but interfaces 
are automatically plumbed when they are assigned an IP address by ifconfig.

SMH is HP’s system administration tool, which is alleged to make UNIX system 
administration a breeze. It is a menu-based system and can be used to configure 
network interfaces, as well as to perform many other sysadmin chores.

HP-UX configuration examples

To bring up an HP-UX network interface and add a default route by hand, you’d 
use commands such as the following:

hp-ux$ sudo ifconfig lan0 192.108.21.99 netmask 0xffffff00
hp-ux$ sudo route add default 192.108.21.254 120

HP’s lanscan command lists the network interfaces in the system and the charac-
teristics of the device driver that controls them. lanscan -v shows slightly more 
information. The examples below were munged to fit the page. The MAC entry 
with value ETHER implies that the network device name should be lan0, not 
snap0; ifconfig shows this to be true.

20. On HP-UX 11, the hop count field is not required; it defaults to 0 if not explicitly specified. Earlier ver-
sions required the count field to be present.

  



ptg

HP-UX configuration examples 503

IP
 N

et
w

or
ki

ng

$ lanscan 
Hardware Station Crd Hdw Net-Int NM MAC HP-DLPI DLPI
Path Address In# State NamePPA ID Type Support Mjr#
8/0/20/0 0x001… 0 UP lan0 snap0 1 ETHER Yes 130

$ ifconfig lan0 
lan0: flags=843<UP,BROADCAST,RUNNING,MULTICAST> inet 192.108.21.99 

netmask ffffff00 broadcast 192.108.21.255

$ ifconfig snap0 
ifconfig: no such interface

netstat -i shows network interface names, and netstat -nr displays routing tables:
$ netstat -i 
Name Mtu Network Address Ipkts Opkts
lan0 1500 192.108.21.0 disaster.atrust.com 6047 3648
lo0 4136 127.0.0.0 localhost.atrust.com 231 231

$ netstat -nr 
Routing tables 
Dest/Netmask Gateway Flags Refs Use Int Pmtu
127.0.0.1 127.0.0.1 UH 0 231 lo0 4136
192.108.21.99 192.108.21.99 UH 8 lan0 4136
192.108.21.0 192.108.21.99 U 2 0 lan0 1500
127.0.0.0 127.0.0.1 U 0 0 lo0 4136
default 192.108.21.254 UG 0 0 lan0 1500

The lanadmin command displays a summary of the network traffic that each in-
terface has seen. It can also manipulate and monitor interfaces. It’s a menu-based 
program with useful help lists to lead you to the information you want. Here is an 
example that displays the statistics for the lan0 interface:

% lanadmin                                                    
LOCAL AREA NETWORK ONLINE ADMINISTRATION, Version 1.0 

Copyright 1994 Hewlett Packard Company.
All rights are reserved.

Test Selection mode.

lan = LAN Interface Administration 
menu = Display this menu 
quit = Terminate the Administration 
terse = Do not display command menu 
verbose = Display command menu

Enter command: lan

LAN Interface test mode. LAN Interface PPA Number = 0 
clear = Clear statistics registers 
display = Display LAN Interface status/statistics 
end = End LAN Interface Admin., go up 1 level 
menu = Display this menu 
ppa = PPA Number of the LAN Interface

  



ptg

504 Chapter 14 TCP/IP Networking

quit = Terminate the Admin, return to shell 
reset = Reset LAN Interface, execute selftest 
specific = Go to Driver specific menu

Enter command: display

LAN INTERFACE STATUS DISPLAY 
Tue , Jun 2,2009 00:41:24 

PPA Number = 0
Description = lan0 Intel PCI Pro 10/100Tx Server Adapter
Type (value) = ethernet-csmacd(6)
MTU Size = 1500
Speed = 100000000
Station Address = 0x00306eea9237 
Administration Status (value) = up(1) 
Operation Status (value) = up(1)
…
Inbound Unicast Packets = 45691 
Inbound Non-Unicast Packets = 2630 
…
Deferred Transmissions = 0
Late Collisions = 0
Excessive Collisions = 0
…

HP-UX DHCP configuration

As with other network configuration parameters, you turn on the use of DHCP at 
boot time by setting variables in the /etc/rc.config.d/netconf file. In this case, the 
variable names start with DHCP_ENABLE. The index [0] refers to the first inter-
face, [1] to the second interface, and so on. For example, 

DHCP_ENABLE[0]=1

sets the first network interface to DHCP mode. It will get its IP address, netmask, 
and other networking parameters from the DHCP server on the local network. 
Setting the variable equal to 0 would disable DHCP; you’d have to assign a static 
address in the netconf file. If no DHCP_ENABLE clause is present, the variable 
defaults to 1.

The /sbin/auto_parms script does the real legwork of contacting the DHCP 
server. The program dhcpdb2conf enters the DHCP parameters secured by 
auto_parms into the netconf file, from which boot-time configuration informa-
tion is taken.

HP-UX dynamic reconfiguration and tuning

See page 498 for more 
details about ndd. 

As in Solaris, you can use ndd to tune many different networking parameters. 
When used interactively, ndd tunes values on the fly. To change values perma-
nently, enter them in /etc/rc.config.d/nddconf, which is read at boot time.

On an HP-UX system, ndd’s -h (help) option is quite useful. With no arguments, 
it lists all the parameters you can tune. If you also specify a variable name, ndd -h 

  



ptg

HP-UX security, firewalls, filtering, and NAT 505

IP
 N

et
w

or
ki

ng

describes what the variable does and shows its minimum, maximum, and default 
values. For example:

$ ndd -h | grep source 
ip_forward_src_routed -  Controls forwarding of source routed packets

$ ndd -h ip_forward_src_routed 
ip_forward_src_routed:
  Set to 1 to forward source-routed packets; set to 0 to
  disable forwarding. If disabled, an ICMP Destination
  Unreachable message is sent to the sender of source-
  routed packets needing to be forwarded. [0,1] Default: 1

ndd’s output claims that this version of HP-UX allows forwarding of source-
routed packets by default. That may be the kernel’s preference, but in fact the de-
fault /etc/rc.config.d/nddconf file on our lab system disables this behavior:

TRANSPORT_NAME[2]=ip 
NDD_NAME[2]=ip_forward_src_routed 
NDD_VALUE[2]=0

The 2s here indicate the third of ten possible variables to be set in nddconf. For 
the next variable that you wanted to change, you would add another copy of the 
same three lines with appropriate values and with subscript 3 instead of 2. Unfor-
tunately, only 10 parameters can be set through nddconf.

To view and change the value of the ip_forward_src_routed variable by hand, use 
ndd -get and ndd -set (the syntax is slightly different from that on Solaris sys-
tems):

$ ndd -get /dev/ip ip_forward_src_routed 
0 
$ sudo ndd -set /dev/ip ip_forward_src_routed 1 
$ ndd -get /dev/ip ip_forward_src_routed 
1

HP-UX security, firewalls, filtering, and NAT

Table 14.12 shows HP-UX’s default behavior with regard to various touchy net-
work issues. For a brief description of the implications of these behaviors, see Se-
curity issues on page 472. You can modify most of them with ndd. 

Table 14.12 Security-related network behaviors in HP-UX

Feature Default Control through ndd

IP forwarding dynamic a Set ip_forwarding: 0 = off, 1 = on, 2 = dynamic
ICMP redirects obeysb Set ip_ire_redirect_interval to 0 to disable
Source routing ignores Set ip_forward_src_routed to 1 to enable 
Broadcast ping (forward) blocked Set ip_forward_directed_broadcasts 
Broadcast ping (respond) ignores Set ip_respond_to_echo_broadcast

a. On with >1 network interface; off otherwise.
b. The redirect entries are by default preserved for five minutes.

  



ptg

506 Chapter 14 TCP/IP Networking

Like Solaris, HP-UX includes Darren Reed’s IPFilter package for packet filtering 
and NAT translation. See IPFilter for UNIX systems on page 939 and Solaris NAT
on page 500 for some additional detail. The IPFilter part is all the same, although 
HP-UX configures the package differently at startup. Instead of using svcadm to 
enable IPFilter, edit /etc/rc.config.d/ipfconf and turn on the options you want. 
Configuration files for ipf and ipnat should go in /etc/opt/ipf instead of /etc/ipf.

HP-UX’s version of inetd has built-in TCP wrapper functionality that you config-
ure in the file /var/adm/inetd.sec.

If you wonder in exactly what ways HP has shipped you an insecure system, take a 
look at Kevin Steves’ article about the steps needed to turn an HP-UX 11 system 
into a bastion host on an unprotected network: tinyurl.com/5sffy2. This docu-
ment is a bit old (2002), but it’s an excellent description of all the creature com-
forts in HP-UX that must be turned off if the machine is to be secure on the open 
Internet. We wish we knew of a document like this for our other example systems.

14.15 AIX NETWORKING

Rather than keeping network configuration information in text files or scripts, 
AIX squirrels it away in the Object Data Manager (ODM) attribute/value data-
base. Another layer of glue associates these property lists with specific devices 
(driver instances, really) and binds the drivers to the configuration information.

The Object Data Manager on page 432 describes the ODM system in general. The 
overall scheme is rather complex, and it allows access to the network configura-
tion at multiple layers. Table 14.13 shows a variety of AIX commands for setting 
an interface’s network address. They vary chiefly in whether they affect the run-
ning configuration, the boot-time configuration, or both.

Table 14.13 Eight ways to set an interface’s IP address in AIX

Command 
Affects

Current?
Affects
Boot?

smitty mktcpip (and fill out the form) Yes Yes
mktcpip -i en3 -a 192.168.0.1 Yes Yes
chdev -l en3 -a netaddr=192.168.0.1 Yes Yes
chdev -l en3 -a netaddr=192.168.0.1 -P No Yes
chdev -l en3 -a netaddr=192.168.0.1 -T Yes No
ifconfig en3 inet 192.168.0.1 Yes No
odmchange -o CuAt -q’name=en3 AND 

attribute=netaddr’ < configa

No Yes

echo ’Hey! I set the network address!’ No No

a. odmchange requires an attribute/value list as input. You cannot specify 
attribute values on the command line.

  



ptg

no: manage AIX network tuning parameters 507

IP
 N

et
w

or
ki

ng

To be fair, mktcpip does more than just set device configuration parameters—it 
also runs the rc.tcpip script to start relevant network daemons.

SMIT’s network configuration facilities are relatively complete, so you can, and 
should, rely on SMIT for most basic configuration. Look under the “Communica-
tions Applications and Services” topic for TCP/IP configuration options.

Most sysadmins will never need to operate below the level of chdev/lsattr et al. 
However, this layer can be useful for seeing the authoritative list of configuration 
options for a device. For example, the following query shows the configurable pa-
rameters for the network interface en3:

aix$ lsattr -H -E -l en3 
attribute value description settable
alias4 IPv4 Alias including Subnet Mask True
alias6 IPv6 Alias including Prefix Length True
arp on Address Resolution Protocol (ARP) True
authority Authorized Users True
broadcast 192.168.10.255 Broadcast Address True
mtu 1500 Maximum IP Packet Size True
netaddr 192.168.10.11 Internet Address True
netaddr6 IPv6 Internet Address True
netmask 255.255.255.0 Subnet Mask True
prefixlen Prefix Length for IPv6 Address True
remmtu 576 Max. Packet Size for REMOTE Nets True
security none Security Level True
state up Current Interface Status True
tcp_mssdflt Set TCP Maximum Segment Size True
tcp_nodelay Enable/Disable TCP_NODELAY Option True
tcp_recvspace Set Socket Buffer Space for Receiving True
tcp_sendspace Set Socket Buffer Space for Sending True

The -H option asks for the output columns to be labeled, the -E option requests 
current (“effective,” as opposed to default) values, and the -l option identifies the 
device to probe. Many of the devices that chdev et al. can operate on have no 
entries in /dev. You can run lsdev -C to see a complete list of the available devices.

To set a value, use chdev. For example, to set the MTU for en3 above to 1450, you 
could use the command

aix$ sudo chdev -l en3 -a mtu=1450

no: manage AIX network tuning parameters

AIX breaks out its system-wide TCP/IP options into a separate, parallel world of 
persistent attribute/value pairs that are accessed through the no command rather 
than through chdev. (The difference is that no is for system-wide configuration, 
whereas chdev configures instances of specific drivers or devices.)

  



ptg

508 Chapter 14 TCP/IP Networking

You can run no -a to see a list of all the available variables—there are currently 
more than 125. Table 14.14 lists some of the ones with security implications.

To set a variable, use
no -p -o variable=value 

For example, to prevent the TCP/IP stack from forwarding source-routed packets, 
you would use the command

aix$ sudo no -p -o ipsrcrouteforward=0

The -p option makes the change effective both immediately and after a reboot.

14.16 RECOMMENDED READING

STEVENS, W. RICHARD. TCP/IP Illustrated, Volume One: The Protocols. Reading, 
MA: Addison-Wesley, 1994.

WRIGHT, GARY R., AND W. RICHARD STEVENS. TCP/IP Illustrated, Volume Two: 
The Implementation. Reading, MA: Addison-Wesley, 1995.

These two books are an excellent and thorough guide to the TCP/IP protocol 
stack. A bit dated, but still solid.

STEVENS, W. RICHARD. UNIX Network Programming. Upper Saddle River, NJ: 
Prentice Hall, 1990.

STEVENS, W. RICHARD, BILL FENNER, AND ANDREW M. RUDOFF. UNIX Network 
Programming, Volume 1, The Sockets Networking API (3rd Edition). Upper Saddle 
River, NJ: Addison-Wesley, 2003.

STEVENS, W. RICHARD. UNIX Network Programming, Volume 2: Interprocess Com-
munications (2nd Edition). Upper Saddle River, NJ: Addison-Wesley, 1999.

These books are the student’s bibles in networking classes that involve program-
ming. If you need only the Berkeley sockets interface, the original edition is still a 

Table 14.14 Security-related TCP/IP tuning variables for AIX

Variable Meaning Default

bcastping Respond to broadcast pings 0
directed_broadcast Allow forwarding of broadcast packets 0
ipforwarding Allow IP forwarding 0
ipignoreredirects Ignore ICMP redirects 0 a

ipsrcrouteforward Forward source-routed IP packets 1a

ipsrcrouterecv Accept source-routed IP packets 0
ipsrcroutesend Block sending of source-routed packets 1

a. Probably advisable to change

  



ptg

Exercises 509

IP
 N

et
w

or
ki

ng

fine reference. If you need the STREAMS interface too, then the third edition, 
which includes IPv6, is a good bet. All three are clearly written in typical Rich 
Stevens style.

TANENBAUM, ANDREW. Computer Networks (4th Edition). Upper Saddle River, NJ: 
Prentice Hall PTR, 2003.

This was the first networking text, and it is still a classic. It contains a thorough 
description of all the nitty-gritty details going on at the physical and link layers of 
the protocol stack. The latest edition includes coverage on wireless networks, gig-
abit Ethernet, peer-to-peer networks, voice over IP, and more.

SALUS, PETER H. Casting the Net, From ARPANET to INTERNET and Beyond.
Reading, MA: Addison-Wesley Professional, 1995.

This is a lovely history of the ARPANET as it grew into the Internet, written by a 
historian who has been hanging out with UNIX people long enough to sound like 
one of them!

COMER, DOUGLAS. Internetworking with TCP/IP Volume 1: Principles, Protocols, 
and Architectures (5th Edition). Upper Saddle River, NJ: Prentice Hall, 2006.

Doug Comer’s Internetworking with TCP/IP series was for a long time the stan-
dard reference for the TCP/IP protocols. The books are designed as undergradu-
ate textbooks and are a good introductory source of background material.

HUNT, CRAIG. TCP/IP Network Administration (3rd Edition). Sebastopol, CA: 
O’Reilly Media, 2002.

Like other books in the nutshell series, this book is directed at administrators of 
UNIX systems. Half the book is about TCP/IP, and the rest deals with higher-level 
UNIX facilities such as email and remote login.

FARREL, ADRIAN. The Internet and Its Protocols: A Comparative Approach. San 
Francisco, CA: Morgan Kaufmann Publishers, 2004.

KOZIERAK, CHARLES M. The TCP/IP Guide: A Comprehensive, Illustrated Internet 
Protocols Reference. San Francisco, CA: No Starch Press, 2005.

An excellent collection of documents about the history of the Internet and its var-
ious technologies can be found at isoc.org/internet/history.

14.17 EXERCISES

E14.1 How could listening to (i.e., obeying) ICMP redirects allow an unau-
thorized user to compromise the network?

E14.2 What is the MTU of a network link? What happens if the MTU for a 
given link is set too high? Too low?

  



ptg

510 Chapter 14 TCP/IP Networking

E14.3 The network 134.122.0.0/16 has been subdivided into /19 networks.

a) How many networks are there? List them. What is their netmask?
b) How many hosts could there be on each network?
c) Determine which network the address 134.122.67.124 belongs to.
d) What is the broadcast address for each network?

E14.4 Host 128.138.2.4 on network 128.138.2.0/24 wants to send a packet to 
host 128.138.129.12 on network 128.138.129.0/24. Assume that

• Host 128.138.2.4 has a default route through 128.138.2.1.
• Host 128.138.2.4 just booted and has not sent or received any packets.
• All other machines on the network have been running for a long time.
• Router 128.138.2.1 has a direct link to 128.138.129.1, the gateway 

for the 128.138.129.0/24 subnet.

a) List all the steps that are needed to send the packet. Show the 
source and destination Ethernet and IP addresses of all packets 
transmitted.

b) If the network were 128.138.0.0/16, would your answer change? 
How or why not?

c) If the 128.138.2.0 network were a /26 network instead of a /24, 
would your answer change? How or why not?

E14.5 DHCP lease times are configurable on the server. If there many more 
assignable IP addresses than potential clients, should you make the 
lease time as long as possible (say, weeks)? Why or why not? What 
about other DHCP parameters?

E14.6 After installing a new Linux system, how would you address the secu-
rity issues mentioned in this chapter? Check to see if any of the secu-
rity problems have been dealt with on the Linux systems in your lab. 
(May require root access.)

E14.7 What steps are needed to add a new machine to the network in your 
lab environment? In answering, use parameters appropriate for your 
network and local situation. Assume that the operating system has al-
ready been installed on the new machine.

E14.8 Create a configuration file for ISC’s DHCP server that assigns ad-
dresses in the range 128.138.192.[1-55]. Use a lease time of two hours 
and make sure that the host with Ethernet address 00:10:5A:C7:4B:89 
always receives IP address 128.138.192.55.

  



ptg

511

Ro
ut

in
g

15 Routing

Keeping track of where network traffic should flow next is no easy task. Chapter 
14 briefly introduced IP packet forwarding. In this chapter, we examine the for-
warding process in more detail and investigate several network protocols that al-
low routers to automatically discover efficient routes. Routing protocols not only 
lessen the day-to-day administrative burden of maintaining routing information, 
but they also allow network traffic to be redirected quickly if a router, link, or 
network should fail.

It’s important to distinguish between the process of actually forwarding IP packets 
and the management of the routing table that drives this process, both of which 
are commonly called “routing.” Packet forwarding is simple, whereas route com-
putation is tricky; consequently, the second meaning is used more often in prac-
tice. This chapter describes only unicast routing; multicast routing (sending pack-
ets to groups of subscribers) involves an array of very different problems and is 
beyond the scope of this book.

For most cases, the information covered in Chapter 14, TCP/IP Networking, is all 
you need to know about routing. If the appropriate network infrastructure is al-
ready in place, you can set up a single static route (as described in the Routing
section starting on page 465) and voilà, you have enough information to reach 

Routing

  



ptg

512 Chapter 15 Routing

just about anywhere on the Internet. If you must survive within a complex net-
work topology or if you are using UNIX or Linux systems as part of your network 
infrastructure, then this chapter’s information about dynamic routing protocols 
and tools can come in handy.

IP routing is “next hop” routing. At any given point, the system handling a packet 
only needs to determine the next host or router in the packet’s journey to its final 
destination. This is a different approach from that of many legacy protocols, 
which determine the exact path a packet will travel before it leaves its originating 
host, a scheme known as source routing.1

15.1 PACKET FORWARDING: A CLOSER LOOK

Before we jump into the management of routing tables, let’s take a more detailed 
look at how the tables are used. Consider the network shown in Exhibit A.

Exhibit A Example network

Router R1 connects two networks, and router R2 connects one of the nets to the 
outside world. For now, we assume that R1 and R2 are general-purpose computers 
rather than dedicated routers. (We assume Linux and IPv4 for all systems in-
volved in this example, but the commands and principles are similar under IPv6 
and on UNIX systems.) Let’s look at some routing tables and some specific packet 
forwarding scenarios. First, host A’s routing table:

A$ netstat -rn 
Kernel IP routing table 
Destination Gateway Genmask Flags MSS Window irtt Iface 
199.165.145.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 199.165.145.24 0.0.0.0 UG 0 0 0 eth0

See page 478 for 
more information 
about ifconfig.

Host A has the simplest routing configuration of the four machines. The first two 
routes describe the machine’s own network interfaces in standard routing terms. 
These entries exist so that forwarding to directly connected networks need not be 

1. IP packets can also be source-routed—at least in theory—but this is almost never done. The feature is 
not widely supported because of security considerations.

199.165.145
network

199.165.146
network145.17

145.24 146.1 
146.4

146.3

Host
A

Host
BRouter

R1

Router
R2 216.12.111.80

to the Internet

  



ptg

Packet forwarding: a closer look 513

Ro
ut

in
g

handled as a special case. eth0 is host A’s Ethernet interface, and lo is the loopback 
interface, a virtual interface emulated in software. Entries such as these are nor-
mally added automatically by ifconfig when a network interface is configured.

Some systems treat the loopback route as a “host route” to one particular IP ad-
dress rather than an entire network. Since 127.0.0.1 is the only IP address that will 
ever exist on the loopback network, it doesn’t really matter how it’s defined. The 
only changes you’d see in the routing table would be 127.0.0.1 in the destination 
column instead of 127.0.0.0 and an H in the Flags column.

See the discussion of 
netmasks starting on 
page 458.

There is no substantive difference between a host route and a network route. They 
are treated exactly the same when the kernel goes to look up addresses in the 
routing table; only the length of the implicit mask is different.

The default route on host A forwards all packets not addressed to the loopback 
address or to the 199.165.145 network to the router R1, whose address on this 
network is 199.165.145.24. The G flag indicates that this route goes to a gateway, 
not to one of A’s local interfaces. Gateways must be only one hop away.

See page 454 for 
more information 
about addressing.

Suppose a process on A sends a packet to B, whose address is 199.165.146.4. The 
IP implementation looks for a route to the target network, 199.165.146, but none 
of the routes match. The default route is invoked and the packet is forwarded to 
R1. Exhibit B shows the packet that actually goes out on the Ethernet (the ad-
dresses in the Ethernet header are the MAC addresses of A’s and R1’s interfaces on 
the 145 net).

Exhibit B Ethernet packet

The Ethernet destination hardware address is that of router R1, but the IP packet 
hidden within the Ethernet frame does not mention R1 at all. When R1 inspects 
the packet it has received, it sees from the IP destination address that it is not the 
ultimate destination of the packet. It then uses its own routing table to forward the 
packet to host B without rewriting the IP header; the header still shows the packet 
coming from A.

ETHERNET FRAME

Ethernet 
header 

IP header UDP header and data

IP PACKET
UDP PACKET

From:
To: 

Type:

199.165.145.17 
199.165.146.4 
UDP

From:
To: 

Type:

A 
R1 
IP

  



ptg

514 Chapter 15 Routing

Here’s the routing table for host R1:
R1$ netstat -rn 
Kernel IP routing table 
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
199.165.145.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
199.165.146.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
0.0.0.0 199.165.146.3 0.0.0.0 UG 0 0 0 eth1

This table is similar to that of host A, except that it shows two physical network 
interfaces. The default route in this case points to R2, since that’s the gateway 
through which the Internet can be reached. Packets bound for either of the 
199.165 networks can be delivered directly.

Like host A, host B has only one real network interface. However, B needs an 
additional route to function correctly because it has direct connections to two 
different routers. Traffic for the 199.165.145 net must travel through R1, while 
other traffic should go out to the Internet through R2.

B$ netstat -rn 
Kernel IP routing table 
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
199.165.145.0 199.165.146.1 255.255.255.0 U 0 0 0 eth0
199.165.146.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 199.165.146.3 0.0.0.0 UG 0 0 0 eth0

See page 467 for 
an explanation of 
ICMP redirects.

In theory, you can configure host B with initial knowledge of only one gateway 
and rely on help from ICMP redirects to eliminate extra hops. For example, here 
is one possible initial configuration for host B:

B$ netstat -rn 
Kernel IP routing table 
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
199.165.146.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 199.165.146.3 0.0.0.0 UG 0 0 0 eth0

If B then sends a packet to host A (199.165.145.17), no route matches and the 
packet is forwarded to R2 for delivery. R2 (which, being a router, presumably has 
complete information about the network) sends the packet on to R1. Since R1 and 
B are on the same network, R2 also sends an ICMP redirect notice to B, and B 
enters a host route for A into its routing table:

199.165.145.17 199.165.146.1 255.255.255.255 UGHD 0 0 0 eth0

This route sends all future traffic for A directly through R1. However, it does not 
affect routing for other hosts on A’s network, all of which have to be routed by 
separate redirects from R2.

  



ptg

Distance-vector protocols 515

Ro
ut

in
g

Some sites use ICMP redirects this way as a sort of low-rent routing “protocol,” 
thinking that this approach is dynamic. Unfortunately, systems and routers all 
handle redirects differently. Some hold on to them indefinitely. Others remove 
them from the routing table after a relatively short period (5–15 minutes). Still 
others ignore them entirely, which is probably the correct approach from a secu-
rity perspective.

Redirects have several other potential disadvantages: increased network load, in-
creased load on R2, routing table clutter, and dependence on extra servers, to 
name a few. Therefore, we don’t recommend their use. In a properly configured 
network, redirects should never appear in the routing table.

15.2 ROUTING DAEMONS AND ROUTING PROTOCOLS

In simple networks such as the one shown in Exhibit A, it is perfectly reasonable 
to configure routing by hand. At some point, however, networks become too com-
plicated to be managed this way. Instead of having to explicitly tell every com-
puter on every network how to reach every other computer and network, it would 
be nice if the computers could just cooperate and figure it all out. This is the job of 
routing protocols and the daemons that implement them.

Routing protocols have a major advantage over static routing systems in that they 
can react and adapt to changing network conditions. If a link goes down, then the 
routing daemons can discover and propagate alternative routes to the networks 
served by that link, if any such routes exist.

Routing daemons collect information from three sources: configuration files, the 
existing routing tables, and routing daemons on other systems. This information 
is merged to compute an optimal set of routes, and the new routes are then fed 
back into the system routing table (and possibly fed to other systems through a 
routing protocol). Because network conditions change over time, routing dae-
mons must periodically check in with one another for reassurance that their rout-
ing information is still current.

The exact manner in which routes are computed depends on the routing protocol. 
Two general types of protocols are in common use: distance-vector protocols and 
link-state protocols.

Distance-vector protocols

Distance-vector (aka “gossipy”) protocols are based on the general idea, “If router 
X is five hops away from network Y, and I’m adjacent to router X, then I must be 
six hops away from network Y.” You announce how far you think you are from the 
networks you know about. If your neighbors don’t know of a better way to get to 
each network, they mark you as being the best gateway. If they already know a 
shorter route, they ignore your advertisement. Over time, everyone’s routing ta-
bles are supposed to converge to a steady state.

  



ptg

516 Chapter 15 Routing

This is really a very elegant idea. If it worked as advertised, routing would be rela-
tively simple. Unfortunately, the basic algorithm does not deal well with changes 
in topology.2 In some cases, infinite loops (e.g., router X receives information 
from router Y and sends it on to router Z, which sends it back to router Y) can 
prevent routes from converging at all. Real-world distance-vector protocols must 
avoid such problems by introducing complex heuristics or by enforcing arbitrary 
restrictions such as the RIP (Routing Information Protocol) notion that any net-
work more than 15 hops away is unreachable. 

Even in nonpathological cases, it can take many update cycles for all routers to 
reach a steady state. Therefore, to guarantee that routing will not jam for an ex-
tended period, the cycle time must be made short, and for this reason distance-
vector protocols as a class tend to be talkative. For example, RIP requires that 
routers broadcast all their routing information every 30 seconds. EIGRP sends 
updates every 90 seconds. 

On the other hand, BGP, the Border Gateway Protocol, transmits the entire table 
once and then transmits changes as they occur. This optimization substantially 
reduces the potential for “chatty” (and mostly unnecessary) traffic.

Table 15.1 lists the distance-vector protocols in common use today.

Link-state protocols

Link-state protocols distribute information in a relatively unprocessed form. The 
records traded among routers are of the form “Router X is adjacent to router Y, 
and the link is up.” A complete set of such records forms a connectivity map of the 
network from which each router can compute its own routing table. The primary 
advantage that link-state protocols offer over distance-vector protocols is the abil-
ity to quickly converge on an operational routing solution after a catastrophe oc-
curs. The tradeoff is that maintaining a complete map of the network at each node 
requires memory and CPU power that would not be needed by a distance-vector 
routing system.

2. The problem is that changes in topology can lengthen the optimal routes. Some DV protocols such as 
EIGRP maintain information about multiple possible routes so that they always have a fallback plan. 
The exact details are not important.

Table 15.1 Common distance-vector routing protocols

Proto Long name Application

RIP Routing Information Protocol Internal LANs (if that) 
RIPng Routing Information Protocol, next generation IPv6 LANs 
EIGRPa Enhanced Interior Gateway Routing Protocol WANs, corporate LANs
BGP Border Gateway Protocol Internet backbone routing

a. This protocol (EIGRP) is proprietary to Cisco.

  



ptg

Interior and exterior protocols 517

Ro
ut

in
g

Because the communications among routers in a link-state protocol are not part 
of the actual route-computation algorithm, they can be implemented in such a 
way that transmission loops do not occur. Updates to the topology database prop-
agate across the network efficiently, at a lower cost in network bandwidth and 
CPU time.

Link-state protocols tend to be more complicated than distance-vector protocols, 
but this complexity can be explained in part by the fact that link-state protocols 
make it easier to implement advanced features such as type-of-service routing and 
multiple routes to the same destination.

Only two link-state protocols are in general use: OSPF and IS-IS. Although IS-IS 
has been widely implemented, it is not widely used and we do not recommended 
it for new deployments. See page 520 for some additional comments on IS-IS.

Cost metrics

For a routing protocol to determine which path to a network is shortest, it has to 
define what is meant by “shortest.” Is it the path involving the fewest number of 
hops? The path with the lowest latency? The largest minimal intermediate band-
width? The lowest financial cost?

For routing, the quality of a link is represented by a number called the cost metric. 
A path cost is the sum of the costs of each link in the path. In the simplest systems, 
every link has a cost of 1, leading to hop counts as a path metric. But any of the 
considerations mentioned above can be converted to a numeric cost metric. 

Routing protocol designers have labored long and hard to make the definition of 
cost metrics flexible, and some protocols even allow different metrics to be used 
for different kinds of network traffic. Nevertheless, in 99% of cases, all this hard 
work can be safely ignored. The default metrics for most systems work just fine.

You may encounter situations in which the actual shortest path to a destination 
may not be a good default route for political reasons. To handle these cases, you 
can artificially boost the cost of the critical links to make them seem less appeal-
ing. Leave the rest of the routing configuration alone.

Interior and exterior protocols

An “autonomous system” (AS) is a group of networks under the administrative 
control of a single entity. The definition is vague; real-world autonomous systems 
can be as large as a world-wide corporate network or as small as a building or a 
single academic department. It all depends on how you want to manage routing. 
The general tendency is to make autonomous systems as large as possible. This 
convention simplifies administration and makes routing as efficient as possible. 

Routing within an autonomous system is somewhat different from routing be-
tween autonomous systems. Protocols for routing among ASes (“exterior” proto-
cols) must often handle routes for many networks (e.g., the entire Internet), and 
they must deal gracefully with the fact that neighboring routers are under other 

  



ptg

518 Chapter 15 Routing

people’s control. Exterior protocols do not reveal the topology inside an autono-
mous system, so in a sense they can be thought of as a second level of routing 
hierarchy that deals with collections of nets rather than individual hosts or cables.

In practice, small- and medium-sized sites rarely need to run an exterior protocol 
unless they are connected to more than one ISP. With multiple ISPs, the easy divi-
sion of networks into local and Internet domains collapses, and routers must de-
cide which route to the Internet is best for any particular address. (However, that 
is not to say that every router must know this information. Most hosts can stay 
stupid and route their default packets through an internal gateway that is better 
informed.)

While exterior protocols are not so different from their interior counterparts, this 
chapter concentrates on the interior protocols and the daemons that support 
them. If your site must use an external protocol as well, see the recommended 
reading list on page 528 for some suggested references.

15.3 PROTOCOLS ON PARADE

Several routing protocols are in common use. In this section, we introduce the 
major players and summarize their main advantages and weaknesses.

RIP and RIPng: Routing Information Protocol

RIP is an old Xerox protocol that was adapted for IP networks. The IP version was 
originally specified in RFC1058, circa 1988. The protocol has existed in three ver-
sions: RIP, RIPv2, and the IPv6-only RIPng (“next generation”).

All versions of RIP are simple distance-vector protocols that use hop counts as a 
cost metric. Because RIP was designed in an era when computers were expensive 
and networks small, RIPv1 considers any host fifteen or more hops away to be 
unreachable. Later versions of RIP have maintained the hop-count limit, mostly 
to encourage the administrators of complex sites to migrate to more sophisticated 
routing protocols.

See page 460 for infor-
mation about classless 
addressing, aka CIDR.

RIPv2 is a minor revision of RIP that distributes netmasks along with next-hop 
addresses, so its support for subnetted networks and CIDR is better than RIPv1’s. 
A vague gesture toward increasing the security of RIP was also included.

RIPv2 can be run in a compatibility mode that preserves most of its new features 
without entirely abandoning vanilla RIP receivers. In most respects, RIPv2 is 
identical to the original protocol and should be used in preference to it.

See page 451 for 
details on IPv6. 

RIPng is a restatement of RIP in terms of IPv6. It is an IPv6-only protocol, and 
RIP remains IPv4-only. If you want to route both IPv4 and IPv6 with RIP, you’ll 
need to run RIP and RIPng as separate protocols.

  



ptg

EIGRP: Enhanced Interior Gateway Routing Protocol 519

Ro
ut

in
g

Although RIP is known for its profligate use of broadcasting, it does a good job 
when a network is changing often or when the topology of remote networks is not 
known. However, it can be slow to stabilize after a link goes down. 

It was originally thought that the advent of more sophisticated routing protocols 
such as OSPF would make RIP obsolete. However, RIP continues to fill a need for 
a simple, easy-to-implement protocol that doesn’t require much configuration, 
and it works well on low-complexity networks. The reports of RIP’s death are 
greatly exaggerated.

RIP is widely implemented on non-UNIX platforms. A variety of common de-
vices, from printers to SNMP-manageable network components, can listen to RIP 
advertisements to learn about network gateways. In addition, some form of RIP 
client is available for all versions of UNIX and Linux, so RIP is a de facto lowest-
common-denominator routing protocol. Often, RIP is used for LAN routing, and 
a more featureful protocol is used for wide-area connectivity.

Some sites run passive RIP daemons (usually routed or Quagga’s ripd) that listen 
for routing updates on the network but do not broadcast any information of their 
own. The actual route computations are performed with a more efficient protocol 
such as OSPF (see the next section). RIP is used only as a distribution mechanism. 

OSPF: Open Shortest Path First

OSPF is the most popular link-state protocol. “Shortest path first” refers to the 
mathematical algorithm used to calculate routes; “open” is used in the sense of 
“nonproprietary.” RFC2328 defines the basic protocol (OSPF version 2), and 
RFC5340 extends it to include support for IPv6 (OSPF version 3). OSPF version 1 
is obsolete and is not used.

OSPF is an industrial-strength protocol that works well for large, complicated to-
pologies. It offers several advantages over RIP, including the ability to manage sev-
eral paths to a single destination and the ability to partition the network into sec-
tions (“areas”) that share only high-level routing information. The protocol itself 
is complex and hence only worthwhile at sites of significant size, where routing 
protocol behavior really makes a difference. To use OSPF effectively, your site’s IP 
addressing scheme should be reasonably hierarchical.

The OSPF protocol specification does not mandate any particular cost metric. 
Cisco’s implementation uses a bandwidth-related value by default. 

EIGRP: Enhanced Interior Gateway Routing Protocol

EIGRP is a proprietary routing protocol that runs only on Cisco routers. Its prede-
cessor IGRP was created to address some of the shortcomings of RIP before ro-
bust standards like OSPF existed. IGRP has now been deprecated in favor of 
EIGRP, which accommodates CIDR masks. IGRP and EIGRP are configured sim-
ilarly despite being quite different in their underlying protocol design.

  



ptg

520 Chapter 15 Routing

EIGRP supports IPv6, but as with other routing protocols, the IPv6 world and 
IPv4 world are configured separately and act as separate, though parallel, routing 
domains.

EIGRP is a distance-vector protocol, but it’s designed to avoid the looping and 
convergence problems found in other DV systems. It’s widely regarded as the 
most evolved distance-vector protocol. For most purposes, EIGRP and OSPF are 
equally functional.

IS-IS: the ISO “standard”

IS-IS, the Intra-domain Intermediate System to Intermediate System Routeing 
Protocol, is the International Organization for Standardization’s answer to OSPF. 
It was originally designed to manage “routeing” for the OSI network protocols 
and was later extended to handle IP routing.

Both IS-IS and OSPF were developed in the early 90s when ISO protocols were 
politically in vogue. Early attention from the IETF helped lend IS-IS a veneer of 
legitimacy, but it seems to be falling farther and farther behind OSPF in popular-
ity. Today, the use of IS-IS is extremely rare outside of vendor certification test 
environments. The protocol itself is mired with lots of ISO baggage and generally 
should be avoided.

Router Discovery Protocol and Neighbor Discovery Protocol

IPv4’s Router Discovery Protocol uses ICMP messages sent to the IP multicast 
address 224.0.0.1 to announce and learn about other routers on a network. Unfor-
tunately, not all routers currently make these announcements, and not all hosts 
listen to them. The hope was that someday the use of RDP would become more 
widespread, but chicken-and-egg issues have largely prevented other protocols 
from relying on it.

See page 468 for 
more information 
about ARP.

IPv6’s Neighbor Discovery Protocol subsumes the functions of both RDP and 
ARP, the Address Resolution Protocol used to map IPv4 addresses to hardware 
addresses on local networks. Because it’s a core component of IPv6, NDP is avail-
able wherever IPv6 is found and IPv6 routing protocols typically build on it.

BGP: the Border Gateway Protocol

BGP is an exterior routing protocol; that is, a protocol that manages traffic among 
autonomous systems rather than among individual networks. There were once 
several exterior routing protocols in common use, but BGP has outlasted them all. 

BGP is now the standard protocol used for Internet backbone routing. As of mid-
2010, the Internet routing table contains about 320,000 prefixes. It should be clear 
from this number that backbone routing has very different scaling requirements 
from local routing.

  



ptg

Routing strategy selection criteria 521

Ro
ut

in
g

15.4 ROUTING STRATEGY SELECTION CRITERIA

Routing for a network can be managed at essentially four levels of complexity:

• No routing
• Static routes only
• Mostly static routes, but clients listen for RIP updates
• Dynamic routing everywhere

The topology of the overall network has a dramatic effect on each individual seg-
ment’s routing requirements. Different nets may need very different levels of rout-
ing support. The following rules of thumb can help you choose a strategy:

• A stand-alone network requires no routing.

• If a network has only one way out, clients (nongateway machines) on 
that network should have a static default route to the lone gateway. No 
other configuration is necessary, except perhaps on the gateway itself.

• A gateway with a small number of networks on one side and a gateway to 
“the world” on the other side can have explicit static routes pointing to 
the former and a default route to the latter. However, dynamic routing is 
advisable if both sides have more than one routing choice.

• Use dynamic routing at points where networks cross political or admin-
istrative boundaries, even if the complexity of the networks involved 
would not otherwise suggest the use of a routing protocol.

• RIP works OK and is widely supported. Don’t reject it out of hand just 
because it’s an older protocol with a reputation for chattiness.

The problem with RIP is that it doesn’t scale indefinitely; an expanding 
network will eventually outgrow it. That fact makes RIP something of a 
transitional protocol with a narrow zone of applicability. That zone is 
bounded on one side by networks too simple to require any routing pro-
tocol and on the other side by networks too complicated for RIP. If your 
network plans include continued growth, it’s probably reasonable to skip 
over the “RIP zone” entirely.

• Even when RIP isn’t a good choice for your global routing strategy, it’s 
still a good way to distribute routes to leaf nodes. But don’t use it where 
it’s not needed: systems on a network that has only one gateway never 
need dynamic updates.

• EIGRP and OSPF are about equally functional, but EIGRP is proprietary 
to Cisco. Cisco makes excellent and cost-competitive routers; neverthe-
less, standardizing on EIGRP limits your choices for future expansion.

• Routers connected to the Internet through multiple upstream providers 
must use BGP. However, most routers have only one upstream path and 
can therefore use a simple static default route.

  



ptg

522 Chapter 15 Routing

A good default strategy for a medium-sized site with a relatively stable local struc-
ture and a connection to someone else’s net is to use a combination of static and 
dynamic routing. Routers within the local structure that do not lead to external 
networks can use static routing, forwarding all unknown packets to a default ma-
chine that understands the outside world and does dynamic routing.

A network that is too complicated to be managed with this scheme should rely on 
dynamic routing. Default static routes can still be used on leaf nets, but machines 
on networks with more than one router should run routed or some other RIP 
receiver in passive mode. 

15.5 ROUTING DAEMONS

We don’t recommend the use of UNIX and Linux systems as routers for produc-
tion networks. Dedicated routers are simpler, more reliable, more secure, and 
faster (even if they are secretly running a Linux kernel). That said, it’s nice to have 
the option to set up a new subnet using only a $15 network card and a $40 switch. 
That’s a reasonable approach for lightly populated test and auxiliary networks.

Systems that act as gateways to such subnets don’t need any help managing their 
own routing tables. Static routes are perfectly adequate, both for the gateway ma-
chine and for the machines on the subnet itself. However, if you want the subnet 
to be reachable by other systems at your site, you need to advertise the subnet’s 
existence and to identify the router to which packets bound for that subnet should 
be sent. The usual way to do this is to run a routing daemon on the gateway.

UNIX and Linux systems can participate in most routing protocols through the 
use of various routing daemons. The notable exception is EIGRP, which as far as 
we are aware has no widely available UNIX or Linux implementation.

Because the use of routing daemons is uncommon on production systems, we 
don’t describe their use and configuration in detail. However, the following sec-
tions outline the common software options and point to detailed configuration 
information.

routed: obsolete RIP implementation

routed was for a long time the only standard routing daemon, and it’s still in-
cluded on a few systems. routed speaks only RIP, and poorly at that: even support 
for RIPv2 is scattershot. routed does not speak RIPng, implementation of that 
protocol being confined to modern daemons such as Quagga or HP-UX’s ramd.

Where available, routed is useful chiefly for its “quiet” mode (-q), in which it lis-
tens for routing updates but does not broadcast any information of its own. Aside 
from the command-line flag, routed normally does not require configuration. It’s 
an easy and cheap way to get routing updates without having to deal with much 
configuration hassle.

  



ptg

Quagga: mainstream routing daemon 523

Ro
ut

in
g

See page 481 for 
more about route. 

routed adds its discovered routes to the kernel’s routing table. Routes must be 
reheard at least every four minutes or they will be removed. However, routed
knows which routes it has added and does not remove static routes that were in-
stalled with the route command. 

gated: first-generation multiprotocol routing daemon

gated is an elegantly designed and once-freely-available routing framework that 
allows the simultaneous use of multiple routing protocols. It gives administrators 
precise control over advertised routes, broadcast addresses, trust policies, and 
metrics. gated shares routes among several protocols, allowing routing gateways 
to be constructed between areas that have standardized on different routing sys-
tems. It also has one of the nicest administrative interfaces and configuration file 
designs of any administrative software.

Alas, gated is dead (or at least, dead-ish), though its memory lives on in slow-to-
change releases such as HP-UX and AIX, which bundle versions 3.5.9 and 6.0, 
respectively.

gated is an object lesson in the perils of attempting to compete with open source 
software. It started out as freely distributable software, but in 1992 it was priva-
tized and turned over to a development consortium; updates then became avail-
able only to members of the consortium. The consortium was eventually dis-
banded, and the rights to the commercial version of gated changed hands several 
times. Meanwhile, the open source Zebra and Quagga projects rose to take over 
gated’s role as the mainstream open source routing package. These days, gated is 
extinct both as a commercial product and as an open source project, a sad end to 
a useful and well-designed package.

Quagga: mainstream routing daemon

Quagga (quagga.net) is a development fork of Zebra, a GNU project started by 
Kunihiro Ishiguro and Yoshinari Yoshikawa to implement multiprotocol routing 
with a collection of independent daemons instead of a single monolithic applica-
tion. In real life, the quagga—a subspecies of zebra last photographed in 1870—is 
extinct, but in the digital realm it is Quagga that survives and Zebra that is no 
longer under active development.

Quagga currently implements RIP (all versions), OSPF (versions 2 and 3), BGP, 
and IS-IS. It runs on Linux, Solaris, and various flavors of BSD. On Solaris and 
our example Linux systems, Quagga is either installed by default or is available as 
an optional package through the system’s standard software repository.

In the Quagga system, the zebra daemon acts as a central clearing-house for rout-
ing information. It manages the interaction between the kernel’s routing table and 
the daemons for individual routing protocols (ripd, ripngd, ospfd, ospf6d, bgpd, 
and isisd). It also controls the flow of routing information among protocols. Each 
daemon has its own configuration file in the /etc/quagga directory.

  



ptg

524 Chapter 15 Routing

You can connect to any of the Quagga daemons through a command-line inter-
face (vtysh on Linux, quaggaadm on Solaris) to query and modify its configura-
tion. The command language itself is designed to be familiar to users of Cisco’s 
IOS operating system; see the section on Cisco routers starting on page 525 for 
some additional details. As in IOS, you use enable to enter “superuser” mode, 
config term to enter configuration commands, and write to save your configura-
tion changes back to the daemon’s configuration file.

The official documentation at quagga.net is available in HTML or PDF form. Al-
though complete, it’s for the most part a workmanlike catalog of options and does 
not provide much of an overview of the system. The real documentation action is 
on the wiki, wiki.quagga.net. Look there for well-commented example configura-
tions, FAQs, and tips.

Although the configuration files have a simple format and are not complex, you’ll 
need to understand the protocols you’re configuring and have some idea of which 
options you want to enable or configure. See the recommended reading list on 
page 528 for some good books on routing protocols.

Solaris and Red Hat include a selection of helpful configuration file examples for 
the various Quagga daemons in the /etc/quagga directory. Solaris includes a nice 
README.Solaris file as well. However, you’re still best off referring to the wiki.

ramd: multiprotocol routing system for HP-UX

HP-UX includes a suite of routing daemons that are eerily similar in their general 
architecture to Zebra and Quagga. We are not sure whether the similarity is attrib-
utable to emulation, convergent evolution, or perhaps to an early fork from the 
Zebra code base.

In any event, the similarity is only superficial. Some notable points of divergence 
are that HP’s system supports only IPv6 and external routing protocols (RIPng, 
BGP, and IS-IS) and that it does not support OSPF at all. The configuration lan-
guage is different, and the control utility (rdc, as opposed to Quagga’s vtysh or 
quaggaadm) accepts only command-line arguments; it does not function as an 
independent shell environment.

HP calls its system the Route Administration Manager Daemon, and the suite’s 
ramd daemon plays the same role as zebra in the Quagga universe. As in Quagga, 
the protocol-specific daemons are called ripngd, isisd, and bgpd.

XORP: router in a box

XORP, the eXtensible Open Router Platform project, was started at around the 
same time as Zebra, but its ambitions are more general. Instead of focusing on 
routing, XORP aims to emulate all the functions of a dedicated router, including 
packet filtering and traffic management. Check it out at xorp.org.

One interesting aspect of XORP is that in addition to running under several oper-
ating systems (Linux, various BSD derivatives, Mac OS X, and Windows Server 

  



ptg

Cisco routers 525

Ro
ut

in
g

2003), it’s also available as a live CD that runs directly on PC hardware. The live 
CD is secretly based on Linux, but it does go a long way toward turning a generic 
PC into a dedicated routing appliance.

Vendor specifics

Quagga is the go-to routing software for Linux. All of our example distributions 
either install it by default or make it readily available from the distributor’s repos-
itory. Quagga has become so entrenched that most distributions no longer include 
routed. Even where they do, it’s a vestigial version without RIPv2 support.

Solaris includes a functional routed (actually called in.routed) that understands 
RIPv2. It also includes Quagga; you can take your pick. For any sort of IPv6 rout-
ing, you’ll need to use Quagga.

in.routed is the default routing solution, and it’s started automatically at boot 
time if you haven’t specified a default network gateway in the /etc/defaultrouter
file. Solaris continues to supply the in.rdisc router discovery daemon, which is 
curious since its functionality is now included in in.routed.

HP-UX’s primary routing system, ramd, is discussed above (see page 524). HP 
also provides a copy of gated 3.5.9, which is quite old and has no support for IPv6. 
If you want to manage both IPv4 and IPv6 routing under HP-UX, you’ll have to 
use gated for the former and ramd for the latter. Unfortunately, Quagga does not 
currently run on HP-UX.

AIX provides three routing daemons: gated v6.0, a routed that speaks only RIPv1, 
and ndpd-router, an implementation of RIPng and NDP. AIX’s gated speaks 
RIPng, too; however, if you want to use gated for IPv6 routing, you may need to 
run both gated and ndpd-router. See the documentation for details.

15.6 CISCO ROUTERS

Routers made by Cisco Systems, Inc., are the de facto standard for Internet rout-
ing today. Having captured over 60% of the router market, Cisco’s products are 
well known, and staff that know how to operate them are relatively easy to find. 
Before Cisco, UNIX boxes with multiple network interfaces were often used as 
routers. Today, dedicated routers are the favored gear to put in datacom closets 
and above ceiling tiles where network cables come together.

Most of Cisco’s router products run an operating system called Cisco IOS, which 
is proprietary and unrelated to UNIX. Its command set is rather large; the full 
documentation set fills up about 4.5 feet of shelf space. We could never fully cover 
Cisco IOS here, but knowing a few basics can get you a long way.

By default, IOS defines two levels of access (user and privileged), both of which 
are password protected. By default, you can simply telnet to a Cisco router to 
enter user mode.

  



ptg

526 Chapter 15 Routing

You are prompted for the user-level access password:
$ telnet acme-gw.acme.com3

Connected to acme-gw.acme.com. 
Escape character is '^]'.

User Access Verification 
Password:  

Upon entering the correct password, you receive a prompt from Cisco’s EXEC 
command interpreter.

acme-gw.acme.com> 

At this prompt, you can enter commands such as show interfaces to see the 
router’s network interfaces or show ? to list the other things you can see.

To enter privileged mode, type enable and when asked, type the privileged pass-
word . Once you have reached the privileged level, your prompt ends in a #:

acme-gw.acme.com#

BE CAREFUL—you can do anything from this prompt, including erasing the 
router’s configuration information and its operating system. When in doubt, con-
sult Cisco’s manuals or one of the comprehensive books published by Cisco Press. 

You can type show running to see the current running configuration of the router 
and show config to see the current nonvolatile configuration. Most of the time, 
these are the same.

Here’s a typical configuration:
acme-gw.acme.com# show running 
Current configuration: 
version 12.1 
hostname acme-gw 
enable secret xxxxxxxx 
ip subnet-zero

interface Ethernet0 
description Acme internal network

ip address 192.108.21.254 255.255.255.0 
no ip directed-broadcast

interface Ethernet1 
description Acme backbone network

ip address 192.225.33.254 255.255.255.0 
no ip directed-broadcast

ip classless   
line con 0 
transport input none

3. Modern versions of IOS support a variety of access methods, including SSH. telnet, of course, is 
entirely insecure. If your site already uses Cisco routers, contact your network administrator to find 
out which methods have been enabled.

  



ptg

Cisco routers 527

Ro
ut

in
g

line aux 0 
transport input telnet

line vty 0 4 
password xxxxxxxx 
login

end 

The router configuration can be modified in a variety of ways. Cisco offers graph-
ical tools that run under some versions of UNIX/Linux and Windows. Real net-
work administrators never use these; the command prompt is always the “sure 
bet.” It is also possible to scp a config file to or from a router so that you can edit it 
with your favorite editor.

To modify the configuration from the command prompt, type config term:
acme-gw.acme.com# config term 
Enter configuration commands, one per line.  End with CNTL/Z. 
acme-gw(config)# 

You can then type new configuration commands exactly as you want them to ap-
pear in the show running output. For example, if we wanted to change the IP 
address of the Ethernet0 interface in the example above, we could enter

interface Ethernet0 
ip address 192.225.40.253 255.255.255.0

When you’ve finished entering configuration commands, press <Control-Z> to 
return to the regular command prompt. If you’re happy with the new configura-
tion, enter write mem to save the configuration to nonvolatile memory.

Here are some tips for a successful Cisco router experience:

• Name the router with the hostname command. This precaution helps 
prevent accidents caused by configuration changes to the wrong router. 
The hostname always appears in the command prompt.

• Always keep a backup router configuration on hand. You can scp or tftp
the running configuration to another system each night for safekeeping.

• It’s often possible to store a copy of the configuration in NVRAM or on a 
removable jump drive. Do so!

• Once you have configured the router for SSH access, turn off the Telnet 
protocol entirely.

• Control access to the router command line by putting access lists on the 
router’s VTYs (VTYs are like PTYs on a UNIX system). This precaution 
prevents unwanted parties from trying to break into your router.

  



ptg

528 Chapter 15 Routing

• Control the traffic flowing through your networks (and possibly to the 
outside world) by setting up access lists on each interface. See Packet-
filtering firewalls on page 932 for more information about how to set up 
access lists.

• Keep routers physically secure. It’s easy to reset the privileged password 
if you have physical access to a Cisco box.

If you have multiple routers and multiple router wranglers, check out the free tool 
RANCID from shrubbery.net. With a name like RANCID it practically markets 
itself, but here’s the elevator pitch: RANCID logs into your routers every night to 
retrieve their configuration files. It diffs the configurations and lets you know 
about anything that’s changed. It also keeps the configuration files under revision 
control (see page 397) automatically.

15.7 RECOMMENDED READING

PERLMAN, RADIA. Interconnections: Bridges, Routers, Switches, and Internetwork-
ing Protocols (2nd Edition). Reading, MA: Addison-Wesley, 2000.

This is the definitive work in this topic area. If you buy just one book about net-
working fundamentals, this should be it. Also, don’t ever pass up a chance to hang 
out with Radia—she’s a lot of fun and holds a shocking amount of knowledge in 
her brain.

DOOLEY, KEVIN AND IAN J. BROWN. Cisco IOS Cookbook (2nd Edition). Sebasto-
pol, CA: O’Reilly Media, 2007.

DOYLE, JEFF, AND JENNIFER CARROLL. Routing TCP/IP, Volume I (2nd Edition). 
Indianapolis, IN: Cisco Press, 2005.

DOYLE, JEFF, AND JENNIFER DEHAVEN CARROLL. Routing TCP/IP, Volume II. Indi-
anapolis, IN: Cisco Press, 2001.

This pair of volumes is an in-depth introduction to routing protocols and is inde-
pendent of any particular implementation. Volume I covers interior protocols, and 
Volume II covers exterior protocols, NAT, and multicast routing.

HALABI, SAM. Internet Routing Architectures (2nd Edition). Indianapolis, IN: Cisco 
Press, 2000.

This well-regarded book concentrates on BGP.

HUITEMA, CHRISTIAN. Routing in the Internet (2nd Edition). Upper Saddle River, 
NJ: Prentice Hall PTR, 2000.

This book is a clear and well-written introduction to routing from the ground up. 
It covers most of the protocols in common use and also some advanced topics 
such as multicasting. 

  



ptg

Recommended reading 529

Ro
ut

in
g

There are many routing-related RFCs. The main ones are shown in Table 15.2. 

Exercises begin on the next page.

Table 15.2 Routing-related RFCs

RFC Title Authors

1075 Distance Vector Multicast Routing Protocol Waitzman et al. 
1256 ICMP Router Discovery Messages Deering
1724 RIP Version 2 MIB Extension Malkin, Baker
2080 RIPng for IPv6 Malkin, Minnear
2328 OSPF Version 2 Moy
2453 Routing Information Protocol Version 2 Malkin
4271 A Border Gateway Protocol 4 (BGP-4) Rekhter, Li, et al. 
4552 Authentication/Confidentiality for OSPFv3 Gupta, Melam 
4822 RIPv2 Cryptographic Authentication Atkinson, Fanto
4861 Neighbor Discovery for IPv6 Narten et al.
5175 IPv6 Router Advertisement Flags Option Haberman, Hinden
5308 Routing IPv6 with IS-IS Hopps
5340 OSPF for IPv6 Coltun et al.
5643 Management Information Base for OSPFv3 Joyal, Manral, et al.

  



ptg

530 Chapter 15 Routing

15.8 EXERCISES

E15.1 Investigate the Linux route command and write a short description of 
what it does. Using route, how would you

a) Add a default route to 128.138.129.1 using interface eth1?

b) Delete a route to 128.138.129.1?

c) Determine whether a route was added by a program such as 
routed or an ICMP redirect?

E15.2 Compare static and dynamic routing, listing several advantages and 
disadvantages of each. Describe situations in which each would be ap-
propriate and explain why.

E15.3 Consider the following netstat -rn output from a Linux system. De-
scribe the routes and figure out the network setup. Which network, 
10.0.0.0 or 10.1.1.0, is closer to the Internet? Which process added 
each route?

Destination Gateway Genmask Flags MSS Window irtt Iface
10.0.0.0 0.0.0.0 255.255.255.0 U 40 0 0 eth1
10.1.1.0 0.0.0.0 255.255.255.0 U 40 0 0 eth0
0.0.0.0 10.0.0.1 0.0.0.0 UG 40 0 0 eth1

E15.4 Figure out the routing scheme that is used at your site. What protocols 
are in use? Which machines directly connect to the Internet? You can 
use tcpdump to look for routing update packets on the local network 
and traceroute to explore beyond the local net. (Requires root access.)

E15.5 If you were a medium-sized ISP that provided dial-in accounts and 
virtual hosting, what sort of routing setup up would you use? Make 
sure that you consider not only the gateway router(s) between the In-
ternet backbone and your own network but also any interior routers 
that may be in use. Draw a network diagram that outlines your rout-
ing architecture.

  



ptg

531

N
et

 H
ar

dw
ar

e

16 Network Hardware

Whether you’re using Google on your cell phone,1 banking on-line, or receiving 
Skype video calls from your cousins in Belgium, just about everything in the 
world these days is handled in digital form. Moving data from one place to an-
other is on everyone’s mind. Behind all this craziness is fancy network hardware 
and—you guessed it—a whole bunch of stuff that originated in the deep, dark 
caves of UNIX. If there’s one area in which UNIX technology has touched human 
lives, it’s in the practical realization of large-scale packetized data transport.

Many network-layer technologies have been promoted over the years, but one has 
emerged as a clear winner: Ethernet. Now that Ethernet is found on everything 
from game consoles to refrigerators, a thorough understanding of this system is 
critical to success as a system administrator.

It goes without saying that the speed and reliability of your network have a direct 
effect on your organization’s productivity. But today, networking is so pervasive 
that the state of the network can affect our ability to perform basic human interac-
tions, such as placing a telephone call. A poorly designed network is a personal 
and professional embarrassment that can have catastrophic social effects. It can 
also be very expensive to fix. 

1. Did you know that iPhones run a form of embedded UNIX?

Net Hardware

  



ptg

532 Chapter 16 Network Hardware

At least four major factors contribute to success:

• Development of a reasonable network design
• Selection of high-quality hardware
• Proper installation and documentation
• Competent ongoing operations and maintenance

This chapter focuses on understanding, installing, and operating Ethernet net-
works. We also touch briefly on “last mile” network technologies such as DSL 
(Digital Subscriber Line), which are normally presented to the end customer in 
the form of—surprise!—Ethernet.

16.1 ETHERNET: THE SWISS ARMY KNIFE OF NETWORKING

Having captured over 95% of the world-wide Local Area Network (LAN) market, 
Ethernet can be found just about everywhere in its many forms. It started as Bob 
Metcalfe’s Ph.D. thesis at MIT but is now described in a variety of IEEE standards.

Ethernet was originally specified at 3 Mb/s (megabits per second), but it moved to 
10 Mb/s almost immediately. Once a 100 Mb/s standard was finalized in 1994, it 
became clear that Ethernet would evolve rather than be replaced. This touched off 
a race to build increasingly faster version of Ethernet, and that race goes on today. 
Table 16.1 highlights the evolution of the various Ethernet standards.2

How Ethernet works

The underlying model used by Ethernet can be described as a polite dinner party 
at which guests (computers) don’t interrupt each other but rather wait for a lull in 
the conversation (no traffic on the network cable) before speaking. If two guests 
start to talk at once (a collision) they both stop, excuse themselves, wait a bit, and 
then one of them starts talking again.

The technical term for this scheme is CSMA/CD:

• Carrier Sense: you can tell whether anyone is talking.
• Multiple Access: everyone can talk.
• Collision Detection: you know when you interrupt someone else.

The actual delay on collision detection is somewhat random. This convention 
avoids the scenario in which two hosts simultaneously transmit to the network, 
detect the collision, wait the same amount of time, and then start transmitting 
again, thus flooding the network with collisions. This was not always true!

Today, the importance of the CSMA/CD conventions has been lessened by the 
advent of switches, which typically limit the number of hosts in a given collision 
domain to two. (To continue the “dinner party” analogy, you might think of this 

2. We have omitted a few goofy Ethernet standards that have withered on the vine, such as 100BaseT4 
and 100BaseVG-AnyLAN.

  



ptg

Ethernet topology 533

N
et

 H
ar

dw
ar

e

variant as being akin to the scene sometimes found in old movies where two peo-
ple sit at opposite ends of a long, formal dining table.)

Ethernet topology

The Ethernet topology is a branching bus with no loops; a packet can travel be-
tween two hosts on the same network in only one way. Three types of packets can 
be exchanged on a segment: unicast, multicast, and broadcast. Unicast packets are 
addressed to only one host. Multicast packets are addressed to a group of hosts. 
Broadcast packets are delivered to all hosts on a segment.

Table 16.1 The evolution of Ethernet

Year Speed Common name IEEE# Dist Media a

1973 3 Mb/s Xerox Ethernet – ? Coax
1976 10 Mb/s Ethernet 1 – 500m RG-11 coax 
1982 10 Mb/s DIX Ethernet (Ethernet II) – 500m RG-11 coax
1985 10 Mb/s 10Base5 (“Thicknet”) 802.3 500m RG-11 coax
1985 10 Mb/s 10Base2 (“Thinnet”) 802.3 180m RG-58 coax
1989 10 Mb/s 10BaseT 802.3 100m Cat 3 UTP copper
1993 10 Mb/s 10BaseF 802.3 2km 

25km
MM fiber 
SM fiber

1994 100 Mb/s 100BaseTX (“100 meg”) 802.3u 100m Cat 5 UTP copper
1994 100 Mb/s 100BaseFX 802.3u 2km 

20km
MM fiber 
SM fiber

1998 1 Gb/s 1000BaseSX 802.3z 260m 
550m

62.5-μm MM fiber 
50-μm MM fiber

1998 1 Gb/s 1000BaseLX 802.3z 440m 
550m 
3km

62.5-μm MM fiber 
50-μm MM fiber 
SM fiber

1998 1 Gb/s 1000BaseCX 802.3z 25m Twinax
1999 1 Gb/s 1000BaseT (“Gigabit”) 802.3ab 100m Cat 5e, 6 UTP copper
2002 10 Gb/s 10GBase-SR

10GBase-LR 
10GBase-ER 
10GBase-ZR

802.3ae

802.3aq

300m 
10km 
40km 
80km

MM fiber 
SM fiber 
SM fiber 
SM fiber

2006 10 Gb/s 10GBase-T (“10 Gig”) 802.3an 100m Cat 6a, 7, 7a UTP
2009 40 Gb/s 40GBase-CR4

40GBase-SR4
P802.3ba 10m 

100m
UTP Copper 
MM fiber

2009 100 Gb/s 100GBase-CR10 
100Gbase-SR10

P802.3ba 10m 
100m

UTP Copper 
MM fiber

2012 b 1 Tb/s TBD TBD TBD CWDM fiber
2015 b 10 Tb/s TBD TBD TBD DWDM fiber

a. MM = Multimode, SM = Single-mode, UTP = Unshielded twisted pair, 
CWDM = Coarse wavelength division multiplexing, DWDM = Dense wavelength division multiplexing.

b. Industry projection

  



ptg

534 Chapter 16 Network Hardware

A “broadcast domain” is the set of hosts that receive packets destined for the hard-
ware broadcast address. Exactly one broadcast domain is defined for each logical 
Ethernet segment. Under the early Ethernet standards and media (e.g., 10Base5), 
physical segments and logical segments were exactly the same because all the 
packets traveled on one big cable with host interfaces strapped onto the side of it.3

With the advent of switches, today’s logical segments usually consist of many 
(possibly dozens or hundreds) physical segments (or, in some cases, wireless seg-
ments) to which only two devices are connected: the switch port and the host. The 
switches are responsible for escorting multicast and unicast packets to the physi-
cal (or wireless) segments on which the intended recipients reside. Broadcast traf-
fic is forwarded to all ports in a logical segment. 

A single logical segment can consist of physical (or wireless) segments operating 
at different speeds (10 Mb/s, 100 Mb/s, 1 Gb/s, or 10 Gb/s). Hence, switches must 
have buffering and timing capabilities that let them smooth over any potential 
timing conflicts.

Unshielded twisted pair cabling

Unshielded twisted pair (UTP) is the preferred cable medium for Ethernet. It is 
based on a star topology and has several advantages over other media:

• It uses inexpensive, readily available copper wire. (Sometimes, existing 
building wiring can be used.)

• UTP wire is much easier to install and debug than is coax or fiber. Cus-
tom lengths are easy to make.

• UTP uses RJ-45 connectors, which are cheap, reliable, and easy to install.

• The link to each machine is independent (and private!), so a cabling 
problem on one link is unlikely to affect other hosts on the network.

The general “shape” of a UTP network is illustrated in Exhibit A.

UTP wire suitable for use in modern LANs is commonly broken down into eight 
classifications. The performance rating system was first introduced by Anixter, a 
large cable supplier. These standards were formalized by the Telecommunications 
Industry Association (TIA) and are known today as Category 1 through Category 
7, with a few special variants such as Category 5e and Category 6a thrown in for 
good measure. 

The International Organization for Standardization (ISO) has also jumped into 
the exciting and highly profitable world of cable classification. They promote 
standards that are exactly or approximately equivalent to the higher-numbered

3. No kidding! Attaching a new computer involved boring a hole into the outer sheath of the cable with a 
special drill to reach the center conductor. A “vampire tap” that bit into the outer conductor was then 
clamped on with screws.

  



ptg

Unshielded twisted pair cabling 535

N
et

 H
ar

dw
ar

e

Exhibit A A UTP installation

TIA categories. For example, TIA Category 5 cable is equivalent to ISO Class D 
cable. For the geeks in the audience, Table 16.2 illustrates the major differences 
among the various modern-day classifications. This is good information to mem-
orize so you can impress your friends at parties.

In practice, Category 1 and Category 2 cables are suitable only for voice applica-
tions (if that). Category 3 cable is as low as you can go for a LAN; it is the standard 
for 10 Mb/s 10BaseT but should only be used today as a last resort. Category 4 is 
something of an orphan and is not ideally suited for any particular application. 

Category 5 cable can support 100 Mb/s. Category 5e, Category 6, and Category 6a 
cabling support 1 Gb/s and are the most common standard currently in use for 
data cabling. Category 6a is the cable of choice for new installations because it is 
particularly resistant to interference from older Ethernet signaling standards (e.g., 
10BaseT), a problem that has plagued some Category 5/5e installations. Category 
7 and Category 7a cable are intended for 10 Gb/s use.

PUNISHER 2000

CCC:::>>>

PUNISHER 2000

C:>

UTP switch

Workstation Workstation

link to backbone

Ethernet printer

Power

Table 16.2 UTP cable characteristics

Parameter a Units 
Cat 5 

Class Db Cat 5e
Cat 6 

Class E
Cat 6a 

Class EA
Cat 7 

Class F
Cat 7a 

Class FA

Frequency range MHz 100 100 250 500 600 1000
Attenuation dB 24 24 21.7 18.4 20.8 60
NEXT dB 27.1 30.1 39.9 59 62.1 60.4
ELFEXT dB 17 17.4 23.2 43.1 46.0 35.1
Return loss dB 8 10 12 32 14.1 61.93
Propagation delay ns 548 548 548 548 504 534

a. NEXT = Near-end crosstalk, ELFEXT = Equal level far-end crosstalk
b. Includes additional TIA and ISO requirements TSB95 and FDAM 2, respectively

  



ptg

536 Chapter 16 Network Hardware

See page 545 for 
more information 
about wiring.

10BaseT connections require two pairs of Category 3 wire, and each link is lim-
ited to a length of 100 meters; 100BaseTX has the same length limitation but re-
quires two pairs of Category 5 wire. 1000BaseTX requires four pairs of Category 
5e or Category 6/6a wire. Likewise 10GBase-TX requires 4 pairs of Category 6a, 7, 
or 7a wire.

The 1000BaseTX and 10GBase-TX standards transmit data on multiple pairs. 
This use of multiple conductors transports data across the link faster than any 
single pair could support.

Both PVC-coated and Teflon-coated wire are available. Your choice of jacketing 
should be based on the environment in which the cable will be installed. Enclosed 
areas that feed into the building’s ventilation system (“return air plenums”) typi-
cally require Teflon.4 PVC is less expensive and easier to work with but produces 
toxic fumes if it catches fire (hence the need to keep it out of air plenums).

See page 1163 for more 
information about the 
RS-232 standard.

For terminating the four-pair UTP cable at patch panels and RJ-45 wall jacks, we 
suggest that you use the TIA/EIA-568A RJ-45 wiring standard. This standard, 
which is compatible with other uses of RJ-45 (e.g., RS-232), is a convenient way to 
keep the wiring at both ends of the connection consistent, regardless of whether 
you can easily access the cable pairs themselves. Table 16.3 shows the pinouts.

Existing building wiring may or may not be suitable for network use, depending 
on how and when it was installed. Many old buildings were retrofitted with new 
cable in the 1980s. Unfortunately, this cable usually won’t support anything be-
yond 100 Mb/s.

Optical fiber

Optical fiber is used to transmit data in cases where copper cable isn’t adequate, 
for one reason or another. Fiber carries signals farther than copper. Fiber is also 
more resistant to electrical interference, which is an attractive feature for some 
applications. Where fiber isn’t absolutely necessary, copper is normally preferred 
because it’s less expensive and easier to work with.

“Multimode” and “single mode” fiber are the two common types. Multimode fiber 
is typically used for applications within a building or campus. It’s thicker than 
single-mode fiber and can carry multiple rays of light; this feature permits the use 
of less expensive electronics (e.g., LEDs as a light source). 

4. Check with your fire marshall or local fire department to determine the requirements in your area.

Table 16.3 TIA/EIA-568A standard for wiring four-pair UTP to an RJ-45 jack

Pair Colors Wired to Pair Colors Wired to

1 White/Blue Pins 5/4 3 White/Green Pins 1/2
2 White/Orange Pins 3/6 4 White/Brown Pins 7/8

  



ptg

Hubs 537

N
et

 H
ar

dw
ar

e

Single-mode fiber is most often found in long-haul applications, such as intercity 
or interstate connections. It can carry only a single ray of light and requires ex-
pensive precision electronics on the endpoints.

TIA-598C recommends color-coding the common types of fiber as shown in Ta-
ble 16.4. The key rule to remember is that everything must match. The fiber that 
connects the endpoints, the fiber cross-connect cables, and the endpoint electron-
ics must all be of the same type and size. Note that although both OM1 and OM2 
are colored orange, they are not interchangeable—check the size imprint on the 
cables to make sure they match. You will experience no end of difficult-to-isolate 
problems if you don’t follow this rule. 

More than 30 types of connectors are used on the ends of optical fibers, and there 
is no real rhyme or reason as to which connectors are used where. The connectors 
you need to use in a particular case will most often be dictated by the equipment 
vendors or by your existing building fiber plant. The good news is that conversion 
jumpers are fairly easy to obtain.

Connecting and expanding Ethernets

Ethernets can be connected through several types of devices. The options below 
are ranked by approximate cost, with the cheapest options first. The more logic 
that a device uses to move bits from one network to another, the more hardware 
and embedded software the device needs to have and the more expensive it is 
likely to be. 

Hubs
See page 451 for more 
on network layers. 

Hubs are also referred to as concentrators or repeaters. They are active devices 
that connect Ethernet segments at the physical layer. They require external power. 

Acting as a repeater, a hub retimes and reconstitutes Ethernet frames but does not 
interpret them; it has no idea where packets are going or what protocol they are 
using. With the exception of extremely special cases, hubs should no longer be used 
in enterprise networks, and we discourage their use in residential (consumer) net-
works as well. (Why? Because switches make significantly more efficient use of 
network bandwidth and are just as cheap these days.)

Table 16.4 Attributes of standard optical fibers

Mode ISO namea Core 
diameter

Cladding 
diameter 

Color

Multi OM1 62.5 μm 125 μm Orange
Multi OM2 50 μm 125 μm Orange
Multi OM3 50 μmb 125 μm Aqua
Single OS1 8–10 μm 125 μm Yellow

a. According to ISO 11801.
b. OM3 is optimized for carrying laser light.

  



ptg

538 Chapter 16 Network Hardware 

Switches
Switches connect Ethernets at the link layer. Their purpose is to join two physical 
networks in a way that makes them seem like one big physical network. Switches 
are the industry standard for connecting Ethernet devices today.

Switches receive, regenerate, and retransmit packets in hardware. Switches use a 
dynamic learning algorithm. They notice which source addresses come from one 
port and which from another. They forward packets between ports only when 
necessary. At first all packets are forwarded, but in a few seconds the switch has 
learned the locations of most hosts and can be more selective.

Since not all packets are forwarded among networks, each segment of cable that 
connects to a switch is less saturated with traffic than it would be if all machines 
were on the same cable. Given that most communication tends to be localized, the 
increase in apparent bandwidth can be dramatic. And since the logical model of 
the network is not affected by the presence of a switch, few administrative conse-
quences result from installing one.

Switches can sometimes become confused if your network contains loops. The 
confusion arises because packets from a single host appear to be on two (or more) 
ports of the switch. A single Ethernet cannot have loops, but as you connect sev-
eral Ethernets with routers and switches, the topology can include multiple paths 
to a host. Some switches can handle this situation by holding alternative routes in 
reserve in case the primary route goes down. They perform a pruning operation 
on the network they see until the remaining sections present only one path to 
each node on the network. Some switches can also handle duplicate links between 
the same two networks and route traffic in a round robin fashion.

Switches must scan every packet to determine if it should be forwarded. Their 
performance is usually measured by both the packet scanning rate and the packet 
forwarding rate. Many vendors do not mention packet sizes in the performance 
figures they quote; therefore, actual performance may be less than advertised.

Although Ethernet switching hardware is getting faster all the time, it is still not a 
reasonable technology for connecting more than a hundred hosts in a single logi-
cal segment. Problems such as “broadcast storms” often plague large switched 
networks since broadcast traffic must be forwarded to all ports in a switched seg-
ment. To solve this problem, use a router to isolate broadcast traffic between 
switched segments, thereby creating more than one logical Ethernet.

Choosing a switch can be difficult. The switch market is a highly competitive seg-
ment of the computer industry, and it’s plagued with marketing claims that aren’t 
even partially true. When selecting a switch vendor, you should rely on indepen-
dent evaluations (“bakeoffs” such as those that appear in magazine comparisons) 
rather than any data supplied by vendors themselves. In recent years, it has been 
common for one vendor to have the “best” product for a few months but then 
completely destroy its performance or reliability when trying to make improve-
ments, thus elevating another manufacturer to the top of the heap.

  



ptg

Autonegotiation 539

N
et

 H
ar

dw
ar

e

In all cases, make sure that the backplane speed of the switch is adequate—that’s 
the number that really counts at the end of a long day. A well-designed switch 
should have a backplane speed that exceeds the sum of the speeds of all its ports.

VLAN-capable switches
Large sites can benefit from switches that partition their ports (through software 
configuration) into subgroups called Virtual Local Area Networks or VLANs. A 
VLAN is a group of ports that belong to the same logical segment, as if the ports 
were connected to their own dedicated switch. Such partitioning increases the 
ability of the switch to isolate traffic, and that capability has beneficial effects on 
both security and performance.

Traffic between VLANs is handled by a router, or in some cases, by a routing 
module or routing software layer within the switch. An extension of this system 
known as “VLAN trunking” (such as is specified by the IEEE 802.1Q protocol) 
allows physically separate switches to service ports on the same logical VLAN.

Routers
Routers (aka “layer 3 switches”) direct traffic at the network layer, layer 3 of the 
OSI network model. They shuttle packets to their final destinations in accordance 
with the information in the TCP/IP protocol headers. In addition to simply mov-
ing the packets from one place to another, routers can also perform other func-
tions such as packet filtering (for security), prioritization (for quality of service), 
and big-picture network topology discovery. See all the gory details of how rout-
ing really works in Chapter 15. 

Routers take one of two forms: fixed configuration and modular. Fixed configura-
tion routers have specific network interfaces permanently installed at the factory. 
They are usually suitable for small, specialized applications. For example, a router 
with a T1 interface and an Ethernet interface might be a good choice to connect a 
small company to the Internet. 

Modular routers have a slot or bus architecture to which interfaces can be added 
by the end user. Although this approach is usually more expensive, it ensures 
greater flexibility down the road.

Depending on your reliability needs and expected traffic load, a dedicated router 
may or may not be cheaper than a UNIX or Linux system configured to act as a 
router. However, the dedicated router usually results in superior performance and 
reliability. This is one area of network design in which it’s usually advisable to 
spend the extra money up front to avoid headaches later.

Autonegotiation

With the introduction of a variety of Ethernet standards came the need for devices 
to identify how their neighbors were configured and to adjust their settings ac-
cordingly. For example, the network won’t work if one side of a link thinks the 

  



ptg

540 Chapter 16 Network Hardware 

network is running at 1 Gb/s and the other side of the link thinks it’s running at 10 
Mb/s. The Ethernet autonegotiation feature of the IEEE standards is designed to 
detect and solve this problem. And in some cases, it does. In other cases, it is 
easily misapplied and simply compounds the problem.

The two golden rules of autonegotiation are these:

• You must use autonegotiation on all interfaces capable of 1 Gb/s or 
above. It’s required by the standard.

• On interfaces limited to 100 Mb/s or below, you must either configure 
both ends of a link in autonegotiation mode, or you must manually con-
figure the speed and duplex (half vs. full) on both sides. If you configure 
only one side in autonegotiation mode, it will not (in most cases) “learn” 
how the other side has been configured. The result will be a configura-
tion mismatch and poor performance.

To see how to set a network interface’s autonegotiation policy, see the system-
specific sections in the TCP/IP Networking chapter; they start on page 484.

Power over Ethernet

Power over Ethernet (PoE) is an extension of UTP Ethernet (standardized as IEEE 
802.3af) that transmits power to devices over the same UTP cable that carries the 
Ethernet signal. It’s especially handy for Voice over IP (VoIP) telephones or wire-
less access points (to name just two examples) that need a relatively small amount 
of power and a network connection wherever they live.

The power supply capacity of PoE systems has been stratified into four classes that 
range from 3.84 to 12.95 watts. Never satisfied, the industry is currently working 
on a higher power standard (802.3at) that may provide more than 60 watts. Won’t 
it be convenient to operate an Easy-Bake oven off the network port in the confer-
ence room?5

PoE has two ramifications that are significant for sysadmins:

• You need to be aware of PoE devices in your infrastructure so that you 
can plan the availability of PoE-capable switch ports accordingly. They 
are more expensive than non-PoE ports.

• The power budget for data closets that house PoE switches must include 
the wattage of the PoE devices. Note that you don’t have to budget the 
same amount of extra cooling for the closet because most of the heat 
generated by the consumption of PoE power will be dissipated outside 
the closet (usually, in an office).

5. Sadly, we discovered during technical review that Easy-Bake ovens require a 100 watt light bulb (if 
they use a bulb at all; some now have heating elements), thus dashing the industry’s hopes for IEEE 
802.3at compatibility. And for those of you that are wondering: yes, it is possible to boot a small Linux 
system off a PoE port. Specific hardware is left as an exercise for the reader.

  



ptg

Wireless: ethernet for nomads 541

N
et

 H
ar

dw
ar

e

Jumbo frames

Ethernet is standardized for a typical packet size of 1,500 bytes (1,518 with fram-
ing), a value chosen long ago when networks were slow and memory for buffers 
was scarce. Today, these 1,500-byte packets look pretty shrimpy in the context of a 
gigabit Ethernet. Because every packet consumes overhead and introduces la-
tency, network throughput can be higher if larger packet sizes are allowed. 

Unfortunately, the IEEE standards for the various types of Ethernet forbid large 
packets because of interoperability concerns. But just as highway traffic often 
mysteriously flows faster than the stated speed limit, illicit king-size Ethernet 
packets are a common sight on today’s networks. Egged on by impatient custom-
ers, manufacturers of network equipment have quietly flouted the IEEE and built 
support for large frames into their gigabit products.

To use these so-called jumbo frames, all you need do is bump up your network 
interfaces’ MTUs. Throughput gains vary with traffic patterns, but large transfers 
over TCP (e.g., NFSv4 or CIFS file service) benefit the most. Expect a modest but 
measurable improvement on the order of 10%.

Be aware of these points, though:

• All network equipment on a subnet must support and use jumbo frames, 
including switches and routers. You cannot mix and match.

• Because jumbo frames are nonstandard, you usually have to enable them 
explicitly. Devices may accept jumbo frames by default, but they proba-
bly will not generate them.

• Since jumbo frames are a form of outlawry, there’s no universal consen-
sus on exactly how large a jumbo frame can or should be. The most com-
mon value is 9,000 bytes, or 9,018 bytes with framing. You’ll have to 
investigate your devices to determine the largest packet size they have in 
common. Frames larger than 9K or so are sometimes called “super 
jumbo frames,” but don’t be scared off by the extreme-sounding name. 
Larger is generally better, at least up to 64K or so.

• Jumbo frames are only viable for internal use. The Internet does not 
transport jumbo frames.

We endorse the use of jumbo frames on gigabit Ethernets, but only where it’s easy 
and safe (i.e., probably not in complex enterprise environments). Be prepared to 
do some extra debugging if things go wrong. It’s perfectly reasonable to deploy 
new networks with the default MTU and to convert to jumbo frames later once 
the reliability of the underlying network has been confirmed.

16.2 WIRELESS: ETHERNET FOR NOMADS

A wireless network consists of Wireless Access Points (WAPs, or simply APs) and 
wireless clients. WAPs can be connected to traditional wired networks (the typical 

  



ptg

542 Chapter 16 Network Hardware 

configuration) or wirelessly connected to other access points, a configuration 
known as a “wireless mesh.” 

WAPs are usually dedicated appliances that consist of one or more radios and 
some form of embedded network operating system, often a stripped-down ver-
sion of Linux. A single WAP can provide a connection point for multiple clients, 
but not for an unlimited number of clients. A good rule of thumb is to serve no 
more than eight simultaneous clients from a single enterprise-grade WAP. Any 
device that communicates through a wireless standard supported by your WAPs 
can act as a client.

The common wireless standards today are IEEE 802.11g and 802.11n. 802.11g 
operates in the 2.4 GHz frequency band and provides LAN-like access at up to 54 
Mb/s. Operating range varies from 100 meters to 40 kilometers, depending on 
equipment and terrain.

802.11n delivers up to 600 Mb/s6 of bandwidth and can use both the 5 GHz fre-
quency band and the 2.4 GHz band (though 5 GHz is recommended for deploy-
ment). Typical operating range is approximately double that of 802.11g.

Today, 802.11g (and its grandfather, 802.11b) are commonplace. The transceivers 
are inexpensive and are built into most laptops. Add-in cards are widely and 
cheaply available for desktop PCs, too.

You can configure a Linux box to act as an 802.11a/b/g access point if you have the 
right hardware and driver. Since most PC-based wireless cards are still designed 
for Microsoft Windows, they may not come from the factory with Linux drivers. 

An excellent stand-alone 802.11b/g wireless base station for the home or small 
office is Apple’s AirPort Express, a wall-wart-like product that is inexpensive 
(around $99) and highly functional.7 Another option is to consider running a 
stripped down version of Linux (such as OpenWRT) on a commercial WAP. See 
openwrt.org for more information and a list of compatible hardware.

Literally dozens of vendors are hawking wireless access points. You can buy them 
at Home Depot and even at the grocery store. Predictably, the adage that “you get 
what you pay for” applies. El cheapo access points (those in the $50 range) are 
likely to perform poorly when handling large file transfers or more than one ac-
tive client.

Debugging a wireless network is something of a black art. You must consider a 
range of variables when dealing with problems. If you are deploying a wireless 
network at an enterprise scale, you’ll probably need to invest in a wireless network 
analyzer. We highly recommend the analysis products made by AirMagnet.

6. The 600 Mb/s bandwidth of 802.11n is largely theoretical. In practice, bandwidth in the neighborhood 
of 400 Mb/s is a more realistic expectation for an optimized configuration. The environment and the 
capabilities and hardware of the client devices explain most of the difference between theoretical and 
real-life throughput. When it comes to wireless, your mileage may vary!

7. In fact, it will also connect to your stereo to play music wirelessly from your PC or laptop.

  



ptg

DSL and cable modems: the last mile 543

N
et

 H
ar

dw
ar

e

Wireless security

The security of wireless networks has traditionally been very poor. Wired Equiva-
lent Privacy (WEP) is a protocol used in conjunction with 802.11b networks to 
encrypt packets traveling over the airwaves. Unfortunately, this standard contains 
a fatal design flaw that renders it little more than a speed bump for snoopers. 
Someone sitting outside your building or house can access your network directly 
and undetectably, usually in under a minute.

More recently, the Wi-Fi Protected Access (WPA) security standards have engen-
dered new confidence in wireless security. Today, WPA (specifically, WPA2) 
should be used instead of WEP in all new installations.Without WPA2, wireless 
networks should be considered completely insecure and should never be found 
inside an enterprise firewall. Don’t even use WEP at home!

To remember that it’s WEP that’s insecure and WPA that’s secure, just remember 
that WEP stands for Wired Equivalent Privacy. The name is accurate; WEP gives 
you as much protection as letting someone connect directly to your wired net-
work. (That is, no protection at all—at least at the IP level.)

Wireless switches and lightweight access points

In much the same way that Ethernet hubs grew up to become Ethernet switches, 
wireless products are undergoing a gradual makeover for use in large enterprises. 
A number of vendors (such as Cisco) now make “wireless switches” that work in 
conjunction with a fleet of access points that you deploy throughout a campus. 
The theory is that you can deploy hordes of inexpensive access points and then 
manage them centrally through an “intelligent” switch. The switch maintains the 
WAPs’ configuration information and smoothly supports authentication and 
roaming. LWAPP (Lightweight Wireless Access Point Protocol) is one standard 
protocol that provides this functionality.

If you need ubiquitous wireless service throughout a medium-to-large organiza-
tion, it’s definitely worth your time to evaluate this category of products. Not only 
do these products decrease management time, but most also include a means to 
monitor and manage the quality of the wireless service delivered to users.

One particularly neat trick is to deploy an 802.11g/n network throughout your 
facility and use it to support hand-held VoIP phones for your staff. It’s like a cellu-
lar network for free!

16.3 DSL AND CABLE MODEMS: THE LAST MILE

It’s easy to move large amounts of data among businesses and other large data 
facilities. Carrier-provided technologies such as T1, T3, SONET, MPLS, and 
frame relay provide relatively simple conduits for moving bits from place to place. 
However, these technologies are not realistic options for connecting individual 
houses and home offices. They cost too much, and the infrastructure they require 
is not universally available.

  



ptg

544 Chapter 16 Network Hardware

Digital Subscriber Line (DSL) uses ordinary copper telephone wire to transmit 
data at speeds of up to 24 Mb/s (although typical DSL connections yield between 
256 kb/s and 5 Mb/s). Since most homes and businesses already have existing 
telephone wiring, DSL is a viable way to complete the “last mile” of connectivity 
from the telephone company to the building. DSL connections are usually termi-
nated in a box that acts as a TCP/IP router and connects to other devices within 
the building over an Ethernet.

Unlike regular POTS (Plain Old Telephone Service) and ISDN connections, 
which require you to “dial up” an endpoint, most DSL implementations supply a 
dedicated service that is always connected. This feature makes DSL even more 
attractive because there is no setup or connection delay when a user wants to 
transfer data.

DSL comes in several forms, and as a result it’s often referred to as xDSL, with the 
x representing a specific subtechnology such as A for asymmetric, S for symmet-
ric, H for high speed, RA for rate-adaptive, and I for DSL-over-ISDN (useful for 
locations too far from the central office to support faster forms of DSL). The exact 
technology variants and data transfer speeds available in your area depend on the 
central office equipment that your telephone company or carrier has deployed.

The race for “last mile” connectivity to hundreds of millions of homes is a hot one. 
It’s also highly politicized, well capitalized, and overpublicized. The DSL approach 
leverages the copper infrastructure that is common among the Incumbent Local 
Exchange Carriers (ILECs), who often favored higher profit margins over infra-
structure investments as the networking revolution of the 1980s and 90s passed 
them by.

Cable television companies, which already have fiber infrastructure in most 
neighborhoods, are promoting their own “last mile” solutions. Compared to DSL, 
cable modems typically yield higher (though asymmetric) bandwidth. The cable 
modem industry has become enlightened about data standards and is currently 
converging on the Data Over Cable Service Interface Specification (DOCSIS) 
standard. This standard defines the technical specs for both cable modems and 
the equipment used at the cable company, and it allows various brands of equip-
ment to interoperate.

All in all, the fight between cable modem and DSL technologies largely boils 
down to who can deliver the highest bandwidth to a particular user’s home at the 
lowest cost. The good news for us is that as Big Cable and Big Telecom compete 
for customers, they are forced to invest in infrastructure to serve residential 
neighborhoods. 

16.4 NETWORK TESTING AND DEBUGGING

One major advantage of the large-scale migration to Ethernet (and other UTP-
based technologies) is the ease of network debugging. Since these networks can be 

  



ptg

UTP cabling options 545

N
et

 H
ar

dw
ar

e

analyzed link by link, hardware problems can often be isolated in seconds rather 
than days.

The key to debugging a network is to break it down into its component parts and 
to test each piece until you’ve isolated the offending device or cable. The “idiot 
lights” on switches and hubs (such as “link status” and “packet traffic”) often hold 
immediate clues to the source of the problem. Top-notch documentation of your 
wiring scheme is essential for making these indicator lights work in your favor.

As with most tasks, having the right tools for the job is a big part of being able to 
get the job done right and without delay. The market offers two major types of 
network debugging tools (although they are quickly growing together).

The first is the hand-held cable analyzer. This device can measure the electrical 
characteristics of a given cable, including its length (with a groovy technology 
called “time domain reflectrometry”). Usually, these analyzers can also point out 
simple faults such as a broken or miswired cable. Our favorite product for LAN 
cable analysis is the Fluke LanMeter. It’s an all-in-one analyzer that can even per-
form IP pings across the network. High-end versions have their own web server 
that can show you historical statistics. For WAN (telco) circuits, the T-BERD line 
analyzer is the cat’s meow. It’s made by JDSU (jdsu.com).

The second type of debugging tool is the network sniffer. A sniffer captures the 
bytes that travel across the wire and disassembles network packets to look for pro-
tocol errors, misconfigurations, and general snafus. Sniffers operate at the link 
layer of the network rather than the electrical layer, so they can’t diagnose cabling 
problems or electrical issues that may be affecting network interfaces.

Commercial sniffers are available, but we find that the freely available program 
Wireshark (wireshark.org) running on a fat laptop is usually the best option.8 See 
the Packet sniffers section starting on page 874 of Chapter 21, Network Manage-
ment and Debugging, for more details.

16.5 BUILDING WIRING

If you’re embarking on a building wiring project, the most important advice we 
can give you is to “do it right the first time.” This is not an area in which to skimp 
or cut corners. Buying quality materials, selecting a competent wiring contractor, 
and installing extra connections (drops) will save you years of frustration and 
heartburn down the road.

UTP cabling options

Category 6a wire typically offers the best price vs. performance tradeoff in today’s 
market. Its normal format is four pairs per sheath, which is just right for a variety 
of data connections from RS-232 to gigabit Ethernet.

8. Like so many popular programs, Wireshark is often the target of attacks by hackers. Make sure you 
stay up to date with the current version.

  



ptg

546 Chapter 16 Network Hardware

Category 6a specifications require that the twist be maintained to the point of 
contact. Special training and termination equipment are necessary to satisfy this 
requirement. You must use Category 6a jacks and patch panels. We’ve had the best 
luck with parts manufactured by Siemon (siemon.com).

Connections to offices

One connection per office is clearly not enough. But should you use two or four? 
We recommend four, for several reasons:

• They can be used with voice telephones.
• They can be used to accommodate visitors or demo machines.
• The cost of the materials is typically only 5%–10% of the total cost.
• Your best guess doubled is often a good estimate.
• It’s much cheaper to do it once rather than adding wires later.
• When ports run low, people add 4- or 8-port switches purchased from 

the nearest office supply store, then complain to the help desk about 
connection speed.

If you’re in the process of wiring your entire building, you might consider install-
ing a few outlets in the hallways, conference rooms, lunch rooms, bathrooms, and 
of course, ceilings (for wireless access points). Don’t forget to keep security in 
mind, however, and put publicly accessible ports on a “guest” VLAN that doesn’t 
have access to your internal network resources.

Wiring standards

Modern buildings often require a large and complex wiring infrastructure to sup-
port all the various activities that take place inside. Walking into the average tele-
communications closet can be a shocking experience for the weak of stomach, as 
identically colored, unlabeled wires often cover the walls.

In an effort to increase traceability and standardize building wiring, the Telecom-
munications Industry Association in February 1993 released the TIA/EIA-606 
Administration Standard for the telecommunication infrastructure of commer-
cial buildings. EIA-606 specifies requirements and guidelines for the identifica-
tion and documentation of telecommunications infrastructure.

Items covered by EIA-606 include

• Termination hardware
• Cables
• Cable pathways
• Equipment spaces
• Infrastructure color coding
• Symbols for standard components

In particular, the standard specifies colors to be used for wiring. Table 16.5 shows 
the details.

  



ptg

Network architecture vs. building architecture 547

N
et

 H
ar

dw
ar

e

Pantone sells software to map between the Pantone systems for ink-on-paper, tex-
tile dyes, and colored plastic. Hey, you could color-coordinate the wiring, the uni-
forms of the installers, and the wiring documentation! On second thought…

16.6 NETWORK DESIGN ISSUES

This section addresses the logical and physical design of the network. It’s targeted 
at medium-sized installations. The ideas presented here will scale up to a few hun-
dred hosts but are overkill for three machines and inadequate for thousands. We 
also assume that you have an adequate budget and are starting from scratch, 
which is probably only partially true.

Most of network design consists of the specification of

• The types of media that will be used
• The topology and routing of cables
• The use of switches and routers

Another key issue in network design is congestion control. For example, file-shar-
ing protocols such as NFS and CIFS tax the network quite heavily, and so file 
serving on a backbone cable is undesirable.

The issues presented in the following sections are typical of those that must be 
considered in any network design.

Network architecture vs. building architecture

The network architecture is usually more flexible than the building architecture, 
but the two must coexist. If you are lucky enough to be able to specify the network 
before the building is constructed, be lavish. For most of us, both the building and 
a facilities management department already exist and are somewhat rigid.

Table 16.5 EIA-606 color chart

Termination type Color Codea Comments

Demarcation point Orange 150C Central office terminations 
Network connections Green 353C Also used for aux circuit terminations 
Common equipmentb Purple 264C Major switching/data eqpt. terminations 
First-level backbone White – Cable terminations
Second-level backbone Gray 422C Cable terminations
Station Blue 291C Horizontal cable terminations 
Interbuilding backbone Brown 465C Campus cable terminations 
Miscellaneous Yellow 101C Maintenance, alarms, etc. 
Key telephone systems Red 184C –

a. According to the Pantone Matching System®

b. PBXes, hosts, LANs, muxes, etc.

  



ptg

548 Chapter 16 Network Hardware

In existing buildings, the network must use the building architecture, not fight it. 
Modern buildings often contain utility raceways for data and telephone cables in 
addition to high-voltage electrical wiring and water or gas pipes. They often use 
drop ceilings, a boon to network installers. Many campuses and organizations 
have underground utility tunnels that facilitate network installation.

The integrity of fire walls9 must be maintained; if you route a cable through a fire 
wall, the hole must be snug and filled in with a noncombustible substance. Re-
spect return air plenums in your choice of cable. If you are caught violating fire 
codes, you may be fined and will be required to fix the problems you have created, 
even if that means tearing down the entire network and rebuilding it correctly.

Your network’s logical design must fit into the physical constraints of the build-
ings it serves. As you specify the network, keep in mind that it is easy to draw a 
logically good solution and then find that it is physically difficult or impossible to 
implement.

Expansion

It is very difficult to predict needs ten years into the future, especially in the com-
puter and networking fields. Therefore, design the network with expansion and 
increased bandwidth in mind. As cable is installed, especially in out-of-the-way, 
hard-to-reach places, pull three to four times the number of pairs you actually 
need. Remember: the majority of installation cost is labor, not materials.

Even if you have no plans to use fiber, it’s wise to install some when wiring your 
building, especially in situations where it will be hard to install cable later. Run 
both multimode and single-mode fiber. The kind you need in the future is always 
the kind you didn’t install.

Congestion

A network is like a chain: it is only as good as its weakest or slowest link. The 
performance of Ethernet, like that of many other network architectures, degrades 
nonlinearly as the network gets loaded.

Overtaxed switches, mismatched interfaces, and low-speed links can all lead to 
congestion. It is helpful to isolate local traffic by creating subnets and by using 
interconnection devices such as routers. Subnets can also be used to cordon off 
machines that are used for experimentation. It’s difficult to run an experiment 
that involves several machines if you cannot isolate those machines both physi-
cally and logically from the rest of the network.

9. This type of fire wall is a concrete, brick, or flame-retardant wall that prevents flames from spreading 
and burning down a building. While much different from a network security firewall, it’s probably just 
as important.

  



ptg

Management issues 549

N
et

 H
ar

dw
ar

e

Maintenance and documentation

We have found that the maintainability of a network correlates highly with the 
quality of its documentation. Accurate, complete, up-to-date documentation is 
absolutely indispensable.

Cables should be labeled at all termination points. It’s a good idea to post copies of 
local cable maps inside communications closets so that the maps can be updated 
on the spot when changes are made. Once every few weeks, have someone copy 
down the changes for entry into a wiring database.

Joints between major population centers in the form of switches or routers can 
facilitate debugging by allowing parts of the network to be isolated and debugged 
separately. It’s also helpful to put joints between political and administrative do-
mains, for similar reasons.

16.7 MANAGEMENT ISSUES

If the network is to work correctly, some things need to be centralized, some dis-
tributed, and some local. Reasonable ground rules and “good citizen” guidelines 
need to be formulated and agreed on.

A typical environment includes

• A backbone network among buildings
• Departmental subnets connected to the backbone
• Group subnets within a department
• Connections to the outside world (e.g., Internet or field offices)

Several facets of network design and implementation must have site-wide control, 
responsibility, maintenance, and financing. Networks with charge-back algo-
rithms for each connection grow in bizarre but predictable ways as departments 
try to minimize their own local costs. Prime targets for central control are

• The network design, including the use of subnets, routers, switches, etc.
• The backbone network itself, including the connections to it
• Host IP addresses, hostnames, and subdomain names
• Protocols, mostly to ensure that they interoperate
• Routing policy to the Internet

Domain names, IP addresses, and network names are in some sense already con-
trolled centrally by authorities such as ARIN (American Registry for Internet 
Numbers) and ICANN. However, your site’s use of these items must be coordi-
nated locally as well. 

A central authority has an overall view of the network: its design, capacity, and 
expected growth. It can afford to own monitoring equipment (and the staff to run 
it) and to keep the backbone network healthy. It can insist on correct network 
design, even when that means telling a department to buy a router and build a 

  



ptg

550 Chapter 16 Network Hardware 

subnet to connect to the campus backbone. Such a decision might be necessary to 
ensure that a new connection does not adversely impact the existing network.

If a network serves many types of machines, operating systems, and protocols, it is 
almost essential to have a smart router (e.g., Cisco) as a gateway between nets.

16.8 RECOMMENDED VENDORS

In the past 20+ years of installing networks around the world, we’ve gotten burned 
more than a few times by products that didn’t quite meet specs or were misrepre-
sented, overpriced, or otherwise failed to meet expectations. Below is a list of ven-
dors in the United States that we still trust, recommend, and use ourselves today.

Cables and connectors

AMP (part of Tyco) Anixter Black Box Corporation
(800) 522-6752 (800) 264-9837 (724) 746-5500
amp.com anixter.com blackbox.com

Belden Cable Newark Electronics Siemon 
(800) 235-3361 (800) 463-9275 (860) 945-4395
(765) 983-5200 newark.com siemon.com
belden.com

Test equipment

Fluke JDSU Siemon
(800) 443-5853 (866) 228-3762 (860) 945-4395
fluke.com jdsu.com siemon.com

Routers/switches

Cisco Systems Juniper Networks 
(415) 326-1941 (408) 745-2000
cisco.com juniper.net

16.9 RECOMMENDED READING

BARNETT, DAVID, DAVID GROTH, AND JIM MCBEE. Cabling: The Complete Guide 
to Network Wiring (3rd Edition). San Francisco: Sybex, 2004.

SEIFERT, RICH. Gigabit Ethernet: Technology and Applications for High Speed LANs. 
Reading, MA: Addison-Wesley, 1998.

ANSI/TIA/EIA-568-A, Commercial Building Telecommunications Cabling Stan-
dard, and ANSI/TIA/EIA-606, Administration Standard for the Telecommunica-
tions Infrastructure of Commercial Buildings, are the telecommunication industry’s 
standards for building wiring. Unfortunately, they are not free. See tiaonline.org.

SPURGEON, CHARLES. “Guide to Ethernet.” ethermanage.com/ethernet

  



ptg

Exercises 551

N
et

 H
ar

dw
ar

e

16.10 EXERCISES

E16.1 Today, most office buildings house computer networks and are wired 
with UTP Ethernet. Some combination of routers and switches is 
needed to support these networks. List the advantages and disadvan-
tages of each.

E16.2 Draw a simple, imaginary network diagram that connects a machine 
in your computer lab to Amazon.com. Include LAN, MAN, and WAN 
components. Show what technology is used for each component. 
Show some switches and routers.

E16.3 Research WPA2’s Temporal Key Integrity Protocol. Detail what ad-
vantages this has over WEP, and what types of attacks it prevents.

E16.4 TTCP is a tool that measures TCP and UDP performance. Install 
TTCP on two networked machines and measure the performance of 
the link between them. What happens to the bandwidth if you adjust 
buffer sizes up or down? How do your observed numbers compare 
with the theoretical capacity of the physical medium?

  



ptg

552

17 DNS: The Domain Name System

Zillions of hosts are connected to the Internet. How do we keep track of them all 
when they belong to so many different countries, networks, and administrative 
groups? Two key pieces of infrastructure hold everything together: the Domain 
Name System (DNS), which keeps track of who the hosts are, and the Internet 
routing system, which keeps track of how they are connected.

Although DNS has come to serve several different purposes, its primary job is to 
map between hostnames and IP addresses. Users and user-level programs like to 
refer to machines by name, but low-level network software understands only IP 
addresses (that is, numbers). DNS provides the glue that keeps everyone happy. It 
has also come to play an essential role in the routing of email, web server access, 
and many other services.

DNS is a distributed database. “Distributed” means that my site stores the data 
about my computers, your site stores the data about your computers, and our sites 
cooperate and share data when one site needs to look up the other’s data. From an 
administrative point of view, your DNS servers answer queries from the outside 
world about names in your domain, and they query other domains’ servers on 
behalf of your users. 

DNS

  



ptg

DNS: The Domain Name System 553

D
N

SSee page 449 for more 
information about the 
RFC system.

The DNS system is defined by a series of RFCs, 108 of them at last count. Several 
implementations exist, varying in functionality, focus, and adherence to the RFCs. 
Table 17.1 shows the major players. The market shares shown in Table 17.1 were 
measured with respect to Internet-facing name servers, not internal name servers.

This chapter includes general information about DNS and the sysadmin chores 
associated with the BIND, NSD, and Unbound name server implementations. Ex-
amples are drawn from BIND 9.7, NSD 3.2.4, and Unbound 1.4.1. 

You might ask why we waste space on NSD and Unbound when their market 
share is so small, especially in a chapter that is already so long. Three reasons:

• First, to deploy a truly robust DNS environment, you should not have all 
servers running the same software. A successful attack on your site’s 
DNS service essentially takes your site off the Internet. Diversity of soft-
ware, hardware, and network connectivity are the keys to surviving the 
Darwinian pressure of the Internet. Add geographical location and sys-
admin skills to your diversity pile and you will be in fine shape.

• The second reason is performance: NSD and Unbound are significantly 
faster than BIND.

• Finally, of all the name server implementations, only BIND and 
NSD/Unbound implement DNSSEC, the cryptographic security exten-
sions to DNS. DNSSEC is better tested and more robust in the 
NSD/Unbound implementations than in BIND.

Today, many sites (most?) use neither BIND nor NSD/Unbound internally, but 
rather Microsoft’s Active Directory instead. We cover Active Directory briefly in 
Chapter 30, Cooperating with Windows, beginning on page 1154.

Table 17.1 Some popular implementations of DNS

Name Author Source Sharea Comments

BIND ISC isc.org 80.3% Auth or caching
Microsoft DNS Microsoft microsoft.com 15.4% Myriad sins
djbdnsb Dan Bernstein tinydns.org 2.6% Violates some RFCs
PowerDNS PowerDNS BV powerdns.com 0.7% Auth only
NSD c NLnet Labs nlnetlabs.nl < 0.1% Auth only, very fast
Unbound NLnet Labs unbound.net – Caching only, fast

a. Market share from isc.org’s July 2009 Internet Domain Survey
b. Also known as tinydns, which is the server component of the djbdns package
c. Originally designed for root and top-level domain servers; now in general use

  



ptg

554 Chapter 17 DNS: The Domain Name System

17.1 WHO NEEDS DNS?

DNS defines

• A hierarchical namespace for hosts and IP addresses
• A distributed database of hostname and address information
• A “resolver” to query this database
• Improved routing and sender authentication for email
• A mechanism for finding services on a network
• A protocol used by name servers to exchange information

DNS is a client/server system. Servers (“name servers”) load the data from your 
DNS files into memory and use it to answer queries both from internal clients and 
from clients and other servers out on the Internet. All of your hosts should be 
DNS clients, but relatively few need to be DNS servers.

Managing your DNS

If your organization is small (a few hosts on a single network), you can run servers 
on your own hosts or ask your ISP to supply DNS service on your behalf. A me-
dium-sized site with several subnets should run multiple DNS servers to reduce 
query latency and improve reliability. A very large site can divide its DNS domain 
into subdomains and run several servers for each subdomain.

DNS forward mappings associate a hostname with an IP address. Reverse map-
pings go from the IP address to the hostname. A domain’s forward and reverse 
mappings should be managed in the same place whenever possible. Some ISPs are 
happy to let you manage the forward files but are reluctant to relinquish control of 
the reverse mappings. Such split management can lead to synchronization prob-
lems. See page 585 for an elegant hack that makes delegation work even for tiny 
pieces of address space.

DNS domains must be served by at least two servers, though we recommend at 
least three, geographically dispersed. Typically, one of the servers is designated as 
a master server (also called a primary server) that owns the reference copy of the 
domain’s data. The other servers are called slave servers or secondary servers; they 
copy their data from the master server.

Some sites operate their own master server and let their ISP’s servers act as slaves. 
Once the system has been configured, the ISP’s servers automatically download 
host data from the master server. Changes to the DNS configuration are propa-
gated to the slaves through a mechanism known as a zone transfer.

Another common arrangement is to outsource all DNS service and to rely on the 
outsourcing firm’s diversity, robustness, and geographic distribution.

If you run local servers, don’t put all of them on the same network. When DNS 
stops working, the network effectively stops for your users. Spread your DNS 

  



ptg

Delegation 555

D
N

Sservers around so that you don’t end up with a fragile system and a single point of 
failure. DNS is quite robust if designed well and configured carefully.

17.2 HOW DNS WORKS

Each host that uses DNS is either a client of the system or simultaneously a client 
and a server. If you do not plan to run any DNS servers, it’s not essential that you 
read the next few sections. Just skip ahead to page 561 for details on configuring a 
machine to be a client of DNS.

Resource records

Each site maintains one or more pieces of the distributed database that makes up 
the world-wide DNS system. Your piece of the database consists of text files that 
contain records for each of your hosts; these are known as “resource records.” 
Each record is a single line consisting of a name (usually a hostname), a record 
type, and some data values. The name field can be omitted if its value is the same 
as that of the previous line.

For example, the lines
nubark IN A 63.173.189.1

IN MX 10 mailserver.atrust.com.

in the “forward” file (called atrust.com), and the line
1 IN PTR nubark.atrust.com.

in the “reverse” file (called 63.173.189.rev) associate nubark.atrust.com with the 
IP address 63.173.189.1. The MX record reroutes email addressed to this machine 
to the host mailserver.atrust.com.

Resource records are the lingua franca of DNS and are independent of the config-
uration files that control the operation of any given DNS server implementation. 
They are also the pieces of data that flow around the DNS system and become 
cached at various locations.

Delegation

All name servers read the identities of the root servers from a local config file or 
have them built into the code. The root servers know the name servers for com, 
net, edu, fi, de, and other top-level domains. Farther down the chain, edu knows 
about colorado.edu, berkeley.edu, and so on. Each domain can delegate authority 
for its subdomains to other servers.

Let’s inspect a real example. Suppose we want to look up the address for the ma-
chine vangogh.cs.berkeley.edu from the machine lair.cs.colorado.edu. The host 
lair asks its local name server, ns.cs.colorado.edu, to figure out the answer. The 
following illustration (Exhibit A) shows the subsequent events.

  



ptg

556 Chapter 17 DNS: The Domain Name System

Exhibit A DNS query process for vangogh.cs.berkeley.edu

The numbers on the arrows between servers show the order of events, and a letter 
indicates the type of transaction (query, referral, or answer). We assume that none 
of the required information was cached before the query, except for the names 
and IP addresses of the servers of the root domain.

The local server doesn’t know vangogh’s address. In fact, it doesn’t know anything 
about cs.berkeley.edu or berkeley.edu or even edu. It does know servers for the 
root domain, however, so it queries a root server about vangogh.cs.berkeley.edu 
and receives a referral to the servers for edu.

The local name server is a recursive server. When the answer to a query consists 
of a referral to another server, the local server resubmits the query to the new 
server. It continues to follow referrals until it finds a server that has the data it’s 
looking for.

In this case, the local name server sends its query to a server of the edu domain 
(asking, as always, about vangogh.cs.berkeley.edu) and gets back a referral to the 
servers for berkeley.edu. The local name server then repeats the query in the 
berkeley.edu domain. If the Berkeley server doesn’t have the answer cached, it re-
turns a referral to the servers for cs.berkeley.edu. The cs.berkeley.edu server is 
authoritative for the requested information, looks the answer up in its zone files, 
and returns vangogh’s address.

When the dust settles, ns.cs.colorado.edu has cached vangogh’s address. It has also 
cached data on the servers for edu, berkeley.edu, and cs.berkeley.edu.

You can view the query process in detail with dig +trace or drill -T.1

Caching and efficiency

Caching increases the efficiency of lookups: a cached answer is almost free and is 
usually correct because hostname-to-address mappings change infrequently. An 

Recursive Nonrecursive

1-Q 

10-A

4-Q

5-R

2-Q

3-R

6-Q

7-R

9-A 8-Q

ns.cs.colorado.edulair edu

root (“.”)

cs.berkeley.edu

berkeley.edu
= Query 

= Answer 

= Referral

Q

A

R

START

1. dig and drill are DNS query tools: dig from the BIND distribution and drill from NLnet Labs.

  



ptg

Multiple answers 557

D
N

Sanswer is saved for a period of time called the “time to live” (TTL), which is spec-
ified by the owner of the data record in question. Most queries are for local hosts 
and can be resolved quickly. Users also inadvertently help with efficiency because 
they repeat many queries; after the first instance of a query, the rest are more or 
less free.

Under normal conditions, your site’s resource records should use a TTL that is 
somewhere between 1 hour and 1 day. The longer the TTL, the less network traf-
fic will be consumed by Internet clients obtaining fresh copies of the record. 

If you have a specific service that is load balanced across logical subnets (often 
called “global server load balancing”), you may be required by your load balanc-
ing vendor to choose a shorter TTL, such as 10 seconds or 1 minute. (The short 
TTL lets the load balancer react quickly to inoperative servers and denial of ser-
vice attacks.) The system still works correctly with short TTLs, but your name 
servers have to work hard. In the vangogh example above, the TTLs were 42 days 
for the roots, 2 days for edu, 2 days for berkeley.edu, and 1 day for van-
gogh.cs.berkeley.edu. These are reasonable values. If you are planning a massive 
renumbering, you can change the TTLs to a shorter value well before you start.

DNS servers also implement negative caching. That is, they remember when a 
query fails and do not repeat that query until the negative caching TTL value has 
expired. Negative caching saves answers of the following types:

• No host or domain matches the name queried.
• The type of data requested does not exist for this host.
• The server to ask is not responding.
• The server is unreachable because of network problems.

BIND caches the first two types of negative data; Unbound caches all four. Each 
implementation allows the negative cache times to be configured.

Multiple answers

A name server often receives multiple records in response to a query. For exam-
ple, the response to a query for the name servers of the root domain would list all 
13 servers. Most name servers return the answers in random order as a primitive 
form of load balancing.

You can take advantage of this balancing effect for your own servers by assigning 
a single hostname to several different IP addresses (which in reality are different 
machines):

www IN A 192.168.0.1
IN A 192.168.0.2
IN A 192.168.0.3

Busy web servers such as Yahoo! or Google are not really a single machine; they’re 
just a single name in the DNS.

  



ptg

558 Chapter 17 DNS: The Domain Name System

17.3 DNS FOR THE IMPATIENT

Before we start with the details of DNS, let’s first take a brief detour to address 
everyone’s most frequently asked questions: 

• How do I add a new machine to a network that’s using a name server?
• How do I configure that new machine as a client of DNS?

What follows is a cookbook-style recipe that does not define or explain any termi-
nology and that probably does not fit exactly with your local sysadmin policies 
and procedures. Use it with caution and refer to RFC1912, Common DNS Opera-
tional and Configuration Errors.

Adding a new machine to DNS

If your network is set up to use the Dynamic Host Configuration Protocol 
(DHCP) you may not need to perform any manual configuration for DNS. When 
a new computer is connected, the DHCP server informs it of the DNS servers it 
should use for queries. Hostname-to-IP-address mappings for use by the outside 
world were most likely set up when the DHCP server was configured and are 
automatically entered through DNS’s dynamic update facility.

For networks that do not use DHCP, the following recipe shows how to update the 
DNS configuration by copying and modifying the records for a similar computer.

Step 1: Choose an unused hostname and IP address for the new machine in con-
junction with local sysadmins or your upstream ISP.

Step 2: Identify a similar machine on the same subnet. You’ll use that machine’s 
records as a model for the new ones. In this example, we use a machine called 
template.example.com on the subnet 208.77.188.0/24 as the model.

Step 3: Log in to the master name server machine. If you don’t know which ma-
chine is the master server, you probably shouldn’t be messing with it, but you can 
use the dig command (dig SOA domainname) to identify it. (You can also use 
drill if dig is not installed.)

Step 4a, for sites running BIND servers: 

• Find the name server configuration file, usually /etc/named.conf.

• Within the options statement in named.conf, find the directory line 
that tells where zone data files are kept at your site (see page 603). The 
zone files contain the actual host and IP address data. 

• From the zone statements, find the filenames for the forward zone file 
and reverse zone file appropriate for your new IP address (page 612).

• Verify from the zone statements that this server is in fact the master 
server (type master, not slave or some other value) for the domain. If it’s 
not, you’re on the wrong system! The forward zone statement in 
/etc/named.conf should look something like this: 

  



ptg

Adding a new machine to DNS 559

D
N

Szone "example.com" { 
type master; 
file “filename”;

…

The reverse zone statement should look like this:
zone "188.77.208.in-addr.arpa" { 

type master; 
file “filename”;

…

• Make a note of the filenames listed as arguments to file in the forward 
and reverse zone definitions.

Step 4b, for sites running NSD: 

• Open the NSD configuration file, /etc/nsd/nsd.conf.

• Find the zone statement for your domain in nsd.conf (the name key-
word identifies each zone).

• Verify that you are in fact on the master server. You can tell because the 
zone section for your domain will include a provide-xfr clause. If it con-
tains a request-xfr clause, it’s a slave server for that zone and you’re on 
the wrong machine. The zone statement for the forward zone should 
look like:

zone: 
name: example.com 
zonefile: /var/nsd/primary/example.com 
provide-xfr: ip-addr tsig.key.name 
notify: ip-addr NOKEY

The reverse zone statement looks like:
zone: 

name: 188.77.208.in-addr.arpa 
zonefile: /var/nsd/primary/188.77.208.in-addr.arpa 
provide-xfr: ip-addr tsig.key.name 
notify: ip-addr NOKEY

• Make a note of the filenames listed as arguments to the zonefile key-
words in the forward and reverse zone definitions.

Step 5: Go to the zone file directory and edit the forward zone file. Find the re-
cords for the template host you identified earlier. They’ll look something like this:

template IN A 208.77.188.100
IN MX 10 mail-hub 
IN MX 20 template

  



ptg

560 Chapter 17 DNS: The Domain Name System

Your version might not include the MX lines, which are used for mail routing. 
Your zone files also might not include the IN specifier (it’s the default) or use 
capital letters.

Step 6: Duplicate those records and change them appropriately for your new host. 
The zone file might be sorted by hostname; follow the existing convention. 

Step 7: Change the serial number in the SOA record at the beginning of the file— 
it’s the first of the five numbers in the SOA record. The serial number should only 
increase. Add 1 if your site uses an arbitrary serial number, or set the field to the 
current date if your site uses that convention.2

Step 8: Edit the reverse zone file and look for a record like this:
100 IN PTR template.example.com.

Duplicate this record with the appropriate changes. Note that there is a trailing 
dot after the hostname; don’t omit it. If your reverse zone file shows more than 
just the last byte of each host’s IP address, you must enter the bytes in reverse 
order. For example, the record

100.188 IN PTR template.example.com.

corresponds to the IP address 208.77.188.100 (here, the reverse zone is relative to 
77.208.in-addr.arpa rather than 188.77.208.in-addr.arpa).

Step 9: Update the serial number in the SOA record of the reverse zone file, as 
described in step 7.

Step 10a: If you are using BIND and are lazy, run rndc reload. If the server is a 
busy one, you can reload only the domains (or views) that you changed:

$ sudo rndc reload forward-zone-name 
$ sudo rndc reload reverse-zone-name

Step10b: If you are using NSD, run nsdc rebuild followed by nsdc restart.

Step 11: Check the configuration with dig or drill; see page 677. You can also try 
to ping or traceroute to your new host’s name, even if the new host has not yet 
been set up. A “host unknown” message means you goofed; “host not responding” 
means that everything is probably OK.

The most common errors are

• Forgetting to update the zone serial numbers (steps 7 and 9)
• Forgetting to reload the name server (step 10)
• Forgetting to add a dot at the end of the hostname in the PTR resource 

record in the reverse zone (step 8)

2. The date convention also includes a two-digit change number, so you can have 99 changes per day.

  



ptg

Configuring a DNS client 561

D
N

SConfiguring a DNS client

Each host on the network must be a name server client. You configure the client 
side of DNS in the file /etc/resolv.conf, which lists the DNS servers the host can 
query when a user attempts to resolve a hostname (i.e., requests a web page, sends 
an email message, or uses the Internet).3

If your host gets its IP address and network parameters from a DHCP server, the 
/etc/resolv.conf file should be set up for you automatically. Otherwise, you must 
edit the file by hand. The format is

search domainname … 
option optionname … 
nameserver ipaddr

Up to three name servers can be listed. Here’s a complete example:
search atrust.com booklab.atrust.com 
nameserver 63.173.189.1 ; ns1 
nameserver 174.129.219.225 ; ns2

Comments were never defined for the resolv.conf file. They are somewhat sup-
ported in that anything that is not recognized is ignored. It’s safe to put comments 
at the end of nameserver lines because the parser just looks for an IP address and 
ignores the rest of the line. But because the search line can contain multiple argu-
ments, comments there could cause problems.

The search line lists the domains to query if a hostname is not fully qualified. If a 
user issues the command ssh coraline, for example, the resolver completes the 
name with the first domain in the search list (in the example above, atrust.com) 
and looks for coraline.atrust.com. If no such name exists, the resolver also tries 
coraline.booklab.atrust.com. The number of domains that can be specified in a 
search directive is resolver specific; most allow between six and eight, with a limit 
of 256 characters.

The name servers listed in resolv.conf must be configured to allow your host to 
submit queries and must answer them completely (be recursive), not refer you to 
other name servers. They are contacted in order. As long as the first one continues 
to answer queries, the others are ignored. If a problem occurs, the query times out 
and the next name server is tried. Each server is tried in turn, up to four times. 
The timeout interval increases with every failure. The default timeout interval is 5 
seconds, which seems like forever to impatient users.

The options clause can change the timeout interval, the number of retries, and the 
default behavior for choosing among the listed name servers. The options avail-
able are determined by the resolver library implementation. ISC’s libbind behav-
ior is described below and is accurate for all our example systems except HP-UX.

3. In Windows, the client-side DNS information can be configured through the TCP/IP configuration 
panel for each network adapter. The exact procedure varies with the version of Windows.

  



ptg

562 Chapter 17 DNS: The Domain Name System

It’s common to put the best and closest name server first in the nameserver lines, 
but if you want to load balance between equally competent name servers, you 
should use the rotate option. For example:

options rotate timeout:2 attempts:2

rotates between the listed name servers, times out in 2 seconds, and queries each 
server at most twice.

HP-UX does not fully support the options clause illustrated above; the timeout 
and number of retries variables are set directly in resolv.conf as follows:

retrans timeout-value-in-milliseconds 
retry #-of-attempts

Most resolvers allow you to list a maximum of three name servers. If you list 
more, they are silently ignored. Table 17.2 summarizes the defaults.

If a host is itself a name server, it should be listed first in its own resolv.conf file. If 
no name servers are listed, localhost is assumed.

The resolv.conf file also understands the domain directive as an alternative to 
search; it specifies a single domain to add to names that are not fully qualified. It’s 
an older form; we recommend replacing domain directives with search directives 
when you encounter them. The directives are mutually exclusive, so only one 
should be present. If you inadvertently include both directives, only the last one 
listed takes effect.

If there is no /etc/resolv.conf file, AIX uses /etc/netsvc.conf to decide how to 
perform name resolution and extracts the default domain name from the host-
name, which must be fully qualified. AIX provides a sample resolv.conf file in 
/usr/lpp/tcpip/samples/resolv.conf that you can copy. Just in case adding a cou-
ple of lines to a text file is too hard for you, AIX provides the namerslv command 
as an interface for adding, deleting, and changing name servers in resolv.conf. But 
wait! You also get the mknamsv, rmnamsv, chnamsv, and lsnamsv commands as 
high-level interfaces to namerslv. (Of course, a sysadmin can’t be expected to 
master a sophisticated set of tools like this overnight, so you’ll probably need a 
GUI to start out with; try smitty resolv.conf.)

Table 17.2 /etc/resolv.conf defaults

OS  Max NS Max search length Timeout Retries

Linux  3  6 domains, 256 chars  5 sec  2 
Solaris  3  6 domains, 256 chars  5 sec  2 
HP-UX  3  6 domains, 256 chars  5 sec  4 
AIX  3  6 domains, 1024 chars  5 sec  2

  



ptg

Authoritative and caching-only servers 563

D
N

SOnce /etc/resolv.conf has been configured, the system will start using DNS for 
name service as long as DNS hasn’t been disabled in the file that prioritizes 
sources of administrative data (/etc/nsswitch.conf, or /etc/netsvc.conf on AIX; 
see page 739).

After configuring /etc/resolv.conf, you should be able to refer to other machines 
by name rather than by IP address. Try ping hostname. If you try to reach another 
local machine and the command just hangs, try referring to the machine by its IP 
address. If that works, then your DNS configuration is the problem. Verify that 
the name server IP addresses in /etc/resolv.conf are correct and that the servers 
you point to allow queries from your network (see page 606). dig from a working 
machine can answer these questions.

17.4 NAME SERVERS

A name server performs several chores:

• It answers queries about your site’s hostnames and IP addresses.
• It asks about both local and remote hosts on behalf of your users.
• It caches the answers to queries so that it can answer faster next time.
• It transfers data between your name servers to keep them synchronized.

Name servers deal with zones, where a “zone” is essentially a domain minus its 
subdomains. You will often see the term “domain” used where “zone” is what’s 
really meant, even in this book.

The NSD/Unbound suite separates the function of answering queries about your 
hosts (the NSD part) from the function of issuing queries about other domains on 
behalf of your users (the Unbound part). This separation is healthy.

Name servers can operate in several different modes. The distinctions among 
them fall along several axes, so the final categorization is often not very tidy. To 
make things even more confusing, a single server can play different roles with 
respect to different zones. Table 17.3 on the next page lists some of the adjectives 
used to describe name servers.

These categorizations are based on the name server’s source of data (authoritative, 
caching, master, slave), on the type of data saved (stub), on the query path (for-
warder), on the completeness of answers handed out (recursive, nonrecursive), 
and finally, on the visibility of the server (distribution). The next few sections 
provide some additional details on the most important of these distinctions; the 
others are described elsewhere in this chapter.

Authoritative and caching-only servers

Master, slave, and caching-only servers are distinguished by two characteristics: 
where the data comes from and whether the server is authoritative for the do-
main. BIND can be all three types, NSD can be a master or slave, and Unbound is 
caching-only.

  



ptg

564 Chapter 17 DNS: The Domain Name System

Each zone typically has one master name server.4 The master server keeps the 
official copy of the zone’s data on disk. The system administrator changes the 
zone’s data by editing the master server’s data files.

See page 639 for 
more information 
about zone transfers.

A slave server gets its data from the master server through a “zone transfer” oper-
ation. A zone can have several slave name servers and must have at least one. A 
stub server is a special kind of slave that loads only the NS (name server) records 
from the master. See page 614 for an explanation of why you might want this 
behavior. It’s fine for the same machine to be both a master server for some zones 
and a slave server for other zones.

A caching-only name server loads the addresses of the servers for the root domain 
from a startup file and accumulates the rest of its data by caching answers to the 
queries it resolves. A caching-only name server has no data of its own and is not 
authoritative for any zone (except perhaps the localhost zone).

An authoritative answer from a name server is “guaranteed”5 to be accurate; a 
nonauthoritative answer might be out of date. However, a very high percentage of 
nonauthoritative answers are perfectly correct. Master and slave servers are au-
thoritative for their own zones, but not for information they may have cached 
about other domains. Truth be told, even authoritative answers can be inaccurate 
if a sysadmin changes the master server’s data but forgets to propagate the changes 
(e.g., doesn’t change the zone’s serial number).

Name servers should be located on machines that are stable, do not have many 
users, are secure, and are on an uninterruptible power supply. One slave is 

Table 17.3 A name server taxonomy

Type of server Description

authoritative An official representative of a zone 
master The master server for a zone; gets its data from a disk file 
primary Another name for the master server
slave Copies its data from the master 
secondary Another name for a slave server
stub Like a slave, but copies only name server data (not host data) 
distribution A server advertised only within a domain (aka “stealth server”) 

nonauthoritativea Answers a query from cache; doesn’t know if the data is still valid
caching Caches data from previous queries; usually has no local zones 
forwarder Performs queries on behalf of many clients; builds a large cache

recursive Queries on your behalf until it returns either an answer or an error 
nonrecursive Refers you to another server if it can’t answer a query

a. Strictly speaking, “nonauthoritative” is an attribute of a DNS query response, not a server.

4. Some sites use multiple masters or even no masters; we describe the single-master case.
5. Guaranteed here just means that the answer came from an authoritative server’s in-memory database 

and not from the cache of a random nonauthoritative server.

  



ptg

Recursive and nonrecursive servers 565

D
N

Srequired. Ideally, there should be at least two slaves, one of which is off-site. On-
site slaves should live on different networks and different power circuits. When 
name service stops, all normal network access stops, too.

Although they are not authoritative, caching-only servers can reduce the latency 
seen by your users and the amount of DNS traffic on your internal networks. At 
most sites, desktop machines send their queries about machines on the Internet 
through a caching server. Larger sites should have several caching servers.

Security and general DNS hygiene argue for separating the functions of serving 
your authoritative data to the world from serving the world’s data to your users. In 
an implementation like NSD/Unbound, this separation is enforced architectur-
ally. But even with BIND, which uses a single name server binary (named), you 
can run separate copies of the server for each purpose: one as an authoritative 
server and one as a caching, recursive server.

Recursive and nonrecursive servers

Name servers are either recursive or nonrecursive. If a nonrecursive server has the 
answer to a query cached from a previous transaction or is authoritative for the 
domain to which the query pertains, it provides an appropriate response. Other-
wise, instead of returning a real answer, it returns a referral to the authoritative 
servers of another domain that are more likely to know the answer. A client of a 
nonrecursive server must be prepared to accept and act on referrals.

Although nonrecursive servers may seem lazy, they usually have good reason not 
to take on extra work. Authoritative-only servers (e.g., root servers and top-level 
domain servers) are all nonrecursive, but since they may process tens of thou-
sands of queries per second we can excuse them for cutting corners.

A recursive server returns only real answers and error messages. It follows refer-
rals itself, relieving clients of this responsibility. In other respects, the basic proce-
dure for resolving a query is essentially the same.

For security reasons, an organization’s externally accessible name servers should 
always be nonrecursive. Recursive name servers that are visible to the world may 
be vulnerable to cache poisoning attacks.

Resolver libraries do not understand referrals; any local name server listed in a 
client’s resolv.conf file must be recursive.

One side effect of having a name server follow referrals is that its cache acquires 
information about intermediate domains. On a local network, this caching is of-
ten the behavior you want since it allows subsequent lookups from any host on the 
network to benefit from the name server’s previous work. On the other hand, the 
server for a top-level domain such as com or edu should not save up information 
requested by a host several domains below it.

Name servers generate referrals hierarchically. For example, if a server can’t sup-
ply an address for lair.cs.colorado.edu, it refers to the servers for cs.colorado.edu, 

  



ptg

566 Chapter 17 DNS: The Domain Name System

colorado.edu, edu, or the root domain. A referral must include addresses for the 
servers of the referred-to domain, so the choice is not arbitrary; the server must 
refer to a domain for which it already knows the servers.

The longest answer (the one with the most components) is returned. If the ad-
dress of lair was not known but the name servers for cs.colorado.edu were known, 
then those servers’ addresses would be returned. If cs.colorado.edu was unknown 
but colorado.edu was known, then the addresses of name servers for colorado.edu 
would be returned, and so on.

Name servers preload their caches from a “hints” file that lists the servers for the 
root domain. Some referral can always be made, even if it’s just “Ask a root server.”

17.5 THE DNS NAMESPACE

The DNS namespace is organized into a tree with two top-level branches: forward 
mappings and reverse mappings. Forward mappings map hostnames to IP ad-
dresses, and reverse mappings map IP addresses to hostnames. Every fully quali-
fied hostname (e.g., nubark.atrust.com) is a node in the forward branch of the 
tree, and every IP address is a node in the reverse branch. Periods separate levels 
of the tree; the root of the tree (the top) is “.”, aka “dot”.

Fully qualified hostnames can be viewed as a notation in which the “most signifi-
cant part” is on the right. For example, in the name nubark.atrust.com, nubark is 
in atrust and atrust is in com. IP addresses, on the other hand, have the “most 
significant part” on the left. In the address 128.138.243.100, for example, host 100 
is on subnet 243, which is part of network 128.138.

To allow the same DNS system to service both kinds of data, the IP branch of the 
namespace is inverted by listing the octets of the IP address backwards. For exam-
ple, if host nubark.atrust.com has IP address 63.173.189.1, the corresponding 
node of the forward branch of the naming tree is “nubark.atrust.com.” and the 
node of the reverse branch is “1.189.173.63.in-addr.arpa.”.6 Both of these names 
end with a dot, just as the full pathnames of files always start with a slash.

A “fully qualified domain name” is the full path to a DNS object, including a final 
dot. For example, a host named nubark in the atrust.com domain has the FQDN 
“nubark.atrust.com.”. 

A “domain” is a subtree of the DNS naming tree. For example, the atrust.com 
domain contains atrust.com and all of atrust.com’s subdomains and hosts. By con-
trast, a “zone” is a domain minus any subdomains that have been delegated to 
other name servers.

If the atrust.com domain were further subdivided into the subdomains engineer-
ing, marketing, and booklab, then the domain atrust.com would contain four 
zones: the original atrust.com plus engineering.atrust.com, marketing.atrust.com, 

6. The in-addr.arpa portion of the name is a fixed suffix.

  



ptg

Creating your own subdomains 567

D
N

Sand booklab.atrust.com. The atrust.com zone contains all the hosts in atrust.com 
except those in engineering, marketing, and booklab.

Name servers are associated with zones, not domains. You can determine whether 
a given name (such as booklab.atrust.com) identifies a subdomain rather than a 
host by checking DNS. Subdomains have name server (NS) records associated 
with them.

Domain names originally had to be made up of letters, numbers, and dashes, with 
each component (label) being at most 63 characters long and an entire FQDN 
being less than 256 characters. FQDNs are not case sensitive, but they are usually 
written in lowercase letters. Domain names were liberalized by RFC2181.

The ongoing internationalization of domain names is forcing changes to these 
rules to allow longer FQDNs. Characters in nonroman alphabets are represented 
through an encoding called Punycode, similar in spirit to Unicode but with differ-
ent implementation details.

There are two types of top-level domains: country code domains (ccTLDs) and 
generic top level domains (gTLDs). ICANN, the Internet Corporation for As-
signed Names and Numbers, accredits various agencies to be part of its shared 
registry project for registering names in the gTLDs such as com, net, and org. As 
of this writing, you have something like 1,000 choices for a registrar and 21 gTLDs 
in which to register. Check icann.org for the definitive list. ICANN is in the pro-
cess of creating many more gTLDs.

To register for a ccTLD name, check the IANA (Internet Assigned Numbers Au-
thority) web page iana.org/cctld to find the registry in charge of a particular coun-
try’s registration.

Registering a second-level domain name

To obtain a second-level domain name, you must apply to a registrar for the ap-
propriate top-level domain. To complete the domain registration forms, you must 
choose a name that is not already taken and identify a technical contact person, 
an administrative contact person, and at least two hosts that will be name servers 
for your domain. Fees vary among registrars, but these days they are all generally 
quite inexpensive.

Creating your own subdomains

The procedure for creating a subdomain is similar to that for creating a second-
level domain, except that the central authority is now local (or more accurately, 
within your own organization). Specifically, the steps are as follows.

• Choose a name that is unique in the local context.
• Identify two or more hosts to be servers for your new domain.7

• Coordinate with the administrator of the parent domain.

7. Technically, since you make the rules for your subdomain, one or more will do.

  



ptg

568 Chapter 17 DNS: The Domain Name System

Parent domains should check to be sure that a child domain’s name servers are up 
and running before performing the delegation. If the servers are not working, a 
“lame delegation” results, and you might receive nasty email asking you to clean 
up your DNS act. Page 678 covers lame delegations in more detail.

17.6 DESIGNING YOUR DNS ENVIRONMENT

Many factors affect the design of a robust and efficient DNS system for your envi-
ronment: the size of your organization, whether you use RFC1918 private IP ad-
dresses on your local network, whether you use DHCP, whether you use Micro-
soft’s Active Directory, whether your internal network is routed or switched, and 
where your firewall is in relation to your DNS servers, to name a few. You may 
find it helpful to split the problem into three parts:

• Managing the namespace hierarchy: subdomains, multiple levels, etc.
• Serving the authoritative data about your site to the outside world
• Providing name lookups for your users

Namespace management

If your site is small and independent, the use of subdomains is neither necessary 
nor desirable unless your management requires them for some nontechnical rea-
son. On the other hand, in a medium-sized organization with several indepen-
dent sysadmin groups, subdomains can reduce the need for site-wide coordina-
tion. (Subdomains divided along geographic or departmental lines are most 
common.) A large organization has little hope of enforcing unique names 
throughout its site and therefore needs subdomains, perhaps at multiple levels.

Recent additions to DNS have defined zone-level records (SPF and DKIM/ADSP) 
that help to prevent other sites from forging mail that appears to originate from 
your domain. Optimal use of these features may require you to define subdo-
mains based on the sensitivity of the information your organization sends by 
email. See page 591 for more details.

The creation of subdomains requires communication and cooperation between 
the sysadmins responsible for the parent domain and those responsible for the 
subdomain. At the time the subdomain is delegated and set up, be sure to make a 
note of whom to contact if you want to add, change, or delete servers. Make sure 
your firewall does not block access to the subdomain’s servers if you want the 
subdomain to be accessible from outside your organization.

If you use subdomains to manage your namespace, run the doc (domain obscen-
ity control) tool from cron once a week to be sure that your delegations stay syn-
chronized and that you don’t inadvertently create lame delegations. The DNS 
tools section (see page 667) describes doc and several other tools that help keep 
DNS healthy.

  



ptg

Caching servers 569

D
N

SAuthoritative servers

The DNS specifications require at least two authoritative servers for each domain. 
Master and slave servers are authoritative; caching and stub servers are not. Ide-
ally, a site has multiple authoritative servers, each on a separate network and 
power circuit. Many sites maintain an authoritative server off-site, often hosted by 
their ISP. If your ISP does not offer this service, you can purchase it from a DNS 
service provider or trade with a local firm (ideally, not a competitor) or university.

A few years ago, Microsoft got caught violating the rule of separate networks. 
They had all three of their authoritative servers on the same subnet, and when the 
router that connected that subnet to the Internet failed, the servers became un-
reachable. Two hours later, as cached records expired, microsoft.com and all their 
other domains dropped off the Internet. The number of queries for Microsoft-
related names at the root servers increased to 25% of the total load (10,000 que-
ries/second), up from its typical value of 0.000001%. Problems persisted for a cou-
ple of days. When the dust settled, Microsoft had fixed the router and outsourced 
their DNS service.

Authoritative servers keep their data synchronized by using zone transfers. Use 
TSIG (transaction signature) keys to authenticate and control the zone transfers 
from your master server to your slave servers. See page 645 for TSIG configura-
tion information.

You may want the query responses provided by your authoritative servers to de-
pend to some extent on who is asking. A query from outside your network might 
receive one answer, while the same query originating inside your organization 
would receive a different (or more complete) answer. This configuration is called 
“split DNS” and is implemented at the zone level, not the name server level.

Each version of the zone is called a “view,” after the view statement with which it 
is configured in the BIND configuration file. External folks see one view of the 
data, and internal folks see another. This feature is commonly used to conceal the 
existence of internal machines from prying eyes and to ensure that machines us-
ing RFC1918 private IP addresses do not leak them onto the Internet. Views are 
tricky to debug, but BIND’s extensive logging capabilities, together with clever use 
of the dig command, can help; see page 667 for some hints.

NSD does not support views and split DNS. However, you can simulate this fea-
ture by running two instances of NSD with different configurations. (Of course, 
you can do that with BIND, too.)

Caching servers

Recursive caching servers answer local users’ queries about sites on the Internet. 
Each computer at your site should have ready access to a local caching server.

Some organizations use a hierarchy in which one or more machines are desig-
nated as “forwarders” through which the local subnets’ caching servers pass their 

  



ptg

570 Chapter 17 DNS: The Domain Name System

queries. The forwarders thereby develop a rich cache that is available to the entire 
site. Depending on the size of your site, forwarders can be independent or ar-
ranged in a hierarchy. The configuration of forwarders is covered on page 606 for 
BIND and on page 638 for Unbound.

If a caching server dies, the network essentially stops working for all the users that 
were primary clients of that server.8 (And your phone starts ringing.) Start your 
caching name servers with a script that restarts them after a few seconds if they 
die. Here is an example of a nanny script from a machine that runs named for 
several TLDs:

#!/bin/sh

PATH=/usr/local/sbin:/usr/sbin:/sbin:$PATH 
export PATH

trap " " 1 
while :; do

named -f -c /var/named/named.conf >> /var/log/named 2>&1 
< /dev/null

logger "named restart" 
sleep 15

done
exit

When named crashes, the script submits a syslog entry with the logger com-
mand, then waits 15 seconds (an arbitrary value) before restarting named. BIND 
ships with a nanny script in the contrib directory, although it’s not as necessary as 
it once was.

On Solaris, you can have SMF do your nannying for you; see page 97.

Hardware requirements

Name servers need to be well provisioned in three dimensions: CPU, memory, 
and network bandwidth. Of these, CPU is probably the least critical for now, but it 
will become more of an issue as DNSSEC is fully deployed and zone signing and 
signature validation are required. If possible, use dedicated machines for your 
busy name servers and separate authoritative servers from recursive ones.

Busy name servers get thousands of queries per second and therefore need multi-
ple network interfaces and high bandwidth connections. The traffic usually con-
sists of zillions of small UDP packets.

Recursive servers need enough memory to cache all the answers your users de-
mand. The best way to determine if a name server machine has enough memory 
is to run it for a while and watch the size of the name server process. It takes a 
week or two to converge on a stable size at which old cache records are expiring at 

8. If a client’s /etc/resolv.conf file lists multiple name servers, the resolver should fail over to one of the 
backup servers. But all too often, only a single name server is configured.

  



ptg

Summing up 571

D
N

Sabout the same rate that new ones are being inserted. Once stable, the system 
should not be swapping, and its paging rates should be reasonable.

If your name server runs on a dedicated machine, a good rule of thumb is for the 
machine to have double the amount of memory consumed by the name server 
daemon after it has been running for a week. The top and vmstat commands 
show memory usage; see Analyzing memory usage on page 1125 for more details.

Authoritative servers need enough memory to store all the data for which they are 
authoritative. Most sites can manage this, but servers for top-level domains and 
DNS hosting sites may need either huge memories or special software that facili-
tates storing part of the data on disk.

You can control the amount of resources that a name server uses through config-
uration options. See the list of tuning options for BIND on page 608 and for NSD 
on page 630.

Security

DNS security is covered in a whole section of its own, starting on page 642. We 
won’t duplicate that discussion here except to remind you that if you use a fire-
wall, be sure that your DNS system does not emit queries to which your firewall 
blocks the answers. Make sure that your DNS administrators have ongoing com-
munication with your security and network administrators.

By default, DNS uses UDP with random unprivileged source ports (>1023) for 
queries; the answers are UDP packets addressed to those same ports. With DNS-
SEC and internationalized domain names, DNS responses may be larger than the 
path MTU and therefore arrive fragmented. Ergo, your firewall should not block 
fragmented UDP packets. If a UDP query fails due to fragmentation, often it is re-
issued as a TCP query, so your firewall should be kind to TCP DNS replies, too.

Summing up

Exhibit B illustrates the design recommended in the previous paragraphs.

Exhibit B DNS server architecture

Queries from inside Queries from outside

inside your site 

outside world 

clientclient 

clientclient 

client
client 

caching caching

cachingforwarder

Queries

Answers

Queries

Answers

master

slave

slave

slave

slave

Queries

Queries 

Answers

Answers

  



ptg

572 Chapter 17 DNS: The Domain Name System

Exhibit B shows clear separation of caching servers (on the left) for your users and 
authoritative servers (on the right) for your data. Also note the use of the off-site 
slave server, which is highly recommended.

See page 457 for more 
information about 
anycast addressing.

The University of California at Berkeley (berkeley.edu) uses anycast IP addresses 
to replicate their caching servers. Clients all appear to contact the same set of 
servers, but the routing system (OSPF in this case) routes them to whichever 
caching server is nearest. This configuration results in easy and consistent client 
configuration and a robust DNS environment for users.

17.7 WHAT’S NEW IN DNS

One of the neatest new developments in the DNS world is the use of DNS records 
to authenticate and verify the integrity of email messages. This system, called Do-
mainKeys Identified Mail (DKIM), helps expose phishing (e.g., mail that appears 
to come from your bank and asks you to “verify” your account information). 
DKIM also helps detect spammers who forge the sender’s address.

In the DKIM system, originating email servers sign outbound messages with a 
cryptographic private key. The corresponding public key is published as a DNS 
TXT record. Email receivers can verify the integrity and origin of a message by 
looking up the DKIM (public) key of the message’s ostensible origin and checking 
it against the message’s signatures.

The DKIM system does not require a change to your DNS software, but it does 
require the cooperation of your outgoing email server (to sign messages) and in-
coming email server or mail reader (to verify the signatures). From DNS’s point of 
view, only the configuration and data files need to change to support a new sub-
domain called _domainkey.

Even better, a construct called the Author Domain Signing Practice (ADSP) dec-
laration allows a site to say whether it signs all, part, or none of its outgoing email 
for each DNS zone. Receiving sites can use this policy statement to decide how to 
treat unsigned messages and messages whose signatures cannot be verified.

For example, a bank that generates several categories of email (e.g., marketing 
messages, account statements, and wire transfer instructions) could create a sub-
domain for each function and institute different policies for each. Receivers can 
then ignore missing or mismatched signatures on advertisements but reject mes-
sages that ought to be secure.

This mechanism for expressing policy is similar to the Sender Policy Framework 
(SPF) system, which defines a way for organizations to publish the identities of 
their valid mail servers in DNS so that spammers who try to forge the From ad-
dress can be recognized and their email rejected.

Also on our “what’s new” list is the upcoming BIND 10, the next generation of the 
BIND software developed by ISC, the Internet Systems Consortium, which has 

  



ptg

What’s new in DNS 573

D
N

Smaintained BIND since version 4. The BIND 10 effort has been funded by spon-
soring organizations around the world, mostly domain registrars. 

BIND 10 will continue to be an open source reference implementation of DNS. It 
will be partially built on BIND 9 and will focus on improving modularity, custom-
izability, clusterization, integration, resilience, and run-time control.

BIND 9 and earlier versions stored the DNS database in memory; BIND 10 will 
support multiple data storage systems. Another planned feature is a nice user in-
terface API so folks can build GUI interfaces to populate zones and control the 
software. See isc.org/bind10 for details.

Several of our older “what’s new” issues from previous editions are still in the 
proposed-standard-but-not-yet-widely-adopted pile. Some examples are DNS-
SEC-bis (security), IDN (internationalized domain names), and IPv6. These ini-
tiatives are progressing, but slowly. We include them at the end of Table 17.4, 
which lists new topics, relevant RFCs, and references to the pages in this book 
where the details are covered.

Some of these new features are enormous projects that the IETF has not yet fin-
ished standardizing. The working groups that are writing the standards have good 
writers but lack vigilant code warriors, leading to the occasional specification that 
is difficult or even impossible to implement. The current releases of BIND, NSD, 
and Unbound include most of the new features.

IPv6 is described 
in more detail in 
Chapter 14.

Two massive new features, IPv6 support and DNSSEC, warrant a bit of commen-
tary. IPv6 increases the length of IP addresses from 32 bits to 128 bits. If ever fully 
implemented, it will have an enormous impact on the Internet. BIND, NSD, and 
Unbound support the pieces of IPv6 that have been standardized so far, but it 
appears unlikely that IPv6 will be widely deployed during the lifetime of this 

Table 17.4 Recent developments in DNS and BIND

Page RFCs Description

603 5001 NSID, name server identification for anycast servers
591 5518, 5016, 

4871, 4686
DKIM requirements, signatures, third-party signing, 
ADSP sender signing practice

590 4470 SPF mail server identification
594 4255 SSHFP, SSH host key fingerprint
574 5198, 4952, 4690, 

4290, 4185, 3492
Internationalized domain names (via Punycode, in top-
level domains, exchange format)

482 4472, 4339, 
4159, 3901

IPv6, operational issues, host configuration, ip6.arpa 
not ip6.int for reverse mappings, current best practices

648 5155, 5011, 
4641, 4509, 
4470, 4033–5

DNSSEC, authentication, delegation signer (DS) 
resource records, operational practices, trust anchors, 
denial of existence (NXDOMAIN)

  



ptg

574 Chapter 17 DNS: The Domain Name System

book. Therefore, our coverage of IPv6 support is brief. There’s enough in this 
chapter to give you the general flavor, but not enough to enable you to migrate 
your site to IPv6 and configure DNS for it.

The DNSSEC standard adds authentication data to the DNS database and its serv-
ers. It uses public key cryptography to verify the source and integrity of DNS data 
and uses DNS to distribute keys as well as host data. 

Sites that want to deploy DNSSEC-signed zones will run up against a bootstrap-
ping problem until the root and top-level domains are signed, because the DNS-
SEC trust model requires signatures to be chained from the root down. However, 
a new stopgap scheme called DLV, domain lookaside validation, is poised to step 
in and glue islands of trust together until the root and gTLDs are fully onboard 
with DNSSEC. See page 661 for details.

The introduction of internationalized domain names, which allow the use of non-
English characters, is proceeding by way of a hack that maps Unicode characters 
back to ASCII. A system called Punycode performs the mapping uniquely and 
reversibly by using an algorithm known as Bootstring; see RFC3492 for details. 
Internationalized domain names effectively reduce the maximum length (both 
per-component and total) allowed for DNS names. The Punycode representation 
of a name begins with the string xf--, so if you see strange queries that start with 
those four characters, you’ll know what they represent.

Each of these major issues (IPv6, DNSSEC, and internationalization) significantly 
increases the size of DNS data records, thereby making it more likely that DNS 
will bump into limits on UDP packet sizes and require the EDNS0 (Extended 
DNS, version 0) protocol to increase its packet size from 512 bytes (the default) to 
a larger value, say 4,096 bytes. As of 2009, statistics collected at the K root name 
server show that approximately 35% of queries are not using EDNS0 and so would 
receive truncated or fragmented DNS answers from sites that use larger packets.9

17.8 THE DNS DATABASE

A zone’s DNS database is a set of text files maintained by the system administrator 
on the zone’s master name server. These text files are often called zone files. They 
contain two types of entries: parser commands (things like $ORIGIN and $TTL) 
and resource records. Only the resource records are really part of the database; the 
parser commands just provide some shorthand ways to enter records. 

Commands in zone files

Zone file commands 
are standardized in 
RFCs 1035 and 2308.

Commands can be embedded in a zone files to make them more readable and 
easier to maintain. The commands either influence the way that the parser inter-
prets subsequent records or they expand into multiple DNS records themselves. 

9. See k.root-servers.org/statistics/GLOBAL/monthly for current data.

  



ptg

Commands in zone files 575

D
N

SOnce a zone file has been read and interpreted, none of these commands remain a 
part of the zone’s data (at least, not in their original forms). 

Three commands are standard in DNS, and a fourth, $GENERATE, is found only 
in BIND. See page 587 for an example of $GENERATE in action. The standard 
directives are

$ORIGIN domain-name 
$INCLUDE filename [origin] 
$TTL default-ttl

Commands must start in the first column and occur on a line by themselves.

Zone files are read and parsed from top to bottom in a single pass. As the name 
server reads a zone file, it adds the default domain (or “origin”) to any names that 
are not already fully qualified. The origin defaults to the domain name specified 
in the name server’s configuration file. However, you can set the origin or change 
it within a zone file by using the $ORIGIN directive.

The use of relative names where fully qualified names are expected saves lots of 
typing and makes zone files much easier to read. 

Many sites use the $INCLUDE directive in their zone database files to separate 
overhead records from data records, to separate logical pieces of a zone file, or to 
keep cryptographic keys in a file with restricted permissions. The syntax of the 
$INCLUDE directive is

$INCLUDE filename [origin]

The specified file is read into the database at the point of the $INCLUDE directive. 
If filename is not an absolute path, it is interpreted relative to the home directory 
of the running name server. 

If you supply an origin value, the parser acts as if an $ORIGIN directive precedes 
the contents of the file being read. Watch out: the origin does not revert to its 
previous value after the $INCLUDE has been executed. You’ll probably want to 
reset the origin, either at the end of the included file or on the line following the 
$INCLUDE statement.

The $TTL directive sets a default value for the time-to-live field of the records that 
follow it. It must be the first line of the zone file. The default units for the $TTL
value are seconds, but you can also qualify numbers with h for hours, m for min-
utes, d for days, or w for weeks. For example, the lines

$TTL 86400 
$TTL 24h 
$TTL 1d

all set the $TTL to one day.

  



ptg

576 Chapter 17 DNS: The Domain Name System

Resource records 

Each zone of the DNS hierarchy has a set of resource records associated with it. 
The basic format of a resource record is

[name] [ttl] [class] type data

Fields are separated by whitespace (tabs or spaces) and can contain the special 
characters shown in Table 17.5.

The name field identifies the entity (usually a host or domain) that the record 
describes. If several consecutive records refer to the same entity, the name can be 
omitted after the first record as long as the subsequent records begin with white-
space. If it is present, the name field must begin in column one.

A name can be either relative or absolute. Absolute names end with a dot and are 
complete. Internally, the software deals only with absolute names; it appends the 
current domain and a dot to any name that does not already end in a dot. This 
feature allows names to be shorter, but it also invites mistakes.

For example, if cs.colorado.edu was the current domain, the name “anchor” would 
be interpreted as “anchor.cs.colorado.edu.”. If by mistake you entered the name as 
“anchor.cs.colorado.edu”, the lack of a final dot would still imply a relative name, 
resulting in the name “anchor.cs.colorado.edu.cs.colorado.edu.”—this kind of 
mistake is common.

The ttl (time to live) field specifies the length of time, in seconds, that the data 
item can be cached and still be considered valid. It is often omitted, except in the 
root server hints file. It defaults to the value set by the $TTL directive (see page 
596 for format details), which must be the first line of the zone data file.

See Chapter 19 for 
more information 
about NIS.

Increasing the value of the ttl parameter to about a week substantially reduces 
network traffic and DNS load. However, once records have been cached outside 
your local network, you cannot force them to be discarded. If you plan a massive 
renumbering and your old ttl was a week, lower the $TTL value (e.g., to one hour) 
at least a week before your intended renumbering. This preparatory step makes 
sure that records with week-long ttls are expired and replaced with records that 

Table 17.5 Special characters used in resource records

Character Meaning

; Introduces a comment 
@ The current zone name 
( ) Allows data to span lines
* Wild carda (name field only)

a. See page 584 for some cautionary statements.

  



ptg

Resource records 577

D
N

Shave one-hour ttls. You can then be certain that all your updates will propagate 
together within an hour. Set the ttls back to their original value after you’ve com-
pleted your update campaign.

Some sites set the TTL on the records for Internet-facing servers to a low value so 
that if a server experiences problems (network failure, hardware failure, denial of 
service attack, etc.), the administrators can respond by changing the server’s 
name-to-IP-address mapping. Because the original TTLs were low, the new values 
will propagate quickly. For example, the name google.com has a five-minute TTL, 
but Google’s name servers have a TTL of four days (345,600 seconds):

google.com. 300 IN A 209.85.171.100 
google.com. 345600 IN NS ns1.google.com. 
ns1.google.com. 345600 IN A 216.239.32.10

We used the dig command to recover this data; the output is truncated here.

The class specifies the network type. Three values are recognized:

• IN for the Internet, which is the default
• HS for Hesiod, a directory service used locally by some sites
• CH, used internally by name servers to identify themselves

The default value for the class is IN. It is often specified explicitly in zone data files 
even though as the default, it can be omitted. Hesiod, developed at MIT, is a data-
base service built on top of BIND. 

CH originally stood for ChaosNet, a now-obsolete network protocol formerly 
used by Symbolics Lisp machines. Today, only two pieces of identification data are 
normally tucked away in the CH class: the version number of the name server 
software and the name of the host on which the server is running. These data 
nuggets can be extracted with dig or drill as shown on page 598.

Administrators and hackers use the name server version number to identify serv-
ers in need of upgrades, and admins use the host identification to debug name 
servers that are replicated through the use of anycast routing. Making this infor-
mation available through the CH class was originally a feature of BIND, but the 
convention has now been adopted by other DNS implementations as well.

Many different types of DNS records are defined, but fewer than 10 are in com-
mon use; IPv6 adds a few more. We divide the resource records into four groups:

• Zone infrastructure records identify domains and their name servers.
• Basic records map between names and addresses and route mail.10

• Security records add authentication and signatures to zone files.
• Optional records provide extra information about hosts or domains.

10. MX mail routing records fit in both the zone infrastructure pile and the basic records pile because they 
can refer to entire zones as well as individual hosts.

  



ptg

578 Chapter 17 DNS: The Domain Name System

The contents of the data field depend on the record type. A DNS query for a 
particular domain and record type returns all matching resource records from the 
zone file. Table 17.6 lists the common record types.

Some record types are obsolete, experimental, or not widely used. See your name 
server’s implementation documentation for a complete list. Most records are 
maintained by hand (by editing text files), but the security resource records re-
quire cryptographic processing and so must be managed with software tools. 
These records are described in the DNSSEC section beginning on page 648.

The order of resource records in the zone file is arbitrary, but traditionally the 
SOA record is first, followed by the NS records. The records for each host are 
usually kept together. It’s common practice to sort by the name field, although 
some sites sort by IP address so that it’s easier to identify unused addresses. The 
zone files on slave servers are not managed by humans, but rather are written by 
the name server software; the record order is scrambled.

Table 17.6 DNS record types

Type Name Function

Zo
ne SOA Start Of Authority Defines a DNS zone 

NS Name Server Identifies servers, delegates subdomains

Ba
sic

A IPv4 Address Name-to-address translation
AAAA IPv6 Address Name-to-IPv6-address translation
PTR Pointer Address-to-name translation
MX Mail Exchanger Controls email routing

Se
cu

rit
y 

an
d 

D
N

SS
EC

DS Delegation Signer Hash of signed child zone’s key-signing key 
DNSKEY Public Key Public key for a DNS name
NSEC Next Secure Used with DNSSEC for negative answers 
NSEC3a Next Secure v3 Used with DNSSEC for negative answers
RRSIG Signature Signed, authenticated resource record set
DLV Lookaside Nonroot trust anchor for DNSSEC
SSHFP SSH Fingerprint SSH host key, allows verification via DNS
SPF Sender Policy Identifies mail servers, inhibits forging
DKIM Domain Keys Verify email sender and message integrity

O
pt

io
na

l CNAME Canonical Name Nicknames or aliases for a host
SRV Services Gives locations of well-known services
TXT Text Comments or untyped informationb

a. The original NSEC system allows hackers handy with the dig command to easily list all of a zone’s 
records. NSEC3 has fixed this weakness but is more expensive to compute; both are currently in use.

b. TXT records are increasingly being used to try out new ideas without having to get full IETF blessing 
for new record types. For example, SPF and DKIM records were first implemented as TXT records.

  



ptg

The SOA record 579

D
N

SAs we describe each type of resource record in detail in the next sections, we in-
spect some sample records from the atrust.com domain’s data files. The default 
domain in this context is “atrust.com.”, so a host specified as “bark” really means 
“bark.atrust.com.”.

See page 449 for 
more information 
about RFCs.

The format and interpretation of each type of resource record is specified by the 
IETF in the RFC series. In the upcoming sections, we list the specific RFCs rele-
vant to each record (along with their years of origin) in a margin note.

The SOA record

SOA records 
are specified in 
RFC1035 (1987).

An SOA (Start of Authority) record marks the beginning of a zone, a group of 
resource records located at the same place within the DNS namespace. The data 
for a DNS domain usually includes at least two zones: one for translating host-
names to IP addresses, called the forward zone, and others that map IP addresses 
back to hostnames, called reverse zones.

Each zone has exactly one SOA record. The SOA record includes the name of the 
zone, the primary name server for the zone, a technical contact, and various time-
out values. Comments are introduced by a semicolon. Here’s an example:

; Start of authority record for atrust.com 
atrust.com. IN SOA ns1.atrust.com. hostmaster.atrust.com. ( 

2009070200 ; Serial number 
10800 ; Refresh (3 hours)
1200 ; Retry (20 minutes)
3600000 ; Expire (40+ days)
3600 ) ; Minimum (1 hour)

For configuration 
details see page 597 for 
named.conf and page 
625 for nsd.conf.

The name field of the SOA record (atrust.com. in this example) often contains the 
symbol @, which is shorthand for the name of the current zone. The value of @ is 
the domain name specified in the zone statement of named.conf or in the zone’s 
name entry in the nsd.conf file. This value can be changed from within the zone 
file with the $ORIGIN parser directive (see page 596).

This example has no ttl field. The class is IN for Internet, the type is SOA, and the 
remaining items form the data field. The numerical parameters in parentheses are 
timeout values and are often written on one line without comments.

“ns1.atrust.com.” is the zone’s master name server.11

“hostmaster.atrust.com.” is the email address of the technical contact in the for-
mat “user.host.” rather than the standard user@host. Just replace that first dot with 
an @ and remove the final dot if you need to send mail to a domain’s administra-
tor. Sites often use an alias such as admin or hostmaster in place of an actual login 
name. The sysadmin responsible for hostmaster duties may change, and it’s easier 
to change one entry in the aliases file (see page 756) than to change all your zone 
files when you need to update the contact person.

11. Actually, any name server for the zone can be listed in the SOA record unless you are using dynamic 
DNS. In that case, the SOA record must name the master server.

  



ptg

580 Chapter 17 DNS: The Domain Name System

The parentheses continue the SOA record over several lines. 

The first numeric parameter is the serial number of the zone’s configuration data. 
The serial number is used by slave servers to determine when to get fresh data. It 
can be any 32-bit integer and should be incremented every time the data file for 
the zone is changed. Many sites encode the file’s modification date in the serial 
number. For example, 2009070200 is the first change to the zone on July 2, 2009.

Serial numbers need not be continuous, but they must increase monotonically. If 
by accident you set a really large value on the master server and that value is trans-
ferred to the slaves, then correcting the serial number on the master will not work. 
The slaves request new data only if the master’s serial number is larger than theirs.

There are two ways to fix this problem.

• One fix is to exploit the properties of the sequence space in which the 
serial numbers live. This procedure involves adding a large value (231) to 
the bloated serial number, letting all the slave servers transfer the data, 
and then setting the serial number to just what you want. This weird 
arithmetic, with explicit examples, is covered in detail in the O’Reilly 
DNS book; RFC1982 describes the sequence space.

• A sneaky but more tedious way to fix the problem is to change the serial 
number on the master, kill the slave servers, remove the slaves’ backup 
data files so they are forced to reload from the master, and restart the 
slaves. It does not work to just remove the files and reload; you must kill 
and restart the slave servers. This method gets hard if you follow best-
practices advice and have your slave servers geographically distributed, 
especially if you are not the sysadmin for those slave servers.

It is a common mistake to change the data files but forget to update the serial 
number. Your name server will punish you by failing to propagate your changes to 
the slave servers.

The next four entries in the SOA record are timeout values, in seconds, that con-
trol how long data can be cached at various points throughout the world-wide 
DNS database. Times can also be expressed in units of minutes, hours, days, or 
weeks by addition of a suffix of m, h, d, or w, respectively. For example, 1h30m
means 1 hour and 30 minutes. Timeout values represent a tradeoff between effi-
ciency (it’s cheaper to use an old value than to fetch a new one) and accuracy (new 
values should be more accurate). The four timeout fields are called refresh, update, 
expire, and minimum.

The refresh timeout specifies how often slave servers should check with the master 
to see if the serial number of the zone’s configuration has changed. Whenever the 
zone changes, slaves must update their copy of the zone’s data. The slave compares 
the serial numbers; if the master’s serial number is larger, the slave requests a zone 
transfer to update the data. Common values for the refresh timeout range from 
one to six hours (3,600 to 21,600 seconds).

  



ptg

NS records 581

D
N

SInstead of just waiting passively for slave servers to time out, master servers for 
BIND (always) and NSD (if so configured) notify their slaves every time a zone 
changes. It’s possible for an update notification to be lost because of network con-
gestion, so the refresh timeout should still be set to a reasonable value.

If a slave server tries to check the master’s serial number but the master does not 
respond, the slave tries again after the retry timeout period has elapsed. Our expe-
rience suggests that 20–60 minutes (1,200–3,600 seconds) is a good value.

If a master server is down for a long time, slaves will try to refresh their data many 
times but always fail. Each slave should eventually decide that the master is never 
coming back and that its data is surely out of date. The expire parameter deter-
mines how long the slaves will continue to serve the domain’s data authoritatively 
in the absence of a master. The system should be able to survive if the master 
server is down for a few days, so this parameter should have a longish value. We 
recommend a week to a month or two.

The minimum parameter in the SOA record sets the time to live for negative an-
swers that are cached. The default for positive answers (i.e., actual records) is 
specified at the top of the zone file with the $TTL directive. Experience suggests 
values of several hours to a few days for $TTL and an hour to a few hours for the 
minimum. BIND silently discards any minimum values greater than 3 hours.

The $TTL, expire, and minimum parameters eventually force everyone that uses 
DNS to discard old data values. The initial design of DNS relied on the fact that 
host data was relatively stable and did not change often. However, DHCP, mobile 
hosts, and the Internet explosion have changed the rules. Name servers are des-
perately trying to cope with the dynamic update and incremental zone transfer 
mechanisms described later. For more information about TTLs, see page 576.

NS records

NS records 
are specified in 
RFC1035 (1987).

NS (name server) records identify the servers that are authoritative for a zone 
(that is, all the master and slave servers) and delegate subdomains to other organi-
zations. NS records are usually placed directly after the zone’s SOA record.

The format is
zone [ttl] [IN] NS hostname

For example:
NS ns1.atrust.com. 
NS ns2.atrust.com.

booklab NS ubuntu.booklab.atrust.com. 
NS ns1.atrust.com.

The first two lines define name servers for the atrust.com domain. No name is 
listed because it is the same as the name field of the SOA record that precedes the 
records; the name can therefore be left blank. The class is also not listed because 
IN is the default and does not need to be stated explicitly.

  



ptg

582 Chapter 17 DNS: The Domain Name System

The third and fourth lines delegate a subdomain called booklab.atrust.com to the 
name servers ubuntu.booklab and ns1. These records are really part of the book-
lab subdomain, but they must also appear in the parent zone, atrust.com, in order 
for the delegation to work. In a similar fashion, NS records for atrust.com are 
stored in the .com zone file to define the atrust.com subdomain and identify its 
servers. The .com servers refer queries about hosts in atrust.com to the servers 
listed in NS records for atrust.com within the .com domain. 

See page 596 for 
more information 
about delegation.

The list of name servers in the parent zone should be kept up to date with those in 
the zone itself, if possible. Nonexistent servers listed in the parent zone can delay 
name service, although clients will eventually stumble onto one of the functioning 
name servers. If none of the name servers listed in the parent exist in the child, a 
so-called lame delegation results; see page 678.

Extra servers in the child are OK as long as at least one of the child’s servers still 
has an NS record in the parent. Check your delegations with dig or drill occasion-
ally to be sure they specify an appropriate set of servers; see page 677.

A records

A records are specified 
in RFC1035 (1987). 

A (address) records are the heart of the DNS database. They provide the mapping 
from hostnames to IP addresses that was formerly specified in the /etc/hosts file. 
A host usually has one A record for each of its network interfaces. The format is

hostname [ttl] [IN] A ipaddr

For example:
ns1 IN A 63.173.189.1

In this example, the name field is not dot-terminated, so the name server adds the 
default domain to it to form the fully qualified name “ns1.atrust.com.”. The record 
associates that name with the IP address 63.173.189.1. 

PTR records

PTR records 
are specified in 
RFC1035 (1987).

PTR (pointer) records map from IP addresses back to hostnames. As described on 
page 566, reverse mapping records live under the in-addr.arpa domain and are 
named with the bytes of the IP address in reverse order. For example, the zone for 
the 189 subnet in this example is 189.173.63.in-addr.arpa.

The general format of a PTR record is
addr [ttl] [IN] PTR hostname

For example, the PTR record in the 189.173.63.in-addr.arpa zone that corre-
sponds to ns1’s A record above is

1 IN PTR ns1.atrust.com.

The name 1 does not end in a dot and therefore is relative. But relative to what? 
Not atrust.com—for this sample record to be accurate, the default zone has to be 
“189.173.63.in-addr.arpa.”. 

  



ptg

MX records 583

D
N

SYou can set the zone by putting the PTR records for each subnet in their own file. 
The default domain associated with the file is set in the name server configuration 
file. Another way to do reverse mappings is to include records such as

1.189 IN PTR ns1.atrust.com.

with a default domain of 173.63.in-addr.arpa. Some sites put all reverse records in 
the same file and use $ORIGIN directives (see page 596) to specify the subnet. 
Note that the hostname ns1.atrust.com ends with a dot to prevent the default do-
main, 173.63.in-addr.arpa, from being appended to its name.

Since atrust.com and 189.173.63.in-addr.arpa are different regions of the DNS 
namespace, they constitute two separate zones. Each zone must have its own SOA 
record and resource records. In addition to defining an in-addr.arpa zone for each 
real network, you should also define one that takes care of the loopback network 
(127.0.0.0), at least if you run BIND. See page page 619 for an example.

This all works fine if subnets are defined on byte boundaries. But how do you 
handle the reverse mappings for a subnet such as 63.173.189.0/26, where that last 
byte can be in any of four subnets: 0-63, 64-127, 128-191, or 192-255? An elegant 
hack defined in RFC2317 exploits CNAME resource records to accomplish this 
feat; see page 585.

The reverse mappings provided by PTR records are used by any program that 
authenticates inbound network traffic. For example, sshd may allow12 remote log-
ins without a password if the machine of origin is listed, by name, in a user’s 
~/.shosts file. When the destination host receives a connection request, it knows 
the source machine only by IP address. It uses DNS to convert the IP address to a 
hostname, which is then compared to the appropriate file. netstat, sendmail, 
tcpd, sshd, X Windows, and ftpd all do reverse mappings to get hostnames from 
IP addresses.

It’s important that A records match their corresponding PTR records. Mis-
matched and missing PTR records cause authentication failures that can slow 
your system to a crawl. This problem is annoying in itself; it can also facilitate 
denial of service attacks against any application that requires the reverse mapping 
to match the A record.

MX records

MX records 
are specified in 
RFC1035 (1987).

The mail system uses mail exchanger (MX) records to route mail more efficiently. 
An MX record preempts the destination specified by the sender of a message, in 
most cases directing the message to a hub at the recipient’s site. This feature puts 
the flow of mail into a site under the control of local sysadmins instead of senders.

The format of an MX record is
name [ttl] [IN] MX preference host …

12. But really shouldn’t, for security reasons.

  



ptg

584 Chapter 17 DNS: The Domain Name System

The records below route mail addressed to user@somehost.atrust.com to the ma-
chine mailserver.atrust.com if it is up and accepting email. If mailserver is not 
available, mail goes to mail-relay3.atrust.com. If neither machine named in the 
MX records is accepting mail, the fallback behavior is to deliver the mail as origi-
nally addressed.

somehost IN MX 10 mailserver.atrust.com. 
IN MX 20 mail-relay3.atrust.com.

Hosts with low preference values are tried first: 0 is the most desirable, and 65,535 
is as bad as it gets. (It might seem that this example configuration is not very 
robust because both mail servers are at atrust.com. However, the two servers are 
in fact on different networks and are not co-located.)

MX records are useful in many situations:

• When you have a central mail hub for incoming mail
• When you want to filter mail for spam or viruses before delivering it
• When the destination host is down
• When the destination host isn’t directly reachable from the Internet
• When the local sysadmin knows where mail should be sent better than 

your correspondents do (i.e., always)

Every host that the outside world knows about should have MX records. Other 
entities in DNS need them, too. For example, hosts that can never or should never 
receive email (e.g., network printers) should have MX records. The domain itself 
should have an MX record that points to a mail hub machine so that mail to 
user@domain will work as senders expect. (But note that this configuration does 
require that usernames be unique across all machines in the domain.)

A machine that accepts email on behalf of another host may need to configure its 
mail transport program to enable this function. See pages 784 and 835 for a dis-
cussion of how to set up this configuration on sendmail and Postfix email servers, 
respectively.

Wild card MX records are also sometimes seen in the DNS database:
* IN MX 10 mailserver.atrust.com.

At first glance, this record seems like it would save lots of typing and add a default 
MX record for all hosts. But wild card records don’t quite work as you might ex-
pect. They match anything in the name field of a resource record that is not al-
ready listed as an explicit name in another resource record. 

Thus, you cannot use a star to set a default value for all your hosts. But perversely, 
you can use it to set a default value for names that are not your hosts. This setup 
causes lots of mail to be sent to your hub only to be rejected because the hostname 
matching the star really does not belong to your domain. Ergo, avoid wild card 
MX records.

  



ptg

The CNAME hack 585

D
N

SCNAME records

CNAME records 
are specified in 
RFC1035 (1987).

CNAME records assign additional names to a host. These nicknames are com-
monly used either to associate a function with a host or to shorten a long host-
name. The real name is sometimes called the canonical name (hence, “CNAME”). 
Some examples:

ftp IN CNAME anchor
kb IN CNAME kibblesnbits

The format of a CNAME record is
nickname [ttl] [IN] CNAME hostname

When DNS software encounters a CNAME record, it stops its query for the nick-
name and requeries for the real name. If a host has a CNAME record, other re-
cords (A, MX, NS, etc.) for that host must refer to its real name, not its nick-
name.13

CNAME records can nest eight deep. That is, a CNAME record can point to an-
other CNAME, and that CNAME can point to a third CNAME, and so on, up to 
seven times; the eighth target must be the real hostname. If you use CNAMEs, the 
PTR record should point to the real name, not a nickname.

You can avoid CNAMEs altogether by publishing A records for both a host’s real 
name and its nicknames. This configuration makes lookups slightly faster because 
the extra layer of indirection is not needed.

The CNAME hack

See page 460 for 
more information 
about CIDR.

CNAMEs are also used to torture the existing semantics of DNS into supporting 
reverse zones for networks that are not subnetted on a byte boundary. Before 
CIDR addressing was commonplace, most subnet assignments were on byte 
boundaries or within the same organization, and the reverse delegations were easy 
to manage. For example, if the class B network 128.138 was subnetted into a set of 
class C-like networks, each subnet would make a tidy package for the in-addr.arpa 
domain. The reverse zone for the 243 subnet would be 243.138.128.in-addr.arpa.

But what happens if the 243 subnet is further divided into, say, four pieces as a /26 
network? If all four pieces are assigned to the same organization, there is actually 
no problem. The four subnets can still share a single file that contains all of their 
PTR records. However, if the 243 subnet is assigned to an ISP that wants to dele-
gate each /26 network to a different customer, a more complicated solution is nec-
essary. The ISP must either maintain the reverse records on behalf of each client, 
or it must find a way to take the third octet of the IP address (243 in this case) and 
divide it into four different pieces that can be delegated independently.

13. This rule for CNAMEs was explicitly relaxed for DNSSEC, which adds digital signatures to each DNS 
resource record set. The RRSIG record for the CNAME refers to the nickname.

  



ptg

586 Chapter 17 DNS: The Domain Name System

When an administrative boundary falls in the middle of a byte, you have to be 
sneaky. You must also work closely with the domain above or below you. The trick 
is this: for each possible host address in the natural in-addr.arpa zone, add a 
CNAME that deflects the lookup to a zone controlled by the owner of the appro-
priate subnet. This scheme makes for messy zone files on the parent, but it does let 
you delegate authority to the actual users of each subnet. 

Here is the scheme in gory detail. The parent organization (in our case, the ISP) 
creates CNAME records for each possible IP address with an extra fake compo-
nent (dot-separated chunk) that represents the subnet. For example, in the /26 
scenario just described, the first quarter of the addresses would have a “0-63” 
component, the second quarter would have a “64-127” component, and so on. 
Here’s what it looks like:

$ORIGIN 243.138.128.in-addr.arpa. 
1 IN CNAME 1.0-63
2 IN CNAME 2.0-63
… 
63 IN CNAME 63.0-63
64 IN CNAME 64.64-127
65 IN CNAME 65.64-127
…

To delegate the 0-63 piece of the reverse zone to the customer that has been as-
signed that subnet, we’d add the following NS records:

0-63 IN NS ns1.customer1.com.
0-63 IN NS ns2.customer1.com.
…

customer1.com’s site would have a zone file that contained the reverse mappings 
for the 0-63.243.138.128.in-addr.arpa zone.

For example,
1 IN PTR host1.customer1.com.
2 IN PTR host2.customer1.com.
…

By adding this extra component, we create a new “cut” at which to perform dele-
gation. When someone looks up the reverse mapping for 128.138.243.1, for exam-
ple, the CNAME record at 1.243.138.128.in-addr.arpa refocuses the search to the 
name 1.0-63.243.138.128.in-addr.arpa, which is controlled by the customer.

The customer’s files are clean; it’s only the ISP that must deal with an inelegant 
configuration mess. But things can get even more complicated. Customer1 could 
itself be an ISP that wants to further subdivide its addresses. But that’s OK: chains 
of CNAMEs can be up to eight links long, and since a byte has only eight bits, we 
can never run out. CNAME chains are discouraged but not forbidden in the 
RFCs; they do slow down name resolution since each link in a CNAME chain 
causes the link to be followed and a new query for the target to be initiated.

  



ptg

SRV records 587

D
N

SEarly in the life of the CNAME hack, the $GENERATE command was added to 
BIND’s repertoire to facilitate the creation of resource records in the parent zone. 
For example, the following lines produce the records for the first subnet:

$ORIGIN 243.138.128.in-addr.arpa. 
$GENERATE 0-63 $ CNAME $.0-63 
0-63 NS ns1.customer1.com.
0-63 NS ns2.customer1.com.

The $ in the $GENERATE command (itself a BIND extension) iterates from 0 to 63 
and creates 64 different CNAME records. The other three /26 networks would be 
handled similarly.

SRV records

SRV records 
are specified in 
RFC2782 (2000).

An SRV record specifies the location of services within a domain. For example, 
the SRV record lets you query a remote domain for the name of its FTP server. 
Before SRV, you had to hope the remote sysadmins had followed the prevailing 
custom and added a CNAME for “ftp” to their server’s DNS records. 

SRV records make more sense than CNAMEs for this application and are cer-
tainly a better way for sysadmins to move services around and control their use. 
However, SRV records must be explicitly sought and parsed by clients, so it will be 
a while before their effects are really felt. They are used extensively by Windows.

SRV records resemble generalized MX records with fields that let the local DNS 
administrator steer and load-balance connections from the outside world. The 
format is

service.proto.name [ttl] [IN] SRV pri wt port target

where service is a service defined in the IANA assigned numbers database (see 
iana.org/numbers.htm), proto is either tcp or udp, name is the domain to which 
the SRV record refers, pri is an MX-style priority, wt is a weight used for load 
balancing among several servers, port is the port on which the service runs, and 
target is the hostname of the server that provides the service. To avoid a second 
round trip, DNS servers usually return the A record of the target with the answer 
to a SRV query. 

A value of 0 for the wt parameter means that no special load balancing should be 
done. A value of “.” for the target means that the service is not run at this site.

Here is an example snitched from the RFC2782 and adapted for atrust.com:
_ftp._tcp SRV 0 0 21 ftp-server.atrust.com.

; 1/4 of the connections to old box, 3/4 to the new one 
_ssh._tcp SRV 0 1 22 old-slow-box.atrust.com.

SRV 0 3 22 new-fast-box.atrust.com.

; main server on port 80, backup on new box, port 8000 
_http._tcp SRV 0 0 80 www-server.atrust.com. 

SRV 10 0 8000 new-fast-box.atrust.com.

  



ptg

588 Chapter 17 DNS: The Domain Name System

; so both http://www.atrust.com and http://atrust.com work 
_http._tcp.www SRV 0 0 80 www-server.atrust.com. 

SRV 10 0 8000 new-fast-box.atrust.com.

; block all other services (target = .)
*._tcp SRV 0 0 0 .
*._udp SRV 0 0 0 .

This example illustrates the use of both the weight parameter (for SSH) and the 
priority parameter (HTTP). Both SSH servers are used, with the work being split 
between them. The backup HTTP server is only used when the principal server is 
unavailable. All other services are blocked, both for TCP and UDP. However, the 
fact that other services do not appear in DNS does not mean that they are not 
actually running, just that you can’t locate them through DNS.

MS Exchange servers use SRV records to help Outlook clients find them and to 
provide automatic configuration for Outlook Anywhere. The SRV records are the 
fourth thing tried, after Active Directory and some predefined auto-discovery 
URLs. Windows uses a GUI tool called DNS Manager to set up SRV records.

TXT records

TXT records 
are specified in 
RFC1035 (1987).

A TXT record adds arbitrary text to a host’s DNS records. For example, some sites 
have a TXT record that identifies them:

IN TXT "Applied Trust Engineering, Boulder, CO, USA"

This record directly follows the SOA and NS records for the atrust.com zone and 
so inherits the name field from them.

The format of a TXT record is
name [ttl] [IN] TXT info …

All info items must be quoted. You can use a single quoted string or multiple 
strings that are individually quoted. Be sure the quotes are balanced—missing 
quotes wreak havoc with your DNS data because all the records between the miss-
ing quote and the next occurrence of a quote mysteriously disappear.

As with other resource records, servers return TXT records in random order. To 
encode long items such as addresses, use long text lines rather than a collection of 
several TXT records.

Because TXT records have no particular format, they are sometimes used to test 
prospective new types of DNS records without requiring changes to the DNS sys-
tem itself. For example, SPF records (see page 590) were originally implemented 
as TXT records. Now that a dedicated record type has been created, use of the 
TXT version is no longer recommended, but many sites still do it.

  



ptg

IPv6 reverse records – PTR 589

D
N

SIPv6 resource records

The IPv6 records 
are specified in 
RFC1886 (1995).

See Chapter 14 for a 
more detailed discus-
sion of IPv6.

IPv6 is a new version of the IP protocol. It has spent over 15 years in the specifica-
tion process and has spawned about 250 RFCs, yet it still isn’t really done.14 IPv6 
was originally motivated by a perceived need for more IP network addresses. 
However, the stopgap solutions to this problem (CIDR, private addresses, NAT, 
and stricter control of addresses) have been so successful that a mass migration to 
IPv6 has turned out not to be as essential as originally envisioned—at least, not 
quite yet. The adoption of IPv6 is now being driven by Asia, where IPv4 addresses 
are spread more thinly.

IPv6 DNS records are totally separate from the transport protocol used to deliver 
them. Publishing IPv6 records in your DNS zones does not mean that you must 
answer queries for them with IPv6. About half the query load on the K root name 
server (k.root-servers.net) consists of queries for IPv4 A records, and one quarter 
consists of queries for IPv6 AAAA records. However, 99% of all the actual queries 
use IPv4 transport.

IPv6 forward records – AAAA
The format of an AAAA record is

hostname [ttl] [IN] AAAA ipaddr

For example:
f.root-servers.net. IN AAAA    2001:500:2f::f

Each colon-separated chunk of the address represents four hex digits, with lead-
ing zeros usually omitted. Two adjacent colons stand for “enough zeros to fill out 
the 128 bits of a complete IPv6 address.” An address can contain at most one such 
double colon.

IPv6 reverse records – PTR
See page 582 for a 
discussion of the IPv4 
version of PTR records.

In IPv6, the reverse mapping information corresponding to an AAAA address 
record is a PTR record in the ip6.arpa top-level domain.

The “nibble” format reverses an AAAA address record by expanding each colon-
separated address chunk to the full 4 hex digits and then reversing the order of 
those digits and tacking on ip6.arpa at the end. For example, the PTR record that 
corresponds to our sample AAAA record above would be

f.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.f.2.0.0.0.0.5.0.1.0.0.2.ip6.arpa. 
PTR f.root-servers.net.

(This line has been folded to fit the page.) It’s unfortunately not very friendly for a 
sysadmin to have to type or debug or even read. Of course, in your actual DNS 
zone files, the $ORIGIN statement could hide some of the complexity.  

14. Tony Li, an active member of the IETF community, once described IPv6 as “too little, too soon.”

  



ptg

590 Chapter 17 DNS: The Domain Name System

SPF records

SPF records are speci-
fied in RFCs 4406 and 
4408 (2006).

SPF (Sender Policy Framework) records are an attempt to identify email messages 
with forged From headers, which are often spam or phishing. If the site receiving 
a message determines that the headers are forged, it can drop the mail, filter it, or 
tag it before delivering it to the recipient. This functionality was first implemented 
with TXT records, but we now have a dedicated SPF record type that uses the 
same syntax as the TXT version. Sites can have SPF records, TXT records in SPF 
format, both, or neither.

Unfortunately, there are two competing ways of using SPF records: Microsoft’s 
Sender ID system and the rest of the world’s system. The IETF’s working groups 
could not reach consensus on the best option, so both approaches were published 
as experimental RFCs. The main difference is whether the tests are done on the 
envelope sender’s address or the header sender’s address. 

Both the SPF and Sender ID specifications have a serious flaw: email that is for-
warded fails the SPF check because the receiver compares the sender’s SPF record 
with the forwarder’s IP address. Therefore, sites need to be careful with the dispo-
sition of mail that fails the SPF check.

Here, we describe a subset of the syntax and semantics of the RFC4408 version of 
SPF records. The complete specification is infinitely flexible, with macros, redi-
rects, includes, and such yielding a dozen ways to achieve a given policy. We con-
centrate on a simple, efficient subset of that dozen.

An SPF record lists the IP addresses of servers that originate the zone’s legitimate 
email. For example, dig gmail.com spf 15 returns the following record:

gmail.com. 300 IN SPF "v=spf1 redirect=_spf.google.com"

This SPF record redirects clients to the _spf subdomain at google.com. A followup 
query, dig _spf.google.com spf, yields

_spf.google.com. 300 IN SPF "v=spf1 ip4:216.239.32.0/19 ip4:64.233.160.0/19 
ip4:66.249.80.0/20 ip4:72.14.192.0/18 ip4:209.85.128.0/17 ip4:66.102.0.0/20 
ip4:74.125.0.0/16 ip4:64.18.0.0/20 ip4:207.126.144.0/20 ?all"

Rather than listing specific hosts, this SPF record enumerates the IP networks of 
Google’s mail servers. This is all one long SPF record, but we have inserted line 
breaks to make it fit on the page.

Quoted strings are limited to 255 bytes, so if you need more than 255 characters 
for your entry, you must use multiple quoted strings. Multiple strings are concate-
nated with no extra white space. Try to keep the total length below about 450 
bytes, though, so that query responses can still fit in a single 512-byte UDP 
packet. SPF strings are case insensitive.

15. This is a little white lie; Google and many other sites implement their SPF records with TXT records 
because the SPF resource record type is new and is only recently supported by popular name server 
software. But in looking to the future, we have taken editorial license and shown SPF records instead 
of TXT records. The digs were also for TXT records, not SPFs.

  



ptg

DKIM and ADSP records 591

D
N

SLet’s dissect that record in a bit more detail: 

• v=spf1 indicates that the record conforms to version 1 of the SPF proto-
col, described in RFC4408. v=spf2.0 would indicate Microsoft’s Sender 
ID system, described in RFC4406.

• The ip4 tags indicate that the following data value is a normal IP net-
work or host address. Multiple clauses can be included, as is done here. 

• ?all indicates “done” to the checking function that interprets the record.

The complexity of the full SPF language is disheartening. Other tags are available 
to list hostnames, MX records, PTR records, IPv6 addresses, and so on. Some of 
these forms require a second DNS lookup, so although they may add convenience 
or flexibility, they are less efficient than the ip4 tag. The examples at the end of 
RFC4408 are a good reference if you want to get fancy with your SPF records.

Here is another example, obtained with dig sendmail.com txt:
sendmail.com. IN TXT "v=spf1 ip4:209.246.26.40 ip4:209.246.26.41 ip4:

63.211.143.38 ip4:209.246.26.36 ip4:209.246.26.39 ip4:209.246.26.24 ip4: 
209.246.26.25 ip4:209.246.26.10 ip4:209.246.26.53 ip4:72.32.154.224/27 
ptr:constantcontact.com ~all"

This record specifies complete server IP addresses rather than entire networks. At 
the tail end of the IP address list is a ptr: clause that permits constantcontact.com 
to send mail purporting to be from sendmail.com. This clause should only take 
effect if constantcontact.com has a matching PTR record, which isn’t currently the 
case—as of this writing, the PTR maps back to www.constantcontact.com, not 
constantcontact.com. Either email receivers are not checking the PTR record rig-
orously or the SPF record has a small bug.

Surveys (sendmail.org/dkim/survey) of about 1,000 U.S. banks and Fortune 1,000 
companies showed that SPF was supported by more than 90% of the sites, with the 
Sender ID format being used by only 1%–2%. Some email readers (e.g., Gmail) 
print a bright red warning banner across a message that has failed an SPF check 
and might be phishing.

sendmail, Postfix, and exim support SPF processing; Microsoft Exchange sup-
ports Sender ID. See page 768 for more SPF information.

DKIM and ADSP records

DKIM records are 
specified in RFCs 
4871 (2007) and 
5617 (2009).

DKIM stands for DomainKeys Identified Mail and is a merge and enhancement 
of two systems: DomainKeys from Yahoo! and Identified Internet Mail from 
Cisco. It’s a signature system for email. The receiver of a message can authenticate 
the sender (no forgeries) and guarantee the message’s integrity (no meddling).

A lot of work has gone into the DKIM specifications so that edge cases like mail-
ing lists and outsourced email solutions will work correctly. Another focus of the 
DKIM design is to make implementation easy; it requires no per-user or per-host 

  

www.constantcontact.com


ptg

592 Chapter 17 DNS: The Domain Name System

changes. Here, we cover only the DNS aspects of DKIM. The email implications 
are described in Chapter 20, Electronic Mail, starting on page 845.

DKIM resource records have not yet been standardized as a DNS record type; 
TXT records in a special format are used instead. They use a DNS record name 
formed from a “selector” concatenated with the string _domainkey. The record’s 
data is the site’s DKIM public key. Multiple selectors may exist so that keys can be 
easily rolled over and revoked.

A site using DKIM signatures computes a signature over specified header fields 
and the body of the message with its DKIM private key. It puts the signature into 
the outbound message in the form of a header field called DKIM-Signature.

The corresponding public key is available through the sending site’s DNS zone as 
a TXT record associated with the name selector._domainkey.domain. The receiv-
ing site does a DNS lookup for this key and uses it to validate the message signa-
ture. Successful signature verification authenticates the message as having come 
from the purported sending domain and verifies that the message has not been 
modified in transit.

Here is an example of a DKIM-Signature header line from a signed message:
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; 

h=domainkey-signature:mime-version:received:reply-to:date:message-id: 
subject:from:to:content-type; 
bh=24HfUvt1AO4JxRNBmg94pN6ZJUPdqSbkOd4Zppou4sI=; 
b=UtYWupx/Udqi7Sd1n0h5zIDKq7R/Gg+HwYBxM0LcshlwhqrHhyHy1ea3So8 
EnMXJEYI3jyzj3VNGemOAOSUqHlMmdlSLdP7AvxptY0VfLgYGM9ID4uw 
B0l4a7ZJuoiVHJmsEA/ExK48rvq10ZJY+AgRdDpbx6/56phSfVJt+a+A=

The various tags in the signature are explained in Table 17.7.

The selector tag, s=gamma, tells us the name of the public key, and the d= tag 
gives the parent domain. To get our hands on the public key, we dig for the TXT 
record for the pseudo-host gamma._domainkey.gmail.com.

Table 17.7 Tags in the DKIM-Signature email header

Tag Example value What it is

v 1 Version number; must be 1
a rsa-sha256 Encryption algorithm: rsa-sha1 or rsa-sha256
c relaxed/relaxed Canonicalization algorithm:a simple or relaxed 
d gmail.com Domain of the sender
s gamma Selector or key name
h domain… Header fields to include in the header signature 

bh 24HfUvt1… Cryptographic hash of the body of the message
b UtYWupx… Cryptographic signature of the whole message

a. The algorithm specifies how the header and body are munged before encryption.

  



ptg

DKIM and ADSP records 593

D
N

Sgamma._domainkey.gmail.com. 300 IN TXT "k=rsa\; t=y\; 
p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDIhyR3oItOy22ZOaBrI 
Ve9m/iME3RqOJeasANSpg2YTHTYV+Xtp4xwf5gTjCmHQEMOs0qYu0FYiNQP 
QogJ2t0Mfx9zNu06rfRBDjiIU9tpx2T+NGlWZ8qhbiLo5By8apJavLyqTLavyPSrv 
sx0B3YzC63T4Age2CDqZYA+OwSMWQIDAQAB"

This is a pretty messy record to have to type into your zone files—thank goodness 
for cut and paste. The k= tag identifies the type of key; the only value defined to 
date is rsa. The t=y flag means that you are just testing DKIM and so receiving 
sites should be lenient if your signatures don’t verify. The p= clause is the public 
key itself. Semicolons must be escaped with backslashes because they are com-
ment symbols in DNS data files.

The DKIM TXT record often contains a version tag, v=DKIM1. As in all TXT 
records, everything must be in double quotes.

To generate an RSA key pair in the appropriate format for your zone files, use the 
following openssl commands to generate a private key and extract the corre-
sponding public key from it:

$ openssl genrsa -out rsa.private 1024 
$ openssl rsa -in rsa.private -out rsa.public -pubout -outform PEM

Then cut and paste the public key from rsa.public into the p= clause of your text 
record. It cannot contain any spaces or newlines, so be careful that the cut and 
paste does not introduce any additional characters. 

You can choose any name as your selector. 

In the Gmail example above, the _domainkey.gmail.com segment of the name 
gamma._domainkey.gmail.com is not a true subzone of gmail.com from the DNS 
perspective. You can verify this observation by searching for the zone’s name serv-
ers (dig _domainkey.gmail.com ns), which would have to exist if it was a proper 
delegated subzone. The example below from yahoo.com implements _domainkey 
as a proper subdomain.

RFC5617 defines a TXT record you can stash in a special subdomain to express 
your overall policy with respect to signing messages. This record was just recently 
standardized (2009) and is called an ADSP (Author Domain Signing Policy) text 
record. The subdomain is _adsp._domainkey.domain.

Inside the TXT record, you include a dkim= clause to declare your site’s signing 
policy. The possible values are

• all, for domains that sign all outgoing email messages
• unknown, for domains that might sign some email messages
• discardable, for domains that sign all email and recommend that recip-

ients discard messages whose signature cannot be verified

As an example, the discardable tag might be used by a bank that sends sensitive 
customer account information from a subdomain created for this purpose. A 

  



ptg

594 Chapter 17 DNS: The Domain Name System

user’s acting on instructions from forged email that appears to emanate from this 
domain could have disastrous consequences, so it’s best if such email can be re-
fused or discarded without reaching the addressee.

The ADSP TXT record can also include a t=y clause if you are just testing out 
DKIM and don’t want recipients to take your signatures too seriously.

During the development of the ADSP system, prior to RFC5617, a domain’s 
ADSP TXT record was kept in a different subdomain (_domainkey.domain, with 
no _adsp prefix) and had a slightly different syntax. o=~ meant that the domain 
signed some of its email, and o=- meant that it signed all email. 

Since the two conventions use different subdomains, they can coexist. As of this 
writing, the original form remains predominant. If you are serious about getting 
recipients to scrutinize your signatures, it’s probably best to use both conventions 
for the next few years until everyone has become RFC5617-compliant.

Let’s look at an example. Gmail does not have an ADSP record, but Yahoo! does:
_domainkey.yahoo.com. 7200 IN TXT "t=y\; o=~\; 

n=http://antispam.yahoo.com/domainkeys"

The n= clause is a comment that points a human user to more information about 
Yahoo!’s use of DKIM records.16 Some sites include an email address (without any 
@s, to avoid spam) instead. Here is yahoo.com’s DKIM TXT record for the key 
(selector) s1024:

s1024._domainkey.yahoo.com. 86400 IN TXT "k=rsa\; t=y\; 
p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDrEee0Ri4Juz+QfiWYui 
/E9UGSXau/2P8LjnTD8V4Unn+2FAZVGE3kL23bzeoULYv4PeleB3gfm" 
"JiDJOKU3Ns5L4KJAUUHjFwDebt0NP+sBK0VKeTATL2Yr/S3bT/xhy+1xtj4Rkd 
V7fVxTn56Lb4udUnwuxK4V5b5PdOKj/+XcwIDAQAB\; n=A 1024 bit key\;"

Here again, the n= clause is a comment, this time about the key itself. 

The DKIM records shown in this section are all TXT records, but they will even-
tually migrate to the DKIM record type, which has the same format. In the in-
terim, sites can use both record types to be sure there are no transition issues.

Chapter 20 covers the steps needed to implement DKIM within your mail system.

SSHFP resource records

SSHFP records 
are specified in 
RFC4255 (2006).

SSH, the secure shell, allows secure remote logins over an insecure network. It 
uses two authentication schemes, one for the host itself and one for the user at-
tempting to log in. Unfortunately, users typically accept whatever host key ssh
presents to them without verifying it. DNS’s SSHFP record type lets ssh verify the 
host key automatically, ensuring that the user has reached the intended machine 
and not an impostor.

16. However, the given URL currently redirects to sourceforge.net’s page about DomainKeys, the old stan-
dard that has been mostly abandoned.

  



ptg

DNSSEC resource records 595

D
N

STo keep packet sizes down, SSHFP records do not store a complete copy of a host’s 
public keys. Instead, they store digests (i.e., cryptographic hashes) of those keys. 
Here’s the syntax:

name [ttl] [IN] SSHFP algorithm# fingerprint_algorithm# fingerprint

The algorithm# identifies the public key cryptosystem used to generate the host’s 
key. This algorithm is not actually used in the verification process; it is just com-
pared with the key presented by the remote host to be sure that both parties are 
talking about the same kind of key. RSA is algorithm 1 and DSA is algorithm 2. 

The fingerprint is the hash to be matched, and the fingerprint_algorithm# tells how 
to process the public key presented by the remote host to produce a hash for com-
parison. Only one hashing algorithm (SHA-1) is currently defined, so the con-
tents of this field are currently always 1.

Here’s an example from RFC4255:
host.example. SSHFP 2 1 123456789abcdef67890123456789abcdef67890

SSH typically creates both RSA and DSS host key pairs; they’re usually stored in 
/etc/ssh with names like ssh_host_rsa_key.pub and ssh_host_dsa_key.pub. On 
the user’s end, SSH stores accepted host public keys in the .ssh/known_hosts file 
in the user’s home directory.

You can grab the host keys from that directory to build your SSHFP resource re-
cords. Recent versions of ssh-keygen can generate the SSHFP DNS records with 
the -r and -g flags. There is also an sshfp command on Linux and available for 
UNIX (freshports.org/dns/sshfp) that converts the keys to fingerprints and pro-
duces the necessary DNS records. 

See page 928 for more 
information about 
SSHFP records.

You can ask OpenSSH to use SSHFP records by setting the VerifyHostKeyDNS 
option to yes. SSH supports multiple authentication and verification methods, 
and since SSHFP records are not yet widely used, you shouldn’t make them the 
only possible option. Try SSHFP first, and if that fails, fall back to prompting the 
user to confirm the host key manually as was done before we had SSHFP. See page 
926 in Chapter 22, Security, for more information about configuring SSH.

Like SPF and DKIM records, the SSHFP system more or less assumes that you are 
using DNSSEC and that DNS records are therefore trustworthy. That probably 
isn’t true right now, but DNSSEC is gaining traction and will eventually see the 
light of day. See page 648 for our DNSSEC coverage.

DNSSEC resource records

Six resource record types are currently associated with DNSSEC. DS, DLV, and 
DNSKEY are for storing various types of keys or fingerprints. RRSIGs contain the 
signatures of other records in the zone (record sets, really). Finally, NSEC and 
NSEC3 give DNS servers a way to sign nonexistent records, providing crypto-
graphic security for negative answers to queries. These six records are different 

  



ptg

596 Chapter 17 DNS: The Domain Name System

from most in that they are generated with software tools rather than being typed 
in by hand.

DNSSEC is a big topic in its own right, so we discuss these records and their use in 
the DNSSEC section that begins on page 648. 

Glue records: links between zones

Each zone stands alone with its own set of data files, name servers, and clients. But 
zones need to be connected to form a coherent hierarchy: booklab.atrust.com is a 
part of atrust.com, and we need some kind of DNS linkage between them.

Since DNS referrals occur only from parent domains to child domains, it is not 
necessary for a name server to know anything about the domains (or more accu-
rately, zones) above it in the DNS hierarchy. However, the servers of a parent do-
main must know the IP addresses of the name servers for all of its subdomains. In 
fact, only the name servers known to the parent zone can be returned as referrals 
in response to external queries.

In DNS terms, the parent zone needs to contain the NS records for each delegated 
zone. Since NS records are written in terms of hostnames rather than IP ad-
dresses, the parent server must also have a way to resolve the hostnames, either by 
making a normal DNS query (if this does not create a dependency loop) or by 
having copies of the appropriate A records. 

There are two ways in which you can meet this requirement: by including the 
necessary records directly, or by using stub zones.

With the first method, you simply include the necessary NS and A records in the 
parent zone. For example, the atrust.com zone file could contain these records:

; subdomain information

booklab IN NS ns1.atrust.com.
IN NS ubuntu.booklab.atrust.com. 
IN NS ns.cs.colorado.edu.

testlab IN NS ns1.atrust.com.
IN NS ns.testlab.atrust.com.

; glue records

ubuntu.booklab IN A 63.173.189.194
ns.testlab IN A 63.173.189.17

The “foreign” A records are called glue records because they don’t really belong in 
this zone. They’re only reproduced here to connect the new domain to the naming 
tree. Missing or incorrect glue records leave part of your namespace inaccessible, 
and users trying to reach it get “host unknown” errors.

It is a common error to include glue records for hostnames that don’t need them. 
For example, ns1.atrust.com in the example above is part of the atrust.com zone, 
and its A record is stored elsewhere in the file. The address of ns.cs.colorado.edu 

  



ptg

The BIND software 597

D
N

Sis also not needed in the glue section since it can be determined with a normal 
DNS query. An A record in this zone would initially just be unnecessary, but it 
could later become out of date and wrong if ns.cs.colorado.edu’s address were to 
change. The rule of thumb is to include A records only for hosts that are within 
the current domain or any of its subdomains. BIND and NSD ignore unnecessary 
glue records, and BIND logs their presence as an error.

The scheme just described is the standard way of connecting zones, but it requires 
the child to keep in touch with the parent and tell the parent about any changes or 
additions to its name server fleet. Since parent and child zones are often run by 
different sites, updates can be a tedious manual task that requires coordination 
across administrative boundaries. A corollary is that in the real world, this type of 
configuration is often out of date.

The second way to maintain links is to use stub zones. A stub zone is essentially 
the same thing as a slave zone, but it includes only the zone’s NS records and the 
corresponding A records of those name servers. Like a slave, a stub zone is auto-
matically updated and so eliminates the need for communication between the ad-
ministrators of the parent and child zones.

An important caveat is that stub zones must be configured identically on both the 
master and slave servers of the parent zone. It might just be easiest to keep in touch 
manually with your parent domain and to verify its configuration a couple of 
times a year (especially if it is local).

You can use the dig command to see which of your servers your parent domain is 
currently advertising. First run 

$ dig parent-domain ns

to determine the name servers for your parent domain. Pick one and then run
$ dig @name-server.parent-domain child-domain ns

to see your list of public name servers. One situation in which stub zones are very 
useful is when your internal network uses RFC1918 private IP address space and 
you need to keep the RFC1918 delegations in sync.

We have now covered most of the background information that applies to the 
Domain Name System generally and to its database. In the next section, we cover 
configuration details specific to the BIND implementation. The NSD/Unbound 
implementation is covered beginning on page 625.

17.9 THE BIND SOFTWARE

BIND, the Berkeley Internet Name Domain system, is an open source software 
package from ISC that implements the DNS protocol for Linux, UNIX, Mac OS, 
and Windows systems. There have been three main flavors of BIND: BIND 4, 
BIND 8, and BIND 9, with BIND 10 currently under development by ISC. We 
cover only BIND 9 in this book.

  



ptg

598 Chapter 17 DNS: The Domain Name System

Version determination 

It often doesn’t seem to occur to vendors to document which version of an exter-
nal software package they have included with their systems, so you might have to 
do some sleuthing to find out exactly what software you are dealing with. You can 
sometimes determine the version number with a sneaky query with dig, a com-
mand that comes with BIND. The command

$ dig @server version.bind txt chaos

returns the version number unless someone has decided to withhold that infor-
mation by changing it in BIND’s configuration file. First, determine the name of 
the name server for the domain in question with

$ dig domain ns

and then do the version.bind query. For example, the command works at isc.org:
$ dig @ns-ext.isc.org version.bind txt chaos 
version.bind. 0 CH TXT "9.5.1"

But it doesn’t work at cs.colorado.edu:
$ dig @mroe.cs.colorado.edu version.bind txt chaos 
version.bind. 0 CH TXT "wouldn't you like to know…"17

Some sites configure BIND to conceal its version number on the theory that this 
provides some degree of “security through obscurity.” We don’t really endorse this 
practice, but it might help fend off some of the script kiddies. See page 603 for a 
more detailed discussion of this topic. 

This same query works for some other DNS software; for example,
$ dig @k.root-servers.net version.bind txt chaos 
version.bind. 0 CH TXT "NSD 2.3.7"

shows that the K root name server is running NSD.

Another piece of data in the CHAOS class identifies the name of the server que-
ried. But wait—if you just queried the server, you must know its name, right? Ac-
tually some of the busiest servers (e.g., the root name servers) are really multiple 
machines scattered around the globe that all have the same server name and IP 
address. This replication scheme is called “anycast routing.” The routing system 
takes you to the “closest” instance. If you are the sysadmin trying to debug a prob-
lem, however, it may be important to distinguish which of the replicated servers 
you have reached. For example,

$ dig @k.root-servers.net hostname.bind txt chaos 
hostname.bind. 0 CH TXT "k2.nap.k.ripe.net"

17. The 0 in the answer is the TTL for the data value. One of our reviewers reported once seeing the 
answer to this query come up as “Name is Bind, James Bind!”

  



ptg

Version determination 599

D
N

Sor 
$ dig @k.root-servers.net id.server txt chaos 
id.server. 0 CH TXT "k2.nap.k.ripe.net"

The IETF tried to standardize these odd CHAOS-class names into implementa-
tion-independent forms, version.server and id.server, but only id.server made it 
through the entire process; version.server ended up in an IETF draft that never 
became an RFC. NSD uses all four forms, BIND only the three approved forms. 

See Chapter 11 for 
more information 
about syslog.

As an administrator, you can start the name server (named or nsd) with the -v
flag to make it print its version to standard output and exit. On Linux, you can ask 
your package manager which version is installed. You can also usually tell what 
BIND version you have by inspecting the log files in /var/log or its equivalent on 
your system. The BIND name server logs its version number to syslog (facility 
“daemon”) as it starts up. grep for BIND to get lines like this:

Jul 13 07:19:55 nubark named[757]: starting BIND 9.5.0-P2 -u named

If all else fails, dig’s version number usually parallels named’s, and dig is often 
installed even when named is not. dig’s first line of output includes the version 
number as a comment.

Table 17.8 shows the versions of BIND that are included with our example sys-
tems. It’s always safest to use the current release.

AIX ships both BIND 8 and BIND 9 binaries, called named8 and named9, re-
spectively. As shipped, the generic form named is linked to named8. The + in the 
version number is short for “+Fix_for_CERT_till_07_15_04”; not exactly current.

Most vendors back-port security fixes to their installed version of an older release 
rather than upgrade to the latest release from ISC, so version numbers can be 
deceiving. As you can see, many of our vendors are not very current, so your first 
DNS sysadmin chore might be to upgrade the software.

Table 17.8 Versions of BIND shipped with our example systems

System OS vers BIND vers BIND release date

ISC – 9.6.1-P3 January, 2010
Ubuntu 9.04 9.5.1-P2 March, 2009
SUSE 10.2 9.4.2 November, 2007
RHEL 5.3 9.3.4-P1 July, 2007
Solaris 5.10 9.3.4-P1 July, 2007
OpenSolaris 2009.06 9.6.1-P1 July, 2009
HP-UX 11 9.3.2 December, 2005
AIX 6.1 8.3.3+ or 9.2.1 January, 2004

  



ptg

600 Chapter 17 DNS: The Domain Name System

Components of BIND

The BIND distribution has four major components:

• A name server daemon called named that answers queries
• A resolver library that queries DNS servers on behalf of users
• Command-line interfaces to DNS: nslookup, dig, and host
• A program to remotely control named called rndc

The hardest BIND-related sysadmin chore is probably sorting through all the 
myriad options and features that BIND supports and determining which ones 
make sense for your situation.

Configuration files

The complete configuration for named consists of the config file, the zone data 
files that contain address mappings for each host, and the root name server hints 
file. Authoritative servers need a config file and zone data files for each zone for 
which they are the master server; caching servers need the config file and the root 
hints file. named’s config file has its own format; all the other files are collections 
of individual DNS data records whose formats were discussed in the The DNS 
database section beginning on page 574.

named’s configuration file, named.conf, specifies the roles (master, slave, stub, or 
caching-only) of this host and the manner in which it should obtain its copy of the 
data for each zone it serves. It’s also the place where options are specified—both 
global options related to the overall operation of named and server- or zone-spe-
cific options that apply to only a portion of the DNS traffic.

The config file consists of a series of statements whose syntax we describe as they 
are introduced in subsequent sections. The format is unfortunately quite fragile— 
a missing semicolon or unbalanced quotes can wreak havoc.

Fortunately, BIND includes a couple of handy tools to check the syntax of the 
config file (named-checkconf) and the zone data files (named-checkzone). They 
look for both errors and omissions. For example, named-checkzone tells you if 
you’ve forgotten to include a $TTL directive. Unfortunately, it doesn’t catch every-
thing. For example, missing glue records (see page 596) are not reported and 
cause heavy loads on the root and gTLD servers.

Comments can appear anywhere that whitespace is appropriate. C, C++, and 
shell-style comments are all understood:

/* This is a comment and can span lines. */ 
// Everything to the end of the line is a comment. 
# Everything to the end of the line is a comment.

Each statement begins with a keyword that identifies the type of statement. There 
can be more than one instance of each type of statement, except for options and 
logging. Statements and parts of statements can also be left out, invoking default 

  



ptg

Configuration files 601

D
N

Sbehavior for the missing items. Table 17.9 lists the available statements; the Page 
column points to our discussion of each statement in the upcoming sections.

Before describing these statements and the way they are used to configure named, 
we need to describe a data structure that is used in many of the statements, the 
address match list. An address match list is a generalization of an IP address that 
can include the following items:

• An IP address, either v4 or v6 (e.g., 199.165.145.4)
• An IP network specified with a CIDR18 netmask (e.g., 199.165/16)
• The name of a previously defined access control list (see page 609)
• The name of a cryptographic authentication key
• The ! character to negate things

Address match lists are used as parameters to many statements and options. Some 
examples:

{ ! 1.2.3.13; 1.2.3/24; }; 
{ 128.138/16; 198.11.16/24; 204.228.69/24; 127.0.0.1; };

The first of these lists excludes the host 1.2.3.13 but includes the rest of the 
1.2.3.0/24 network; the second defines the networks assigned to the University of 
Colorado. The braces and final semicolon are not really part of the address match 
lists but are included for illustration; they would be part of the enclosing state-
ments of which the address match lists are a part.

When an IP address or network is compared to a match list, the list is searched in 
order until a match is found. This “first match” algorithm makes the ordering of 

Table 17.9 Statements used in named.conf

Statement Page Function

include 602 Interpolates a file
options 602 Sets global configuration options/defaults
acl 609 Defines access control lists
key 609 Defines authentication information 
trusted-keys 610 Uses preconfigured cryptographic keys
server 610 Specifies per-server options
masters 611 Defines a list of masters for stub and slave zones
logging 612 Specifies logging categories and their destinations 
statistics-channels 612 Outputs real-time statistics in XML 
zone 612 Defines a zone of resource records
controls 615 Defines channels used to control named with rndc

view 617 Defines a view of the zone data 
lwres – Specifies that named should be a resolver, too

18. CIDR netmasks are described starting on page 460.

  



ptg

602 Chapter 17 DNS: The Domain Name System

entries important. For example, the first address match list above would not have 
the desired effect if the two entries were reversed, because 1.2.3.13 would succeed 
in matching 1.2.3.0/24 and the negated entry would never be encountered.

Now, on to the statements! Some are short and sweet; others almost warrant a 
chapter unto themselves.

The include statement

To break up or better organize a large configuration, you can put different por-
tions of the configuration in separate files. Subsidiary files are brought into 
named.conf with an include statement:

include "path";

If the path is relative, it is interpreted relative to the directory specified in the 
directory option. A common use of the include statement is to bring in crypto-
graphic keys that should not be world-readable. Rather than closing read access to 
the whole named.conf file, some sites keep keys in files with restricted permis-
sions that only named can read. Those files are then included into named.conf. 

Many sites put zone statements in a separate file and use the include statement to 
pull them in. This configuration helps separate the parts of the configuration that 
are relatively static from those that are likely to change frequently.

The options statement

The options statement specifies global options, some of which may later be over-
ridden for particular zones or servers. The general format is

options { 
option; 
option; 
…

};

If no options statement is present in named.conf, default values are used. 

BIND has a lot of options—too many, in fact. The 9.7 release has more than 150, 
which is a lot for sysadmins to wrap their heads around. Unfortunately, as soon as 
the BIND folks think about removing some of the options that were a bad idea or 
that are no longer necessary, they get pushback from sites who use and need those 
obscure options. We do not cover the whole gamut of BIND options here; we have 
biased our coverage and discuss only the ones whose use we recommend. (We 
also asked the BIND developers for their suggestions on which options to cover, 
and followed their advice.) 

For more complete coverage of the options, see one of the books on DNS and 
BIND listed at the end of this chapter. You can also refer to the documentation 
shipped with BIND. The ARM document in the doc directory of the distribution 

  



ptg

The options statement 603

D
N

Sdescribes each option and shows both syntax and default values. The file 
doc/misc/options also contains a complete list of options.

As we wind our way through about a quarter of the possible options, we have 
added a margin note as a mini index entry. The default values are listed in square 
brackets beside each option. For most sites, the default values are just fine. Op-
tions are listed in no particular order.

File locations directory "path"; [directory where the server was started] 
key-directory "path"; [same as directory entry]

The directory statement causes named to cd to the specified directory. Wherever 
relative pathnames appear in named’s configuration files, they are interpreted rel-
ative to this directory. The path should be an absolute path. Any output files (de-
bugging, statistics, etc.) are also written in this directory. The key-directory is 
where cryptographic keys are stored; it should not be world-readable.

We like to put all the BIND-related configuration files (other than named.conf
and resolv.conf) in a subdirectory beneath /var (or wherever you keep your con-
figuration files for other programs). We use /var/named or /var/domain.

Name server identity version "string"; [real version number of the server] 
hostname "string"; [real hostname of the server] 
server-id "string"; [none]

The version string identifies the version of the name server software running on 
the server. The hostname string identifies the server itself, as does the server-id
string. These options let you lie about the true values. Each of them puts data into 
CHAOS-class TXT records where curious onlookers can search for them with the 
dig command.

We discourage tampering with these values. It is very handy to be able to query 
your name servers and find out what version they are running, for example, if you 
want to know whether your vendor is shipping a current release, or if you need to 
verify that you have upgraded all of your servers to the latest revision. If you must 
hide the version number, at least enter a string that communicates version infor-
mation to your sysadmins but isn’t obviously doing so. (The new NSID resource 
record does exactly this. The data portion of this TXT-ish record is a string value 
that your sysadmins set to have meaning to them but not the rest of the world.)

The hostname and server-id parameters are recent additions motivated by the 
use of anycast routing to duplicate instances of the root and gTLD servers. 

Zone synchronization notify yes | master-only | explicit | no; [yes]
also-notify servers_ipaddrs; [empty]
allow-notify address-match-list; [empty]

The notify and also_notify clauses apply only to master servers, and allow-notify
applies only to slave servers.

  



ptg

604 Chapter 17 DNS: The Domain Name System

Early versions of BIND synchronized zone files between master and slave servers 
only when the refresh timeout in the zone’s SOA record had expired. These days 
the master named automatically notifies its peers whenever the corresponding 
zone database has been reloaded, as long as notify is set to yes. The slave servers 
can then rendezvous with the master to see if the file has changed, and if so, to 
update their copies of the zone data. 

You can use notify both as a global option and as a zone-specific option. It makes 
the zone files converge much more quickly after you make changes. By default, 
every authoritative server sends updates to every other authoritative server (a sys-
tem termed “splattercast” by Paul Vixie). If notify is set to master-only, this talk-
ativeness is curbed and notifications are sent only to slave servers of zones for 
which this server is the master. If the notify option is set to explicit, then named
only notifies the servers listed in the also-notify clause.

See page 614 for 
more information 
about stub zones.

named normally figures out which machines are slave servers of a zone by look-
ing at the zone’s NS records. If also-notify is specified, a set of additional servers 
that are not advertised with NS records can also be notified. This tweak is some-
times necessary when your site has internal servers. Don’t also-notify stub serv-
ers; they are only interested in the zone’s NS records and can wait for the regular 
update cycle.

The target of an also-notify is a list of IP addresses and, optionally, ports. For 
servers with multiple network interfaces, additional options specify the IP address 
and port to use for outgoing notifications. Localhost zones are a good place to 
turn off notification, since they never change. You must use the allow-notify
clause if you want a name server other than the master to notify secondaries.

Query recursion recursion yes | no; [yes]
allow-recursion { address_match_list }; [all hosts]

The recursion option specifies whether named should process queries recursively 
on behalf of your users. You can enable this option on an authoritative server of 
your zones’ data, but that’s frowned upon. The best-practice recommendation is 
to keep authoritative servers and caching servers separate.

If this name server should be recursive for your clients, set recursion to yes and 
include an allow-recursion clause so that named can distinguish queries that 
originate at your site from remote queries. named will act recursively for the for-
mer and nonrecursively for the latter. If your name server answers recursive que-
ries for everyone, it is called an open resolver and can become a reflector for cer-
tain kinds of attacks; see RFC5358.

Cache memory use recursive-clients number; [1000]
max-cache-size number; [unlimited]

If your server has limited memory, you may need to tweak the recursive-clients
and max-cache-size options. recursive-clients controls the number of recursive 
lookups the server will process simultaneously; each requires about 20KiB of 

  



ptg

The options statement 605

D
N

Smemory. max-cache-size limits the amount of memory the server will use for 
caching answers to queries. If the cache grows too large, named deletes records 
before their TTLs expire, to keep memory use under the limit.

IP port utilization use-v4-udp-ports { range beg end; }; [range 1024 65535] 
use-v6-udp-ports { range beg end; }; [range 1024 65535]

avoid-v4-udp-ports { port_list }; [empty] 
avoid-v6-udp-ports { port_list }; [empty]

query-source v4-address [ port ] [any] # CAUTION, don’t use port
query-source-v6 v6-address [ port ] [any] # CAUTION, don’t use port

Source ports have become important in the DNS world because of a weakness in 
the DNS protocol discovered by Dan Kaminsky that allows DNS cache poisoning 
when name servers use predictable source ports and query IDs. The use- and 
avoid- options for UDP ports together with changes to the named software have 
mitigated this attack. Do not use the query-source address options to specify a 
fixed outgoing port for DNS queries or you will undo the Kaminsky protection 
that a large range of random ports provides.

The defaults for the use-v*-udp-ports are fine and you shouldn’t need to change 
them. If your firewall blocks certain ports in this range (for example, port 2049 for 
SunRPC) then you have a small problem. When your name server sends a query 
and uses one of the blocked ports as its source, the firewall blocks the answer, and 
the name server eventually stops waiting and sends out the query again. Not fatal, 
but annoying to the user caught in the crossfire.

To avoid this problem, use the avoid-v*-udp-ports options to make BIND stay 
away from the blocked ports. Any high-numbered UDP ports blocked by your 
firewall should be included in the list.19 If you update your firewall in response to 
some threatened attack, be sure to update the port list here, too.

The query-source options let you specify the IP address to be used on outgoing 
queries. For example, you might need to use a specific IP address to get through 
your firewall or to distinguish between internal and external views. 

Queries go out from random high-numbered ports, and the answers come back to 
those same ports. Ergo, your firewall must be prepared to accept UDP packets on 
random high-numbered ports. Some sysadmins used to set a specific outgoing 
port number so that they can configure the firewall to recognize it and accept 
UDP packets only for that port. However, this configuration is no longer safe in 
the post-Kaminsky era.

If you use the query-source option, specify only the IP address from which you 
want queries to be sent; do not specify a port number.

19. Some firewalls are stateful and may be smart enough to recognize the DNS answer as being paired 
with the corresponding query of a second ago. Such firewalls don’t need help from this option.

  



ptg

606 Chapter 17 DNS: The Domain Name System

Use of forwarding forwarders { in_addr; in_addr; … }; [empty list]
forward only | first; [first]

Instead of having every name server perform its own external queries, you can 
designate one or more servers as forwarders. A run-of-the-mill server can look in 
its cache and in the records for which it is authoritative. If it doesn’t find the an-
swer it’s looking for, it can then send the query on to a forwarder host. That way, 
the forwarders build up caches that benefit the entire site. The designation is im-
plicit—nothing in the configuration file of the forwarder explicitly says “Hey, 
you’re a forwarder.”

The forwarders option lists the IP addresses of the servers you want to use as 
forwarders. They are queried in turn. The use of a forwarder circumvents the nor-
mal DNS procedure of starting at a root server and following the chain of refer-
rals. Be careful not to create forwarding loops.

A forward-only server caches answers and queries forwarders, but it never queries 
anyone else. If the forwarders do not respond, queries fail. A forward-first server 
prefers to deal with forwarders, but if they do not respond, the forward-first 
server will complete queries itself.

Since the forwarders option has no default value, forwarding does not occur un-
less it has been specifically configured. You can turn on forwarding either globally 
or within individual zone statements.

Permissions allow-query { address_match_list }; [all hosts] 
allow-query-cache { address_match_list }; [all hosts] 
allow-transfer { address_match_list }; [all hosts] 
allow-update { address_match_list }; [none] 
blackhole { address_match_list }; [empty]

These options specify which hosts (or networks) can query your name server or 
its cache, request block transfers of your zone data, or dynamically update your 
zones. These match lists are a low-rent form of security and are susceptible to IP 
address spoofing, so there’s some risk in relying on them. It’s probably not a big 
deal if someone tricks your server into answering a DNS query, but avoid the 
allow_update and allow_transfer clauses; use cryptographic keys instead.

The blackhole address list identifies servers that you never want to talk to; named
does not accept queries from these servers and will never ask them for answers.

Packet sizes edns-udp-size number; [4096]
max-udp-size number; [4096]

All machines on the Internet must be capable of reassembling a fragmented UDP 
packet of 512 bytes or fewer. Although this conservative requirement made sense 
in the 1980s, it is laughably small by modern standards. Modern routers and fire-
walls can handle much larger packets, but it only takes one bad link in the IP 
chain to spoil the whole path.

  



ptg

The options statement 607

D
N

SSince DNS uses UDP for queries and since DNS responses are often larger than 
512 bytes, DNS administrators have to worry about large UDP packets being 
dropped. If a large reply gets fragmented and your firewall only lets the first frag-
ment through, the receiver gets a truncated answer and retries the query with 
TCP. TCP is much more expensive, and busy servers at the root or TLDs don’t 
need increased TCP traffic because of everybody’s broken firewalls.

The edns-udp-size option sets the reassembly buffer size that the name server 
advertises through EDNS0, the extended DNS protocol. The max-udp-size op-
tion sets the maximum packet size that the server will actually send. Both sizes are 
in bytes. Reasonable values are in the 512–4,096 byte range.

Both values default to 4,096 bytes to help accommodate new features such as 
DNSSEC, IPv6, and internationalized domain names. However, some (broken) 
firewalls do not allow UDP packets larger than 512 bytes, and others are config-
ured to block all but the first packet of a fragmented UDP response. The only real 
solution is to fix the firewalls.

To get an idea of what packet size is OK for your site, try running the command 
dig rs.dns-oarc.net txt and see what comes back; see page 652 for more details 
about the DNS-OARC reply-size server. If this tool shows a small size, the prob-
lem is probably at your perimeter and you will need to fix your firewalls. 

As an interim solution, try setting the max-udp-size parameter to the value 
shown by the reply-size server. This setting makes named squeeze its answers into 
packets that might get through unfragmented. Set edns-udp-size to the same 
value so that you can get packets flowing in both directions. Don’t forget to set the 
values back to 4,096 after you fix your firewalls! 

Avoid these options unless you are sure you have a packet size problem, since they 
also limit the size of packets along paths that can handle a full 4,096 bytes.

DNSSEC control dnssec-enable yes | no; [yes]
dnssec-validation yes | no; [yes]
dnssec-lookaside domain trust-anchor domain; [“.”, “dlv.isc.org”] 
dnssec-must-be-secure domain yes | no; [none]

These options configure support for DNSSEC. See the sections starting on page 
648 for a general discussion of DNSSEC and a detailed description of how to set 
up DNSSEC at your site.

An authoritative server needs the dnssec-enable option turned on. A recursive 
server needs the dnssec-enable and dnssec-validation options turned on and a 
trust anchor specified with a trusted-keys statement.

If there is no trust anchor for the domain in question, the software tries to find 
one by using the dnssec-lookaside option, which skirts the issue of the parent 
domains not using DNSSEC. 

  



ptg

608 Chapter 17 DNS: The Domain Name System

dnssec-enable and dnssec-validation are turned on by default, which has vari-
ous implications:

• An authoritative server of a signed zone answering a query with the 
DNSSEC-aware bit turned on answers with the requested resource 
records and their signatures.

• An authoritative server of a signed zone answering a query with the 
DNSSEC-aware bit not set answers with just the requested resource 
records, as in the pre-DNSSEC era.

• An authoritative server of an unsigned zone answers queries with just 
the requested resource records; there are no signatures to include.

• A recursive server sends queries on behalf of users with the DNSSEC-
aware bit set.

• A recursive server validates the signatures included with signed replies 
before returning data to the user.

The dnssec-lookaside option takes two domains as parameters. For example, the 
defaults are equivalent to the following configuration line:

dnssec-lookaside “.” trust-anchor “dlv.isc.org”;

This configuration tells name servers trying to establish a chain of trust to look to 
dlv.isc.org if they cannot get secure delegation information from the root of the 
DNS naming tree. Once the root and top-level domains have been signed and are 
served with DNSSEC, lookaside validation will not be necessary. See page 661 for 
a discussion of the pros and cons of DLV and its privacy implications.

The dnssec-must-be-secure option allows you to specify that you will only ac-
cept secure answers from particular domains, or, alternatively, that you don’t care 
and that insecure answers are OK. For example, you might say yes to the domain 
important-stuff.mybank.com and no to the domain marketing.mybank.com. The 
domains in question must be covered by your trusted-keys clause or registered 
with the DLV server.

Statistics zone-statistics yes | no [no]

This option makes named maintain per-zone statistics as well as global statistics. 
See page 676 for more information about the statistics named compiles and how 
to display them.

Performance tuning clients-per-query int; [10] # Clients waiting on the same query 
max-clients-per-query int; [100] # Max clients before server drops ‘em
datasize int; [unlimited] # Max memory server may use
files int; [unlimited] # Max no. of concurrent open files
lame-ttl int; [10min] # Seconds to cache lame server data
max-acache-size int; [ ] # Cache size for additional data
max-cache-size int; [ ] # Max memory for cached answers

  



ptg

The (TSIG) key statement 609

D
N

Smax-cache-ttl int; [1week] # Max TTL for caching positive data
max-journal-size int; [ ] # Max size of transaction journal file
max-ncache-ttl int; [3hrs] # Max TTL for caching negative data
tcp-clients int; [100] # Max simultaneous TCP clients

This long list of options can be used to tune named to run well on your hardware. 
We don’t describe them in detail, but if you are having performance problems, 
these may suggest a starting point for your tuning efforts.

Whew, we are finally done with the options. Let’s get on to the rest of the configu-
ration language!

The acl statement

An access control list is just an address match list with a name:
acl acl_name { 

address_match_list
};

You can use an acl_name anywhere an address match list is called for.

An acl must be a top-level statement in named.conf, so don’t try sneaking it in 
amid your other option declarations. named.conf is read in a single pass, so ac-
cess control lists must be defined before they are used. Four lists are predefined:

• any – all hosts
• localnets – all hosts on the local network(s)
• localhost – the machine itself
• none – nothing

The localnets list includes all of the networks to which the host is directly at-
tached. In other words, it’s a list of the machine’s network addresses modulo their 
netmasks.

The (TSIG) key statement

The key statement defines a “shared secret” (that is, a password) that authenticates 
communication between two servers; for example, between the master server and 
a slave for a zone transfer, or between a server and the rndc process that controls 
it. Background information about BIND’s support for cryptographic authentica-
tion is given in the Security issues section starting on page 642. Here, we touch 
briefly on the mechanics of the process.

To build a key record, you specify both the cryptographic algorithm that you want 
to use and the shared secret, represented as a base-64-encoded string (see page 
645 for details):

key key-id { 
algorithm string; 
secret string;

};

  



ptg

610 Chapter 17 DNS: The Domain Name System

As with access control lists, the key-id must be defined with a key statement be-
fore it is used. To associate the key with a particular server, just include key-id in 
the keys clause of that server’s server statement. The key is used both to verify 
requests from that server and to sign the responses to those requests.

The shared secret is sensitive information and should not be kept in a world-read-
able file. Use an include statement to bring it into the named.conf file. 

The trusted-keys statement

In theory, DNSSEC parent zones authenticate their child zones’ public keys, al-
lowing signatures to be chain-authenticated all the way back to the DNS root. In 
practice, the root and top-level domains do not yet support DNSSEC, so some 
other method of validating a zone’s public keys is needed. 

The trusted-keys statement is a brute-force way of telling named, “The proper 
public key for zone XXX.com is YYY,” thus bypassing the usual DNSSEC mecha-
nisms for obtaining and verifying zone keys. Such a declaration is sometimes 
known as a “trust anchor.” It’s intended for use when a zone is signed but its parent 
zone is not. 

Of course, XXX.com must be important enough to your site to merit this special 
treatment, and you must have some secure, out-of-band way to determine the 
proper value of the key. There’s no magic way to get the correct key; the foreign 
zone’s administrator has to read it to you over the telephone or send it to you in 
some other way that can be authenticated. An HTTPS secure web page is often 
used for this purpose. You must go through the whole process again whenever the 
key changes.

The format of the trusted-keys statement is
trusted-keys { 

domain flags protocol algorithm key; 
domain flags protocol algorithm key; 
…

}

Each line represents the trust anchor for a particular domain. The flags, protocol, 
and algorithm are nonnegative integers. The key is a base-64-encoded string 
matching the DNSKEY resource record used to sign the zone.

DNSSEC is covered in more detail starting on page 648.

The server statement

named can potentially talk to many servers, not all of which are running current 
software and not all of which are even nominally sane. The server statement tells 
named about the characteristics of its remote peers. The server statement can 
override defaults for a particular server; it’s not required unless you want to con-
figure keys for zone transfers. 

  



ptg

The masters statement 611

D
N

Sserver ip_addr { 
bogus yes | no; [no]
provide-ixfr yes | no; [yes]
request-ixfr yes | no; [yes]
keys { key-id; key-id; … }; [none]
transfer-source ip-address [port]; [closest interface] 
transfer-source-v6 ipv6-address [port]; [closest interface]

};

You can use a server statement to override the values of global configuration op-
tions for individual servers. Just list the options for which you want nondefault 
behavior. We have not shown all the server-specific options, just the ones we think 
you might need. See the BIND documentation for a complete list.

If you mark a server as being bogus, named won’t send any queries its way. This 
directive should be reserved for servers that really are bogus. bogus differs from 
the global option blackhole in that it suppresses only outbound queries. By con-
trast, the blackhole option completely eliminates all forms of communication 
with the listed servers.

A BIND name server acting as master for a dynamically updated zone performs 
incremental zone transfers if provide-ixfr is set to yes. Likewise, a server acting as 
a slave requests incremental zone transfers from the master if request-ixfr is set to 
yes. Dynamic DNS is discussed in detail on page 640.

The keys clause identifies a key ID that has been previously defined in a key state-
ment for use with TSIG transaction signatures (see page 645). Any requests sent 
to the remote server are signed with this key. Requests originating at the remote 
server are not required to be signed, but if they are, the signature will be verified.

The transfer-source clauses give the IPv4 or IPv6 address of the interface (and 
optionally, the port) that should be used as a source address (port) for zone trans-
fer requests. This clause is only needed when the system has multiple interfaces 
and the remote server has specified a specific IP address in its allow-transfer
clause; the addresses must match.

The masters statement

How can there be 
more than one master? 
See page 614.

The masters statement lets you name a set of one or more master servers by spec-
ifying their IP addresses and cryptographic keys. You can then use this defined 
name in the masters clause of zone statements instead of repeating the IP ad-
dresses and keys.

The masters facility is helpful when multiple slave or stub zones get their data 
from the same remote servers. If the addresses or cryptographic keys of the re-
mote servers change, you can update the masters statement that introduces them 
rather than changing many different zone statements.

The syntax is
masters name { ip_addr [port ip_port] [key key] ; … } ;

  



ptg

612 Chapter 17 DNS: The Domain Name System

The logging statement

named is the current holder of the “most configurable logging system on Earth” 
award. Syslog put the prioritization of log messages into the programmer’s hands 
and the disposition of those messages into the sysadmin’s hands. But for a given 
priority, the sysadmin had no way to say, “I care about this message but not about 
that message.” BIND added categories that classify log messages by type, and 
channels that broaden the choices for the disposition of messages. Categories are 
determined by the programmer, and channels by the sysadmin.

Since logging requires quite a bit of explanation and is somewhat tangential, we 
discuss it in the debugging section beginning on page 667.

The statistics-channels statement

The statistics-channels statement lets you connect to a running named with a 
browser to view statistics as they are accumulated. Since the stats of your name 
server might be sensitive, you should restrict access to this data to trusted hosts at 
your own site. The syntax is

statistics-channels { 
inet (ip-addr | *) port port# allow { address_match_list } ; 
…

}

You can include multiple inet-port-allow sequences. The defaults are open, so be 
careful! The IP address defaults to any, the port defaults to port 80 (normal 
HTTP), and the allow clause defaults to letting anyone connect. To use statistics 
channels, you must compile named with libxml2. 

The zone statement

zone statements are the heart of the named.conf file. They tell named about the 
zones for which it is authoritative and set the options that are appropriate for 
managing each zone. A zone statement is also used by a caching server to preload 
the root server hints —the names and addresses of the root servers, which boot-
strap the DNS lookup process.

The exact format of a zone statement varies, depending on the role that named is 
to play with respect to that zone. The possible zone types are master, slave, hint, 
forward, stub, and delegation-only. We do not describe the stub-type zones 
(used by BIND only) or the delegation-only type (used to stop the use of wild 
card records in top-level zones to advertise a registrar’s services). The following 
brief sections describe the other zone types.

Many of the global options covered earlier can become part of a zone statement 
and override the previously defined values. We have not repeated those options 
here, except to mention certain ones that are frequently used.

  



ptg

Configuring the master server for a zone 613

D
N

SConfiguring the master server for a zone
Here’s the format you need for a zone of which this named is the master server:

zone "domain_name" { 
type master; 
file "path";

};

The domain_name in a zone specification must always appear in double quotes. 

The zone’s data is kept on disk in a human-readable (and human-editable) file. 
Since there is no default for the filename, you must provide a file statement when 
declaring a master zone. A zone file is just a collection of DNS resource records in 
the formats described starting on page 574.

Other server-specific attributes are also frequently specified within the zone
statement. For example:

allow-query { address_match_list }; [any] 
allow-transfer { address_match_list }; [any] 
allow-update { address_match_list }; [none] 
zone-statistics yes | no [no]

The access control options are not required, but it’s a good idea to use them. They 
each take either an IP address or a TSIG encryption key. As usual, the encryption 
key is safer. If dynamic updates are used for this zone, the allow-update clause 
must be present with an address match list that limits the hosts from which up-
dates can occur. Dynamic updates apply only to master zones; the allow-update
clause cannot be used for a slave zone. Be sure that this clause includes just your 
own machines (e.g., DHCP servers) and not the whole Internet.20

The zone-statistics option makes named keep track of query/response statistics 
such as the number and percentage of responses that were referrals, that resulted 
in errors, or that demanded recursion. See the examples on page 676.

With all these zone-specific options (and about 40 more we have not covered), the 
configuration is starting to sound complicated. However, a master zone declara-
tion consisting of nothing but a pathname to the zone file is perfectly reasonable. 
Here is an example, slightly modified, from the BIND documentation:

zone "example.com" { 
type master; 
file "forward/example.com"; 
allow-query { any; }; 
allow-transfer { my-slaves; };

}

Here, my-slaves would be an access control list you had previously defined.

20. You also need ingress filtering at your firewall; see page 932. Better yet, use TSIG for authentication.

  



ptg

614 Chapter 17 DNS: The Domain Name System

Configuring a slave server for a zone
The zone statement for a slave is similar to that of a master:

zone "domain_name" { 
type slave; 
file "path"; 
masters { ip_addr [port ip_port] [key keyname]; … }; [no default] 
allow-query { address_match_list }; [any]

};

Slave servers normally maintain a complete copy of their zone’s database. The file
statement specifies a local file in which the replicated database can be stored. Each 
time the server fetches a new copy of the zone, it saves the data in this file. If the 
server crashes and reboots, the file can then be reloaded from the local disk with-
out being transferred across the network.

You shouldn’t edit this cache file, since it’s maintained by named. However, it can 
be interesting to look at if you suspect you have made an error in the master 
server’s data file. The slave’s disk file shows you how named has interpreted the 
original zone data—relative names and origin directives have all been expanded. 
If you see a name in the data file that looks like one of these

128.138.243.151.cs.colorado.edu. 
anchor.cs.colorado.edu.cs.colorado.edu.

you can be pretty sure that you forgot a trailing dot somewhere. 

The masters clause lists the IP addresses of one or more machines from which 
the zone database can be obtained. It can also contain the name of a masters list 
defined with a previous masters statement. 

We have said that only one machine can be the master for a zone, so why is it 
possible to list more than one address? Two reasons. First, the master machine 
might have more than one network interface and therefore more than one IP ad-
dress. It’s possible for one interface to become unreachable (because of network or 
routing problems) while others are still accessible. Therefore, it’s a good practice 
to list all of the master server’s topologically distinct addresses.

Second, named really doesn’t care where the zone data comes from. It can pull the 
database just as easily from a slave server as from the master. You could use this 
feature to allow a well-connected slave server to serve as a sort of backup master, 
since the IP addresses are tried in order until a working server is found. In theory, 
you can also set up a hierarchy of servers, with one master serving several second-
level servers, which in turn serve many third-level servers.

Setting up the root server hints
Another form of zone statement points named toward a file from which it can 
preload its cache with the names and addresses of the root name servers.

  



ptg

The controls statement for rndc 615

D
N

Szone "." { 
type hint; 
file "path";

};

The “hints” are a set of DNS records that list servers for the root domain. They’re 
needed to give a recursive, caching instance of named a place to start searching 
for information about other sites’ domains. Without them, named would only 
know about the domains it serves and their subdomains.

When named starts, it reloads the hints from one of the root servers. Ergo, you’ll 
be fine as long as your hints file contains at least one valid, reachable root server. 
As a fallback, the root server hints are also compiled into named. 

The hints file is often called root.cache. It contains the response you would get if 
you queried any root server for the name server records in the root domain. In 
fact, you can generate the hints file this way by running dig. For example:

$ dig @f.root-servers.net . ns > root.cache

Mind the dot. If f.root-servers.net is not responding, you can run the query with-
out specifying a particular server:

$ dig . ns > root.cache

The output will be similar; however, you will be obtaining the list of root servers 
from the cache of a local name server, not from an authoritative source. That 
should be just fine—even if you have not rebooted or restarted your name server 
for a year or two, it has been refreshing its root server records periodically as their 
TTLs expire. 

Setting up a forwarding zone
A zone of type forward overrides named’s default query path (ask the root first, 
then follow referrals as described on page 606) for a particular domain:

zone "domain_name" { 
type forward; 
forward only | first; 
forwarders { ip_addr; ip_addr; … };

};

You might use a forward zone if your organization had a strategic working rela-
tionship with some other group or company and you wanted to funnel traffic di-
rectly to that company’s name servers, bypassing the standard query path.

The controls statement for rndc

The controls statement limits the interaction between the running named pro-
cess and rndc, the program a sysadmin can use to signal and control it. rndc can 
start and stop named, dump its state, put it in debug mode, etc. rndc is a network 

  



ptg

616 Chapter 17 DNS: The Domain Name System

program, and with improper configuration it might let anyone on the Internet 
mess with your name server. The syntax is

controls { 
inet ip_addr port ip-port allow { address_match_list } keys { key_list };

}

The port that rndc uses to talk to named defaults to port 953 if it is not specified 
with the port clause.

Allowing your name server to be controlled remotely is both handy and danger-
ous. Strong authentication through a key entry in the allow clause is required; 
keys in the address match list are ignored and must be explicitly stated in the keys
clause of the controls statement.

You can use the rndc-confgen command to generate an authentication key for use 
between rndc and named. There are essentially two ways to set this up: you can 
have both named and rndc consult the same configuration file to learn the key 
(/etc/rndc.key), or you can include the key in both the rndc and named configu-
ration files (/etc/rndc.conf for rndc and /etc/named.conf for named). The latter 
option is more complicated, but it’s necessary when named and rndc will be run-
ning on different computers. rndc-confgen -a sets up keys for localhost access.

When no controls statement is present, BIND defaults to the loopback address 
for the address match list and looks for the key in /etc/rndc.key. Because strong 
authentication is mandatory, the rndc command cannot control named if there is 
no key. This precaution may seem draconian, but consider: even if rndc worked 
only from 127.0.0.1 and this address was blocked from the outside world at your 
firewall, you would still be trusting all local users to not tamper with your name 
server. Any user could telnet to the control port and type “stop”—quite an effec-
tive denial of service attack.

Here is an example of the output (to standard out) from rndc-confgen when a 
256-bit key is requested. We chose 256 bits because it fits on the page. You would 
normally choose a longer key and redirect the output to /etc/rndc.conf. The com-
ments at the bottom of the output show the lines you need to add to named.conf
to make named and rndc play together.

$ ./rndc-confgen -b 256 
# Start of rndc.conf 
key "rndc-key" {

algorithm hmac-md5; 
secret "orZuz5amkUnEp52zlHxD6cd5hACldOGsG/elP/dv2IY=";

};

options { 
default-key "rndc-key"; 
default-server 127.0.0.1; 
default-port 953;

}; 
# End of rndc.conf

  



ptg

Split DNS and the view statement 617

D
N

S# Use with the following in named.conf, adjusting the allow list as needed: 
# key "rndc-key" { 
#       algorithm hmac-md5; 
#       secret "orZuz5amkUnEp52zlHxD6cd5hACldOGsG/elP/dv2IY="; 
# }; 
# 
# controls { 
#       inet 127.0.0.1 port 953 
# allow { 127.0.0.1; } keys { "rndc-key"; }; 
# }; 
# End of named.conf

Split DNS and the view statement

Many sites want the internal view of their network to be different from the view 
seen from the Internet. For example, you might reveal all of a zone’s hosts to inter-
nal users but restrict the external view to a few well-known servers. Or, you might 
expose the same set of hosts in both views but supply additional (or different) 
records to internal users. For example, the MX records for mail routing might 
point to a single mail hub machine from outside the domain but point to individ-
ual workstations from the perspective of internal users.

See page 462 for more 
information about pri-
vate address spaces.

A split DNS configuration is especially useful for sites that use RFC1918 private 
IP addresses on their internal networks. For example, a query for the hostname 
associated with IP address 10.0.0.1 can never be answered by the global DNS sys-
tem, but it is meaningful within the context of the local network. Of the queries 
arriving at the root name servers, 4%–5% are either from an IP address in one of 
the private address ranges or about one of these addresses. Neither can be an-
swered; both are the result of misconfiguration, either of BIND’s split DNS or Mi-
crosoft’s “domains.”

The view statement packages up a couple of access lists that control which clients 
see which view, some options that apply to all the zones in the view, and finally, 
the zones themselves. The syntax is

view view-name { 
match-clients { address_match_list } ; [any] 
match-destinations { address_match_list } ; [any] 
match-recursive-only yes | no; [no]
view_option; … 
zone_statement; …

} ;

Views have always had a match-clients clause that filters on the source IP address 
in the query packet and is typically used to serve internal and external views of a 
site’s DNS data. For finer control, you can now also filter on the query destination 
address and can require recursive queries. The match-destinations clause looks 
at the destination address in the query packet and is useful on multihomed ma-
chines when you want to serve different DNS data depending on the interface on 

  



ptg

618 Chapter 17 DNS: The Domain Name System

which the query arrived. The match-recursive-only clause requires queries to be 
recursive as well as to originate at a permitted client. Iterative queries let you see 
what is in a site’s cache; this option prevents it.

Views are processed in order, so put the most restrictive views first. Zones in dif-
ferent views can have the same names but take their data from different files. 
Views are an all-or-nothing proposition; if you use them, all zone statements in 
your named.conf file must appear in the context of a view.

Here is an example from the BIND 9 documentation. The two views define the 
same zone, but with different data.

view "internal" { 
match-clients { our_nets; }; // Only internal networks
recursion yes; // Internal clients only
zone "example.com" { // Complete view of zone

type master; 
file "example-internal.db";

}; 
};

view "external" { 
match-clients { any; }; // Allow all queries
recursion no; // But no recursion
zone "example.com" { // Only "public" hosts

type master; 
file "example-external.db";

}
};

If the order of the views were reversed, no one would ever see the internal view. 
Internal hosts would match the any value in the match-clients clause of the ex-
ternal view before they reached the internal view.

Our second DNS configuration example starting on page 620 provides an addi-
tional example of views.

17.10 BIND CONFIGURATION EXAMPLES

Now that we have explored the wonders of named.conf, let’s look at some com-
plete configuration examples. In the following sections, we discuss samples from 
several contexts:

• The localhost zone
• A small security company that uses split DNS
• The experts: isc.org, the Internet Systems Consortium

  



ptg

The localhost zone 619

D
N

SThe localhost zone

The address 127.0.0.1 refers to a host itself and should be mapped to the name 
“localhost.”.21 Some sites map the address to “localhost.localdomain.” and some do 
both. The corresponding IPv6 address is ::1.

If you forget to configure the localhost zone, your site may end up querying the 
root servers for localhost information. The root servers receive so many of these 
queries that the operators are considering adding a generic mapping between lo-
calhost and 127.0.0.1 at the root level. In measurements at the K root server in 
Europe in January 2010 (k.root-servers.org/statistics), “local” was the fourth most 
popular domain queried, just behind com, arpa, and net. That’s a lot of useless 
queries (1,500/second) for a busy name server. Other unusual names in the popu-
lar “bogus TLD” category are lan, home, localdomain, and domain.

The forward mapping for the name localhost can be defined in the forward zone 
file for the domain (with an appropriate $ORIGIN statement) or in its own file. 
Each server, even a caching server, is usually the master for its own reverse local-
host domain. 

Here are the lines in named.conf that configure localhost:
zone "localhost" { // localhost forward zone

type master; 
file "localhost"; 
allow-update { none; };

};

zone "0.0.127.in-addr.arpa" { // localhost reverse zone
type master; 
file "127.0.0"; 
allow-update { none; };

};

The corresponding forward zone file, localhost, contains
$TTL 30d 
; localhost. 
@ IN SOA localhost. postmaster.localhost. ( 

1998050801 ;serial 
3600 ;refresh 
1800 ;retry 
604800 ;expiration 
3600 ) ;minimum

NS localhost.
A 127.0.0.1

21. Actually, the whole class A network 127/8 refers to localhost, but most folks just use 127.0.0.1.

  



ptg

620 Chapter 17 DNS: The Domain Name System

and the reverse file, 127.0.0:
$TTL 30d 
; 0.0.127.in-addr.arpa 
@ IN SOA localhost. postmaster.localhost. ( 

1998050801 ;serial 
3600 ;refresh 
1800 ;retry 
604800 ;expiration 
3600 ) ;minimum

NS localhost.
1 PTR localhost.

The mapping for the localhost address (127.0.0.1) never changes, so the timeouts 
can be large. Note the serial number, which encodes the date; the file was last 
changed in 1998. Also note that only the master name server is listed for the local-
host domain. The meaning of @ here is “0.0.127.in-addr.arpa.”. 

A small security company

Our first real example is for a small company that specializes in security consult-
ing. They run BIND 9 on a recent version of Red Hat Enterprise Linux and use 
views to implement a split DNS system in which internal and external users see 
different host data. They also use private address space internally; queries about 
those addresses should never escape to the Internet to clutter up the global DNS 
system. Here is their named.conf file, reformatted and commented a bit:

options { 
directory "/var/domain"; 
version "root@atrust.com"; 
allow-transfer {82.165.230.84; 71.33.249.193; 127.0.0.1; }; 
listen-on { 192.168.2.10; 192.168.2.1; 127.0.0.1; 192.168.2.12; };

};

include "atrust.key"; // Defn of atkey in mode 600 file

controls { 
inet 127.0.0.1 allow { 127.0.0.1; } keys { atkey; };

};

view "internal" {

match-clients { 192.168.0.0/16; 206.168.198.192/28; 172.29.0.0/24; }; 
recursion yes;

include “infrastructure.zones”; // Root hints, localhost forw + rev

zone "atrust.com" { // Internal forward zone
type master; 
file "internal/atrust.com";

};

  



ptg

A small security company 621

D
N

Szone "1.168.192.in-addr.arpa" { // Internal reverse zone
type master; 
file "internal/192.168.1.rev"; 
allow-update { none; };

}; 
… // Lots of zones omitted 
include “internal/trademark.zones”; // atrust.net, atrust.org, etc. slaves

}; // End of internal view

view "world" { // External view

match-clients { any; }; 
recursion no;

zone "atrust.com" { // External forward zone
type master; 
file "world/atrust.com"; 
allow-update { none; };

}; 
zone "189.173.63.in-addr.arpa" { // External reverse zone

type master; 
file "world/63.173.189.rev"; 
allow-update { none; };

}; 
include “world/trademark.zones”; // atrust.net, atrust.org, etc. masters 
zone "admin.com" { // Master zones only in world view

type master; 
file "world/admin.com"; 
allow-update { none; };

}; 
… // Lots of master+slave zones omitted

}; // End of external view

The file atrust.key defines the key named atkey:
key "atkey" { 

algorithm hmac-md5; 
secret "shared secret key goes here";

};

The file infrastructure.zones contains the root hints and localhost files, and 
trademark.zones includes variations on the name atrust.com, both in different 
top-level domains (net, org, us, info, etc.) and with different spellings (applied-
trust.com, etc.).

Zones are organized by view (internal or world) and type (master or slave), and 
the naming convention for zone data files reflects this scheme. This server is re-
cursive for the internal view, which includes all local hosts, including many that 
use private addressing. The server is not recursive for the external view, which 
contains only selected hosts at atrust.com and the external zones for which they 
provide either master or slave DNS service.

  



ptg

622 Chapter 17 DNS: The Domain Name System

Snippets of the files internal/atrust.com and world/atrust.com are shown below. 
First, the internal file:

; atrust.com - internal file

$TTL 86400 
$ORIGIN atrust.com. 
@ 3600 SOA ns1.atrust.com. trent.atrust.com. (
                2010032900 10800 1200 3600000 3600 ) 

3600 NS NS1.atrust.com. 
3600 NS NS2.atrust.com. 
3600 MX 10 mailserver.atrust.com. 
3600 A 66.77.122.161

ns1 A 192.168.2.11
ns2 A 66.77.122.161
www A 66.77.122.161
mailserver A 192.168.2.11
exchange A 192.168.2.100
secure A 66.77.122.161
…

RFC1918 private addresses are used. Also, note that rather than use CNAMEs to 
assign nicknames to a host, this site uses multiple A records. This scheme is faster 
because encountering a CNAME results in an additional query. PTR records 
should point to only one of the multiple names that are mapped to the same IP 
address. This site also delegates subdomains for their DHCP networks, our book 
writing lab, and their Microsoft infrastructure (not shown).

Here is the external view of that same domain from the file world/atrust.com:
; atrust.com - external file

$TTL 57600 
$ORIGIN atrust.com. 
@ SOA ns1.atrust.com. trent.atrust.com. ( 

2010030400 10800 1200 3600000 3600 )
NS NS1.atrust.com. 
NS NS2.atrust.com.
MX 10 mailserver.atrust.com. 
A 66.77.122.161 

ns1.atrust.com. A 206.168.198.209 
ns2.atrust.com. A 66.77.122.161 
www A 66.77.122.161 
mailserver A 206.168.198.209
secure A 66.77.122.161

; reverse maps 
exterior1 A 206.168.198.209
209.198.168.206 PTR exterior1.atrust.com.
exterior2 A 206.168.198.213
213.198.168.206 PTR exterior2.atrust.com.
…

  



ptg

The Internet Systems Consortium, isc.org 623

D
N

SAs in the internal view, nicknames are implemented with A records. Very few 
hosts are actually visible in the external world view, although that’s not immedi-
ately apparent from these truncated excerpts. Note that machines that appear in 
both views (for example, ns1.atrust.com) have RFC1918 private addresses inter-
nally but real addresses externally.

The TTL in these zone files is set to 16 hours (57,600 seconds). For internal zones, 
the TTL is one day (86,400 seconds). Most individual records in zone files are not 
assigned an explicit TTL value.

The bizarre PTR records at the end of the external file allow atrust.com’s ISP to 
delegate the reverse mapping of a very small piece of address space. CNAME re-
cords at the ISP’s site enable this variation of the CNAME hack to work; see page 
585 for more information. 

The Internet Systems Consortium, isc.org

ISC is the author and maintainer of BIND as well as the operator of the F root 
name server. ISC also runs a TLD server that serves many top-level domains. 
That’s why we call them the experts! 

Below are snippets from their configuration files. Notice that they are using both 
IPv4 and IPv6. They also use TSIG encryption to authenticate between master 
and slave servers for zone transfers. The transfer-source options ensure that the 
source IP addresses for outgoing zone transfer requests conform to the specifica-
tions in the allow-transfers statements on the master servers.

The named.conf file:
// isc.org TLD name server

options { 
directory "/var/named"; 
datasize 1000M; 
listen-on { 204.152.184.64; }; 
listen-on-v6 { 2001:4f8:0:2::13; }; 
recursion no; 
transfer-source 204.152.184.64; 
transfer-source-v6 2001:4f8:0:2::13;

};

// rndc key 
key rndc_key {

algorithm hmac-md5; 
secret "<secret>";

};

// TSIG key for name server ns-ext 
key ns-ext {

algorithm hmac-md5; 
secret "<secret>";

};

  



ptg

624 Chapter 17 DNS: The Domain Name System

server 204.152.188.234 { keys { ns-ext; }; };

controls { 
inet 204.152.184.64 allow { any; } keys { rndc_key; };

};

include "inf/named.zones"; // Root, localhost, 127.0.0.1, ::1
include "master.zones"; // Zones we master
include "slave.zones"; // Lots of slaves

These include statements keep the named.conf file short and tidy. If you serve 
lots of zones, consider breaking up your configuration into bite-sized pieces like 
this. More importantly, set up your filesystem hierarchy so that you don’t have a 
directory with a thousand zone files in it. Modern filesystems handle large direc-
tories efficiently, but they can be a management hassle.

Here’s more from the file master.zones:
zone "isc.org" { 

type master; 
file "master/isc.org"; 
allow-update { none; }; 
allow-transfer { none; };

};

zone "sfo2.isc.org" { 
type master; 
file "master/sfo2.isc.org"; 
allow-update { none; }; 
allow-transfer { none; };

};

// Lots of zones truncated

And from slaves.zones:
zone "vix.com" {   

type slave; 
file "secondary/vix.com"; 
masters { 204.152.188.234; };

};

zone "cix.net" {                 
type slave; 
file "secondary/cix.net"; 
masters { 204.152.188.234; };

};

The allow-transfer clause set to none in the master.zones file implies that ISC is 
using multiple master servers—someone has to implement zone transfers to the 
slave servers.

  



ptg

Installing and configuring NSD 625

D
N

S17.11 THE NSD/UNBOUND SOFTWARE 

With BIND configuration out of the way, we now introduce an alternative DNS 
server implementation that offers some nice features along with speedy perfor-
mance. NSD, the Name Server Daemon, was developed by NLnet Labs in 2003. 
The original intention of the project was to develop an authoritative server imple-
mentation independent of BIND that could be used on root servers, thus making 
the root zone more robust through software diversity. Three root servers and sev-
eral top-level domains now use NSD, but you don’t have to be a root server or 
TLD to benefit from NSD’s robustness, speed, and simplicity. 

Two programs form the core of the NSD software suite: zonec, a zone file pre-
compiler that converts text-format DNS zone files into databases; and nsd, the 
name server daemon itself. NSD precomputes and indexes all possible answers to 
the valid queries it might receive, so unlike BIND, which creates its answers on 
the fly, NSD has the answers in an outgoing packet in a single memory copy, mak-
ing it blindingly fast.

Unbound is a recursive DNS server that is complementary to NSD. It was devel-
oped in C by NLnet Labs from a Java implementation by VeriSign, Nominet, 
Kirei, and EP.NET. Together, NSD and Unbound provide flexible, fast, secure 
DNS service appropriate for most sites. The NLnet Labs components are not as 
mature as BIND and do not have as many bells and whistles, but they are fine 
solutions for most sites.

ldns, a library of routines that make it easier to write DNS software tools, is also 
available for use with the NSD and Unbound distributions. It includes a directory 
of examples: several tools aimed primarily at DNSSEC, a DNSSEC signer tool, 
and drill, a debugging tool similar to BIND’s dig. You can download them all 
from nlnetlabs.nl. NLnet Labs has also built a tool called Autotrust that does 
RFC5011 key rollover and key management. It is being integrated into Unbound; 
however, we do not cover it here. 

The DNSSEC code in NSD/Unbound is more robust and better tested than that in 
BIND. It’s also faster. For example, Unbound is about five times faster than BIND 
at verifying DNSSEC signatures. BIND still has an edge in some areas, though, 
notably in documentation and in extra features. For a really robust DNS regime, 
run both!

Installing and configuring NSD

First, create a user called nsd on the system where the nsd name server will run. 
Then log in as nsd, download the NSD/Unbound packages (currently, three of 
them: NSD, Unbound, and the separate ldns), and unpack. To install nsd, follow 
the directions in the doc/README file in the distribution, basically:

$ ./configure 
$ make 
$ sudo make install

  



ptg

626 Chapter 17 DNS: The Domain Name System

Table 17.10 shows where NSD installs or expects things to be by default. 

It seems a bit rude for NSD to put the zone files beneath /etc, especially if your 
zones are large. Consider moving the files to somewhere in /usr/local or /var. You 
can use configure to change things if you don’t like NSD’s choices; the makefile is 
quite readable. The output of configure goes to the file config.log in the install 
directory, so you can sort through it if there is a problem.

The NSD suite installs seven programs:

• nsd – the name server daemon
• nsdc – a script that controls nsd by sending it signals
• zonec – converts text zone files to database files
• nsd-notify – sends notification messages (deprecated)
• nsd-xfer – receives zone transfers (deprecated)
• nsd-checkconf – checks the syntax of nsd.conf
• nsd-patch – reflects incremental database updates back to zone files

Fundamental differences from BIND
If you are used to BIND, a few things in NSD will seem strange at first. For exam-
ple, there is no root hints file and no need to include localhost zones. NSD also 
has no support for views, so if your site publishes different versions of the DNS 
data inside and outside your organization, you will have to stick with BIND or use 
multiple instances of nsd. Dynamic updates are also unsupported. Since nsd is an 
authoritative-only server, many of BIND’s bells and whistles do not apply.

BIND reads zone files and keeps them in memory; NSD precompiles zone files 
into a database format and uses both memory and disk for the database.

nsd’s configuration language is simpler than BIND’s. There are no semicolons to 
forget, no braces to group things, and only three top-level statements: server, 
zone, and key. Comments are introduced with the # sign. Options under each of 
the three statements have the form

attribute: value

Table 17.10 NSD installation directories

Item  Directory

Binaries /usr/local/sbin

Sample config file /etc/nsd

Man pages /usr/local/share

Text zone files /etc/nsd

Compiled zone files /var/db/nsd 

PID file /var/run

  



ptg

NSD configuration example 627

D
N

SThere can be only one server statement. It specifies global options. zone state-
ments list zone-specific options, and key statements define cryptographic keys, 
which are required for communication between master and slave servers and for 
controlling nsd. Whitespace separates attributes from values. Values can be 
quoted, but they don’t have to be.

Like BIND, nsd generalizes IP addresses, but in a slightly different manner than 
BIND’s address match list construct. It is called an ip-spec and can be

• A plain IP address (IPv4 or IPv6)
• A subnet in CIDR notation, e.g., 1.2.3.0/24
• A subnet with an explicit mask, e.g., 1.2.3.4&255.255.255.0
• A range of IP addresses such as 1.2.3.4-1.2.3.25

Spaces are not allowed in any of these forms.

Another fundamental difference is the use of key values for authentication of zone 
transfers and notification messages. In BIND, a key is associated with an IP ad-
dress, and communication to and from that address is signed and validated with 
that key. In NSD, the key is finer grained, so nsd could have one key for notifica-
tions, a different key for sending a zone transfer, and yet a third key for receiving 
that transfer. Useful? Well…

The semantics of notify in nsd are analogous to BIND’s notify explicit clause: 
only servers explicitly listed are notified. (By default, BIND notifies all name serv-
ers listed in the zone file for the domain in question.)

The NSD documentation refers to master and slave zones, whereas the BIND 
documentation uses those adjectives to refer to servers. These are basically the 
same thing. An “instance” of a name server is the master server or slave server for 
a specific zone.

nsd favors sensible default behavior over configurability. For example, DNSSEC is 
turned on by default for signed zones and off for unsigned zones. By default, nsd
listens on both IPv4 and IPv6 sockets. Logging is either on or off rather than hav-
ing the infinite shades and gradations of the BIND paradigm. nsd uses TSIG for 
communication among servers (zone transfers, notifications, etc.).

The file doc/NSD-FOR-BIND-USERS gives a quick description of the differ-
ences between BIND and NSD and includes a sample config file. The man page 
for the configuration file, nsd.conf, and the doc/README file also have exam-
ples, but sadly there is no consistency between them.22

NSD configuration example
We have taken some editorial license and merged the three samples from the dis-
tribution and added our own editorial commentary to give you a feel for NSD 
configuration before covering the various options in more detail. Here we have 

22. To display the man pages without installing them, do: groff -man -T ascii man-page-filename | less.

  



ptg

628 Chapter 17 DNS: The Domain Name System

configured nsd to be the master server for the domain atrust.com and a slave 
server for the domain admin.com.

server: 
username: nsd # User nsd should run as after chroot 
database: /var/db/nsd/nsd.db # Precompiled zone database file 
logfile: /var/log/nsd.log # Log file, default is to stderr + syslog 
pidfile: /var/run/nsd.pid # nsd process id

key:
name: tsig.atrust.com. # Key for atrust..com zone transfers 
algorithm: hmac-md5 
secret: “base64 secret goes here”

zone: 
name: atrust.com # Name of the zone 
zonefile: /var/nsd/primary/atrust.com 
provide-xfr: 1.2.3.4 tsig.atrust.com. # Address of atrust.com slave 
notify: 1.2.3.4 tsig.atrust.com # And key for notify or xfrs. 
provide-xfr: 1.2.30.40 tsig.atrust.com. # Address of another slave 
notify: 1.2.30.40 tsig.atrust.com # And key for notify or xfrs.

key: 
name: tsig.admin.com. # Key to get admin.com slave data
algorithm: hmac-md5 
secret: "base64 secret goes here"

zone: 
name: admin.com # Zone we are a slave for 
zonefile: "/var/nsd/secondary/admin.com.signed" 
allow-notify: 5.6.7.8 NOKEY # Its master server 
request-xfr: 5.6.7.8 tsig.admin.com. # And key for xfrs

This sample nsd.conf file configures the server to be the master for atrust.com 
and to notify and provide zone transfers to two slave servers, one at IP address 
1.2.3.4 and the other at IP address 1.2.30.40. The server will use the TSIG key 
called tsig.atrust.com to authenticate both slave servers for transfers and notifica-
tions. (You could, and probably should, use a separate key for each slave server.)

This server is also a slave server for the signed zone admin.com, whose master 
server is at IP address 5.6.7.8. We can receive notifications of zone data changes 
without a key, but must use the tsig.admin.com key to receive zone transfers. Mas-
ter zones have provide-xfr clauses and slave zones have a request-xfr clause.

After you’ve installed nsd and set up your configuration file, use nsd-checkconf
to check the config file’s syntax. Its error reports are a bit terse; for example, “error: 
syntax error” and a line number. After fixing nsd-checkconf ’s gripes, run it again 
and repeat the process until nsd-checkconf reports no more errors.

NSD key definitions
A key clause defines a named key to be used in subsequent access control options. 
Each key has three attributes: a name, an algorithm, and a shared secret (aka pass-
word). Consider putting key definitions, or at least their secret portions, into files 
that have restricted permissions. You can use the include statement to import 

  



ptg

NSD global configuration options 629

D
N

Sthem into nsd.conf—just put include: filename wherever you want the text from 
filename to be inserted.

Here is the syntax of the key statement:
Key definitions name: key-name 

algorithm: alg 
secret: password-base-64

There can be multiple key statements.

The name field identifies the key. Choose names that reflect the zone and the 
servers involved in the secure communication. The algorithm can be hmac-md5, 
hmac-sha1, or hmac-sha256. You can use the ldns-keygen command to gener-
ate TSIG keys, even though it is really designed for generating DNSSEC pri-
vate/public key pairs. You can run ldns-keygen -a list to get a list of algorithms. 

Here’s an example using hmac-sha1:
$ ldns-keygen -a hmac-sha1 example.com

This command produces a file called Kexample.com.+158+12345.key that con-
tains the TSIG key. Just cut and paste the secret part into your key specification. 
The 158 in the filename stands for the hmac-sha1 algorithm. hmac-md5 is 157, 
and hmac-sha256 is 159. The number 12345 is just a placeholder for a random 5-
digit key tag. If you have multiple keys, this tag helps you keep them straight.

NSD global configuration options
We divide NSD’s options into two groups: global options for the server, and zone-
specific options that can be applied to any zones served by a given instance of nsd. 
Some options can be overridden by command-line flags as nsd is started.

Server options generally have sensible defaults and require attention only if your 
directory structure is nonstandard or you want to do something fancy. Below, we 
show default values in square brackets. As with the BIND options, we have added 
margin notes describing each group of options to make navigation easier.

Include a file include: filename

The include: directive can appear anywhere in the configuration file. The speci-
fied filename is read into the config file, and its contents replace the directive.

IP addresses and port ip-address: ip_addresses [all IP addresses]
ip4-only: yes | no [no]
ip6-only: yes | no [no]
port: portnum [53]

By default, NSD binds to port 53 on all network interfaces, both IPv4 and IPv6. If 
you list the addresses with an ip-address: clause, nsd bypasses the kernel’s routing 
tables and ensures that a query to one IP address does not receive its answer from 
a different IP address; many resolvers require this. If your machine has only one 
network interface, this option is not useful. The ip4-only and ip6-only options 

  



ptg

630 Chapter 17 DNS: The Domain Name System

limit nsd to a particular protocol, and port sets the network port on which to 
listen for incoming queries.

You should not normally need any of these options, as the defaults are fine.
ID variables identity: string [hostname]

hide-version: yes | no [no]

This pair of options controls whether nsd tells the truth about its version and 
hostname when queried for the CHAOS class names id.server and version.server. 
As explained on page 598, we recommend not tampering with these values.

Logging, statistics logfile: filename [stderr and syslog]
verbosity: level [0]
debug-mode: yes | no [no]
statistics: #secs [0] # no statistics

Logging is, by default, to standard error and to syslog (facility daemon), with the 
amount of logging determined by the verbosity option. The range of possible val-
ues is 0–5; higher numbers mean that more data should be logged. The logfile
parameter diverts log messages to a file instead sending them to syslog. 

If you specify debug-mode, nsd does not fork extra copies of itself and stays at-
tached to your terminal so that you can see messages sent to standard error.

If you want to keep statistics, set #secs to the number of seconds between dumps. 
Statistics are like other log messages, so they go to the log file or to syslog if no log 
file has been specified. It’s best to watch the stats output for a bit to make sure you 
have chosen a sensible dump interval and are not filling your disks with informa-
tion that no one will ever look at.

Filenames database: filename [/var/db/nsd/nsd.db] 
difffile: filename [/var/db/nsd/ixfr.db] 
xfrdfile: filename [/var/db/nsd/xfrd.state] 
pid-file: filename [OS-specific, usually /var/run/nsd.pid] 
zonesdir: directory [/etc/nsd]

Compiled zone files and zone transfer info default to living in /var/db/nsd; it’s 
unlikely that you will need to change this. The PID file should go where your 
operating system puts other PID files, usually in /var/run. By default, human-
editable zone files go in /etc/nsd, which feels like a bad choice. Consider moving 
them beneath /var, perhaps to /var/nsd/zones.

Tuning tcp-count: int [10] 
server-count: int [1] 
xfrd-reload-timeout: #sec [10]

tcp-count limits the number of concurrent TCP connections the server can use 
for zone transfers. You’ll know you’ve exceeded the limit when you see “xfrd: max 
number of TCP connections (10) reached” in the log. If that happens frequently, 
you should increase this limit.

  



ptg

NSD zone-specific configuration options 631

D
N

SThe server-count option specifies the number of instances of nsd to start. For 
multi-CPU machines, you may want to increase this value. xfrd-reload-timeout
throttles reloads after zone transfers by waiting at least the specified number of 
seconds since the last reload before reloading again.

Security username: login [nsd]
chroot: directory [none]

nsd must start running as root in order to open a privileged socket (port 53), but 
it can then drop back to the privileges of a normal user as long as all the files it 
needs are owned by that user. Hence, the dedicated nsd account.

For added security, you can also run nsd in a chrooted jail as long as the zone 
files, database file, xfrdfile, difffile, PID file, and syslog socket (or log file) are 
accessible through the jail directory.

NSD zone-specific configuration options
Unlike global options, zone-specific options do generally require some configura-
tion, especially the access control lists.

Zone definitions name: zonename 
zonefile: filename

A zone is defined by a zone name and a file of resource records.
Master ACLs notify: ip-address ( key-name | NOKEY )23 

provide-xfr: ip-spec ( key-name | NOKEY | BLOCKED )23

The master server for a zone notifies its slaves of updates to the zone. Then, when 
requested by the slaves, it initiates zone transfers to transmit the modified data. 
Therefore, a zone for which this server is the master must have the notify and 
provide-xfr access lists specified. The values of these options will normally be the 
same. Notification messages are signed with the listed key-name unless you spec-
ify the NOKEY option.

Keep in mind that unlike named, nsd does not automatically notify the slave 
servers of a zone; you must list them explicitly in the notify and provide-xfr
clauses. There may be multiple instances of these statements. 

Slave ACLs allow-notify: ip-spec ( key-name | NOKEY | BLOCKED )23

request-xfr: [ AXFR | UDP ] ip-address ( key-name | NOKEY )23

A slave server for a zone must explicitly allow the master to send notification mes-
sages. Any messages received from servers that are not listed in the allow-notify
list (or that are tagged as BLOCKED) are ignored. 

The request-xfr clause makes the slave server request a zone transfer from the 
master server at the listed ip-address using the specified key-name. If you include 
the AXFR argument, only AXFR transfers (that is, transfers of the entire zone, as 

23. The parentheses are here to show grouping; do not include them in an actual value.

  



ptg

632 Chapter 17 DNS: The Domain Name System

opposed to incremental updates) will be requested. The UDP argument specifies 
that the request for a zone transfer be sent with UDP transport rather than the 
default TCP. It’s best just to use TCP.

Source IP address outgoing-interface: ip-spec

This list controls the IP address used by a slave server to request a zone transfer or 
by a master to send notifications. The addresses must match; that is, the access 
control clause in the master’s zone configuration must use the same address as the 
corresponding clause in the slave’s zone configuration.

Running nsd

Once you have configured nsd, run the nsd-checkconf program to be sure there 
are no syntax errors in your nsd.conf file. Then put your zone files in the right 
directory (the one specified in nsd.conf) and use nsdc, the NSD control script, to 
compile them into database files. Finally start the name server with nsdc.

$ sudo nsdc rebuild 
$ sudo nsdc start

Test the name server with dig or drill, and if you’re happy with the results, add 
nsdc start to your operating system’s startup sequence and nsdc stop to its shut-
down sequence. You can also set up a crontab job to run nscd patch once a day to 
update the text zone files from the database files.

Installing and configuring Unbound

Unbound is a recursive, caching, validating DNS name server from the same folks 
(NLnet Labs) that produce NSD. It was originally developed for UNIX and Linux, 
but it’s now is available for Windows, too.

To install, create a new user called “unbound”, log in as this user, and download 
the distribution from unbound.net. Unbound requires the ldns and OpenSSL li-
braries and can use the libevent libraries (monkey.org/~provos/libevent) as well if 
they are available. Like NSD, Unbound initially runs as root, but then falls back to 
running under its dedicated user account.

To build:
$ ./configure 
$ make 
$ sudo make install

Unbound also comes with an extensive test suite that you can run with make test. 
The distribution installs the following binaries:

• unbound – the recursive name server
• unbound-checkconf – syntax checker of the unbound.conf file
• unbound-control, unbound-control-setup – secure remote control
• unbound-host – simple query tool

  



ptg

Installing and configuring Unbound 633

D
N

Sunbound-host is not as verbose as dig or drill, but it’s handy for command-line 
validation when DNSSEC is tested.

Table 17.11 shows the locations of Unbound components.

unbound’s configuration file, unbound.conf, is similar to that of nsd. The basic 
syntax is

attribute: value

with comments initiated by # and lasting until the end of the line. You can run 
unbound-checkconf to check the validity of your config file. 

Here is a small example of an unbound.conf file, adapted from the man page with 
saner paths and some additional comments:

server: 
directory: "/var/unbound/etc" 
username: unbound 
chroot: "/var/unbound" 
pidfile: "/var/run/unbound.pid"

root-hints: “root.cache” 
interface: 0.0.0.0 # Listen on all IPv4 interfaces
interface: ::0 # And on all IPv6 interfaces 
access-control: 10.0.0.0/8 allow # Local private networks 
access-control: 2001:DB8::/64 allow # Local IPv6 networks

This example listens on all interfaces and allows queries from the local IPv6 net-
works and from the unrouted private net 10. It logs to syslog with facility daemon 
(the default) and runs in a chrooted jail as user unbound.

With recursion come lots of options; the unbound option list approaches half the 
size (70+) of BIND’s (150+). Our coverage is selective. See the man page and the 
how-to documents at unbound.net for the full story.

unbound’s config language has four top-level clauses: server, remote-control, 
stub-zone, and forward-zone.24 Global options appear beneath the server clause. 
Here are a few of the more important ones.

Table 17.11 Unbound installation directories

Item  Directory

Binaries /usr/local/sbin

Libraries /usr/local/lib

Configuration file /usr/local/etc/unbound/unbound.conf 

Man pages /usr/local/share

Secure jail /usr/local/etc/unbound

PID file /usr/local/etc/unbound

24. It also has hooks for the Python scripting language.

  



ptg

634 Chapter 17 DNS: The Domain Name System

Locations directory: directory [/usr/local/etc/unbound] 
pidfile: filename [/usr/local/etc/unbound/unbound.pid] 
root-hints: filename [none]

The directory option sets the server’s working directory. unbound defaults to a 
directory under /usr/local/etc, but many sites prefer /var. The location of the PID 
file defaults to unbound’s working directory, but it also works fine in more tradi-
tional places such as /var/run. 

Root hints are built into unbound’s code, so the hints file is not required. How-
ever, you can provide one if you like since the addresses in the code may eventu-
ally become out of date. Use dig . ns to obtain a fresh copy occasionally, or if you 
are really paranoid, try dig @a.root-servers.net . ns for an authoritative copy.

Logging use-syslog: yes | no [yes]
logfile: filename [none] 
log-time-ascii: yes | no [no]
verbosity: level [1]

Logging information can go either to syslog or to a file. Choose between them 
with the use-syslog and logfile options. If you want normal time instead of UNIX 
time (seconds since 1/1/1970) in log messages, turn on the log-time-ascii option. 
The verbosity determines the amount of logging; see page 673 for details.

Statistics statistics-interval: seconds [0, i.e., disabled] 
statistics-cumulative: yes | no [no] 
extended-statistics: yes | no [no]

Statistics are turned off by default because they slow down the name server. If you 
turn them on by setting the statistics-interval option to a nonzero number of 
seconds, statistics will be written to the log file (or to syslog) at the specified inter-
val. By default, the statistics counters are reset to 0 each time they are written out; 
use the statistics-cumulative option to make them accumulate over time. 

Setting extended-statistics to yes generates more data that you can dump using 
unbound-control. 

See page 886 for more 
information about 
Cacti and RRDtool.

The distribution’s contrib directory contains plug-ins that connect Cacti or 
Munin to the running name server and that graph real-time statistics with RRD-
tool. See the statistics how-to at unbound.net for details.

Query access access-control: netblock action [allow only localhost]

The access-control option is the key to configuring unbound to be a recursive 
name server for your own users and not for the rest of the world. Use multiple 
access-control lines to allow multiple networks. The action parameter can take 
on four values:

• deny – blocks all queries from the specified network or host
• refuse – blocks queries and sends a REFUSED message back
• allow – answers queries from clients requesting recursion
• allow-snoop – answers queries from recursive and iterative clients

  



ptg

Installing and configuring Unbound 635

D
N

SThe refuse action is more conformant to the DNS specification than deny be-
cause clients assume that unanswered queries were lost on the network rather 
than having been administratively dropped for policy reasons. The allow action is 
the one to use for normal DNS clients. 

allow-snoop answers iterative queries as well as recursive queries. You can use it 
to investigate the contents of the server’s cache, since an iterative query succeeds 
only if the answer is already in-cache. allow-snoop can also be exploited for un-
wholesome purposes, so limit this action to your sysadmins’ hosts.

Security chroot: directory [/usr/local/etc/unbound]
username: name [unbound]

The username option specifies the unprivileged user as whom unbound should 
run once it has completed its startup housekeeping.

The chroot directive tells unbound to run in a chrooted jail. You will have to 
jump through some hoops to make sure that everything unbound needs is avail-
able from the jail directory, but recent versions of the code make this pretty easy.

The code is smart about mapping global pathnames into the chrooted world. 
Most paths can be specified as absolute global paths, as absolute paths within the 
jail directory, or as paths relative to the working directory. unbound performs the 
appropriate mapping when necessary.

A couple of fine points about running unbound in jail: Reading the config file of 
course predates the chroot, so the config file specified on unbound’s command 
line should be a global path. The PID file, the unbound-control key files, and the 
syslog socket can all remain outside the jail directory because they are opened 
before unbound performs its chroot. 

unbound reads /dev/random before chrooting, but it’s still a good idea to make 
/dev/random available after the chroot; unbound may need to return to it later to 
obtain more random data. If unbound cannot reach /dev/random, it uses a de-
fault source of randomness and logs a warning message.

Under Linux, you can make /dev/random available in the jail with the following 
incantation (which assumes that /var/unbound is your jail directory): 

linux$ sudo mount --bind -n /dev/random /var/unbound/dev/random

ID variables The following options control whether unbound tells the truth about its version 
and hostname when queried for the CHAOS names id.server and version.server:

hide-identity: yes | no [no]
identity: string [hostname]
hide-version: yes | no [no]
version: string [name server version]

As explained on page 598, we recommend not tampering with these values.

  



ptg

636 Chapter 17 DNS: The Domain Name System

IP addresses interface: ip-address [localhost] 
outgoing-port-avoid: number-or-range [none]

unbound has several options that control the interfaces on which it listens for 
queries and the port numbers used for receiving and sending queries. The de-
faults are fine for most sites and are not vulnerable to Kaminsky-type cache poi-
soning attacks. However, the interface and outgoing-port-avoid options should 
be configured explicitly.

The interface option specifies the interfaces on which unbound listens for que-
ries. It needs to be set explicitly because the default is localhost—fine if every ma-
chine runs unbound, but not so fine if you run one name server per subnet or per 
site. Add an interface statement for each interface on which clients might try to 
submit queries.

You should also configure outgoing-port-avoid to exclude any ports that are 
blocked by your firewall and any ports used by another program. unbound al-
ready excludes ports below 1,024 and IANA-assigned ports.

DNSSEC module-config: module-names {none]
trust-anchor-file: filename [none]
trust-anchor: resource-record [none]
trusted-keys-file: filename [none]
dlv-anchor-file: filename [none]
dlv-anchor: resource-record [none]

These options all deal with DNSSEC deployment; they allow you to express trust 
anchors by listing the files in which they live or by stuffing the resource record 
directly into the option’s value. There can be at most one DLV anchor.

Setting module-config to validator iterator turns on DNSSEC validation and 
must be accompanied by trust anchors, either explicitly configured or via DLV. 
See DNSSEC on page 648 for more info.

Signatures val-*: <various> [signature options, defaults are ok]

The val-* series of options deal with the validation process for signatures of signed 
zones. They tweak various parameters (such as maximum permissible clock skew) 
that can affect validation. The default values are fine unless you are debugging 
your DNSSEC deployment. Setting val-log-level to 1 logs validation failures, 
which is also helpful for debugging.

Tuning unbound supports several performance-tuning options. An important one is 
num-threads, which should be set to the number of cores available on the server 
(i.e., the number of cores per processor times the number of processors). 

The tuning defaults are fine for most sites, so rather than list them all here, we 
refer you to the man page for unbound.conf and the how-tos at unbound.net. 
Toward the end of the man page is a helpful example that tunes performance on a 
small-memory machine.

  



ptg

Installing and configuring Unbound 637

D
N

SPrivate addresses private-address: ip-address-or-subnet [none]
private-domain: domain-name [none]

The private-address statement blocks the listed IP addresses from being returned 
in query results. It’s normally used in conjunction with RFC1918 private IP ad-
dress spaces (see page 462) to keep these shameful addresses from escaping onto 
the Internet. This behavior is generally what you want for external sites, but if you 
are actually using RFC1918 addresses internally, you probably don’t want to be 
blacklisting your own internal addresses. The private-domain statement resolves 
this conflict by allowing the specified domain and all its subdomains to contain 
private addresses.

The next set of configuration options pertains to the remote-control statement, 
which controls communication between unbound and the unbound-control
program. That communication is controlled by self-signed SSL/TLS certificates in 
X.509 format that are set up by the unbound-control-setup program. There are 
only a few options, so we list them all:

Controlling unbound control-enable: yes | no [no]
control-interface: ip-address [localhost (127.0.0.1 and ::1)]
control-port: port [953]
server-key-file: private-key-file [unbound_server.key] 
server-cert-file: certificate-file-pem [unbound_server.pem]
control-key-file: private-key-file [unbound_control.key] 
control-cert-file: certificate-file-pem [unbound_control.pem]

You can control unbound from anywhere on the Internet. To set up authentica-
tion, run unbound-control-setup to create the necessary certificate files, set the 
control-enable option to yes, and set the control-interface to the network inter-
face on which the server should listen for control commands. You can use 0.0.0.0 
(and ::0) to enable all interfaces. The default is to require the controller to be 
logged in to the same machine as unbound, which is probably safest.

Stub zones stub-zone: 
name: domain-name [none]
stub-host: hostname [none]
stub-addr: ip-address[@port] [none]

A stub-zone clause lets you tunnel queries for a particular domain to an authori-
tative server that you designate rather than resolving them in the usual hierarchi-
cal fashion from the root. For example, you might want your users to see a private 
view of your local network that includes more hosts than are seen by DNS queri-
ers on the outside. The name “stub zone” is unfortunate and has no connection to 
the stub zones used in the BIND world.

To implement this configuration, you’d run an authoritative server on a different 
host (or on the same host at a different port) to serve your local version of the 
zone. You’d then point unbound to that server by using the stub-zone options. 
You can specify either the hostname of the server (stub-host) or its IP address 
(stub-addr). You can also specify the port, which defaults to 53. The address form 

  



ptg

638 Chapter 17 DNS: The Domain Name System

protects against chicken-and-egg problems if unbound cannot look up the name 
without access to the destination zone.

You can have as many stub zones as you want. 
Forwarding forward-zone: 

name: domain-name [none]
forward-host: server-name [none]
forward-addr: ip-address[@port] [none]

The forward-zone option lets unbound act as a forwarder, forwarding all queries 
(or just some, depending on the value of the name parameter) to another server 
to help that server build up a bigger cache. Forwarding occurs only if unbound
cannot answer a query from its own cache. See page 569 for general information 
about forwarders and reasons why you might want to use them.

There may be multiple forward-zone statements. If you specify the name as . (a 
single period), all queries are forwarded.  

17.12 UPDATING ZONE FILES

To change a domain’s data (e.g., to add or delete a host), you update the zone data 
files on the master server. You must also increment the serial number in the zone’s 
SOA record. Finally, you must get your name server software to pick up and dis-
tribute your changes. This final step varies depending on your software:

• BIND: Run rndc reload to signal named to pick up the changes. You can 
also kill and restart named, but if your server is both authoritative for 
your zone and recursive for your users, this operation discards cached 
data from other domains. 

• NSD: Run nsdc rebuild, followed by nsdc reload. nsd does no caching, 
so it is not adversely affected by being restarted. 

Updated zone data is propagated to slave servers of BIND masters right away be-
cause the notify option is on by default. In NSD, you must configure the notify
ACL to get this (desirable) effect. If notifications are not turned on, your slave 
servers will not pick up the changes until after refresh seconds, as set in the zone’s 
SOA record (typically an hour later). 

If you have the notify option turned off, you can force BIND slaves to update 
themselves by running rndc reload on each slave. This command makes the slave 
check with the master, see that the data has changed, and request a zone transfer. 
The corresponding NSD command is nsdc reload.

Don’t forget to modify both the forward and reverse zones when you change a 
hostname or IP address. Forgetting the reverse files leaves sneaky errors: some 
commands work and some won’t.

  



ptg

Zone transfers 639

D
N

SChanging the data files but forgetting to change the serial number makes the 
changes take effect on the master server (after a reload) but not on the slaves.

Do not edit data files on slave servers. These files are maintained by the name 
server and sysadmins should not meddle with them. It’s fine to look at the BIND 
data files as long as you don’t make changes. The NSD files are databases and so 
cannot be directly inspected. However, changes are by default written back to the 
text zone files by nsd-patch.

BIND allows zone changes to be made through a programmatic API, as specified 
in RFC2136. This feature, called dynamic updates, is necessary to support auto-
configuration protocols like DHCP. The dynamic update mechanism is described 
on page 640.

Zone transfers

DNS servers are synchronized through a mechanism called a zone transfer. A 
zone transfer can include the entire zone (called AXFR) or just the recent changes 
(called IXFR). By default, zone transfers use the TCP protocol on port 53. BIND 
logs transfer-related information with category “xfer-in” or “xfer-out”; NSD in-
cludes it in the regular logging stream.

A slave that wants to refresh its data requests a zone transfer from the master 
server and makes a backup copy of the zone data on disk. If the data on the master 
has not changed, as determined by a comparison of the serial numbers (not the 
actual data), no update occurs and the backup files are just touched. (That is, their 
modification times are set to the current time.)

Both the sending and receiving servers remain available to answer queries during 
a zone transfer. Only after the transfer is complete does the slave begin to use the 
new data.

When zones are huge (like com) or dynamically updated (see the next section), 
changes are typically small relative to the size of the entire zone. With IXFR, only 
the changes are sent (unless they are larger than the complete zone, in which case 
a regular AXFR transfer is done). The IXFR mechanism is analogous to the patch
program in that it makes changes to an old database to bring it into conformity 
with a new database.

In BIND, IXFR is the default for any zones configured for dynamic update, and 
named maintains a transaction log called zonename.jnl. You can set the options 
provide-ixfr and request-ixfr in the server statements for individual peers. The 
provide-ixfr option enables or disables IXFR service for zones for which this 
server is the master. The request-ixfr option requests IXFRs for zones for which 
this server is a slave.

provide-ixfr yes ; # In BIND server statement 
request-ixfr yes ; # In BIND server statement

  



ptg

640 Chapter 17 DNS: The Domain Name System

IXFRs work for zones that are edited by hand, too. Use the BIND zone option 
called ixfr-from-differences to enable this behavior. IXFR requires the zone file to 
be sorted in a canonical order. named takes care of this chore for you, but it costs 
the server some memory and CPU. IXFRs trade these costs in exchange for re-
duced network traffic.

When requesting a zone transfer, NSD slaves ask for an IXFR but fall back to 
AXFR if that is all the master server supports. Because NSD’s data lives in a com-
piled database format, sorting is not required for IXFRs. NSD stores the transfer 
daemon’s state in the file specified by the xfrdfile attribute in case the transfer is 
interrupted.

Reloads after IXFRs can be throttled by the xfrd-reload-timeout attribute. It de-
faults to 10 seconds, so IXFR changes are batched to some degree.

In BIND, an IXFR request to a server that does not support it automatically falls 
back to the standard AXFR zone transfer. You can prohibit AXFR fallback in NSD 
by setting allow-axfr-fallback to no.

In both systems, much effort has been expended to ensure that a server crash 
during an IXFR does not leave zones with trashed data. 

BIND dynamic updates

The DNS system is built on the premise that name-to-address mappings are rela-
tively stable and do not change frequently. However, a site that uses DHCP to 
dynamically assign IP addresses as machines boot and join the network breaks 
this rule constantly. There are two classical solutions: add generic entries to the 
DNS database, or continually edit the DNS files. For many sites, neither solution 
is satisfactory.

The first solution should be familiar to anyone who has looked up the PTR record 
for the IP address assigned to them by a mass-market (home) ISP. The DNS con-
figuration usually looks something like this:

dhcp-host1.domain. IN A 192.168.0.1 
dhcp-host2.domain. IN A 192.168.0.2
…

Although this is a simple solution, it means that hostnames are permanently asso-
ciated with particular IP addresses and that computers therefore change host-
names whenever they receive a new IP address. Hostname-based logging and se-
curity measures become very difficult in this environment.

BIND’s dynamic update feature offers an alternative solution. It allows the DHCP 
daemon to notify BIND of the address assignments it makes, thus updating the 
contents of the DNS database on the fly. Dynamic updates can add, delete, or 
modify resource records. When dynamic updates are enabled, named maintains a 
journal of dynamic changes (zonename.jnl) that it can consult in the event of a 

  



ptg

BIND dynamic updates 641

D
N

Sserver crash. named recovers the in-memory state of the zone by reading the orig-
inal zone files and then replaying the changes from the journal.

You cannot hand-edit a dynamically updated zone without first stopping the dy-
namic update stream. rndc freeze zone or rndc freeze zone class view will do the 
trick. These commands sync the journal file to the master zone file on disk and 
then delete the journal. You can then edit the zone file by hand. Unfortunately, the 
original formatting of the zone file will have been destroyed by named’s monkey-
ing—the file will look like those maintained by named for slave servers. 

Dynamic update attempts are refused while the zone is frozen. Use rndc thaw
with the same arguments you froze with to reload the zone file from disk and 
reenable dynamic updates.

The nsupdate program supplied with BIND 9 comes with a command-line inter-
face for making dynamic updates. It runs in batch mode, taking commands from 
the keyboard or a file. A blank line or the send command signals the end of an 
update and sends the changes to the server. Two blank lines signify the end of 
input. The command language includes a primitive if statement to express con-
structs such as “if this hostname does not exist in DNS, add it.” As predicates for 
an nsupdate action, you can require a name to exist or not exist, or require a 
resource record set to exist or not exist.

For example, here is a simple nsupdate script that adds a new host and also adds a 
nickname for an existing host if the nickname is not already in use. The angle 
bracket prompt is produced by nsupdate and is not part of the command script.

$ nsupdate 
> update add newhost.cs.colorado.edu 86400 A 128.138.243.16 
> 
> prereq nxdomain gypsy.cs.colorado.edu 
> update add gypsy.cs.colorado.edu CNAME evi-laptop.cs.colorado.edu

Dynamic updates to DNS are scary. They can potentially provide uncontrolled 
write access to your important system data. Don’t try to use IP addresses for ac-
cess control—they are too easily forged. TSIG authentication with a shared-secret 
key is better; it’s available and is easy to configure. BIND 9 supports both:

$ nsupdate -k keydir:keyfile

or
$ nsupdate -y keyname:secretkey

Since the password goes on the command line in the -y form, anyone running w
or ps at the right moment can see it. For this reason, the -k form is preferred. For 
more details on TSIG, see the section starting on page 645.

Dynamic updates to a zone are enabled in named.conf with an allow-update or 
update-policy clause. allow-update grants permission to update any records in 
accordance with IP- or key-based authentication. update-policy is a BIND 9 

  



ptg

642 Chapter 17 DNS: The Domain Name System

extension that allows fine-grained control for updates according to the hostname 
or record type. It requires key-based authentication. Both are zone options.

Use update-policy to allow clients to update their A or PTR records but not to 
change the SOA record, NS records, or KEY records. You can also use update-
policy to allow a host to update only its own records. The parameters let you ex-
press names explicitly, as a subdomain, as a wild card, or as the keyword self, 
which sets a general policy for machines’ access to their own records. Resource 
records are identified by class and type. The syntax of an update-policy rule is

update-policy ( grant | deny ) identity nametype name [types] ;

The identity is the name of the cryptographic key needed to authorize the update. 
The nametype has one of four values: name, subdomain, wildcard, or self. The 
name is the zone to be updated, and the types are the resource record types that 
can be updated. If no types are specified, all types except SOA, NS, RRSIG, and 
NSEC or NSEC3 can be updated. Here’s an example:

update-policy { grant dhcp-key subdomain dhcp.cs.colorado.edu A } ;

This configuration allows anyone who knows the key dhcp-key to update address 
records in the dhcp.cs.colorado.edu subdomain. This statement would appear in 
the master server’s named.conf file within the zone statement for the domain 
dhcp.cs.colorado.edu. There would be a key statement to define dhcp-key as well. 

The snippet below from the named.conf file at the Computer Science Depart-
ment at the University of Colorado uses the update-policy statement to allow stu-
dents in a system administration class to update their own subdomains but not to 
mess with the rest of the DNS environment.

// saclass.net 
zone "saclass.net" {

type master; 
file "saclass/saclass.net"; 
update-policy {

grant feanor_mroe. subdomain saclass.net.; 
grant mojo_mroe. subdomain saclass.net.; 
grant dawdle_mroe. subdomain saclass.net.; 
grant pirate_mroe. subdomain saclass.net.; 
…

}; 
…

17.13 SECURITY ISSUES 

DNS started out as an inherently open system, but it has steadily grown more and 
more secure—or at least, securable. By default, anyone on the Internet can investi-
gate your domain with individual queries from tools such as dig, host, nslookup, 
and drill. In some cases, they can dump your entire DNS database.

  



ptg

Access control lists in BIND, revisited 643

D
N

STo address such vulnerabilities, name servers support various types of access con-
trol based on host and network addresses or on cryptographic authentication. Ta-
ble 17.12 summarizes the security features that can be configured in named.conf, 
nsd.conf, or unbound.conf. The Page column shows where in this book to look 
for more information.

All three name servers can run in a chrooted environment under an unprivileged 
UID to minimize security risks; unbound does so by default. They can all use 
transaction signatures to control communication between master and slave serv-
ers (BIND and NSD) and between the name servers and their control programs 
(BIND and Unbound). Each also supports the whole DNSSEC hairball. These 
topics are taken up in the next few sections.

Access control lists in BIND, revisited

ACLs are named address match lists that can appear as arguments to statements 
such as allow-query, allow-transfer, and blackhole. Their basic syntax was de-
scribed on page 609. ACLs can help beef up DNS security in a variety of ways.

Every site should at least have one ACL for bogus addresses and one ACL for local 
addresses. For example:

acl bogusnets { // ACL for bogus networks
 0.0.0.0/8 ; // Default, wild card addresses
 1.0.0.0/8 ; // Reserved addresses
 2.0.0.0/8 ; // Reserved addresses
 169.254.0.0/16 ; // Link-local delegated addresses

Table 17.12 Security features in BIND, NSD, and Unbound

Feature Context Page What it specifies

BI
N

D

acl Various 609 Access control lists
allow-query options, zone 606 Who can query a zone or server 
allow-recursion options 604 Who can make recursive queries
allow-transfer options, zone 606 Who can request zone transfers
allow-update zone 613 Who can make dynamic updates
blackhole options 606 Servers to completely ignore
bogus server 611 Servers never to query
update-policy zone 641 Use of dynamic updates

N
SD

/U
nb

ou
nd

access-control server 634 Permitted queriers (Unbound)
allow-notify Slave zone 631 Permitted notifiers (NSD)
chroot server 631/635 Directory to chroot to
notify Master zone 631 Slave servers to notify (NSD)
provide-xfr Master zone 631 Zone transfer receivers (NSD)
request-xfr Slave zone 631 Zone transfer providers (NSD)
username server 631/635 User to run as from chroot jail

  



ptg

644 Chapter 17 DNS: The Domain Name System

  192.0.2.0/24 ; // Sample addresses, like example.com
  224.0.0.0/3 ; // Multicast address space
  10.0.0.0/8 ; // Private address space (RFC1918)25

  172.16.0.0/12 ; // Private address space (RFC1918)
  192.168.0.0/16 ; // Private address space (RFC1918)
} ;

acl cunets { // ACL for University of Colorado networks 
128.138.0.0/16 ; // Main campus network 
198.11.16/24 ; 
204.228.69/24 ;

}; 

In the global options section of your config file, you could then include
allow-recursion { cunets; } ;
blackhole { bogusnets; } ;

It’s also a good idea to restrict zone transfers to legitimate slave servers. An ACL 
makes things nice and tidy.

acl ourslaves { 
128.138.242.1 ; // anchor
…

} ; 
acl measurements { 

198.32.4.0/24 ; // Bill manning's measurements, v4 address 
2001:478:6:0::/48 ; // Bill manning's measurements, v6 address

} ;

The actual restriction is implemented with a line such as
allow-transfer { ourslaves; measurements; } ;

Here, transfers are limited to our own slave servers and to the machines of an 
Internet measurement project that walks the reverse DNS tree to determine the 
size of the Internet and the percentage of misconfigured servers. Limiting trans-
fers in this way makes it impossible for other sites to dump your entire database 
with a tool such as dig (see page 677).

Of course, you should still protect your network at a lower level through router 
access control lists and standard security hygiene on each host. If those measures 
are not possible, you can refuse DNS packets except to a gateway machine that 
you monitor closely.

Open resolvers

An open resolver is a recursive, caching name server that accepts and answers 
queries from anyone on the Internet. Open resolvers are bad. Outsiders can con-
sume your resources without your permission or knowledge, and if they are bad 
guys, they may be able to poison your resolver’s cache. 

25. Don’t make private addresses bogus if you use them and are configuring your internal DNS servers!

  



ptg

Secure server-to-server communication with TSIG and TKEY 645

D
N

SWorse, open resolvers are sometimes used by bad guys to amplify distributed de-
nial of service attacks. The attacker sends queries to your resolver with a faked 
source address that points back to the victim of the attack. Your resolver dutifully 
answers the queries and sends some nice fat packets to the victim. The victim 
didn’t initiate the queries, but it still has to route and process the network traffic. 
Multiply by a bunch of open resolvers and it’s real trouble for the victim.

Statistics show that between 75% and 80% of caching name servers are currently 
open resolvers—yikes! The site dns.measurement-factory.com/tools can help you 
test your site. Go there, select the “open resolver test,” and type in the IP addresses 
of your name servers. You can also test all the name servers on your network or all 
the servers at your site by using your whois identifier.

Use access control lists in named.conf or unbound.conf to limit your caching 
name servers to answering queries from your own users.

Running in a chrooted jail

If hackers compromise your name server, they can potentially gain access to the 
system under the guise of the user as whom it runs. To limit the damage that 
someone could do in this situation, you can run the server in a chrooted environ-
ment, run it as an unprivileged user, or both. 

For named, the command-line flag -t specifies the directory to chroot to, and the 
-u flag specifies the UID under which named should run. For example,

$ sudo named -u 53

initially starts named as root, but after named completes its rootly chores, it relin-
quishes its root privileges and runs as UID 53. 

For nsd and unbound, the config file server options username and chroot do the 
same job. These options can also be specified on the nsd command line with the 
same flags as BIND: -u and -t, respectively.

Many sites don’t bother to use the -u and -t flags, but when a new vulnerability is 
announced, they must be faster to upgrade than the hackers are to attack.

The chroot jail cannot be an empty directory since it must contain all the files the 
name server normally needs in order to run: /dev/null, /dev/random, the zone 
files, configuration files, keys, syslog target files and the syslog UNIX-domain 
socket, /var, etc. It takes a bit of work to set this all up. The chroot system call is 
performed after libraries have been loaded, so it is not necessary to copy shared 
libraries into the jail.

Secure server-to-server communication with TSIG and TKEY

While DNSSEC (covered in the next section) was being developed, the IETF de-
veloped a simpler mechanism, called TSIG (RFC2845), to allow secure communi-
cation among servers through the use of “transaction signatures.” Access control 
based on transaction signatures is more secure than access control based on IP 

  



ptg

646 Chapter 17 DNS: The Domain Name System

source addresses alone. TSIG can secure zone transfers between a master server 
and its slaves, and in BIND can secure dynamic updates.

The TSIG signature on a message authenticates the peer and verifies that the data 
has not been tampered with. Signatures are checked at the time a packet is re-
ceived and are then discarded; they are not cached and do not become part of the 
DNS data.

TSIG uses symmetric encryption. That is, the encryption key is the same as the 
decryption key. This single key is called the “shared secret.” The TSIG specifica-
tion allows multiple encryption methods. BIND implements MD5, SHA-1, SHA-
224, and SHA-256. NSD implements the same set but without SHA-224. Use a 
different key for each pair of servers that want to communicate securely. 

TSIG is much less expensive computationally than public key cryptography, but 
because it requires manual configuration, it is only appropriate for a local network 
on which the number of pairs of communicating servers is small. It does not scale 
to the global Internet.

Setting up TSIG for BIND

First, use BIND’s dnssec-keygen utility to generate a shared-secret host key for 
the two servers, say, master and slave1:

$ dnssec-keygen -a HMAC-MD5 -b 128 -n HOST master-slave1

The -b 128 flag tells dnssec-keygen to create a 128-bit key. We use 128 bits here 
just to keep the keys short enough to fit on our printed pages. In real life, you 
might want to use a longer key; 512 bits is the maximum allowed. 

This command produces two files: Kmaster-slave1.+157+09068.private and 
Kmaster-slave1.+157+09068.key. The 157 stands for the HMAC-MD5 algo-
rithm, and the 09068 is a number used as a key identifier in case you have multi-
ple keys for the same pair of servers.26

Both files include the same key, just in different formats. The .private file looks 
like this:

Private-key-format: v1.2 
Algorithm: 157 (HMAC_MD5)
Key: jxopbeb+aPc71Mm2vc9R9g==

and the .key file like this:
master-slave1. IN KEY 512 3 157 jxopbeb+aPc71Mm2vc9R9g==

Note that dnssec-keygen has added a dot to the end of the key names in both the 
filenames and the contents of the .key file. The motivation for this convention is 
that when dnssec-keygen is used for DNSSEC keys that are added to zone files, 
the key names must be fully qualified domain names and must therefore end in a 

26. The number looks random, but it is really just a hash of the TSIG key.

  



ptg

Setting up TSIG for BIND 647

D
N

Sdot. There should probably be two tools, one for shared-secret keys and one for 
public-key key pairs. 

You don’t actually need the .key file—it’s another artifact of dnssec-keygen being 
used for two different jobs. Just delete it. The 512 in the KEY record is not the key 
length but rather a flag bit that identifies the record as a DNS host key.

After all this complication, you may be disappointed to learn that the generated 
key is really just a long random number. You could generate the key manually by 
writing down an ASCII string of the right length (divisible by 4) and pretending 
that it’s a base-64 encoding of something, or you could use mmencode to encode 
a random string. The way you create the key is not important; it just has to exist 
on both machines.

scp is part of the 
OpenSSH suite. See 
page 926 for details.

Copy the key from the .private file to both master and slave1 with scp, or cut and 
paste it. Do not use telnet or ftp to copy the key; even internal networks may not 
be secure.

The key must be included in both machines’ named.conf files. Since named.conf
is usually world-readable and keys should not be, put the key in a separate file that 
is included in named.conf. The key file should have mode 600 and should be 
owned by the named user. 

For example, you could put the snippet
key master-slave1. { 

algorithm hmac-md5 ; 
secret "shared-key-you-generated" ;

} ;

in the file master-slave1.tsig. In the named.conf file, add the line
include "master-slave1.tsig" ;

near the top.

This part of the configuration simply defines the keys. For them to actually be 
used to sign and verify updates, the master needs to require the key for transfers 
and the slave needs to identify the master with a server statement and keys clause. 
For example, you might add the line

allow-transfer { key master-slave1. ;} ;

to the zone statement on the master server, and the line
server master’s-IP-address { keys { master-slave1. ; } ; } ;

to the slave’s named.conf file. If the master server allows dynamic updates, it can 
also use the key in its allow-update clause in the zone statement.

Our example key name is pretty generic. If you use TSIG keys for many zones, you 
may want to include the name of the zone in the key name to help you keep every-
thing straight.

  



ptg

648 Chapter 17 DNS: The Domain Name System

To test your TSIG configuration, run named-checkconf to verify that you have 
the syntax right. Then use dig to attempt a zone transfer (dig @master axfr) from 
both slave1 and from some other machine. The first should succeed and the sec-
ond should fail with the diagnostic “Transfer failed.” To be absolutely sure every-
thing is right, remove the allow-transfer clause and try the dig commands again. 
This time, both should succeed. (Don’t forget to put the allow-transfer back in!) 
As a final test, increase the serial number for the zone on the master server, run 
rndc reload, and watch the log file on the slave to see if it picks up the change and 
transfers the zone.

When you first start using transaction signatures, run named at debug level 1 (see 
page 667 for information about debug mode) for a while to see any error messages 
that are generated. Ancient versions of BIND do not understand signed messages 
and complain about them, sometimes to the point of refusing to load the zone.

See page 1195 for 
more information 
about NTP.

When using TSIG keys and transaction signatures between master and slave serv-
ers, you should keep the clocks of the servers synchronized with NTP. If the clocks 
are too far apart (more than about 5 minutes), signature verification will not 
work. This problem can be very hard to identify.

TKEY is a BIND mechanism that lets two hosts generate a shared-secret key auto-
matically, without phone calls or secure copies to distribute the key. It uses an 
algorithm called the Diffie-Hellman key exchange in which each side makes up a 
random number, does some math on it, and sends the result to the other side. 
Each side then mathematically combines its own number with the transmission it 
received to arrive at the same key. An eavesdropper might overhear the transmis-
sion but will be unable to reverse the math.27 

Microsoft servers use TSIG in a nonstandard way called GSS-TSIG that exchanges 
the shared secret through TKEY. If you need a Microsoft server to communicate 
with BIND, use the tkey-domain and tkey-gssapi-credential options.

SIG(0) is another mechanism for signing transactions between servers or between 
dynamic updaters and the master server. It uses public key cryptography; see 
RFCs 2535 and 2931 for details.

TSIG in NSD

You can use the ldns-keygen command in the examples directory of the ldns
distribution to generate TSIG keys for NSD’s access control lists. For details, see 
page 655. NSD does not support SIG(0) keys or the TKEY Diffie-Hellman key 
exchange system.

DNSSEC

DNSSEC is a set of DNS extensions that authenticate the origin of zone data and 
verify its integrity by using public key cryptography. That is, the extensions allow 

27. The math involved is called the discrete log problem and relies on the fact that for modular arithmetic, 
taking powers is easy but taking logs to undo the powers is close to impossible.

  



ptg

DNSSEC 649

D
N

SDNS clients to ask the questions “Did this DNS data really come from the zone’s 
owner?” and “Is this really the data sent by that owner?”

DNSSEC relies on a cascading chain of trust. The root servers provide validation 
information for the top-level domains, the top-level domains provide validation 
information for the second-level domains, and so on. Or at least, that’s the origi-
nal design of the system. As of early 2010, the root and most top-level domains 
remain unsigned.

ICANN and the U.S. Department of Commerce are dragging their feet on signing 
the root, although this change has been promised for a while. It might happen in 
mid-2010. VeriSign appears to be in no rush to sign the .com and .net zones. The 
zones are already huge, and the signed versions will be even larger, requiring serv-
ers to be reprovisioned. Furthermore, VeriSign’s X.509 certificate service repre-
sents a significant portion of its revenue, and DNSSEC may replace these certifi-
cates for certain applications. Nevertheless, VeriSign has promised to sign the 
.com zone by 2011, just in time for the scheduled renegotiation of its contract with 
ICANN in 2012.

Fortunately, the concept of trust anchors lets us bootstrap the DNSSEC validation 
process and secure portions of the DNS tree in advance of the availability of 
signed root and top-level domains.

Public key cryptosystems use two keys: one to encrypt (sign) and a different one 
to decrypt (verify). Publishers sign their data with the secret “private” key. Anyone 
can verify the validity of a signature with the matching “public” key, which is 
widely distributed. If a public key correctly decrypts a zone file, then the zone 
must have been encrypted with the corresponding private key. The trick is to 
make sure that the public keys you use for verification are authentic. Public key 
systems allow one entity to sign the public key of another, thereby vouching for 
the legitimacy of the key; hence the term “chain of trust.”

The data in a DNS zone is too voluminous to be encrypted with public key cryp-
tography—the encryption would be too slow. Instead, since the data is not secret, 
a secure hash (e.g., an MD5 checksum) is run on the data and the results of the 
hash are signed (encrypted) by the zone’s private key. The results of the hash are 
like a fingerprint of the data and are called a digital signature. The signatures are 
appended to the data they authenticate as RRSIG records in the signed zone file.

To verify the signature, you decrypt it with the public key of the signer, run the 
data through the same secure hash algorithm, and compare the computed hash 
value with the decrypted hash value. If they match, you have authenticated the 
signer and verified the integrity of the data.

In the DNSSEC system, each zone has its own public and private keys. In fact, it 
has two sets of keys: a zone-signing key pair and a key-signing key pair. The pri-
vate zone-signing key signs each RRset (that is, each set of records of the same 

  



ptg

650 Chapter 17 DNS: The Domain Name System

type for the same host). The public zone-signing key verifies the signatures and is 
included in the zone’s data in the form of a DNSKEY resource record.

Parent zones contain DS records that are a hash of the child’s self-signed key-
signing key DNSKEY records. A name server verifies the authenticity of a child 
zone’s DNSKEY record by checking it against the parent zone’s signature. To verify 
the authenticity of the parent zone’s key, the name server can check the parent’s 
parent, and so on back to the root. The public key for the root zone would be 
widely published and included in the root hints file.

The DNSSEC specifications require that if a zone has multiple keys, each is tried 
until the data is validated. This behavior is required so that keys can be rolled over 
(changed) without interruptions in DNS service. If a DNSSEC-aware recursive 
name server queries an unsigned zone, the unsigned answer that comes back is 
accepted as valid. But problems occur when signatures expire or when parent and 
child zones do not agree on the child’s current DNSKEY record.

Before we jump into the mechanics of generating keys and signing zones, we need 
to outline the real-world status of DNSSEC and its impact on sysadmins. It is 
ready to deploy, but a couple of problems remain. On the plus side:

• Current versions of the DNS software (both named and nsd/unbound) 
are ready. Tools exist to sign zones and verify signatures.

• Momentum toward signed zones is building. As of early 2010, .gov, .org, 
and several ccTLDs (mostly in Europe) are now signed. (Sweden was the 
first signed TLD.) The root will be signed in 2010, and the other gTLDs 
will follow a year or two later. The U.S. government has required all sites 
within .gov to be signed as well.

• The IETF standards seem to be functional and deployable.

However, two thorny problems remain: key distribution and packet size.

With the root and TLDs not signed, the chain of trust is currently broken. Sites 
that want to sign their zones have to find other ways to publish their keys. A 
lookaside validation scheme (RFCs 4431 and 5074) designed by Sam Weiler of 
Sparta allows a convenient workaround for this problem by enabling third-party 
organizations such as ISC to validate sites’ keys. This is a good interim solution, 
but also a single point of failure. ISC is used to running critical servers (they run 
the F root server), but accidents do happen. There are also potential privacy issues 
with a third party having knowledge of all the sites your users visited. (Of course, 
these same privacy concerns apply to all root server operators.) Another interim 
solution is the use of so-called ITARs (itar.iana.org); see page 661.

Strong keys are long, and some sites like to distribute several of them. This means 
bigger packets. DNSSEC requires EDNS0, the extended DNS protocol, which 
supports UDP packets larger than 512 bytes. However, not all implementations 
support it; those folks may not be able to use DNSSEC.

  



ptg

DNSSEC 651

D
N

SEven for EDNS0-aware servers, the MTU over the path between two servers may 
be smaller than a big fat signed packet stuffed with keys. If the packet is too large, 
it should in theory be fragmented at the IP layer, but problems remain. Some im-
plementations of TCP/IP fragment TCP packets but not UDP packets. Some fire-
wall devices do not have enough saved state to properly reassemble fragmented 
UDP packets. And finally, some firewalls drop UDP packets to port 53 that are 
larger than 512 bytes. Oops. When a UDP response is mutilated or fails to get 
through, the client then switches to TCP, which causes performance problems of 
its own.

A few other issues:

• Russia refuses to use the RSA algorithm, and RSA is currently the only 
algorithm that DNSSEC-aware name servers are required to implement. 
Russia has standardized on an algorithm called GOST, a symmetric 
cipher, that is similar in design to DES.28

• China (among other countries) has its own root, .com, and .net servers, 
thus fracturing the DNS naming tree. How will DNSSEC work with a 
fractured root?

• RFC5011, a proposed standard for automated updates of DNSSEC trust 
anchors, inflates the key handling overhead by adding keys to your 
DNSKEY resource record sets. This extension would exacerbate the 
MTU problem mentioned above and seems to be a bad idea. There are 
also situations in which use of the RFC5011 scheme would leave a site’s 
keys in a revoked state even though cached data might still require those 
keys for verification.

• Linux distributions ship with a list of keys to get you started. This seems 
like a bad idea since the keys will inevitably become out of date and 
wrong. Your DNS will slowly degrade without you really knowing why. 
(Key lists themselves are not necessarily a bad idea. For example, you can 
use lists from the RIPE and IANA web sites to cross-check keys you 
obtain through DNS until the root and TLDs are signed.)

• Maybe we need a well-known hostname (analogous to www for web 
servers) that sites can use to publish their public keys while we wait for 
the top of the DNS tree to be signed—key.domain-name, or something 
like that.

Sysadmins need to start thinking about signing their domains and setting up a 
shiny new server or two. We do recommend that you deploy DNSSEC at this 
point, but stage it carefully on a test network well before you plan to deploy it on 
production networks. 

28. GOST is secure (as far as we know) and has a much shorter key length than other algorithms. Since it 
is a symmetric cipher and not a public key system, it can replace TSIG but cannot be used for DNS-
SEC. Proposals to allow GOST are winding their way through the IETF standardization process.

  



ptg

652 Chapter 17 DNS: The Domain Name System

DNSSEC deployment can be done in two independent steps:

• Sign your zones and serve signed data to DNSSEC-aware clients.
• Validate the answers to your users’ queries.

Check out UCLA’s handy SecSpider tool at secspider.cs.ucla.edu. It probes your 
DNSSEC setup from several locations around the globe to verify that your keys 
are available and that large packets containing them can reach those locations. (It 
was in fact SecSpider that first discovered the path MTU issue with DNSSEC.) 
SecSpider also identifies DNSSEC misconfigurations, and using it may help out a 
grad student trying to gather enough data to write his thesis. You can also obtain 
copies of the public keys for other signed zones from the SecSpider web site (sec-
spider.cs.ucla.edu/trust-anchors.conf). 

The DNS-OARC (DNS Operations, Analysis, and Research Center) has imple-
mented a reply-size test server that you can query with dig to find out how large a 
DNS UDP reply packet can transit between that server and your site:

$ dig +short rs.dns-oarc.net txt 
rst.x1014.rs.dns-oarc.net. 
rst.x1202.x1014.rs.dns-oarc.net. 
rst.x1382.x1202.x1014.rs.dns-oarc.net.
"63.231.83.113 DNS reply size limit is at least 1382 bytes" 
"63.231.83.113 sent EDNS buffer size 4096"

This example tells you that DNS replies of size 1,382 can get through, but not 
much larger, even though you are advertising a buffer size of 4,096. In this case, 
the problem is likely that the firewall is not admitting UDP fragments. 

Other common sizes are 486, indicating a server that does not support EDNS0 
and limits UDP packets to 512 bytes, and 4,023, which indicates that the full 
4,096-byte buffer size can be used. If you use the @server argument to dig, you 
will see the packet size limitations from the DNS-OARC machine to that server. 
For more information, see dns-oarc.net/oarc/services/replysizetest.

If you are about to implement DNSSEC and either SecSpider or DNS-OARC indi-
cates a problem with packet sizes, it might be time to talk to your firewall folks 
and try to get things fixed before you deploy.

DNSSEC policy

Before you begin deployment of DNSSEC, there are a few policies and procedures 
that you should nail down or at least think about. For example:

• What size keys will you use? Longer keys are more secure, but they make 
for larger packets.

• How often will you change keys in the absence of a security incident?

• How will you distribute your public keys? How will sites that need your 
keys verify that they are authentic?

  



ptg

DNSSEC resource records 653

D
N

SWe suggest that you keep a key log that records the date you generated each key, 
the hardware and operating system used, the key tag assigned, the version of the 
key generator software, the algorithm used, the key length, and the signature va-
lidity period. If a cryptographic algorithm is later compromised, you can check 
your log to see if you are vulnerable.

DNSSEC resource records

DNSSEC uses six resource record types that were referenced in the DNS database 
section back on page 590 but were not described in detail: DS, DLV, DNSKEY, 
RRSIG, NSEC, and NSEC3. We describe them here in general and then outline 
the steps involved in signing a zone. Each of these records is created by DNSSEC 
tools rather than by being typed into a zone file with a text editor.

The DS (Designated Signer) record appears only in the parent zone and indicates 
that a subzone is secure (signed). It also identifies the key used by the child to self-
sign its own KEY resource record set. The DS record includes a key identifier (a 
five-digit number), a cryptographic algorithm, a digest type, and a digest of the 
public key record allowed (or used) to sign the child’s key resource record.

If your parent zone is not signed, you can establish a trust anchor at ISC by using 
a DLV (domain lookaside validation) record with the same format. Here are ex-
amples of each:29

example.com. IN DS 682 5 1 12898DCF9F7AD20DBCE159E7… 
example.com.dlv.isc.org. IN DLV 682 5 1 12898DCF9F7AD20DBCE159E7…

The question of how to change existing keys in the parent and child zones has 
been a thorny one that seemed destined to require cooperation and communica-
tion between parent and child. The creation of the DS record, the use of separate 
key-signing and zone-signing keys, and the use of multiple key pairs have helped 
address this problem.

Keys included in a DNSKEY resource record can be either key-signing keys 
(KSKs) or zone-signing keys (ZSKs). A new flag, called SEP for “secure entry 
point,” distinguishes between them. Bit 15 of the flags field is set to 1 for KSKs and 
to 0 for ZSKs. This convention makes the flags field of KSKs odd and of ZSKs 
even when they are treated as decimal numbers. The values are currently 257 and 
256, respectively.

Multiple keys can be generated and signed so that a smooth transition from one 
key to the next is possible. The child may change its zone-signing keys without 
notifying the parent; it must only coordinate with the parent if it changes its key-
signing key. As keys roll over, both the old key and the new key are valid for a 
certain interval. Once cached values on the Internet have expired, the old key can 
be retired.

29. In this section, base-64-encoded hashes and keys have all been truncated to save space and better illus-
trate the structure of the records.

  



ptg

654 Chapter 17 DNS: The Domain Name System

An RRSIG record is the signature of a resource record set (that is, the set of all 
records of the same type and name within a zone). RRSIG records are generated 
by zone-signing software and added to the signed version of the zone file.

An RRSIG record contains a wealth of information:

• The type of record set being signed
• The signature algorithm used, encoded as a small integer
• The number of labels (dot-separated pieces) in the name field
• The TTL of the record set that was signed
• The time the signature expires (as yyyymmddhhssss)
• The time the record set was signed (also yyyymmddhhssss)
• A key identifier (a 5-digit number)
• The signer’s name (domain name)
• And finally, the digital signature itself (base-64 encoded)

Here’s an example:

RRSIG   NS 5 2 57600 20090919182841 ( 
20090820182841 23301 example.com. 
pMKZ76waPVTbIguEQNUojNVlVewHau4p…== )

NSEC or NSEC3 records are also produced as a zone is signed. Rather than sign-
ing record sets, they certify the intervals between record set names and so allow 
for a signed answer of “no such domain” or “no such resource record set.” For 
example, a server might respond to a query for A records named bork.atrust.com 
with an NSEC record that certifies the nonexistence of any A records between 
bark.atrust.com and borrelia.atrust.com.

Unfortunately, the inclusion of the endpoint names in NSEC records allows some-
one to walk through the zone and obtain all of its valid hostnames. NSEC3 fixes 
this feature by including hashes of the endpoint names rather than the endpoint 
names themselves, but it is more expensive to compute: more security, less perfor-
mance. NSEC and NSEC3 are both in current use, and you can choose between 
them when you generate your keys and sign your zones. 

Unless protecting against a zone walk is critically important for your site, we rec-
ommend that you use NSEC for now. Only recent versions of BIND (9.6 and later) 
and NSD (3.1 and later) understand NSEC3 records.

Turning on DNSSEC

Since NSD is an authoritative-only name server, it only needs to be concerned 
with serving signed data to DNSSEC-aware clients. There is no need to explicitly 
turn DNSSEC on. If a zone is signed, NSD uses DNSSEC. 

BIND is a bit more complicated. Current BIND releases have removed OpenSSL 
from the distribution, so if you want to use DNSSEC, you will have to either ob-
tain a preconfigured package that includes DNSSEC support or obtain the SSL 

  



ptg

Key pair generation 655

D
N

Slibraries directly from openssl.org. If you take the latter route, you’ll have to then 
recompile BIND with cryptographic support turned on (use the --with-openssl
option to ./configure). If you don’t do this, dnssec-keygen will complain. How-
ever, it will still work for generating TSIG keys, since those don’t require Open-
SSL. BIND displays a lovely warning page if your version of OpenSSL is so old 
that it has known security vulnerabilities.

Two separate workflows are involved in using signed zones: one that creates keys 
and signs zones, and a second that serves the contents of those signed zones. 
These duties need not be implemented on the same machine. In fact, it is better to 
quarantine the private key and the CPU-intensive signing process on a machine 
that is not publicly accessible from the Internet. (Of course, the machine that 
serves the data must be visible to the Internet.)

The first step in setting up DNSSEC is to organize your zone files so that all the 
data files for a zone are in a single directory. The tools that manage DNSSEC 
zones expect this organization.

Next, enable DNSSEC on your servers with the named.conf options
options { 

dsnsec-enable yes;
}

for authoritative servers and 
options { 

dsnsec-enable yes; 
dnssec-validation yes;

}

for recursive servers. The dnssec-enable option tells your authoritative servers to 
include DNSSEC record set signatures in their responses when answering queries 
from DNSSEC-aware name servers. The dnssec-validation option makes named
verify the legitimacy of signatures it receives in responses from other servers.

Key pair generation 

You must generate two key pairs for each zone you want to sign: a zone-signing 
(ZSK) pair and a key-signing (KSK) pair. Each pair consists of a public key and a 
private key. The KSK’s private key signs the ZSK and creates a secure entry point 
for the zone. The ZSK’s private key signs the zone’s resource records. The public 
keys are then published to allow other sites to verify your signatures.

The BIND commands
$ dnssec-keygen -a RSASHA1 -b 1024 -n ZONE example.com 
Kexample.com.+005+23301 
$ dnssec-keygen -a RSASHA1 -b 2048 -n ZONE -f KSK example.com 
Kexample.com.+005+00682

  



ptg

656 Chapter 17 DNS: The Domain Name System 

or the NSD commands
$ ldns-keygen -a RSASHA1 -b 1024 example.com 
Kexample.com.+005+23301 
$ ldns-keygen -a RSASHA1 -b 2048 -k example.com 
Kexample.com.+005+00682

generate for example.com a 1,024-bit ZSK pair that uses the RSA and SHA-1 algo-
rithms and a corresponding 2,048-bit KSK pair.30 The outstanding issue of UDP 
packet size limits suggests that it’s best to use short zone-signing keys, but to 
change them often. You can use longer key-signing keys to help recover some 
security. It takes awhile to generate the keys—a minute or two for short keys, and 
a half-hour or more for longer keys on a tired old laptop.

Both key generators print the base filename of the key they have generated to 
standard out. In this example, example.com is the name of the key, 005 is the 
identifier of the RSA/SHA-1 algorithm suite, and 23301 and 00682 are hashes 
called the key identifiers, key footprints, or key tags.31 Each run of the BIND key 
generator creates two files (.key and .private), and the NSD key generator pro-
duces three files (.key, .private, and .ds):

Kexample.com.+005+23301.key # Public zone-signing key
Kexample.com.+005+23301.private # Private zone-signing key
Kexample.com.+005+23301.ds # DS record for ZSK (NSD only)

Kexample.com.+005+00682.key # Public key-signing key
Kexample.com.+005+00682.private # Private key-signing key
Kexample.com.+005+00682.ds # DS record for KSK (NSD only)

Several encryption algorithms are available, each with a range of possible key 
lengths. You can run dnssec-keygen with no arguments or ldns-keygen -a list to 
see the current list of supported algorithms. BIND and NSD can both use keys 
generated by other software.

Depending on the version of your software, some of the available algorithm 
names may have NSEC3 appended or prepended to them. If you want to use 
NSEC3 records instead of NSEC records for signed negative answers, you must 
generate NSEC3-compatible keys with one of the NSEC3-specific algorithms; see 
the man pages for ldns-signzone or dnssec-keygen.

The .key files each contain a single DNSKEY resource record for example.com. 
For example, here is the zone-signing public key, truncated to fit the page. You can 
tell it’s a ZSK because the flags field is 256, rather than 257 for a KSK.

example.com. IN DNSKEY 256 3 5 AwEAAex7tHe60w5va8sPpnRe4RX8MgI…

30. 2,048 bits is surely overkill; many sites use 1,500 or fewer.
31. To make it easier to compare the BIND and NSD processes, we finagled the key footprints to make the 

BIND and NSD sets match. In real life, every key would have a different footprint.

  



ptg

Zone signing 657

D
N

SThese public keys must be $INCLUDEd or inserted into the zone file, either at the 
end or right after the SOA record. To copy the keys into the zone file, you can 
append them with cat32 or paste them in with a text editor. 

The .ds files produced by NSD’s key generator, ldns-keygen, contain DS records; 
the one that corresponds to the KSK would be stored in the parent zone if DNS-
SEC were fully deployed. The DS record can be generated from the KSK’s DNS-
KEY resource record, and some signed zones require it instead of or in addition to 
the KSK’s DNSKEY record. Here is what DS records look like:

example.com. 3600 IN DS 23301 1 1 5bd844108f8d8fea341b3bc2f2135e… 
example.com. 3600 IN DS 00682 1 1 0dbf80886b7168633ff8273255de09…

Ideally, the private key portion of any key pair would be kept off-line, or at least on 
a machine that is not on the public Internet. This precaution is impossible for 
dynamically updated zones and impractical for zone-signing keys, but it is per-
fectly reasonable for key-signing keys, which are presumably quite long-lived. 
Consider a hidden master server that is not accessible from outside for the ZSKs. 
Print out the private KSK or write it to a USB memory stick and then lock it in a 
safe until you need it again.

While you’re locking away your new private keys, it’s also a good time to enter the 
new keys into your key log file. You don’t need to include the keys themselves, just 
the IDs, algorithms, date, purpose, and so on.

The default signature validity periods are one month for RRSIG records (ZSK sig-
natures of resource record sets) and three months for DNSKEY records (KSK sig-
natures of ZSKs). Current best practice suggests ZSKs of length 1,024 that are 
used for three months to a year and KSKs of length 1,280 that are used for a year 
or two.33 Since the recommended key retention periods are longer than the default 
signature validity periods, you must either specify a longer validity period when 
signing zones or periodically re-sign the zones, even if the key has not changed.

Zone signing

Now that you’ve got keys, you can sign your zones with the dnssec-signzone
(BIND) or ldns-signzone (NSD) commands, which add RRSIG and NSEC or 
NSEC3 records for each resource record set. These commands read your original 
zone file and produce a separate, signed copy named zonefile.signed. 

The BIND syntax is
dnssec-signzone [-o zonename] [-N increment] [-k KSKfile] zonefile [ZSKfile]

where zonename defaults to zonefile and the key files default to the filenames pro-
duced by dnssec-keygen as outlined above.

32. Use a command like cat Kexample.com.+*.key >> zonefile. The >> appends to the zonefile rather 
than replacing it entirely, as > would. (Don’t mess this one up!)

33. The web site keylength.com tabulates a variety of organizations’ recommendations regarding the sug-
gested lengths of cryptographic keys.

  



ptg

658 Chapter 17 DNS: The Domain Name System

If you name your zone data files after the zones and maintain the names of the 
original key files, the command reduces to

dnssec-signzone [-N increment] zonefile

The -N increment flag automatically increments the serial number in the SOA 
record so that you can’t forget. You can also specify the value unixtime to update 
the serial number to the current UNIX time (seconds since January 1, 1970) or 
the value keep to prevent dnssec-signzone from modifying the original serial 
number. The serial number is incremented in the signed zone file but not in the 
original zone file.

Here’s a spelled-out example that uses the keys generated above:
$ sudo dnssec-signzone -o example.com -N increment 

-k Kexample.com+005+00682 example.com Kexample.com+005+23301

The signed file is sorted in alphabetical order and includes the DNSKEY records 
we added by hand and the RRSIG and NSEC records generated during signing. 
The zone’s serial number has been incremented. 

If you generated your keys with the NSEC3RSASHA1 algorithm, you would sign 
the zone as above but with the -3 salt flag.

Some other useful options to dnssec-signzone are

• -g to generate DS record(s) to be included in the parent zone
• -l to generate DLV record(s) for use if the parent zone is not signed
• -s start-time to set the time that the signatures become valid 
• -e end-time to set the time that the signatures expire
• -t to print statistics

The dates for signature validity can be expressed as absolute times in the format 
yyyymmddhhmmss or as a time relative to now in the format +N, where N is in 
seconds. The default signature validity period is from an hour in the past to 30 
days in the future. Here is an example in which we specify that signatures should 
be valid until the end of the calendar year 2010:

$ dnssec-signzone -N increment -e 20101231235959 example.com

Under NSD, the syntax for signing a zone is
ldns-signzone [-o zonename] zonename key [key …]

You can just list both keys and let ldns-signzone figure out which is the KSK and 
which is the ZSK. For example:

$ sudo ldns-signzone example.com Kexample.com.+005+00682 
Kexample.com.+005+23301

As with dnssec-signzone, you can use the -e yyyymmdd flag to set the expiration 
date for signatures. To generate NSEC3 records instead of NSEC records for sign-
ing gaps, use the flags -n -s salt.

  



ptg

Zone signing 659

D
N

SSigned zone files are typically four to ten times larger than the original zone, and 
all your nice logical ordering is lost. A line such as

mail-relay A 63.173.189.2

becomes several lines:
mail-relay.example.com. 57600 A 63.173.189.2 

57600 RRSIG A 5 3 57600 20090722234636 (
                                        20090622234636 23301 example.com.
                                        Y7s9jDWYuuXvozeU7zGRdFCl+rzU8cLiwoev
                                        0I2TGfLlbhsRgJfkpEYFVRUB7kKVRNguEYwk
                                        d2RSkDJ9QzRQ+w== ) 

3600 NSEC mail-relay2.example.com. A RRSIG NSEC 
3600 RRSIG NSEC 5 3 3600 20090722234636 (

                                        20090622234636 23301 example.com. 
42QrXP8vpoChsGPseProBMZ7twf7eS5WK+4O

                                        WNsN84hF0notymRxZRIZypqWzLIPBZAUJ77R
                                        HP0hLfBDoqmZYw== )

In practical terms, a signed zone file is no longer human-readable, and it cannot 
be edited by hand because of the RRSIG and NSEC or NSEC3 records. No user-
serviceable parts inside!

With the exception of DNSKEY records, each resource record set (resource re-
cords of the same type for the same name) gets one signature from the ZSK. DNS-
KEY resource records are signed by both the ZSK and the KSK, so they have two 
RRSIGs. The base-64 representation of a signature ends in however many equal 
signs are needed to make the length a multiple of 4.

For clarity in subsequent examples, we assume that the zone file is named for the 
zone and that the zone files and the key files are in the same directory. In real life 
it’s actually a good idea to specify the key files explicitly, especially when you are 
rolling over keys and need to be sure the command uses the right ones.

Once your zones are signed, all that remains is to point your name server at the 
signed versions of the zone files. If you’re using BIND, look for the zone statement 
that corresponds to each zone in named.conf and change the file parameter from 
example.com to example.com.signed. For NSD, the corresponding configura-
tion file is nsd.conf and you’re looking for zonefile lines.

Finally, restart the name server daemon, telling it to reread its configuration file. 
For BIND, do sudo rndc reconfig followed by sudo rndc flush. For NSD, try 
sudo nsdc rebuild followed by sudo nsdc restart.

We are now serving a DNSSEC signed zone! To make changes, you can edit either 
the original unsigned zone or the signed zone and then re-sign the zone. Editing a 
signed zone is something of a logistical nightmare, but it is much quicker than re-
signing the entire zone. Be sure to remove the RRSIG records that correspond to 
any records that you change. You probably want to make identical changes to the 
unsigned zone to avoid version skew.

  



ptg

660 Chapter 17 DNS: The Domain Name System

If you pass a signed zone as the argument to dnssec-signzone or ldns-signzone, 
any unsigned records are signed and the signatures of any records that are close to 
expiring are renewed. “Close to expiring” is defined as being three-quarters of the 
way through the validity period. Re-signing typically results in changes, so make 
sure you increment the zone’s serial number by hand or, with BIND, use the -N 
increment clause on the dnssec-signzone command line to automatically incre-
ment the zone’s serial number.

That’s all there is to the local part of DNSSEC configuration. What’s left is the 
thorny problem of getting our island of secure DNS connected to other trusted, 
signed parts of the DNS hierarchy. We either need to get our DS records into the 
signed parent zone, or we need to use the domain lookaside validation work-
around. The next sections cover these tasks.

The DNSSEC chain of trust

Continuing with our example DNSSEC setup, example.com is now signed and its 
name servers have DNSSEC enabled. This means that when querying they use 
EDNS0, the extended DNS protocol, and set the DNSSEC-aware option in the 
DNS header of the packet. When answering a query that arrives with that bit set, 
they include the signature data with their answer.

A client that receives signed answers can validate the response by checking the 
record’s signatures with the appropriate public key. But it gets this key from the 
zone’s own DNSKEY record, which is rather suspicious if you think about it. 
What’s to stop an impostor from serving up both fake records and a fake public 
key that validates them?

There are several possible answers to this question. Your site must implement at 
least one of them; otherwise, all your DNSSEC work is for naught.

The canonical solution is that you give your parent zone a DS record to include in 
its zone file. By virtue of coming from the parent zone, the DS record is certified 
by the parent’s private key. If the client trusts your parent zone, it should then trust 
that the parent zone’s DS record accurately reflects your zone’s public key. 

The parent zone is in turn certified by its parent, and so on back to the root. When 
DNSSEC is fully deployed, the only key you will need to know a priori is the pub-
lic key used to sign the root, which can be put in the root hints file that bootstraps 
the whole DNS process.

If you’re lucky enough to have a signed parent, just give your parent’s administra-
tors a DS record and the key-signing DNSKEY used to sign it.34 The -g flag to 
BIND’s dnssec-signzone generates files called dsset-domain and keyset-domain
that can be securely delivered to your parent to be added directly to the parent’s 
zone file. Similarly, NSD’s ldns-keygen produces the required DS record in the .ds
file and the DNSKEY record in the .key file as the keys are generated. Note that 

34. How can you tell if your parent is signed? Try dig +dnssec or drill -D.

  



ptg

DLV: domain lookaside validation 661

D
N

Syou must publish your DNSKEY record in your own zone before your parent in-
stalls the corresponding DS record.

If your parent zone isn’t signed, you must provide some other way for the outside 
world to verify that the public key published in your DNS is really yours. There 
are three different ways to do this:

• Use one or more of the trusted anchor repositories (TAR) to publish 
your public key; for example, the one from SecSpider. To use TAR keys 
on your own servers, get the key lists from SecSpider, from the ITAR run 
by the IANA (contains only TLDs), or from the RIPE-NCC TAR (con-
tains only their own zones, mostly European TLDs and reverse zones). 
Put these in a trusted-keys clause in your name server config file.

• Use a domain lookaside validation server such as that provided by ISC, 
the Internet Systems Consortium. This service essentially makes isc.org 
your adoptive DNS parent. It’s easy and free; see isc.org/ops/dlv. Other 
DLV servers exist, but you can use only one, and ISC’s is well established 
and well run.

• Use Vantages (vantage-points.org), a daemon that partners with copies 
of itself that belong to friends you trust, thus forming a social network of 
daemons who can obtain keys independently from different sites on the 
Internet and compare their results to decide if the keys are authentic.

We describe the DLV solution in more detail in the next section. But keep in mind 
that all three of these options are interim solutions designed to help with incre-
mental DNSSEC deployment. If your parent zone is already signed, don’t even 
consider these options. Just give your parent the appropriate DS record.

DLV: domain lookaside validation

A DNSSEC-aware caching server that receives a signed query response first veri-
fies that the record signatures match the domain’s public key as specified by its 
DNSKEY record. The client then attempts to validate the key itself by looking in 
the parent zone for a DS record. If no DS record is available, the client looks for a 
DLV record in the original domain; that record redirects to dlv.isc.org or which-
ever DLV server is acting as the zone’s foster parent. Once the client gets hold of 
the DLV record from dlv.isc.org, it can verify the chain of trust. Setting up DLV 
service for your zone is therefore a matter of generating the appropriate DLV re-
cords and putting them in the right places.

A DLV record is really just a DS record in disguise. The record type is different, 
but the body of the record is the same. The record’s name field is also modified to 
place the record into the DLV provider’s zone. For example, example.com might 
become example.com.dlv.isc.org.

In BIND, dnssec-signzone -l (lowercase letter L) generates the DLV record:
$ sudo dnssec-signzone -l dlv.isc.org example.com

  



ptg

662 Chapter 17 DNS: The Domain Name System

This command re-signs the zone and writes a file called dlvset-example.com. 
containing a DLV record ready for the DLV provider’s zone.

NSD/Unbound users must generate the DLV record themselves. Copy the .ds file 
created when you generated your KSK key and change the record type from DS to 
DLV. Then adjust the name field. For example, change

example.com. 3600 IN DS 25069 1 1 0dbf80886b716863de09...

to
example.com.dlv.isc.org. 3600 IN DLV 25069 1 1 0dbf80886b716863de09...

The changes are shown in bold. 

Once you’ve collected the DLV record and the key files used to sign your zone, go 
to the dlv.isc.org web page and follow the directions to have isc.org be your DLV 
server. ISC makes you jump through some hoops to verify that you own your 
domain, are authorized to manage it, and have provided its public key securely. 
But the process is not difficult.

ISC will give you some new lines for your trusted-keys clause in named.conf:
trusted-keys { 

dlv.isc.com 257 3 5 “hex mumbo jumbo of the key goes here”; 
dlv.isc.com 257 3 5 “hex mumbo jumbo of another key goes here”; 
… 

}

BIND users must also add a line to the named.conf options section:
dnssec-lookaside “.” trusted-anchor “dlv.isc.org” ;

For NSD, add the DLV record to the zone and re-sign the zone. To enable DLV 
validation in unbound, get dlv.isc.org’s KSK DNSKEY record from the ISC web 
site or from SecSpider and verify its signature. (SecSpider verifies that keys are 
consistent as seen from multiple locations; see page 652.) Don’t just dig for the 
key, as that’s insecure until you have DNSSEC deployed. Put the key in a file in 
unbound’s working directory, say, dlv.isc.org.key, and add the line

dlv-anchor-file: "dlv.isc.org.key"

to your unbound.conf file in the server section.

DNSSEC key rollover

Key rollover has always been a thorny issue in DNSSEC. In fact, the original spec-
ifications were changed specifically to address the issue of the communication 
needed between parent and child zones whenever keys were created, changed, or 
deleted. The new specifications are called DNSSEC-bis.

ZSK rollover is relatively straightforward and does not involve your parent zone 
or any trust anchor issues. The only tricky part is the timing. Keys have an expira-
tion time, so rollover must occur well before that. However, they also have a TTL, 

  



ptg

DNSSEC tools 663

D
N

Sdefined in the zone file. For the sake of illustration, let’s assume that the TTL is 
one day and that keys don’t expire for another week. The steps involved are then

• Generate a new ZSK.
• Include it in the zone file.
• Sign or re-sign the zone with the KSK and the old ZSK.
• Signal the name server to reload the zone; the new key is now there.
• Wait 24 hours (the TTL); now everyone has both the old and new keys.
• Sign the zone again with the KSK and the new ZSK.
• Signal the name server to reload the zone.
• Wait another 24 hours; now everyone has the new signed zone.
• Remove the old ZSK at your leisure, e.g., the next time the zone changes.

This scheme is called prepublishing. Needless to say, you must start the process at 
least two TTLs before the point at which you need to have everyone using the new 
key. The waiting periods guarantee that any site with cached values always has a 
cached key that corresponds to the cached data.

Another variable that affects this process is the time it takes for your slowest slave 
server to update its copy of your zone when notified by the master server. So don’t 
wait until the last minute to start your rollover process or to re-sign zones whose 
signatures are expiring. Expired signatures do not validate, so sites that verify 
DNSSEC signatures will not be able to do DNS lookups for your domain.

The mechanism to roll over a KSK is called double signing and it’s also pretty 
straightforward. However, you will need to communicate your new DS record to 
your parent or communicate a DLV record to your surrogate parent. Make sure 
you have positive acknowledgement from the parent or trust anchor repository 
before you switch to just the new key. Here are the steps:

• Create a new KSK.
• Include it in the zone file.
• Sign the zone with both old and new KSKs and the ZSK.
• Signal the name server to reload the zone.
• Wait 24 hours (the TTL); now everyone has the new key.
• Notify anyone with a trust anchor for you of the new KSK value.
• After confirmation, delete the old KSK record from the zone.
• Re-sign the zone with the new KSK and ZSK.

DNSSEC tools

Four tool sets for dealing with DNSSEC deployment and testing exist in addition 
to those that come with the BIND and NSD/Unbound distributions: ldns, Sparta, 
RIPE, and Vantages. At least two more sets are under development: OpenDNS-
SEC (opendnssec.org) and DNSSHIM. OpenDNSSEC hopes to manage all the 
mess and complexity that comes with DNSSEC automatically, which sounds won-
derful. DNSSHIM is an authoritative DNS server implementation with automatic 
configuration of slaves and DNSSEC goo written in Java and Python.

  



ptg

664 Chapter 17 DNS: The Domain Name System 

ldns tools, nlnetlabs.nl/projects/ldns
ldns, from the folks at NLnet Labs, is a library of routines for writing DNS tools 
and a set of example programs that use the library. We list the tools below along 
with a brief statement of what each one does. The tools are all in the examples
directory except for drill, which has its own directory in the distribution. Man 
pages can be found with the commands. The top-level README file gives very 
brief installation instructions.

• ldns-keygen generates TSIG keys and DNSSEC key pairs.
• ldns-signzone signs a zone file with either NSEC or NSEC3.
• ldns-verify-zone makes sure RRSIG, NSEC, and NSEC3 records are OK.
• ldns-key2ds converts a DNSKEY record to a DS record.
• ldns-rrsig prints out human-readable expiration dates from RRSIGs.
• ldns-nsec3-hash prints the NSEC3 hash for a name.
• ldns-revoke sets the revoke flag on a DNSKEY key RR (RFC5011).
• ldns-chaos shows the name server ID info stored in the CHAOS class.
• ldns-keyfetcher fetches DNSSEC public keys for zones.
• ldns-read-zone reads a zone and prints it out in various formats.
• ldns-update sends a dynamic update packet.
• ldns-walk walks through a zone, using the DNSSEC NSEC records.
• ldns-zsplit splits a zone into chunks so it can be signed in parallel.
• ldns-zcat reassembles zone files split with ldns-zsplit.
• ldns-compare-zones shows the differences between two zone files.
• ldns-notify makes a zone’s slave servers check for updates.
• ldns-dpa analyzes DNS packets in tcpdump trace files.

Many of these tools are very simple and do only one tiny DNS chore. They were 
written as examples of using the ldns library and demonstrate how simple the 
code becomes when the library does all the hard bits for you.

Sparta tools, dnssec-tools.org
The Sparta tool set builds on the BIND tools for DNSSEC and includes the follow-
ing commands:

• zonesigner generates keys and signs zones.
• donuts analyzes zone files and finds errors and inconsistencies.
• donutsd runs donuts at intervals and warns of problems.
• rollerd, rollctl, and rollinit automate key rollovers using the prepublish-

ing scheme for ZSKs and the double signature method for KSKs. See 
page 662 for the details of these schemes.

• trustman manages trust anchors and includes an implementation of 
RFC5011 key rollover.

• dnspktflow traces the flow of DNS packets during a query/response 
sequence captured by tcpdump and produces a cool diagram.

• mapper maps your zone files, showing secure and insecure portions.
• validate is a command-line signature validation tool.

  



ptg

Debugging DNSSEC 665

D
N

SThe web site contains good documentation and tutorials for all of these tools. The 
source code is available for download and is covered by the BSD license.

Sparta maintains DNSSEC libraries written in Perl that are distributed through 
CPAN. It also distributes patches to several popular software packages (including 
Firefox, Thunderbird, Postfix, sendmail, libSPF, and OpenSSH) to make them 
more DNSSEC aware. 

RIPE tools, ripe.net
RIPE’s tools act as a front end to BIND’s DNSSEC tools and focus on key manage-
ment. They have friendlier messages as they run and package up the many argu-
ments and commands into more intuitive forms.

Vantages tools, vantage-points.org
Vantages is a framework for distributed monitoring that is based at Colorado 
State University. Its current focus is on operational issues related to DNSSEC, and 
Vantages tools can be used to help maintain your DNSSEC deployment. 

The project’s chief product is vantaged, a daemon that gathers DNSKEY records 
and compares their values with those obtained by other vantageds around the 
Internet. If lots of vantageds get the same answer, the key is likely to be accurate 
and not spoofed; a spoofer would have to compromise all sites running the Van-
tage software to get this result. Vantages collects keys from DNS, HTTP, and 
HTTPS sources and classifies them into one of four states: confirmed, provisional, 
unknown, and conflict. It adds confirmed keys to your trusted-keys statement in 
named.conf.

Vantages has some additional tools as well:

• d-sync monitors the consistency of DS record keys between parent and 
child zones, which is especially useful during key rollovers.

• dnsfunnel determines the path MTU between you and any other site. It 
looks a bit like traceroute.

• dnskey-grab gets the DNSKEYs for a zone from its authoritative servers.

Debugging DNSSEC

DNSSEC has been designed to interoperate with both signed and unsigned zones, 
and with both DNSSEC-aware and DNSSEC-oblivious name servers. So incre-
mental deployment is possible, and it usually just works. But not always.

DNSSEC is a distributed system with lots of moving parts. Authoritative servers, 
client resolvers, and the paths between them can all experience problems. A prob-
lem seen locally may originate far away, so tools like SecSpider and Vantages that 
monitor the distributed state of the system can be very helpful. Those tools, the 
utilities mentioned in the previous section, and your name server log files are 
your primary weapons on the debugging front.

  



ptg

666 Chapter 17 DNS: The Domain Name System

Make sure that you route the DNSSEC logging category in named.conf to a file 
on the local machine. It’s helpful to separate out the DNSSEC-related messages so 
that you don’t route any other logging categories to this file. Here is an example 
logging specification for named:

channel dnssec-log { 
file “/var/log/named/dnssec.log” versions 4 size 10m ; 
print-time yes ; 
print-category yes ; 
print-severity yes; 
severity debug 3;

} ; 
category dnssec { dnssec-log; } ;

In BIND you must set the debugging level to 3 or higher to see the validation steps 
taken by a recursive BIND server trying to validate a signature. This logging level 
produces about two pages of logging output per signature verified. If you are 
monitoring a busy server, log data from multiple queries will likely be interleaved. 
Sorting through the mess can be challenging and tedious.

For NSD and Unbound, set the verbosity level higher than the defaults (0 and 1, 
respectively) in their config files or, for Unbound, just adjust the verbosity on the 
fly with the verbosity level flag to unbound-control. Like BIND, Unbound must 
be at log level 3 to show the steps for signature validation. 

Once things are working OK, set Unbound’s val-log-level to 1 to print a one-line 
error message for each signature that fails to verify. This level of detail helps you 
keep track of sites that are giving you trouble. You can further explore the failures 
with either the signature chase option to drill or with unbound-host -v -d (or 
even -dddd to get lots of debugging info) on the problem name. You must pass 
both drill and unbound-host the relevant public keys.

drill has two particularly useful flags: -T to trace the chain of trust from the root 
to a specified host, and -S to chase the signatures from a specified host back to the 
root. Here’s some mocked-up sample output from drill -S snitched from the DNS-
SEC HOWTO at NLnet Labs:

$ drill -S -k ksk.keyfile example.net SOA 
DNSSEC Trust tree: 
example.net. (SOA) 
|---example.net. (DNSKEY keytag: 17000)

|---example.net. (DNSKEY keytag: 49656) 
|---example.net. (DS keytag: 49656)

|---net. (DNSKEY keytag: 62972) 
|---net. (DNSKEY keytag: 13467) 
|---net. (DS keytag: 13467)

|---. (DNSKEY keytag: 63380) 
|---. (DNSKEY keytag: 63276)   ;; Chase successful

If a validating name server cannot verify a signature, it returns a SERVFAIL indi-
cation. The underlying problem could be a configuration error by someone at one 

  



ptg

Logging in BIND 667

D
N

Sof the zones in the chain of trust, bogus data from an interloper, or a problem in 
the setup of the validating recursive server itself. Try drill to chase the signatures 
along the chain of trust and see where the problem is. If the signatures all verify, 
then try querying the troublesome site with dig and then with dig +cd. (The cd
flag turns off validation.) Try this at each of the zones in the chain of trust to see if 
you can find the problem. You can work your way up or down the chain of trust. 
The likely result will be an expired trust anchor or expired signatures.

17.14 MICROSOFT AND DNS

For years, ISC and BIND struggled to interoperate with Microsoft’s DNS tools and 
Active Directory product. Microsoft was accused of being intentionally incompat-
ible with the standards and of not documenting the protocol extensions they were 
using. However, it now appears that Microsoft was not really trying to be incom-
patible; they were just slightly incompetent and were working with buggy soft-
ware (their ASN.1 encoder and parser) that tweaked the packets just enough so 
that BIND could not make sense of them. Now, all is well. The bugs have been 
fixed, and both BIND and Microsoft follow the IETF protocols and can interoper-
ate. That’s the good news.

The bad news is that Active Directory is tightly integrated with Kerberos and 
LDAP and follows its own twisty little passages (all alike!). Replacing any of the 
pieces—for example, the Kerberos key distribution center—with a comparable 
open source implementation is doomed to failure. BIND can do authentication 
with Active Directory by using GSS-TSIG, but authorization is still nearly impos-
sible because AD stores everything in an LDAP database from hell.

See Chapter 30, Cooperating with Windows, for hints on peaceful coexistence with 
Active Directory. It starts on page 1135.

17.15 TESTING AND DEBUGGING

Both BIND and NSD/Unbound provide three basic debugging tools: logging, a 
control program, and a command-line query tool. BIND’s fleet is the most ma-
ture, but since BIND is also the most complicated, things even out.

Logging in BIND

See Chapter 11 for 
more information 
about syslog.

named’s logging facilities are flexible enough to make your hair stand on end. 
BIND originally just used syslog to report error messages and anomalies. Recent 
versions generalize the syslog concepts by adding another layer of indirection and 
support for logging directly to files. Before we dive in, let’s take a look at the mini-
glossary of BIND logging terms shown in Table 17.13 on the next page.

You configure BIND logging with a logging statement in named.conf. You first 
define channels, the possible destinations for messages. You then tell various cate-
gories of message to go to particular channels.

  



ptg

668 Chapter 17 DNS: The Domain Name System

When a message is generated, it is assigned a category, a module, and a severity at 
its point of origin. It is then distributed to all the channels associated with its cate-
gory and module. Each channel has a severity filter that tells what severity level a 
message must have in order to get through. Channels that lead to syslog are also 
filtered according to the rules in /etc/syslog.conf.

Here’s the outline of a logging statement:
logging { 

channel_def; 
channel_def; 
… 
category category_name {

channel_name; 
channel_name; 
…

}; 
};

Channels
A channel_def looks slightly different depending on whether the channel is a file 
channel or a syslog channel. You must choose file or syslog for each channel; a 
channel can’t be both at the same time.

channel channel_name { 
file path [versions numvers | unlimited] [size sizespec]; 
syslog facility; 
severity severity;

print-category yes | no; 
print-severity yes | no; 
print-time yes | no;

};

For a file channel, numvers tells how many backup versions of a file to keep, and 
sizespec specifies how large the file should be allowed to grow (examples: 2048, 

Table 17.13 A BIND logging lexicon

Term What it means

channel A place where messages can go: syslog, a file, or /dev/null a

category A class of messages that named can generate; for example, messages 
about dynamic updates or messages about answering queries

module The name of the source module that generates a message 
facility A syslog facility name. DNS does not have its own specific facility, but 

you have your pick of all the standard ones.
severity The “badness” of an error message; what syslog refers to as a priority

a. /dev/null is a pseudo-device that throws away all input.

  



ptg

Log Messages 669

D
N

S100k, 20m, unlimited, default) before it is automatically rotated. If you name a 
file channel mylog, the rotated versions are mylog.0, mylog.1, and so on.

See page 346 for a list 
of syslog facility names. 

In the syslog case, facility specifies what syslog facility name is used to log the 
message. It can be any standard facility. In practice, only daemon and local0 
through local7 are reasonable choices.

The rest of the statements in a channel_def are optional. severity can have the val-
ues (in descending order) critical, error, warning, notice, info, or debug (with an 
optional numeric level, e.g., severity debug 3). The value dynamic is also recog-
nized and matches the server’s current debug level.

The various print options add or suppress message prefixes. Syslog prepends the 
time and reporting host to each message logged, but not the severity or the cate-
gory. The source filename (module) that generated the message is also available as 
a print option. It makes sense to enable print-time only for file channels—syslog 
adds its own time stamps, so there’s no need to duplicate them.

The four channels listed in Table 17.14 are predefined by default. These defaults 
should be fine for most installations.

Categories
Categories are determined by the programmer at the time the code is written. 
They organize log messages by topic or functionality instead of just by severity. 
Table 17.15 on the next page shows the current list of message categories.

Log Messages
The default logging configuration is:

logging { 
category default { default_syslog; default_debug; }; 

};

You should watch the log files when you make major changes to BIND and per-
haps increase the logging level. Later, reconfigure to preserve only serious mes-
sages once you have verified that named is stable.

Query logging can be quite educational. You can verify that your allow clauses are 
working, see who is querying you, identify broken clients, etc. It’s a good check to 

Table 17.14 Predefined logging channels in BIND

Channel name What it does

default_syslog Sends to syslog, facility daemon, severity info 
default_debug Logs to the file named.run, severity set to dynamic 
default_stderr Sends to standard error of the named process, severity info 
null Discards all messages

  



ptg

670 Chapter 17 DNS: The Domain Name System

perform after major reconfigurations, especially if you have a good sense of what 
your query load looked like before the changes. 

To start query logging, just direct the queries category to a channel. Writing to 
syslog is less efficient than writing directly to a file, so use a file channel on a local 
disk when you are logging every query. Have lots of disk space and be ready to 
turn query logging off once you obtain enough data. (rndc querylog toggles 
query logging on and off dynamically.)

Views can be pesky to debug, but fortunately, the view that matched a particular 
query is logged along with the query.

Some common log messages are listed below:

• Lame server resolving xxx. If you get this message about one of your own 
zones, you have configured something incorrectly. The message is harm-
less if it’s about some zone out on the Internet; it’s someone else’s prob-
lem. A good one to throw away by directing it to the null channel.

• … query (cache) xxx denied. This can be either misconfiguration of the 
remote site, abuse, or a case in which someone has delegated a zone to 
you, but you have not configured it.

Table 17.15 BIND logging categories

Category What it includes

client Client requests
config Configuration file parsing and processing 
database Messages about database operations
default Default for categories without specific logging options 
delegation-only Queries forced to NXDOMAIN by delegation-only zones 
dispatch Dispatching of incoming packets to server modules
dnssec DNSSEC messages 
edns-disabled Info about broken servers
general Catchall for unclassified messages 
lame-servers Servers that are supposed to be serving a zone, but aren’t a

network Network operations
notify Messages about the “zone changed” notification protocol
queries A short log message for every query the server receives (!)
resolver DNS resolution, e.g., recursive lookups for clients
security Approved/unapproved requests 
unmatched Queries named cannot classify (bad class, no view)
update Messages about dynamic updates 
update-security Approval or denial of update requests 
xfer-in Zone transfers that the server is receiving
xfer-out Zone transfers that the server is sending

a. Either the parent zone or the child zone could be at fault; impossible to tell without investigating.

  



ptg

Sample BIND logging configuration 671

D
N

S• Too many timeouts resolving xxx: disabling EDNS. This message can 
result from a broken firewall not admitting UDP packets over 512 bytes 
long or not admitting fragments. It can also indicate problems at the 
specified host. Verify that the problem is not your firewall and consider 
redirecting these messages to the null channel.

• Unexpected RCODE (SERVFAIL) resolving xxx. This can be an attack or, 
more likely, a sign of something repeatedly querying a lame zone.

• Bad referral. This message indicates a miscommunication among a 
zone’s name servers.

• Not authoritative for. A slave server is unable to get authoritative data for 
a zone. Perhaps it’s pointing to the wrong master, or perhaps the master 
had trouble loading the zone in question.

• Rejected zone. named rejected a zone file because it contained errors.

• No NS RRs found. A zone file did not include NS records after the SOA 
record. It could be that the records are missing, or it could be that they 
don’t start with a tab or other whitespace. In the latter case, the records 
are not attached to the zone of the SOA record and are therefore misin-
terpreted.

• No default TTL set. The preferred way to set the default TTL for resource 
records is with a $TTL directive at the top of the zone file. This error 
message indicates that the $TTL is missing; it is required in BIND 9.

• No root name server for class. Your server is having trouble finding the 
root name servers. Check your hints file and the server’s Internet con-
nectivity.

• Address already in use. The port on which named wants to run is already 
being used by another process, probably another copy of named. If you 
don’t see another named around, it might have crashed and left an rndc
control socket open that you’ll have to track down and remove. A good 
way to fix the problem is to stop the named process with rndc and then 
restart named:

$ sudo rndc stop 
$ sudo /usr/sbin/named …

• … updating zone xxx: update unsuccessful. A dynamic update for a zone 
was attempted but refused, most likely because of the allow-update or 
update-policy clause in named.conf for this zone. This is a common 
error message and often is caused by misconfigured Windows boxes.

Sample BIND logging configuration
The following snippet from the ISC named.conf file for a busy TLD name server 
illustrates a comprehensive logging regimen. 

  



ptg

672 Chapter 17 DNS: The Domain Name System

logging {

channel default_log { # Default channel, to a file 
file "log/named.log" versions 3 size 10m; 
print-time yes; 
print-category yes; 
print-severity  yes; 
severity info;

}; 
channel xfer-log { # Zone transfers channel, to a file

file "log/xfer.log" versions 3 size 10m; 
print-category yes; 
print-severity yes; 
print-time yes; 
severity info;

};

channel dnssec-log { # DNSSEC channel, to a file 
file "log/dnssec.log" versions 3 size 1M; 
severity debug 1; 
print-severity yes; 
print-time yes;

}; 
category default { default_log; default_debug; }; 
category dnssec { dnssec-log; }; 
category xfer-in { xfer-log; }; 
category xfer-out { xfer-log; }; 
category notify { xfer-log; };

};

Debug levels in BIND
named debug levels are indicated by integers from 0 to 100. The higher the num-
ber, the more verbose the output. Level 0 turns debugging off. Levels 1 and 2 are 
fine for debugging your configuration and database. Levels beyond about 4 are 
appropriate for the maintainers of the code. 

You invoke debugging on the named command line with the -d flag. For example,
$ sudo named -d2

would start named at debug level 2. By default, debugging information is written 
to the file named.run in the current working directory from which named is 
started. The named.run file grows very fast, so don’t go out for a beer while de-
bugging or you will have bigger problems when you return.

You can also turn on debugging while named is running with rndc trace, which 
increments the debug level by 1, or with rndc trace level, which sets the debug 
level to the value specified. rndc notrace turns debugging off completely. You can 
also enable debugging by defining a logging channel that includes a severity spec-
ification such as

severity debug 3;

  



ptg

Logging in NSD/Unbound 673

D
N

Swhich sends all debugging messages up to level 3 to that particular channel. Other 
lines in the channel definition specify the destination of those debugging mes-
sages. The higher the severity level, the more information is logged.

Watching the logs or the debugging output illustrates how often DNS is miscon-
figured in the real world. That pesky little dot at the end of names (or rather, the 
lack thereof) accounts for an alarming amount of DNS traffic. The dot is required 
at the end of each fully qualified domain name.

Logging in NSD/Unbound

Logging in NSD and Unbound is simple in comparison to BIND. According to 
NSD’s doc/README file, “NSD doesn’t do any logging.” What that really means 
is that NSD does not do any DNS traffic logging or monitoring; however, it does 
log important software events to syslog.

By default, log messages go to standard error and to syslog with facility daemon. 
However, if the logfile attribute of the server statement in either unbound.conf
or nsd.conf is set, then logging goes to the specified file. 

The amount of data logged (aside from errors, which are always included) is con-
trolled by a verbosity level that you set in the config files. In the case of unbound, 
you can also set the verbosity level as a command-line option. Verbosity varies 
from 0–5; the default levels are 0 for nsd and 1 for unbound.

It can be a bit hard to get a handle on what the various verbosity levels mean for 
nsd. They map to syslog roughly as follows:

• Level 3 – syslog severity “error”
• Level 4 – syslog severity “warning”
• Level 5 – syslog severity “notice”
• Level 6 – syslog severity “info”

The meanings of the levels for unbound are documented in the config file’s man 
page as follows:

• Level 0 – no information logged, only errors
• Level 1 – operational information
• Level 2 – detailed operational information
• Level 3 – query-level information on a per-query basis
• Level 4 – algorithm-level information
• Level 5 – cache misses and client identification

You can invoke nsd with the -d flag to turn on debugging mode. In this mode, nsd
stays in the foreground instead of forking and exiting. This behavior is equivalent 
to what you get if you set debug-mode: yes in the server clause of nsd.conf. If 
you recompile nsd with DEBUG defined to a particular level, even more debug-
ging information becomes available, but it’s mostly of value to developers.

  



ptg

674 Chapter 17 DNS: The Domain Name System 

unbound also has a -d flag to turn on debugging mode. You can boost the verbos-
ity of the debugging information with the -v flag; for more, try -v -v. Debugging 
output is separate from the verbosity of logging information set in the config file. 
You can configure additional logging to help debug DNSSEC signature validation 
issues; see page 666.

Name server control programs

All three of our name servers come with a control program: nsdc controls nsd, 
rndc controls named, and unbound-control controls unbound. nsdc works on 
the local machine only, but rndc and unbound-control can work across the Inter-
net if you set them up that way.

rndc uses a network socket to communicate with named and uses TSIG authenti-
cation for security. unbound-control uses SSL/TLS, and nsdc uses signals.

Using BIND’s rndc
Table 17.16 shows some of the options accepted by rndc. Typing rndc with no 
arguments gives a list of available commands and a short description of what they 
do. Earlier incantations of rndc used signals as nsdc does, but with over 25 com-
mands, the BIND folks ran out of signals long ago. Commands that produce files 
put them in whatever directory is specified as named’s home in named.conf.

rndc reload makes named reread its configuration file and reload zone files. The 
reload zone command is handy when only one zone has changed and you don’t 
want to reload all the zones, especially on a busy server. You can also specify a 
class and view to reload only the selected view of the zone’s data. 

Note that rndc reload is not sufficient to add a completely new zone; that requires 
named to read both the named.conf file and the new zone file. For new zones, use 
rndc reconfig, which rereads the config file and loads any new zones without 
disturbing existing zones.

rndc freeze zone stops dynamic updates and reconciles the journal of dynamic 
updates to the data files. After freezing the zone, you can edit the zone data by 
hand. As long as the zone is frozen, dynamic updates are refused. Once you’ve 
finished editing, use rndc thaw zone to start accepting dynamic updates again.

rndc dumpdb makes named dump its database to named_dump.db. The dump 
file is big and includes not only local data but also any cached data the name 
server has accumulated.

Your versions of named and rndc must match or you will get an error message 
about a protocol version mismatch. They’re normally installed together on indi-
vidual machines, but version skew can be an issue when you are trying to control 
a named on another computer.

  



ptg

Using unbound-control 675

D
N

S

Using NSD’s nsdc
NSD’s control program, nsdc, is a shell script that uses signals to control the be-
havior of nsd and zonec, its zone precompiler companion. Because nsdc must be 
run on the same machine as nsd, keys are not needed.

nsdc has a smaller repertoire of commands than rndc, as shown in Table 17.17 on 
the next page. When run, nsdc reads the nsd.conf configuration file and uses the 
nsd-checkconf utility to verify that there are no syntax errors.

Using unbound-control
unbound-control talks to the unbound name server through TLS, the transport 
layer security protocol (formerly known as SSL), which uses a key and a certificate 
for each end. These keys are configured in the remote-control section of the con-
fig file unbound.conf. More than 20 commands can be given remotely to modify 
the server’s behavior. Rather than list all possible commands, we refer you to the 
man page for unbound-control, where they are well documented. 

Table 17.16 rndc commandsa

Command Function

dumpdb Dumps the DNS database to named_dump.db

flush [view] Flushes all caches or those for a specified view 
flushname name [view] Flushes the specified name from the server’s cache 
freeze zone [class [view]] Suspends updates to a dynamic zone 
thaw zone [class [view]] Resumes updates to a dynamic zone
halt Halts named without writing pending updates
querylog Toggles tracing of incoming queries 
notify zone [class [view]] Resends notification messages for zone
notrace Turns off debugging
reconfig Reloads the config file and loads any new zones
recursing Dumps queries currently recursing, named.recursing 

refresh zone [class [view]] Schedules maintenance for a zone
reload Reloads named.conf and zone files 
reload zone [class [view]] Reloads only the specified zone or view
restart b Restarts the server 
retransfer zone [class [view]] Recopies the data for zone from the master server 
stats Dumps statistics to named.stats

status Displays the current status of the running named

stop Saves pending updates and then stops named

trace Increments the debug level by 1
trace level Changes the debug level to the value level 
validation newstate Enables/disables DNSSEC validation on the fly

a. The class argument here is the same as for resource records, typically IN for Internet.
b. Not yet implemented in BIND 9 (9.7.0), but it has been promised forever—must be hard to do.

  



ptg

676 Chapter 17 DNS: The Domain Name System

Among the 20 are the usual start, stop, and reread types, but also several options 
that allow fine-grained control of the cache and the local data zones that have 
been configured. Options such as forwarding can be configured or modified on 
the fly. You can dump or reload the cache as well.

Name server statistics

Each of our name servers collects statistics with varying granularity and can 
dump them to a file on request. Several options are configurable: what data to 
collect, where to write it, how often to update it, and so on. BIND’s new statistics 
channel is the most flexible mechanism. NSD’s attitude is that it’s a sleek, speedy 
name server and that if you want statistics, another program should gather them 
and let NSD get on with it primary job. unbound is somewhere in the middle.

BIND and unbound can both send their statistics to another program for presen-
tation and graphing. BIND uses the new statistics-channels statement (page 
612) and XML. unbound uses plug-ins in the contrib directory to connect to 
either Munin or Cacti (see page 886).

named maintains summary information that can be dumped to named.stats in 
named’s working directory on receipt of a nudge from rndc:

$ sudo rndc stats 

Here’s a small snippet of the output from a server in the vix.com domain. Lots has 
been left out; about 20 groups of data are shown, but we include only two:

+++ Statistics Dump +++ (1248150900) 
++ Incoming Queries ++ 
2650862 A 
9105 NS 
404378 SOA 
85744 PTR 
246258 MX 
3208092 TXT 
…

Table 17.17 nsdc commands

Command Function 

start Starts the nsd server 
stop Stops the nsd server (sends SIGTERM) 
reload Reloads the compiled zone database 
rebuild Rebuilds the zone database with zonec 

restart Restarts nsd; that is, stops it and then starts it 
running Checks whether nsd is running; no output means all’s well 
update Tries to update all slave zones 
notify Sends notify messages to all slave servers 
patch Merges zone transfer changes (database) back to zone files (text)

  



ptg

Debugging with dig 677

D
N

S++ Name Server Statistics ++ 
10028960 IPv4 requests received 
388015 IPv6 requests received 
5896039 requests with EDNS(0) received 
92403 TCP requests received 
4363730 queries resulted in successful answer 
766435 queries resulted in nxrrset 
599672 queries resulted in NXDOMAIN 
…

The statistics show the success vs. failure of lookups and categorize the various 
kinds of errors. This server received 10 million queries, with the majority of the 
query types being AAAA (the IPv6 address type) and TXT (perhaps for SPF or 
DKIM records). The logs showed quite a bit of bogus activity on this server (e.g., 
unauthorized zone transfer requests). Perhaps the unusually high number of 
AAAA and TXT record queries is part of this activity—A records are typically the 
most queried-for.

If named has been compiled with the XML library, the statistics-channels state-
ment in named.conf sets up a real-time statistics feed that you can monitor with a 
web browser.

Debugging with dig

Four command-line tools query the DNS database: nslookup, dig, host, and drill.
The first three are distributed with BIND, and drill comes with Unbound/ldns. 
nslookup and host are simple and have pretty output, but you need dig or drill to 
get all the details. drill is better for following DNSSEC signature chains. The name 
drill is a pun on dig (the domain information groper), implying you can get even 
more info from DNS with drill than you can with dig.

By default, dig and drill query the name servers configured in /etc/resolv.conf. 
The @nameserver argument makes either command query a specific name server. 
The ability to query a particular server lets you check to be sure that any changes 
you make to a zone have been propagated to secondary servers and to the outside 
world. This feature is especially useful if you use views (split DNS) and need to 
verify that you have configured them correctly.

If you specify a record type, dig and drill query for that type only. The pseudo-
type ANY is a bit sneaky: instead of returning all data associated with a name, it 
returns all cached data associated with the name. So, to get all records, you might 
have to do dig domain NS followed by dig @ns1.domain domain ANY. (Authori-
tative data counts as cached in this context.)

dig has about 50 options and drill about half that many. Either command accepts 
an -h flag to list the various options. (You’ll probably want to pipe the output 
through less.) For both tools, -x reverses the bytes of an IP address and does a 
reverse query. The +trace flag to dig or -T to drill shows the iterative steps in the 
resolution process from the roots down.

  



ptg

678 Chapter 17 DNS: The Domain Name System

We have omitted samples of dig and drill output, since we have used them 
throughout this chapter to illustrate various DNS issues.

dig and drill include the notation aa in the output flags if an answer is authorita-
tive (i.e., it comes directly from a master or slave server of that zone). The code ad
indicates that an answer is “authentic” in the DNSSEC sense. When testing a new 
configuration, be sure that you look up data for both local and remote hosts. If 
you can access a host by IP address but not by name, DNS is probably the culprit.

Lame delegations

When you apply for a domain name, you are asking for a part of the DNS naming 
tree to be delegated to your name servers and your DNS administrator. If you 
never use the domain or you change the name servers or their IP addresses with-
out coordinating with your parent zone, a “lame delegation” results.

The effects of a lame delegation can be very bad. If one of your servers is lame, 
your DNS system is less efficient. If all the name servers for a domain are lame, no 
one can reach you. All queries start at the root unless answers are cached, so lame 
servers and software that doesn’t do negative caching of SERVFAIL errors in-
crease the load of everyone on the path from the root to the lame domain.

There are two ways to find lame delegations: by reviewing the log files and by 
using a tool called doc, short for “domain obscenity control.” We look at some doc
examples in the next section, but let’s first review some log entries.

Many sites point the lame-servers logging channel to /dev/null and don’t bother 
fretting about other people’s lame delegations. That’s fine as long as your own do-
main is squeaky clean and is not itself a source or victim of lame delegations. One 
lame server slows DNS down; if all servers are lame, your domain is essentially off 
the air. 

Here is a logging example. We have truncated the output to tame dig’s verbosity; 
the +short flag to dig limits the output even more.

Jul 19 14:37:50 nubark named[757]: lame server resolving 'w3w3.com' (in 
'w3w3.com'?): 216.117.131.52#53

Digging for name servers for w3w3.com at one of the .com gTLD servers yields 
$ dig @e.gtld-servers.net w3w3.com ns
;; ANSWER SECTION: 
w3w3.com. 172800 IN NS ns0.nameservices.net. 
w3w3.com. 172800 IN NS ns1.nameservices.net.

But if we now ask each of these servers in turn that same question, we get an 
answer from ns0 and no answer from ns1:

$ dig @ns0.nameservices.net w3w3.com ns 
;; ANSWER SECTION: 
w3w3.com. 14400 IN NS ns0.nameservices.net. 
w3w3.com. 14400 IN NS ns1.nameservices.net.

  



ptg

DNS sanity checking tools 679

D
N

S$ dig @ns1.nameservices.net w3w3.com ns 
;; QUESTION SECTION: 
;w3w3.com. IN NS

;; AUTHORITY SECTION: 
com. 92152 IN NS M.GTLD-SERVERS.NET. 
com. 92152 IN NS I.GTLD-SERVERS.NET. 
com. 92152 IN NS E.GTLD-SERVERS.NET.

The name server ns1.nameservices.net has been delegated responsibility for 
w3w3.com by the .com servers, but it does not accept that responsibility. It is mis-
configured, resulting in a lame delegation. Clients trying to look up w3w3.com 
will get slow service. If w3w3.com is paying nameservices.net for DNS service, 
they deserve a refund!

Sometimes when you dig at an authoritative server in an attempt to find lame-
ness, dig returns no information. Try the query again with the +norecurse flag so 
that you can see exactly what the server in question knows.

DNS sanity checking tools

Several tools check various aspects of your DNS environment. named-checkconf
and named-checkzone are shipped with BIND 9; they check the basic syntax (not 
semantics) of the named.conf file and of your zone files. NSD and Unbound in-
clude similar tools called nsd-checkconf and unbound-checkconf.

The original DNS checking tool is nslint, written by Craig Leres when he was at 
Lawrence Berkeley Labs. doc, the domain obscenity control program, which 
checks delegations and finds inconsistencies and errors in your deployed DNS, is 
discussed in more detail below. The tool lamers (from the same web site as doc) 
rifles through log files and sends email to the DNS administrators of offending 
sites telling them that they have a lame delegation and describing how to fix the 
problem. DDT by Jorge Frazao and Artur Romao debugs cached data. 

dnswalk traverses your delegation tree and identifies inconsistencies between 
parent and child or between forward and reverse records. It also finds missing 
dots, unnecessary glue records, etc. It is a general DNS hygiene nag. dnswalk
needs to be able to do zone transfers in order to work its magic.

Several DNSSEC debugging and management tools are described on page 663.

doc is a C shell script. It’s currently maintained by Brad Knowles, from whose web 
site it can be downloaded: shub-internet.org/brad/dns (note: “shub”, not “shrub”). 
If you plan to put doc in your path or run it from cron, you must edit the script 
and set the auxd variable to point to the installation directory.

doc checks delegations by making repeated calls to dig. It reports on inconsisten-
cies, errors, and other problems related to a particular domain name. Its screen 
output summarizes the issues that it finds. It also produces a verbose log file in the 
current directory with details. 

  



ptg

680 Chapter 17 DNS: The Domain Name System 

doc uses the local name server to do its digging. If your domain uses BIND’s view 
statement and includes RFC1918 private addresses in the internal view, running 
doc on the internal view confuses doc and makes it report spurious errors. If you 
use views, run doc from outside the domain so that it sees what external users see.

Here’s what doc has to say about w3w3.com, the lame domain above:
$ doc w3w3.com
Doc-2.2.3: doc w3w3.com 
Doc-2.2.3: Starting test of w3w3.com.   parent is com. 
Doc-2.2.3: Test date - Tue Jul 21 21:15:11 MDT 2009 
Summary:

ERRORS found for w3w3.com. (count: 1) 
WARNINGS issued for w3w3.com. (count: 1)

Done testing w3w3.com.  Tue Jul 21 21:15:21 MDT 2009

doc puts the details of the testing and the errors found (together, over 600 lines) in 
its log file, in this case log.w3w3.com.:

ERROR: no SOA record for w3w3.com. from ns1.nameservices.net.

doc didn’t label w3w3.com as a “lame delegation” per se, but that’s the underlying 
problem it has identified. Following the NS records from the parent zone, it 
checked with ns1.nameservices.net to be sure it was acting as an authoritative 
name server for w3w3.com; it wasn’t.

If you manage a domain that includes subdomains (or don’t trust the managers of 
your parent domain), consider running doc from cron once a week to verify that 
all delegations relating to your domain are correct. 

Performance issues

BIND 9’s performance on multiprocessor architectures is not as speedy as its de-
velopers might have hoped, but several root servers use BIND 9 and happily han-
dle tens of thousands of queries per second. The performance is probably more 
than adequate for most sites. But NSD’s and Unbound’s performance is even bet-
ter, especially for DNSSEC signed zones.

We’ve said this multiple times already, but it bears repeating: set your TTLs to 
reasonable values—weeks or days, not minutes or seconds. The use of short TTLs 
punishes both you (because you must constantly re-serve the same records) and 
your web clients (because they must constantly fetch them). It also provides a po-
tential attacker with a cache poisoning opportunity. Some name servers selec-
tively ignore TTLs they don’t like (values that seem unreasonably long or unrea-
sonably short).

Paging degrades server performance nonlinearly, so don’t be stingy with memory 
on hosts that run name servers. You’ll need to wait about a week for the memory 
footprint to stabilize for recursive servers; see page 571. 

  



ptg

Specifics for Linux 681

D
N

STo estimate the memory nsd would need to serve your authoritative data, fill in 
the web form at nlnetlabs.net/nsd/nsd-memsize.html. Neat!

Use forwarders. See page 606 for a discussion of forwarding.

The init scripts that start named on many systems provide extra entry points 
(e.g., reload) that are intended for use by system administrators. But it’s easier and 
more cross-platform efficient to use rndc instead.

See page 1188 for 
more information 
about inetd.

Do not use inetd or xinetd to manage a name server; it restarts the server every 
time it’s needed, dramatically slowing response times and preventing any useful 
cache from being developed. 

17.16 VENDOR SPECIFICS

This section describes the status of name service software on our various vendors’ 
platforms. Everyone ships BIND, although you may have to specify that you want 
it installed when you install the operating system or install it as a package later. 

Linux distributions are for the most part far more agile at upgrading to recent 
releases of BIND than their UNIX cohorts. Even so, name service is crucially im-
portant. You might want to make a policy of getting the latest source distribution 
and building it yourself rather than waiting for packages to become available.

Ubuntu and Red Hat have the entire NSD/Unbound suite available in the form of 
packages; SUSE has only Unbound in their official repositories. Currently, all of 
the packaged versions are a bit out of date, so as with BIND, you might want to 
just get the latest source code from nlnetlabs.nl and build it yourself.

In this section, we include pointers to the configuration files, the release of BIND 
on which each vendor’s software is based, and information about how to integrate 
BIND with other sources of administrative data such as flat files or NIS. A more 
complete discussion of this last topic is presented in Chapter 19. In particular, 
refer to the material beginning on page 739. 

See page 87 for more 
information about sys-
tem startup scripts.

We also include pointers to the startup scripts that should execute at boot time to 
start the name server. If name service dies, so does your network, your email, your 
web site—everything. Some sites use a keep-running script such as the nanny
script in the BIND distribution.

Specifics for Linux

BIND packages for Linux install a startup script for named that’s run through 
init: /etc/init.d/bind9 for Ubuntu and /etc/init.d/named for RHEL and SUSE.

Linux’s named packages install things in all the usual places. Table 17.18 shows 
the details. Red Hat has some extras that interact with their Network Manager 

  



ptg

682 Chapter 17 DNS: The Domain Name System 

tool through a -D command-line flag to named. Details can be found in the 
doc/README-DBUS file in the Red Hat BIND package.

Linux uses a switch file, /etc/nsswitch.conf, to specify how hostname-to-IP ad-
dress mappings should be performed and whether DNS should be tried first, last, 
or not at all. If no switch file is present, the default behavior is

hosts: dns [!UNAVAIL=return] files

The !UNAVAIL clause means that if DNS is available but a name is not found 
there, the lookup attempt should fail rather than continuing to the next entry (in 
this case, the /etc/hosts file). If no name server were running (as might be the case 
during the boot process), the lookup process would consult the hosts file.

Our example distributions all provide the following default nsswitch.conf entry:
hosts: files dns

There is really no “best” way to configure the lookups—it depends on how your 
site is managed. In general, we prefer to keep as much host information as possi-
ble in DNS rather than in NIS or flat files, but we also try to preserve the ability to 
fall back to the static hosts file during the boot process if necessary.

Ubuntu is the most up-to-date of our Linux distributions, with its distributed 
package being just a few months old. Programs and files have owner root and 
group owner “bind” with permissions set to allow access if named is invoked as 
user “bind” instead of root.

Some useful sample files are stashed in /etc/bind. Included are a named.conf file 
and zone files for root hints, localhost, the broadcast addresses, and private ad-
dress space. The supplied named.conf includes the files named.conf.options and 
named.conf.local. It sets BIND’s default directory to /var/cache/bind; as shipped, 
the directory exists but is empty. 

Table 17.18 BIND files in Linux

File Directory Description

resolv.conf /etc Resolver library configuration file
named, lwres /usr/sbin Name server daemon
lwresd /usr/sbin Lightweight resolver
named.conf /etc 

/etc/bind
named config file (RHEL and SUSE) 
named config file (Ubuntu)

named-checkconf /usr/sbin Checks the syntax of the config file
named-checkzone /usr/sbin Checks the syntax of zone files 
namedGetForwarders /usr/sbin Red Hat only, for Network Manager tool 
namedSetForwarders /usr/sbin Red Hat only, for Network Manager tool 
nsswitch.conf /etc Service switch file

  



ptg

Specifics for Linux 683

D
N

SThe logic behind the configuration info being in /etc and the zone info in /var is 
that if you are a secondary server for other sites, you do not control the size of the 
zone files that named will write. To avoid potentially filling up the root partition, 
you will probably want to keep the files in /var. Zones for which you are the pri-
mary server can live with the config files (use absolute paths in the named.conf
file), or they can live in /var/cache/bind, too.

The sample named.conf file does not need to be modified if you want to run a 
caching-only server. You must add any zones for which you are authoritative, 
preferably to the supplied named.conf.local file.

The sample files provided by Ubuntu make use of some new BIND features to 
help your servers be good DNS citizens on the network. For example, they config-
ure .com and .net as delegation-only zones to keep your users’ typos from gener-
ating advertising revenue for VeriSign through its Site Finder tool. If you don’t use 
private address space (RFC1918) internally, then the empty RFC1918 zone files 
prevent those addresses from escaping the local network. Go, Ubuntu!

The directory /usr/share/doc/bind9 contains several useful references. Check out 
the README.Debian file (even on Ubuntu) to understand the strategy for con-
figuring BIND.

The SUSE installation says what it is doing and produces a reasonable, well-docu-
mented name server installation. By default, named runs in a chrooted environ-
ment beneath /var/lib/named as user and group “named”. The installer creates 
the chroot jail directory and populates it with all the files needed to run named, 
even niceties such as the UNIX-domain socket for syslog. Extra configuration 
files (not named.conf) and zone files live in /etc/named.d and are copied to the 
jail when named is started. If you do not want to run named in jail, modify the 
line that says

NAMED_RUN_CHROOTED="yes" 

in /etc/sysconfig/named. That’s all you have to change; the startup scripts in 
/etc/init.d refer to this information and are able to start named in either fashion.

SUSE provides a sample /etc/named.conf file with helpful comments that explain 
many of the options. SUSE’s /etc/named.conf file is not world-readable as it usu-
ally is on other systems. The default file imports a file called named.conf.include, 
which then imports the rndc-access.conf file from /etc/named.d, both of which 
are readable to the world. It’s not entirely clear what SUSE has in mind here con-
cerning security. rndc is preconfigured to accept control commands from local-
host only.

SUSE’s named.conf file can be used as-is to run a caching-only server. If you want 
to serve your own zones, put the zone files in the /etc/named.d directory and list 
the zones’ names in the /etc/named.conf.include file.

The ISC BIND documentation lives in /usr/share/doc/packages/bind9.

  



ptg

684 Chapter 17 DNS: The Domain Name System

Installing RHEL’s BIND package puts the binaries in /usr/sbin, puts the man 
pages in /usr/share/man, adds a user and group called “named”, and creates di-
rectories for zone files. The “named” user has access to the data files through 
group permissions.

Unless you change this in /etc/sysconfig/named, the named.conf file goes in /etc
(as Paul Vixie and God intended), and the zone files go in /var/named. No sample 
files are provided, but the bindconf package should have them.

Specifics for Solaris

Solaris 10 ships with BIND 9.3.4-P1, vintage late 2007; you should consider up-
grading. OpenSolaris is more up to date with BIND 9.6.1-P1 (2009). Solaris has 
always called their network programs in.progname and named was no exception, 
so that you often couldn’t find it for a bit if you forgot that it was called in.named, 
and not named. Happily, this is no longer true and Solaris has come around to 
calling the name server plain old named, though the in.named name persists as a 
link. Like Linux, Solaris uses a service order file called /etc/nsswitch.conf to spec-
ify how BIND, NIS, NIS+ (Solaris 10 only), and the /etc/hosts file interact. Modi-
fying the hosts line in that file to

hosts:  files dns

causes name resolution to try /etc/hosts first and then try DNS. The short-circuit 
clause NOTFOUND=return can modify any entry. Putting crucial servers and 
routers in the /etc/hosts file eases the chicken-and-egg problems that sometimes 
occur at boot time before name service is available. Solaris’s name service is 
started by the SMF service svc:/network/dns/server:default. SMF options specify 
the command-line arguments.

Table 17.19 summarizes the BIND filenames and locations for Solaris.

Specifics for HP-UX

HP-UX includes BIND 9.3.2, vintage late 2005; better upgrade! HP-UX provides 
several sample nsswitch.conf files for various combinations of databases and ser-
vices. One lists the HP defaults. Copy the one that seems right for your environ-
ment to /etc/nsswitch.conf.

Table 17.19 BIND 9 files in Solaris

File Directory Description 

resolv.conf /etc Resolver library configuration file
named /usr/sbin Name server daemon 
named-checkconf /usr/sbin Checks configuration file syntax 
named-checkzone /usr/sbin Checks zone file syntax
named.conf /etc Configuration file for name server
nsswitch.conf /etc Service switch file

  



ptg

Specifics for AIX 685

D
N

SHP recommends
hosts: dns [NOTFOUND=return] nis [NOTFOUND=return] files

but we prefer
hosts: files [NOTFOUND=continue] dns

to avoid problems with booting. It’s important to be able to configure the network 
in the boot sequence without looking up names in NIS or DNS, inasmuch as those 
services cannot run until the network is up. HP-UX’s startup script for name ser-
vice is in /etc/rc.config.d/namesvrs_dns.

HP-UX supplies well-commented sample files for just about everything in the di-
rectory /usr/newconfig, but alas, nothing for name service. However, it does have 
a couple of ancient commands related to name service: hosts_to_named, which 
transforms a hosts file into a zone file, and sig_named, which sends signals to the 
running named process to control it. The /etc/hosts file these days just contains 
localhost and the host itself, so the conversion routine is useless. And since BIND 
9, rndc must be used to control named, not signals.

Table 17.20 summarizes the filenames and locations for name service on HP-UX.

Specifics for AIX

AIX ships with both BIND 8 and BIND 9, with binaries named8 and named9, 
respectively. As shipped, named is a link to named8, which is no longer sup-
ported by ISC. They ship versions 8.3.3+ and 9.2.1, vintage January 2004. Sloth-
like upgrade performance here! AIX does not include the named-checkconf and 
named-checkzones commands—perhaps they entered the BIND distribution af-
ter 2004. The startup scripts for name service under AIX are in /etc/rc.tcpip.

We were starting to think these tables of file locations were silly since operating 
systems have largely converged to standard locations as far as BIND is concerned, 
but AIX settles that dispute. Table 17.21 on the next page shows the AIX the file-
names and locations.

Table 17.20 BIND files in HP-UX

File Directory Description

resolv.conf /etc Resolver library configuration file
named /usr/sbin Name server daemon
lwresd /usr/sbin Lightweight resolver daemon 
named-checkconf /usr/sbin Checks the config file syntax 
named-checkzone /usr/sbin Checks zone file syntax
named.conf /etc/namedb Configuration file for name server 
nsswitch.conf /etc Service switch file

  



ptg

686 Chapter 17 DNS: The Domain Name System

In typical AIX fashion, there are three mechanisms that embody the “service 
switch” concept whereby you specify the order in which directory services are 
consulted. The NSORDER environment variable overrides what is specified in 
/etc/netsvc.conf, and the contents there override what is in /etc/irs.conf.

Not only are there three places to worry about, but the syntax is slightly different 
in each one. For example, to select DNS lookups for hostnames in the netsvc.conf
file, you would use the value bind, but to do the same thing in the irs.conf file, the 
value is dns. The syntax allows you to specify what to do if the preferred service 
does not find an answer, but of course it’s different from the notation used in the 
nsswitch.conf files of other systems. See Prioritizing sources of administrative in-
formation on page 739 for the details on service switches.

17.17 RECOMMENDED READING

DNS and BIND are described by a variety of sources, including the documenta-
tion that comes with the distributions, chapters in several books on Internet top-
ics, books in the O’Reilly Nutshell series, books from other publishers, and vari-
ous on-line resources. NSD and Unbound are new enough that their external 
documentation is thinner, but we have found one book with coverage along with 
several web documents.

Mailing lists and newsgroups 

The following mailing lists are associated with BIND: 

• bind-announce – mail bind-announce-request@isc.org to join
• namedroppers – mail namedroppers-request@internic.net to join
• bind-users – mail bind-users-request@isc.org to join
• bind9-workers – mail bind9-workers-request@isc.org (code warriors)

Send bug reports to bind9-bugs@isc.org.

Table 17.21 BIND files in AIX 

File Directory Description

resolv.conf /etc Resolver library configuration file
named8 /usr/sbin BIND 8 name server daemon
named9 /usr/sbin BIND 9 name server daemon
named /usr/sbin Link to named8 [default] or named9 

named.conf /etc Configuration file for name server
netsvc.conf /etc Service switch file
irs.conf /etc Another service switch file
NSORDER environment Service switch environment variable

  



ptg

Books and other documentation 687

D
N

SThe mailing lists for NSD/Unbound are

• nsd-users – join from the nlnetlabs.nl/projects/nsd web page
• unbound-users – join from the unbound.net web page
• ldns-users – join from nlnetlabs.nl/projects/ldns web page
• drill – join from nlnetlabs.nl/projects/drill web page

And finally, a DNS mailing list where operational issues for extreme sites (regis-
trars, root servers, TLD servers, etc.) are discussed:

• dns-operations – join at the lists.dns-oarc.net web site

Books and other documentation

THE NOMINUM AND ISC BIND DEVELOPMENT TEAMS. BINDv9 Administrator Ref-
erence Manual. Available in the BIND distribution (doc/arm) from isc.org. This 
document outlines the administration and management of BIND 9. It’s also avail-
able as a printed booklet: 

REED, JEREMY C., EDITOR. BIND 9 DNS Administration Reference Book. Redwood 
City, CA: Reed Media Services, 2007.

ALBITZ, PAUL, AND CRICKET LIU. DNS and BIND (5th Edition). Sebastopol, CA: 
O’Reilly Media, 2006.

This popular and well-respected book about BIND includes coverage of both 
BIND 8 and BIND 9. It is very complete—the virtual DNS bible.

LIU, CRICKET. DNS & BIND Cookbook. Sebastopol, CA: O’Reilly Media, 2002.

This baby version of the O’Reilly DNS book is task oriented and gives clear in-
structions and examples for various name server chores. This book is a bit dated, 
but it’s still useful. 

AITCHISON, RON. Pro DNS and BIND. Berkeley, CA: Apress, 2005.

This is a newcomer in the DNS arena and includes a very good section on DNS-
SEC with examples and deployment strategy. We found a few typos but fortu-
nately the author maintains a web site of corrections while awaiting the publisher’s 
next print run. The depth of material and organization make it a better choice 
than DNS and BIND for many purposes, but as a DNS administrator you had 
better own both!

MENS, JAN-PIET. Alternative DNS Servers: Choice and Deployment, and Optional 
SQL/LDAP Back-Ends. Cambridge, England: UIT Cambridge Ltd., 2009. 

This book covers about 10 different name server implementations, including 
NSD/Unbound. It explores various back ends for storing zone data, has nice dia-
grams, and offers a wealth of information.

  



ptg

688 Chapter 17 DNS: The Domain Name System 

On-line resources

The DNS Resources Directory, dns.net/dnsrd, is a useful collection of resources 
and pointers to resources, maintained by András Salamon.

The web sites isc.org, dns-oarc.net, ripe.net, nlnetlabs.nl, and f.root-servers.org or 
k.root-servers.org contain a wealth of DNS information, research, measurement 
results, presentations, and other good stuff.

Google has indexed DNS resources at 

directory.google.com/Top/Computers/Internet/Protocols/DNS

All the nitty-gritty details of the DNS protocol, resource records, and the like are 
summarized at iana.org/assignments/dns-parameters. This document contains a 
nice mapping from a DNS fact to the RFC that specifies it.

The DNSSEC HOWTO, a tutorial in disguise by Olaf Kolkman, is a 70-page docu-
ment that covers the ins and outs of deploying and debugging DNSSEC. Get it at 
nlnetlabs.nl/dnssec_howto/dnssec_howto.pdf.

The RFCs

The RFCs that define the DNS system are available from rfc-editor.org. We used 
to list a page or so of the most important DNS-related RFCs, but there are now so 
many (more than 100, with another 50 Internet drafts) that you are better off 
searching rfc-editor.org to access the entire archive. Refer to the doc/rfc and 
doc/draft directories of the current BIND distribution to see the whole fleet.

The original, definitive standards for DNS, vintage 1987, are

• RFC1034 – Domain Names: Concepts and Facilities
• RFC1035 – Domain Names: Implementation and Specification

17.18 EXERCISES

E17.1 Explain the function of each of the following DNS records: SOA, PTR, 
A, MX, and CNAME.

E17.2 What are glue records and why are they needed? Use dig or drill to 
find the glue records that connect your local zone to its parent.

E17.3 What are the implications of negative caching? Why is it important?

E17.4 Create SPF records for your site to help control spam.

E17.5 What steps are needed to set up a new second-level domain? Include 
both technical and procedural factors.

E17.6 What is the difference between an authoritative and a nonauthorita-
tive answer to a DNS query? How could you ensure that an answer 
was authoritative?

  



ptg

Exercises 689

D
N

SE17.7 What machine is your local name server? What steps must it take to 
resolve the name www.admin.com, assuming that no information 
about this domain is cached anywhere in DNS?

E17.8 Explain the significance for DNS of the 512-byte limit on UDP pack-
ets. What are the potential problems, and what are the workarounds 
that address them?

E17.9 Explore the 512-bit Russian GOST or 256-bit NIST P-256 ECDSA al-
gorithms and their impact on the 512-byte UDP packet limit. Do they 
help things fit? How big are the keys and the signatures?

E17.10 Create SSHFP records for your site and upgrade your ssh to use them.

E17.11 Use the ISC DNS-OARC reply size server from various locations at 
your site to determine if there are any local configuration policies or 
practices that would inhibit DNSSEC deployment. What sizes do you 
see? Do they vary with your location? How about from home? Gather 
the same data with SecSpider or dnsfunnel. Are the numbers consis-
tent? If not, which tool gives more accurate information?

E17.12 Use the DNSSEC tools or libraries to build a script that determines 
whether a secure site is in sync with its parent’s DS record and 
whether its signatures have expired. Set it up to run daily from cron.

E17.13 Create DKIM records for your domain and set up your mail servers 
and clients to use them.

E17.14 Create a subdomain at your site. Add a real host with lots of names 
and addresses, then secure it with DNSSEC and connect it to the In-
ternet’s trust network by creating a DLV record at ISC. Turn on log-
ging and watch the logs for a few days. Document your procedures 
and problems.

  

www.admin.com


ptg

690

18 The Network File System

The Network File System protocol, commonly known as NFS, lets you share file-
systems among computers. NFS is nearly transparent to users, and no information 
is lost when an NFS server crashes. Clients can simply wait until the server re-
turns and then continue as if nothing had happened. 

NFS was introduced by Sun Microsystems in 1984. It was originally implemented 
as a surrogate filesystem for diskless clients, but the protocol proved to be well 
designed and useful as a general file-sharing solution. All UNIX vendors and Li-
nux distributions provide some version of NFS; many use code licensed from Sun. 
The NFS protocol is now an open standard documented in RFCs (see RFCs 1094, 
1813, and 3530 in particular).

18.1 INTRODUCTION TO NETWORK FILE SERVICES

Sharing files over a network seems like a simple task, but in fact it’s a confound-
ingly complex problem with many edge cases and subtleties. As evidence of the 
complexities involved, numerous issues in the NFS protocol have revealed them-
selves only as bugs encountered in unusual situations over more than a quarter 
century of use. Today’s administrators can be confident that the most common 
file-sharing protocols (NFS and CIFS) will not regularly corrupt data or otherwise 

NFS

  



ptg

Security 691

N
FS

induce the wrath of upset users, but it’s taken a lot of work and experience to get 
to this point.

Issues of state

One of the design decisions made when designing a network filesystem is deter-
mining what part of the system will track the files that each client has open, infor-
mation referred to generically as “state.” A server that does not record the status of 
files and clients is said to be stateless; one that does is stateful. Both approaches 
have been used over the years, and both have benefits and drawbacks.

Stateful servers keep track of all open files across the network. This mode of oper-
ation introduces many layers of complexity (more than you might expect) and 
makes recovery in the event of a crash far more difficult. When the server returns 
from a hiatus, a negotiation between the client and server must occur to reconcile 
the last known state of the connection. Statefulness allows clients to maintain 
more control over files and facilitates the management of files that are opened in 
read/write mode.

On a stateless server, each request is independent of the requests that have pre-
ceded it. If either the server or the client crashes, nothing is lost in the process. 
Under this design, it is painless for servers to crash or reboot, since no context is 
maintained. However, it’s impossible for the server to know which clients have 
opened files for writing, so the server cannot manage concurrency.

Performance concerns

Network filesystems should provide users with a seamless experience. Accessing a 
file over the network should be no different from accessing a file on a local filesys-
tem. Unfortunately, wide area networks have high latencies, which cause opera-
tions to behave erratically, and low bandwidth, which results in slow performance 
for larger files. Most file service protocols, including NFS, incorporate techniques 
to minimize performance problems on both local and wide area networks.

Most protocols try to minimize the number of network requests. For example, 
read-ahead caching preloads portions of a file into a local memory buffer to avoid 
delay when a new section of the file is read. A little extra network bandwidth is 
consumed in an effort to avoid a full round trip exchange with the server. Simi-
larly, some systems cache writes in memory and send their updates in batches, 
reducing the delay incurred when communicating write operations to the server. 
These types of batch operations are generically referred to as request coalescing.

Security

Any service that provides convenient access to files on a network has great poten-
tial to cause security problems. Local filesystems implement complex access con-
trol algorithms, safeguarding files with granular access permissions. On a net-
work, the problems are multiplied since there may be race conditions and 

  



ptg

692 Chapter 18 The Network File System

differences in configuration among machines as well as bugs in the file service 
software and unresolved issues in the file-sharing protocol.

The rise of directory services and centralized authentication has improved the 
security of network file systems. In essence, no client can be trusted to authenti-
cate itself sanely, so a trusted, central system must verify identities and approve 
access to files. The complexities of these services have slowed their adoption, but 
most sites today implement some form of centralized access control. 

18.2 THE NFS APPROACH

The newest version of the NFS protocol is designed for platform independence, 
good performance over wide area networks like the Internet, and strong security. 
Most implementations also include diagnostic utilities to debug configuration 
and performance problems. A portion of both the server-side and client-side soft-
ware resides in the kernel. However, these parts of NFS need no configuration and 
are largely transparent from an administrator’s point of view.

Protocol versions and history

The first public release of the NFS protocol was version 2 in 1989. Version 2 cli-
ents cannot assume that a write operation is complete until they receive an ac-
knowledgment from the server. To avoid discrepancies in the event of a crash, 
version 2 servers must commit each modified block to disk before replying. This 
constraint introduces a significant delay in NFS writes since modified blocks 
would normally be written only to the in-memory buffer cache. 

NFS version 3, which dates from the early 1990s, eliminates this bottleneck with a 
coherency scheme that permits asynchronous writes. It also updates several other 
aspects of the protocol that were found to have caused performance problems and 
improves the handling of large files. The net result is that NFS version 3 is quite a 
bit faster than version 2. All sites should be using version 3 or 4 at this point.

NFS version 4 is a major overhaul that includes many new fixes and features. 
Highlighted enhancements include

• Compatibility and cooperation with firewalls and NAT devices
• Integration of the lock and mount protocols into the core NFS protocol
• Stateful operation
• Strong, integrated security
• Support for replication and migration
• Support for both UNIX and Windows clients
• Access control lists (ACLs)
• Support for Unicode filenames
• Good performance even on low-bandwidth connections 

Although V4 is a significant step forward in many ways, the protocol changes 
haven’t much altered the process of configuring and administering NFS.

  



ptg

File system exports 693

N
FS

The various protocol versions are not compatible, but NFS servers (including 
those on all our example systems) typically implement all three of them. In prac-
tice, all NFS clients and servers can interoperate using some version of the proto-
col. Always use the V4 protocol if both sides support it. 

Transport protocols

NFS version 2 originally used UDP because that was what performed best on the 
LANs and computers of the 1980s. Although NFS does its own packet sequence 
reassembly and error checking, UDP and NFS both lack the congestion control 
algorithms that are essential for good performance on a large IP network.

To remedy these potential problems, NFS migrated to a choice of UDP or TCP in 
version 3, and to TCP only in version 4.1 The TCP option was first explored as a 
way to help NFS work through routers and over the Internet. Over time, most of 
the original reasons for preferring UDP over TCP have evaporated in the warm 
light of fast CPUs, cheap memory, and faster networks. 

State

A client must explicitly mount an NFS filesystem before using it, just as a client 
must mount a filesystem stored on a local disk. However, NFS versions 2 and 3 are 
stateless, and the server does not keep track of which clients have mounted each 
filesystem. Instead, the server simply discloses a secret “cookie” at the conclusion 
of a successful mount negotiation. The cookie identifies the mounted directory to 
the NFS server and so provides a way for the client to access its contents. Cookies 
persist between reboots of the server, so a crash does not leave the client in an 
unrecoverable muddle. The client can simply wait until the server is available 
again and resubmit the request. 

NFSv4, on the other hand, is a stateful protocol: both client and server maintain 
information about open files and locks. When the server fails, the client assists in 
the recovery process by sending the server its pre-crash state information. A re-
turning server waits during a predefined grace period for former clients to report 
their state information before it permits new operations and locks. The cookie 
management of V2 and V3 no longer exists in NFSv4.

File system exports

NFS servers maintain a list of directories (called “exports” or “shares”) that they 
make available to clients over the network. By definition, all servers export at least 
one directory. In V2 and V3, each export is treated as an independent entity. In 
V4, each server exports a single hierarchical pseudo-filesystem that incorporates 
all its exported directories. Essentially, the pseudo-filesystem is the server’s own 
filesystem namespace skeletonized to remove anything that is not exported. 

1. Technically, any transport protocol that implements congestion control can be used, but TCP is the 
only reasonable choice today.

  



ptg

694 Chapter 18 The Network File System

For example, consider the following list of directories, with the directories to be 
exported in boldface.

/www/domain1 
/www/domain2 
/www/domain3 
/var/logs/httpd 
/var/spool

In NFS version 3, each exported directory must be separately configured. Client 
systems must execute three different mount requests to obtain access to all the 
server’s exports.

In NFS version 4, however, the pseudo-filesystem bridges the disconnected por-
tions of the directory structure to create a single view for NFS clients. Rather than 
requesting a separate mount for each of /www/domain1, /www/domain2, and 
/var/logs/httpd, the client can simply mount the server’s pseudo-root directory 
and browse the hierarchy.

The directories that are not exported, /www/domain3 and /var/spool, do not ap-
pear during browsing. In addition, individual files contained in /, /var, /www, and 
/var/logs are not visible to the client because the pseudo-filesystem portion of the 
hierarchy includes only directories. Thus, the client view of the NFSv4-exported 
file system is

/
/www 

/www/domain1 
/www/domain2

/var 
/var/logs

/var/logs/httpd

The server specifies the root of the exported filesystems in a configuration file 
known as the exports file.

File locking

File locking (as implemented by the flock, lockf, or fcntl systems calls) has been a 
sore point on UNIX systems for a long time. On local filesystems, it has been 
known to work less than perfectly. In the context of NFS, the ground is shakier 
still. By design, early versions of NFS servers are stateless: they have no idea which 
machines are using any given file. However, state information is needed to imple-
ment locking. What to do?

The traditional answer was to implement file locking separately from NFS. In 
most systems, the two daemons lockd and statd try to make a go of it. Unfortu-
nately, the task is difficult for a variety of subtle reasons, and NFS file locking has 
generally tended to be flaky.

  



ptg

Security concerns 695

N
FS

NFSv4 has removed the need for lockd and statd by folding locking (and hence, 
statefulness and all that it implies) into the core protocol. This change introduces 
significant complexity but obviates many of the related problems of earlier NFS 
versions. Unfortunately, separate lockds and statds are still needed to support V2 
and V3 clients if your site has them. Our example systems all ship with the earlier 
versions of NFS enabled, so the separate daemons still run by default.

Security concerns

In many ways, NFS V2 and V3 are poster children for everything that is or ever 
has been wrong with UNIX and Linux security. The protocol was originally de-
signed with essentially no concern for security, and convenience has its price. 
NFSv4 has addressed the security concerns of earlier versions by mandating sup-
port for strong security services and establishing better user identification.

All versions of the NFS protocol are intended to be security-mechanism indepen-
dent, and most servers support multiple “flavors” of authentication. A few of the 
common flavors include 

• AUTH_NONE – no authentication
• AUTH_SYS – UNIX-style user and group access control
• RPCSEC_GSS – a powerful flavor that ensures integrity and privacy in 

addition to authentication

Traditionally, most sites have used AUTH_SYS authentication, which depends on 
UNIX user and group identifiers. In this scheme, the client simply sends the local 
UID and GID of the user requesting access to the server. The server compares the 
values to those from its own /etc/passwd file2 and determines whether the user 
should have access. Thus, if users mary and bob share the same UID on two dif-
ferent clients, they will have access to each other’s files. Furthermore, users that 
have root access on a system can su to whatever UID they wish; the server will 
then give them access to the corresponding user’s files.

Enforcing passwd file consistency among systems is essential in environments 
that use AUTH_SYS. But even this is only a security fig leaf; any rogue host (or 
heaven forfend, Windows machine) can “authenticate” its users however it likes 
and therefore subvert NFS security.

See page 924 for 
more information 
about Kerberos.

To prevent such problems, most sites should use a more robust authentication 
mechanism such as Kerberos in combination with the NFS RPCSEC_GSS layer. 
This configuration requires both the client and server to participate in a Kerberos 
realm. The Kerberos realm authenticates clients centrally, avoiding the problems 
of self-identification described above. Kerberos can also provide strong encryp-
tion and guaranteed integrity for files transferred over the network. All protocol-
conformant NFS version 4 systems must implement RPCSEC_GSS, but it’s op-
tional in version 3. 

2. Or its network database equivalent, such as NIS or LDAP.

  



ptg

696 Chapter 18 The Network File System

See page 702 for more 
information about the 
exports file.

Access to NFS volumes is granted by a file called /etc/exports that enumerates the 
hostnames (or IP addresses) of systems that should have access to the server’s 
shared filesystems. Unfortunately, this too is a weak form of security because the 
server trusts the clients to tell it who they are. It’s easy to make clients lie about 
their identities and IP addresses, so this mechanism cannot be fully trusted. Nev-
ertheless, you should export filesystems only to clients that you trust, and you 
should always check that you have not accidentally exported filesystems to the 
whole world.

See page 932 for 
more information 
about firewalls.

NFS version 4 uses only TCP as a transport protocol and typically communicates 
over port 2049. Since V4 does not rely on any other ports, opening access through 
a firewall is as simple as opening TCP port 2049. As with all access list configura-
tions, be sure to specify source and destination addresses in addition to the port. 
If your site doesn’t need to provide NFS services to hosts on the Internet, block 
access through the firewall or use a local packet filter. 

File service over wide area networks with NFSv2 and V3 is not recommended 
because of the long history of bugs in the RPC protocols and the lack of strong 
security mechanisms. Administrators of NFS version 3 servers should block ac-
cess to TCP and UDP ports 2049 and also the portmap port, 111.

Identity mapping in version 4

As discussed in Chapter 7, UNIX operating systems identify users through a col-
lection of UIDs and GIDs in the local passwd file or administrative database. NFS 
version 4, on the other hand, represents users and groups as string identifiers of 
the form user@nfs-domain and group@nfs-domain. Both NFS clients and servers 
run an identity mapping daemon that maps UNIX identifier values to strings.

When a version 4 client performs an operation that returns identities, such as a 
file listing with ls -l (the underlying operation is a series of stat calls), the server’s 
identity mapping daemon uses its local passwd file to convert the UID and GID 
of each file object to a string such as ben@atrust.com. The client’s identity mapper 
then reverses the process, converting ben@atrust.com into local UID and GID 
values, which may or may not be the same as the server’s. If the string value does 
not match any local identity, the nobody user account is used.

At this point, the remote filesystem call (stat) has completed and returned UID 
and GID values to its caller (here, the ls command). But since ls was called with 
the -l option, it needs to display text names instead of numbers. So, ls in turn 
retranslates the IDs back to textual names using the getpwuid and getgrgid li-
brary routines. These routines once again consult the passwd file or its network 
database equivalent. What a long, strange trip it’s been.

Confusingly, the identity mapper is only used when retrieving and setting file at-
tributes, typically ownerships. Identity mapping plays no role in authentication or 
access control, all of which is handled in the traditional form by RPC. Ergo, consis-
tent passwd files are still essential for users of AUTH_SYS “security.”

  



ptg

Root access and the nobody account 697

N
FS

An unfortunate side effect of this identity and authentication ambiguity arises on 
systems that do not have synchronized passwd files. The identity mapper may do 
a better job of mapping than the underlying NFS protocol, causing the apparent 
file permissions to conflict with the permissions the NFS server will actually en-
force. Consider, for example, the following commands on an NFSv4 client:

[ben@nfs-client]$ id ben 
uid=1000(ben) gid=1000(ben) groups=1000(ben)

[ben@nfs-client]$ id john 
uid=1010(john) gid=1010(john) groups=1010(john) 

[ben@nfs-client]$ ls -ld ben 
drwxr-xr-x 2 john root 4096 May 27 16:42 ben

[ben@nfs-client]$ touch ben/file 
[ben@nfs-client]$ ls -l ben/file 
-rw-rw-r-- 1 john nfsnobody 0 May 27 17:07 ben/file

First, ben is shown to have UID 1000 and john to have UID 1010. An NFS-ex-
ported home directory called ben appears to have permissions 755 and is owned 
by john. However, ben is able to create a file in the directory even though the ls -l
output indicates that he lacks write permission. 

On the server, john has UID 1000. Since john has UID 1010 on the client, the 
identity mapper performs UID conversion as described above, with the result that 
“john” appears to be the owner of the directory. However, the identity mapping 
daemon plays no role in access control. For the file creation operation, ben’s UID 
of 1000 is sent directly to the server, where it is interpreted as john’s UID.

How do you know which operations are identity mapped and which are not? It’s 
simple: whenever a UID or GID appears in the filesystem API (as with stat or 
chown), it is mapped. Whenever the user’s own UIDs or GIDs are used implicitly
for access control, they are routed through the designated authentication system.

Unfortunately for administrators, identity mapping daemons are not standardized 
across systems, so their configuration processes may be different. The specifics for 
each of our example systems are covered starting on page 709.

Root access and the nobody account

Although users should generally be given identical privileges wherever they go, it’s 
traditional to prevent root from running rampant on NFS-mounted filesystems. 
By default, the NFS server intercepts incoming requests made on behalf of UID 0 
and changes them to look as if they came from some other user. This modification 
is called “squashing root.” The root account is not entirely shut out, but it is lim-
ited to the abilities of a normal user.

A placeholder account named “nobody” is defined specifically to be the pseudo-
user as whom a remote root masquerades on an NFS server. The traditional UID 

  



ptg

698 Chapter 18 The Network File System

for nobody is 65,534 (the 16-bit twos-complement equivalent of UID -2).3 You 
can change the default UID and GID mappings for root in the exports file. Some 
systems have an all_squash option to map all client UIDs to the same UID on the 
server. This configuration eliminates all distinctions among users and creates a 
sort of public-access filesystem. On Solaris and HP-UX, access is denied alto-
gether if root is mapped to UID -1.

The intent behind these precautions is good, but their ultimate value is not as 
great as it might seem. Remember that root on an NFS client can su to whatever 
UID it wants, so user files are never really protected. The only real effect of root 
squashing is to prevent access to files that are owned by root and not readable or 
writable by the world.

Performance considerations in version 4

NFSv4 was designed to achieve good performance over wide area networks. Most 
WANs have higher latency and lower bandwidth than LANs. NFS takes aim at 
these problems with the following refinements:

• An RPC called COMPOUND clumps multiple file operations into one 
request, reducing the latency incurred from multiple network requests.

• A delegation mechanism allows client-side caching of files. Clients can 
maintain local control over files, including those open for writing. 

These features are part of the core NFS protocol and do not require much atten-
tion from system administrators. 

Disk quotas

Remote disk quota information can be accessed through an out-of-band server, 
rquotad. NFS servers enforce disk quotas if they are enabled on the underlying 
filesystem, but users cannot view their quota information unless rquotad is run-
ning on the remote server.

We consider disk quotas to be largely obsolete; however, some organizations still 
depend on them to keep users from hogging all available disk space. If you’re sup-
porting one of these organizations, you can consult the quota man pages. We don’t 
discuss rquotad further.

18.3 SERVER-SIDE NFS

An NFS server is said to “export” a directory when it makes the directory available 
for use by other machines. Solaris and HP-UX use the word “share” instead. For 
consistency, we use “export” throughout this chapter.

3. Although the Red Hat NFS server defaults to UID -2, the nobody account in the passwd file uses UID 
99. You can leave things as they are, add a passwd entry for UID -2, or change anonuid and anongid
to 99 if you wish. 

  



ptg

Server-side NFS 699

N
FS

In NFS version 3, the process used by clients to mount a filesystem (that is, to 
learn its secret cookie) is separate from the process used to access files. The oper-
ations use separate protocols, and the requests are served by different daemons: 
mountd for mount requests and nfsd for actual file service. On some systems, 
these daemons are called rpc.nfsd and rpc.mountd as a reminder that they rely 
on RPC as an underlying protocol (and hence require portmap to be running). In 
this chapter, we omit the rpc prefix for readability. 

NFSv4 does not use mountd at all. However, unless your NFS clients are all at 
version 4, mountd should remain running. 

On an NFS server, both mountd and nfsd should start when the system boots, 
and both should remain running as long as the system is up. The system startup 
scripts typically run the daemons automatically if you have any exports config-
ured. The names of the NFS server startup scripts for each of our example plat-
forms are shown in Table 18.1.

NFS uses a single access control database that tells which filesystems should be 
exported and which clients may mount them. The operative copy of this database 
is usually kept in a file called xtab (sharetab on Solaris and HP-UX) and also in 
tables internal to the kernel. Since xtab and sharetab aren’t meant to be human 
readable, you use a helper command—exportfs or share—to add and modify en-
tries. To remove entries from the exports table, use exportfs -u or unshare.

Maintaining a binary file by hand is not much fun, so most systems assume that 
you would rather maintain a text file that enumerates the system’s exported direc-
tories and their access settings. The system can then consult this text file at boot 
time to automatically construct the xtab or sharetab file.

On most systems, /etc/exports is the canonical, human-readable list of exported 
directories. Its contents are read by exportfs -a. Under Solaris and HP-UX, the 
canonical list is /etc/dfs/dfstab, which is really just a script containing a series of 
share commands. (The shareall command greps the NFS-related commands out 

Table 18.1 NFS server startup scripts

System Paths to startup scripts

Ubuntu /etc/init.d/nfs-kernel-server 
/etc/init.d/nfs-common

SUSE /etc/init.d/nfsservera

Red Hat /etc/rc.d/init.d/nfs 

Solaris /etc/init.d/nfs.server

HP-UX /sbin/init.d/nfs.server

AIX /etc/rc.nfs

a. /etc/init.d/nfs mounts NFS client filesystems.

  



ptg

700 Chapter 18 The Network File System

of dfstab and runs them. Since NFS is the only native file-sharing system that 
obeys this convention, shareall is equivalent to sh /etc/dfs/dfstab.)

Table 18.2 summarizes the last few paragraphs. It tells you what file to edit when 
you want to export a new filesystem and what to do to make your changes take 
effect once you’ve finished editing that file.

NFS deals with the logical layer of the filesystem. Any directory can be exported; 
it doesn’t have to be a mount point or the root of a physical filesystem. However, 
for security, NFS does pay attention to the boundaries between filesystems and 
does require each device to be exported separately. For example, on a machine 
that has set up /users as a separate partition, you could export the root directory 
without exporting /users.4

Clients are usually allowed to mount subdirectories of an exported directory if 
they wish, although the protocol does not require this feature. For example, if a 
server exports /chimchim/users, a client could mount only /chimchim/users/joe
and ignore the rest of the users directory.

Most versions of UNIX don’t let you export subdirectories of an exported direc-
tory with different options, but this practice is OK under Linux.

The share command and dfstab file (Solaris, HP-UX)

/etc/dfs/dfstab executes the share command once for each exported filesystem. 
For example, on a server that shares /home with hosts monk and leopard (with 
monk allowed root access) and that shares /usr/share/man with hosts ross and 
harp, the /etc/dfs/dfstab file would contain the following commands:

share -F nfs -o rw=monk.atrust.com:leopard.atrust.com,root=monk.atrust.com 
/home 

share -F nfs -o rw=ross.atrust.com:harp.atrust.com /usr/share/man 

After editing /etc/dfs/dfstab, remember to run shareall to make your changes 
take effect. Since shareall simply runs the commands in the dfstab file, it will not 
unshare filesystems that you remove. Use the command unshare /path/to/fs to 
explicitly remove a share. Table 18.3 lists the most common options for share.

Table 18.2 Where to set up exported directories

System Exports info in What to do after changing it

Linux /etc/exports Run /usr/sbin/exportfs -a

Solaris /etc/dfs/dfstab Run shareall

HP-UX /etc/dfs/dfstab Run shareall

AIX /etc/exports Run /usr/sbin/exportfs -a

4. Of course, you should never export the root directory.

  



ptg

The share command and dfstab file (Solaris, HP-UX) 701

N
FS

Wherever a list is called for in a share option, it should consist of a colon-sepa-
rated group of the items shown in Table 18.4, all of which are ways of specifying 
hosts or groups of hosts.

The note in Table 18.4 regarding hostnames bears repeating: individual host-
names must be fully qualified or they will be ignored. 

You can put a dash in front of an item to explicitly disallow it. The list is examined 
from left to right during each lookup until a matching item is found, so negations 
should precede the more general items that they modify. For example, the line

share -F nfs -o rw=-@192.168.10.0/24:.booklab.atrust.com /users 

exports /users read-write to all hosts in the booklab.atrust.com DNS domain ex-
cept for hosts on the 192.168.10 network. In the command, the -F flag indicates 
that share should use the nfs filesystem type, as opposed to any of the others in 
/etc/dfs/fstypes.

It’s possible to export a directory read-only to some clients and read-write to oth-
ers. Just include both the rw= and ro= options.

The share man page documents a few basic NFS options. For a complete list, refer 
to the share_nfs man page.

Table 18.3 Options for the share command (Solaris, HP-UX)

Option Description 

ro Exports read-only to the entire world (not recommended) 
ro=list Exports read-only with access only by listed hosts 
rw Exports read-write to the entire world (not recommended) 
rw=list Exports read-write with access only by listed hosts 
root=list Lists hosts permitted to access this filesystem as root; otherwise, root 

access from a client is equivalent to access by “nobody” (usually UID -2)
anon=uid Specifies the UID to which root is remapped; the default is “nobody” 
nosub Forbids clients to mount subdirectories of the exported directory 
nosuid Prevents setuid and setgid files from being created through NFS

Table 18.4 Client specifications for the share command

Type Syntax Meaning

Hostname hostname Individual hosts (must be fully qualified)
Netgroup groupname NIS netgroups (not frequently used)
DNS domains .domain.com Any host within the domain 
IP networks @netname Network names as defined in /etc/networksa

a. CIDR-style specifications are also accepted; for example, @128.138.92.128/25.

  



ptg

702 Chapter 18 The Network File System

The exportfs command and the exports file (Linux, AIX)

The exports file consists of a list of exported directories in the leftmost column 
followed by lists of associated options. For example, the AIX exports line

/home -vers=4,sec=sys,access=harp.atrust.com

permits /home to be mounted by the machine harp.atrust.com using version 4 of 
the NFS protocol and UNIX authentication (sec=sys). 

Filesystems that are listed in the exports file without a specific set of hosts are 
usually mountable by all machines. This is a sizable security hole.

The exact options and syntax used in the exports file vary somewhat among sys-
tems, though there is a certain thematic similarity. The following sections de-
scribe the general formats for Linux and AIX. As always, be sure to check the man 
page for your system.

Exports in AIX

AIX has the most “classic” exports format of our example systems. The permissi-
ble options are shown in Table 18.5.

In Table 18.5, a list consists of a colon-separated series of hostnames and netgroup 
names. The options in Table 18.5 are similar to those understood by the share
command. However, there are some subtle differences. For example, the option

rw=leopard.atrust.com:ross.atrust.com

Table 18.5 Common export options for AIX

Option Description

access=list Lists the hosts that can mount the filesystem. 
ro Exports read-only to everyone; no clients may write on the filesystem.
rw Exports for reading and writing to everyone (the default). 
rw=list Exports read-mostly. The list enumerates the hosts allowed to mount 

for writing; all others must mount read-only.
root=list Lists hosts that can access the filesystem as root. Without this option, 

root access from a client is equivalent to access by the user nobody.
vers=n Exports the directory to clients using version n. Valid values are 2, 3, 

and 4. Specifying either 2 or 3 includes both 2 and 3.
sec=flavor Specifies a list of security methods for the exported directory. Values 

include sys (UNIX authentication), dh (DES), krb5 (Kerberos authenti-
cation), krb5i (Kerberos authentication and integrity), krb5p (Ker-
beros authentication, integrity, and privacy), and none (anonymous 
access, not recommended).

anon=n Specifies the UID to which remote roots are mapped. Defaults to -2 
(nobody). Setting this value to -1 denies root access entirely.

  



ptg

Exports in Linux 703

N
FS

in share syntax means to export the directory read-write with access only by the 
listed hosts. Under AIX, this option allows the entire world to mount the direc-
tory read-only. Gotcha! Under AIX, you must use the access clause to restrict 
mounting to a specified list of clients:

rw,access=leopard.atrust.com:ross.atrust.com

Read-write exporting is the default, so the rw clause could actually be eliminated. 
It doesn’t hurt to include it explicitly, however.

Each line in an AIX exports file should consist of a directory path, whitespace, 
and then a dash followed by a comma-separated list of options. For instance, the 
following example shares the /home directory to the host leopard.atrust.com with 
AUTH_SYS security and version 4 of the protocol:

/home -vers=4,sec=sys,rw,access=leopard.atrust.com

Remember to run exportfs -a after changing the /etc/exports file.

Exports in Linux

As in AIX, the Linux /etc/exports file enumerates the filesystems exported 
through NFS and the clients that may access each of them. Whitespace separates 
the filesystem from the list of clients, and each client is followed by a parenthe-
sized list of comma-separated options. Lines can be continued with a backslash.

Here’s what the format looks like:
/home harp(rw,no_root_squash) monk(rw) 
/usr/share/man *.atrust.com(ro)

There is no way to list multiple client specifications for a single set of options, 
although some client specifications refer to multiple hosts. Table 18.6 lists the four 
types of specifications that can appear in the exports file.

Table 18.7 on the next page shows the most commonly used export options un-
derstood by Linux.

Linux’s NFS server has the unusual feature of allowing subdirectories of exported 
directories to be exported with different options. Use the noaccess option to un-
export subdirectories that you would rather not share.

Table 18.6 Client specifications in the Linux /etc/exports file

Type Syntax Meaning

Hostname hostname Individual hosts
Netgroup @groupname NIS netgroups (not frequently used) 
Wild cards * and ? FQDNs a with wild cards; “*” will not match a dot 
IP networks ipaddr/mask CIDR-style specifications (e.g., 128.138.92.128/25)

a. Fully qualified domain names

  



ptg

704 Chapter 18 The Network File System

For example, the configuration
/home *.atrust.com(rw) 
/home/ben (noaccess)

allows hosts in the atrust.com domain to access all the contents of /home except 
for /home/ben. The absence of a client name on the second line means that the 
option applies to all hosts; it’s perhaps somewhat more secure this way.

The subtree_check option (the default) verifies that every file accessed by a client 
lies within an exported subdirectory. If you turn off this option, only the fact that 
the file is within an exported filesystem is verified. Subtree checking can cause 

Table 18.7 Common export options in Linux

Option Description

ro Exports read-only
rw Exports for reading and writing (the default)
rw=list Exports read-mostly. The list enumerates the hosts allowed to 

mount for writing; all others must mount read-only.
root_squash Maps (“squashes”) UID 0 and GID 0 to the values specified by 

anonuid and anongid.a This is the default.
no_root_squash Allows normal access by root. Dangerous. 
all_squash Maps all UIDs and GIDs to their anonymous versions. Useful 

for supporting PCs and untrusted single-user hosts.
anonuid=xxx Specifies the UID to which remote roots should be squashed 
anongid=xxx Specifies the GID to which remote roots should be squashed
secure Requires remote access to originate at a privileged port
insecure Allows remote access from any port
noaccess Blocks access to this dir and subdirs (used with nested exports)
wdelay Delays writes in hopes of coalescing multiple updates 
no_wdelay Writes data to disk as soon as possible
async Makes server reply to write requests before actual disk write
nohide Reveals filesystems mounted within exported file trees
hide Opposite of nohide 
subtree_check Verifies that each requested file is within an exported subtree 
no_subtree_check Verifies only that file requests refer to an exported filesystem 
secure_locks Requires authorization for all lock requests 
insecure_locks Specifies less stringent locking criteria (supports older clients)
sec=flavor Specifies a list of security methods for the exported directory. 

Values include sys (UNIX authentication), dh (DES), krb5
(Kerberos authentication), krb5i (Kerberos authentication 
and integrity), krb5p (Kerberos authentication, integrity, and 
privacy), and none (anonymous access, not recommended).

fsid=num Specifies the V4 pseudo-filesystem root (usually 0)

a. Unlike most operating systems, Linux allows UIDs other than root to be collapsed. Look up the 
all_squash option for more details.

  



ptg

nfsd: serve files 705

N
FS

occasional problems when a requested file is renamed while the client has the file 
open. If you anticipate many such situations, consider setting no_subtree_check.

The secure_locks option requires authorization and authentication in order for 
files to be locked. Some NFS clients don’t send credentials with lock requests and 
do not work with secure_locks. In this case, you would only be able to lock 
world-readable files. Replacing these clients with ones that support credentials 
correctly is the best solution. However, you can specify the insecure_locks option 
as a stopgap.

Linux’s mountd can be run out of inetd rather than run continuously. This con-
figuration allows supplemental access control to be performed by the TCP wrap-
per program, tcpd. See page 917 for more information.

nfsd: serve files

Once a client’s mount request has been validated by mountd, the client can re-
quest various filesystem operations. These requests are handled on the server side 
by nfsd, the NFS operations daemon.5 nfsd need not be run on an NFS client 
machine unless the client exports filesystems of its own.

nfsd takes a numeric argument that specifies how many server threads to fork. 
Selecting the appropriate number of nfsds is important and is unfortunately 
something of a black art. If the number is too low or too high, NFS performance 
can suffer.

The optimal number of nfsd threads depends on the operating system and the 
hardware in use. If you notice that ps usually shows the nfsds in state D (uninter-
ruptible sleep) and that some idle CPU is available, consider increasing the num-
ber of threads. If you find the load average (as reported by uptime) rising as you 
add nfsds, you’ve gone too far; back off a bit from that threshold. You should also 
run nfsstat regularly to check for performance problems that might be associated 
with the number of nfsd threads. See page 710 for more details on nfsstat.

On a loaded NFS version 2 or 3 server with a lot of UDP clients, UDP sockets can 
overflow if requests arrive while all nfsd threads are already in use. You can mon-
itor the number of overflows with netstat -s. Add more nfsds until UDP socket 
overflows drop to zero. Overflows indicate a severe undersupply of server dae-
mons, so you should probably add a few more than this metric would indicate.

The number of nfsd threads is configured in a system-wide NFS configuration 
file. The location of the file and the available settings differ widely. Table 18.8 on 
the next page shows the settings for our example systems. After making any 
changes to the nfsd configuration file, be sure to restart the services using the 
scripts in Table 18.1.

5. In reality, nfsd simply makes a nonreturning system call to NFS server code embedded in the kernel.

  



ptg

706 Chapter 18 The Network File System

18.4 CLIENT-SIDE NFS

NFS filesystems are mounted in much the same way as local disk filesystems. The
mount command understands the notation hostname:directory to mean the path 
directory on the host hostname. As with local filesystems, mount maps the remote 
directory on the remote host into a directory within the local file tree. After the 
mount completes, you access an NFS-mounted filesystem just like a local filesys-
tem. The mount command and its associated NFS extensions represent the most 
significant concerns to the system administrator of an NFS client.

Before an NFS file system can be mounted, it must be properly exported (see 
Server-side NFS on page 698). To verify that a server has properly exported its 
filesystems from the client’s perspective, use the client’s showmount command:

$ showmount -e monk
Export list for monk: 
/home/ben harp.atrust.com

This example reports that the directory /home/ben on the server monk has been 
exported to the client system harp.atrust.com. If an NFS mount is not working, 
first verify that the filesystems have been properly exported on the server with 
exportfs. (You might have just forgotten to run exportfs -a after updating the 
exports file.) Next, check the showmount output.

See page 917 for more 
information about 
hosts.* files and 
TCP wrappers.

If the directory is properly exported on the server but showmount returns an 
error or an empty list, you might double-check that all the necessary processes are 
running on the server (portmap, mountd, nfsd, statd, and lockd), that the 
hosts.allow and hosts.deny files allow access to those daemons, and that you are 
on the right client system.

The path information displayed by showmount, such as /home/ben above, is 
only valid for NFS version 2 and 3 servers. NFS version 4 servers export a single 
unified pseudo-filesystem. The traditional NFS concept of separate mount points 
doesn’t jive with version 4’s model, so showmount isn’t applicable.

Unfortunately, there is no good replacement for showmount in NFSv4. On the 
server, the command exportfs -v shows the existing exports, but of course this 
only works locally. If you don’t have direct access to the server, mount the root of 

Table 18.8 How to specify the number of nfsd daemons

System Config file (in /etc) Option to set Default

Ubuntu default/nfs-kernel-server RPCNFSDCOUNT 8 
SUSE sysconfig/nfs USE_KERNEL_NFSD_NUMBER 4 
Red Hat sysconfig/nfs RPCNFSDCOUNT 8 
Solaris default/nfs NFSD_SERVERS 16
HP-UX default/nfs NFSD_SERVERS 16
AIX Use SMIT or chnfs to change the number of nfsd daemons.

  



ptg

Client-side NFS 707

N
FS

the server’s pseudo-filesystem and traverse the directory structure manually, not-
ing each mount point. 

To actually mount the filesystem in versions 2 and 3, you would use a command 
such as

$ sudo mount -o rw,hard,intr,bg monk:/home/ben /nfs/ben

To accomplish the same using version 4 on a Linux system, type
$ sudo mount -t nfs4 -o rw,hard,intr,bg monk:/ /nfs/ben

In this case, the options after -o specify that the filesystem should be mounted 
read-write (rw), that operations should be interruptible (intr), and that retries 
should be done in the background (bg). Table 18.9 introduces the most common 
mount options.

Filesystems mounted hard (the default) cause processes to hang when their serv-
ers go down. This behavior is particularly bothersome when the processes in 
question are standard daemons, so we do not recommend serving critical system 
binaries over NFS. In general, the use of the soft and intr options reduces the 
number of NFS-related headaches. However, these options can have their own 

Table 18.9 NFS mount flags and options

Flag Description

rw Mounts the filesystem read-write (must be exported that way)
ro Mounts the filesystem read-only
bg If the mount fails (server doesn’t respond), keeps trying it in the 

background and continues with other mount requests
hard If a server goes down, causes operations that try to access it to 

block until the server comes back up
soft If a server goes down, causes operations that try to access it to 

fail and return an error, thereby avoiding processes “hanging” on 
inessential mounts

intr Allows users to interrupt blocked operations (and return an error) 
nointr Does not allow user interrupts 
retrans=n Specifies the number of times to repeat a request before return-

ing an error on a soft-mounted filesystem
timeo=n Sets the timeout period (in 10ths of a second) for requests 
rsize=n Sets the read buffer size to n bytes 
wsize=n Sets the write buffer size to n bytes 
sec=flavor Specifies the security flavor 
vers=na Sets the NFS protocol version 
proto=proto Selects a transport protocol; must be tcp for NFS version 4

a. Although the vers flag is listed in the mount man pages on Linux systems, using it results in an 
error. To request a version 4 mount, use mount -t nfs4 instead.

  



ptg

708 Chapter 18 The Network File System

undesirable side effects, such as aborting a 20-hour simulation after it has run for 
18 hours just because of a transient network glitch.6 Automount solutions such as 
autofs, discussed later, also provide some remedies for mounting ailments.

The read and write buffer sizes apply to both UDP and TCP mounts, but the opti-
mal values differ. Because you can trust TCP to transfer data efficiently, the values 
should be higher; 32KiB is a good value. For UDP, 8KiB is a good value when 
server and client are on the same network. The default is 1KiB, but even the man 
page recommends increasing it to 8KiB for better performance.

You can test an NFS mount with df just as you would test a local filesystem:
$ df /nfs/ben
Filesystem 1k-blocks Used Available Use% Mounted on 
leopard:/home/ben 17212156 1694128 14643692 11% /nfs/ben

umount works on NFS filesystems just like it does on local filesystems. If the NFS 
filesystem is in use when you try to unmount it, you will get an error such as

umount: /nfs/ben: device is busy

Use lsof to find processes with open files on the filesystem. Kill them, or in the 
case of shells, change directories. If all else fails or your server is down, try run-
ning umount -f to force the filesystem to be unmounted.

The footnote to Table 18.9 is worth repeating: the Linux mount command de-
faults to a filesystem type of nfs when it recognizes the hostname:directory syntax 
on the command line. The nfs type is only valid for protocol versions 2 and 3. Use 
mount -t nfs4 hostname:directory when requesting a version 4 mount.

Mounting remote filesystems at boot time

See page 711 for 
more information 
about autofs.

You can use the mount command to establish temporary network mounts, but 
you should list mounts that are part of a system’s permanent configuration in 
/etc/fstab (/etc/vfstab in Solaris) so that they are mounted automatically at boot 
time. Alternatively, mounts can be handled by an automatic mounting service 
such as autofs.

The following fstab entries mount the filesystems /home and /usr/local from the 
hosts monk and ross:

# filesystem mountpoint fstype flags dump fsck 
monk:/home /nfs/home nfs rw,bg,intr,hard,nodev,nosuid 0 0
ross:/usr/local /usr/local nfs4 ro,bg,intr,soft,nodev,nosuid 0 0

The Solaris /etc/vfstab file is slightly different in format, but options are listed 
similarly. The NFS options are largely the same as those on other systems.

6. Jeff Forys, one of our technical reviewers, remarked, “Most mounts should use hard, intr, and bg, 
because these options best preserve NFS’s original design goals. soft is an abomination, an ugly 
Satanic hack! If the user wants to interrupt, cool. Otherwise, wait for the server and all will eventually 
be well again with no data lost.”

  



ptg

Identity mapping for NFS version 4 709

N
FS

Use SMIT to configure boot-time NFS mounts on AIX systems. Do not modify 
the /etc/filesystems file by hand since it can be overwritten during volume group 
imports or exports.

See page 260 for more 
information about the 
fstab file.

When you add entries to fstab/vfstab, be sure to create the appropriate mount 
point directories with mkdir. You can make your changes take effect immediately 
(without rebooting) by running mount -a -F nfs on Solaris or HP-UX; use -t in-
stead of -F on Linux, and for version 4 use mount -a -t nfs4. On AIX, you can 
mount NFS filesystems with mount -v nfs -a. 

The flags field of /etc/fstab specifies options for NFS mounts; these options are 
the same ones you would specify on the mount command line.

Restricting exports to privileged ports

NFS clients are free to use any TCP or UDP source port they like when connect-
ing to an NFS server. However, some servers may insist that requests come from a 
privileged port (a port numbered lower than 1,024). Others allow this behavior to 
be set as an option. In the world of PCs and desktop Linux boxes, the use of privi-
leged ports provides little actual security.

Most NFS clients adopt the traditional (and still recommended) approach of de-
faulting to a privileged port to avert the potential for conflict. Under Linux, you 
can accept mounts from unprivileged ports with the insecure export option.

18.5 IDENTITY MAPPING FOR NFS VERSION 4

Unlike earlier versions of NFS, which identify users with raw UID and GID val-
ues, version 4 uses strings of the form user@nfs-domain and group@nfs-domain. 
On both NFS servers and clients, an identity mapping daemon translates between 
the string identifiers and the local UNIX UID and GID values. Mapped values are 
used to translate file attribute information, but they are not used for access con-
trol, which is handled separately.

All systems participating in an NFSv4 network should have the same NFS do-
main. In most cases, it’s reasonable to use your DNS domain as the NFS domain. 
For example, atrust.com is a straightforward choice of NFS domain for the server 
harp.atrust.com. Clients in subdomains (e.g., booklab.atrust.com) may or may 
not want to use the shorter site-wide name (e.g., atrust.com) to facilitate NFS 
communication.

Unfortunately for administrators, there is no standard implementation of NFSv4 
UID mapping, so the details of administration differ slightly among systems. Ta-
ble 18.10 on the next page names the mapping daemon on each of our example 
systems and notes the location of its configuration file.

Other than having their NFS domains set, identity mapping services require little 
assistance from administrators. The daemons are started at boot time from the 
same scripts that manage NFS. After making configuration changes, you’ll need 

  



ptg

710 Chapter 18 The Network File System

to restart the daemon. Options such as verbose logging and alternate manage-
ment of the nobody account are usually available; see the man page for the spe-
cific daemon.

18.6 NFSSTAT: DUMP NFS STATISTICS

nfsstat displays various statistics maintained by the NFS system. nfsstat -s shows 
server-side statistics, and nfsstat -c shows information for client-side operations. 
By default, nfsstat shows statistics for all protocol versions. For example:

$ nfsstat -c 

Client rpc: 
calls badcalls retrans badxid timeout wait newcred timers 
64235 1595 0 3 1592 0 0 886

Client nfs: 
calls badcalls nclget nclsleep
62613 3 62643 0
null getattr setattr readlink lookup root read
0% 34% 0% 21% 30% 0% 2%
write wrcache create remove rename link symlink
3% 0% 0% 0% 0% 0% 0%
mkdir readdir rmdir fsstat
0% 6% 0% 0%

This example is from a relatively healthy NFS client. If more than 3% of RPC calls 
time out, it’s likely that there is a problem with your NFS server or network. You 
can usually discover the cause by checking the badxid field. If badxid is near 0 
with timeouts greater than 3%, packets to and from the server are getting lost on 
the network. You may be able to solve this problem by lowering the rsize and 
wsize mount parameters (read and write block sizes).

If badxid is nearly as high as timeout, then the server is responding, but too 
slowly. Either replace the server or increase the timeo mount parameter.

Running nfsstat and netstat occasionally and becoming familiar with their out-
put will help you discover NFS problems before your users do.

Table 18.10 Identity mapping daemons and configurations

System Daemon Configuration

Linux /usr/sbin/rpc.idmapd /etc/idmapd.conf

Solaris /usr/lib/nfs/nfsmapid /etc/default/nfsa

HP-UX /usr/sbin/nfsmapid /etc/default/nfsa

AIX /usr/sbin/nfsrgyd chnfsdom domain

a. The domain is set in the NFSMAPID_DOMAIN parameter.

  



ptg

Automatic mounting 711

N
FS

18.7 DEDICATED NFS FILE SERVERS

Fast, reliable file service is an essential element of a production computing envi-
ronment. Although you can certainly roll your own file servers from workstations 
and off-the-shelf hard disks, doing so is often not the best-performing or easiest-
to-administer solution (though it is usually the cheapest). 

Dedicated NFS file servers have been around for many years. They offer a host of 
potential advantages over the homebrew approach: 

• They are optimized for file service and typically provide the best possible 
NFS performance. 

• As storage requirements grow, they can scale smoothly to support tera-
bytes of storage and hundreds of users.

• They are more reliable than stand-alone boxes thanks to their simplified 
software, redundant hardware, and use of disk mirroring.

• They usually provide file service for both UNIX and Windows clients. 
Most even contain integrated web, FTP, and SFTP servers.

• They are often easier to administer than UNIX file servers.

• They often include backup and checkpoint facilities that are superior to 
those found on vanilla UNIX systems.

Some of our favorite dedicated NFS servers are made by Network Appliance, Inc. 
(netapp.com). Their products run the gamut from very small to very large, and 
their pricing is OK. EMC is another player in the high-end server market. They 
make good products, but be prepared for sticker shock and build up your toler-
ance for marketing buzzwords. LeftHand Networks, owned by HP, is another 
player that has gained traction in recent years with lower-cost, high-performing, 
entry-level storage products.

Storage area network (SAN) systems are another option for high-performance 
storage management over a network. They differ from dedicated file servers in 
that they have no understanding of filesystems; they simply serve disk blocks. A 
SAN is therefore unencumbered by the overhead of an operating system and af-
fords fast read/write access, but it’s unable to manage concurrent access by multi-
ple clients without the help of a clustered filesystem. See page 274 for more infor-
mation about SANs.

18.8 AUTOMATIC MOUNTING

Mounting filesystems at boot time by listing them in /etc/fstab or /etc/vfstab can 
cause several kinds of administrative headaches on large networks.

First, maintaining the fstab file on hundreds of machines can be tedious, even 
with help from scripts and configuration management systems. Each host may 
have slightly different needs and so require individual attention. 

  



ptg

712 Chapter 18 The Network File System

Second, if filesystems are mounted from many different hosts, clients become de-
pendent on many different servers. Chaos ensues when one of those servers 
crashes. Every command that accesses the mount points will hang. 

Third, when an important server crashes, it may cripple users by making impor-
tant filesystems like /usr/share unavailable. In this situation, it’s best if a copy of 
the partition can be mounted temporarily from a backup server. However, NFS 
has no built-in provision for backup servers.

You can moderate all these problems by using an automount daemon to mount 
filesystems when they are referenced and to unmount them when they are no 
longer being used. An automounter limits the number of active mount points and 
is largely transparent to users. Most automounters also accept a list of “replicated” 
(identical) filesystems so that the network can continue to function when a pri-
mary server becomes unavailable.

To implement this behind-the-scenes mounting and unmounting, the auto-
mounter mounts a virtual filesystem driver on the directories you’ve designated as 
locations for automatic mounting to occur. In the past, the automounter did this 
by posing as an NFS server, but this scheme suffers from some significant limita-
tions and is rarely found on contemporary systems. These days, a kernel-resident 
filesystem driver called autofs is used. 

Instead of mirroring an actual filesystem, the automounter “makes up” a virtual 
filesystem hierarchy according to the specifications given in its configuration file. 
When a user references a directory within the automounter’s virtual filesystem, 
the automounter intercepts the reference and mounts the actual filesystem the 
user is trying to reach. On systems that support autofs, the NFS filesystem is 
mounted beneath the autofs filesystem in normal UNIX fashion. Other systems 
may require mounting to occur in a separate directory that is then pointed to by 
symbolic links.

The idea of an automounter originally comes from Sun, now part of Oracle. Sun’s 
implementation, automount, is shipped with most Sun-derived NFS clients. Li-
nux distributions supply a version that functionally mimics that of Sun, though it 
is an independent implementation. Similarly, AIX provides its own independent 
automount daemon that IBM calls “an administration tool for AutoFS.”

The various automount implementations understand three different kinds of 
configuration files (referred to as “maps”): direct maps, indirect maps, and master 
maps.7 Direct and indirect maps provide information about the filesystems to be 
automounted. A master map lists the direct and indirect maps that automount
should pay attention to. Only one master map can be active at once; the default 
master map is kept in /etc/auto_master (/etc/auto.master under Linux).

On most systems, automount is a stand-alone command that reads its configura-
tion files, sets up any necessary autofs mounts, and exits. Actual references to 

7. A direct map can also be managed as an NIS database or in an LDAP directory, but this is tricky.

  



ptg

Direct maps 713

N
FS

automounted filesystems are handled (through autofs) by a separate daemon pro-
cess, automountd. The daemon does its work silently and does not need addi-
tional configuration. 

On Linux systems, the daemon is called automount and the setup function is 
performed by the /etc/init.d/autofs startup script. Linux details are given in the 
section Specifics for Linux on page 717. In the following discussion, we refer to the 
setup command as automount and the daemon as automountd.

If you change the master map or one of the direct maps that it references, you 
must rerun automount to pick up the changes. With the -v option, automount
will show you the adjustments it’s making to its configuration.

automount also accepts a -t argument that tells how long (in seconds) an auto-
mounted filesystem may remain unused before being unmounted. The default is 
usually 10 minutes. Since an NFS mount whose server has crashed can cause pro-
grams that touch it to hang, it’s good hygiene to clean up automounts that are no 
longer in use; don’t raise the timeout too much.8

Indirect maps

Indirect maps automount several filesystems underneath a common directory. 
However, the path of the directory is specified in the master file, not in the map 
itself. For example, an indirect map for filesystems mounted under /chimchim
might look like this:

users harp:/harp/users 
devel -soft harp:/harp/devel 
info -ro harp:/harp/info

The first column names the subdirectory in which each automount should be in-
stalled, and subsequent items list the mount options and the NFS path of the file-
system. This example (perhaps stored in /etc/auto.harp) tells automount that it 
can mount the directories /harp/users, /harp/devel, and /harp/info from the 
server harp, with info being mounted read-only and devel being mounted soft.

In this configuration the paths on chimchim and the local host are the same. 
However, this correspondence is not required.

Direct maps

Direct maps list filesystems that do not share a common prefix, such as /usr/src
and /cs/tools. A direct map (e.g., /etc/auto.direct) that described both of these 
filesystems to automount might look something like this:

/usr/src harp:/usr/src 
/cs/tools -ro monk:/cs/tools

8. The other side of this issue is the fact that it takes a certain amount of time to mount a filesystem. Sys-
tem response will be faster and smoother if filesystems aren’t being continually remounted.

  



ptg

714 Chapter 18 The Network File System

Because they do not share a common parent directory, these automounts must 
each be implemented with a separate autofs mount. This configuration requires 
more overhead, but it has the added advantage that the mount point and directory 
structure are always accessible to commands such as ls. Using ls on a directory full 
of indirect mounts can be confusing to users because automount doesn’t show 
the subdirectories until their contents have been accessed (ls doesn’t look inside 
the automounted directories, so it does not cause them to be mounted).

Master maps

A master map lists the direct and indirect maps that automount should pay atten-
tion to. For each indirect map, it also specifies the root directory used by the 
mounts defined in the map. 

A master map that made use of the direct and indirect maps shown in the previ-
ous examples would look something like this:

# Directory Map 
/harp /etc/auto.harp -proto=tcp
/- /etc/auto.direct

The first column is a local directory name for an indirect map or the special token 
/- for a direct map. The second column identifies the file in which the map is 
stored. You can have several maps of each type. When you specify mount options 
at the end of a line, they set the defaults for all mounts within the map. Linux 
administrators should always specify the -fstype=nfs4 mount flag for NFS ver-
sion 4 servers. 

On most systems, the default options set on a master map entry do not blend with 
the options specified in the direct or indirect map to which it points. If a map 
entry has its own list of options, the defaults are ignored. Linux merges the two 
sets, however. If the same option is specified in both places, the map entry’s value 
overrides the default.

The master map can usually be replaced or augmented by a version shared 
through NIS. See your documentation for details.

Executable maps

If a map file is executable, it’s assumed to be a script or program that dynamically 
generates automounting information. Instead of reading the map as a text file, the 
automounter executes it with an argument (the “key”) that indicates which subdi-
rectory a user has attempted to access. The script is responsible for printing an 
appropriate map entry; if the specified key is not valid, the script can simply exit 
without printing anything.

This powerful feature makes up for many of the deficiencies in automounter’s 
rather strange configuration system. In effect, it allows you to easily define a site-
wide automount configuration file in a format of your own choice. You can write 
a simple script to decode the global configuration on each machine. Some systems 

  



ptg

Replicated filesystems and automount 715

N
FS

come with a handy /etc/auto.net executable map that takes a hostname as a key 
and mounts all exported file systems on that host.

Since automount scripts run dynamically as needed, it’s unnecessary to distribute 
the master configuration file after every change or to convert it preemptively to 
the automounter format; in fact, the global configuration file can have a perma-
nent home on an NFS server. 

Automount visibility

When you list the contents of an automounted filesystem’s parent directory, the 
directory appears empty no matter how many filesystems have been automounted 
there. You cannot browse the automounts in a GUI filesystem browser.

An example:
$ ls /portal 
$ ls /portal/photos 
art_class_2010 florissant_1003 rmnp03
blizzard2008 frozen_dead_guy_Oct2009 rmnp_030806 
boston021130 greenville.021129 steamboat2006

The photos filesystem is alive and well and is automounted under /portal. It’s 
accessible through its full pathname. However, a review of the /portal directory 
does not reveal its existence. If you had mounted this filesystem through the fstab
file or a manual mount command, it would behave like any other directory and 
would be visible as a member of the parent directory.

One way around the browsing problem is to create a shadow directory that con-
tains symbolic links to automount points. For example, if /automounts/photos is 
a link to /portal/photos, you can ls the contents of /automounts to discover that 
photos is an automounted directory. References to /automounts/photos are still 
routed through the automounter and work correctly.

Unfortunately, these symbolic links require maintenance and can go out of sync 
with the actual automounts unless they are periodically reconstructed by a script.

Replicated filesystems and automount

In some cases, a read-only filesystem such as /usr/share may be identical on sev-
eral different servers. In this case, you can tell automount about several potential 
sources for the filesystem. It will choose a server based on its own idea of which 
servers are closest given network numbers, NFS protocol versions, and response 
times to an initial query.

Although automount itself does not see or care how the filesystems it mounts are 
used, replicated mounts should represent read-only filesystems such as /usr/share
or /usr/local/X11. There’s no way for automount to synchronize writes across a 
set of servers, so replicated read-write filesystems are of little practical use.

  



ptg

716 Chapter 18 The Network File System

Under Solaris and HP-UX, automount can smoothly switch from one server of a 
replicated mount to another when problems occur. This feature is only supposed 
to work properly for read-only mounts, but rumor has it that read-write mounts 
are handled more reasonably than the documentation would suggest. References 
to files that have been opened for writing will still hang when automount changes 
servers, however, which is yet another reason why replicated read-write mounts 
may not be so useful.

Although automount can select among replicated servers according to its own 
criteria for efficiency and locality, you can also assign explicit priorities if you like. 
The priorities are small integers, with larger numbers indicating lower priority. 
The default priority is 0, most eligible.

An auto.direct file that defines /usr/man and /cs/tools as replicated filesystems 
might look like this:

/usr/man -ro harp:/usr/share/man monk(1):/usr/man 
/cs/tools -ro leopard,monk:/cs/tools

Note that server names can be listed together if the source path on each is the 
same. The (1) after monk in the first line sets that server’s priority with respect to 
/usr/man. The lack of a priority after harp indicates an implicit priority 0.

Automatic automounts (V3; all but Linux)

Instead of listing every possible mount in a direct or indirect map, you can tell 
automount a little about your filesystem naming conventions and let it figure 
things out for itself. The key piece of glue that makes this work is that the mountd
running on a remote server can be queried to find out what filesystems the server 
exports. In NFS version 4, the export is always /, which eliminates the need for 
this automation.

There are several ways to configure “automatic automounts,” the simplest of 
which is the -hosts mount type. If you list -hosts as a map name in your master 
map file, automount then maps remote hosts’ exports into the specified auto-
mount directory:

/net -hosts -nosuid,soft

For example, if harp exported /usr/share/man, that directory could then be 
reached through the automounter at the path /net/harp/usr/share/man.

The implementation of -hosts does not enumerate all possible hosts from which 
filesystems can be mounted; that would be impossible. Instead, it waits for indi-
vidual subdirectory names to be referenced, then runs off and mounts the ex-
ported filesystems from the requested host. 

A similar but finer-grained effect can be achieved with the * and & wild cards in 
an indirect map file. Also, a number of macros available for use in maps expand to 

  



ptg

Recommended reading 717

N
FS

the current hostname, architecture type, and so on. See the automount(1M) man 
page for details.

Specifics for Linux

The Linux implementation of automount has diverged a bit from that of Sun. The 
changes mostly have to do with the naming of commands and files.

First, automount is the daemon that actually mounts and unmounts remote file-
systems. It fills the same niche as the automountd daemon on other systems and 
generally does not need to be run by hand.

The default master map file is /etc/auto.master. Its format and the format of indi-
rect maps are as described previously. The documentation can be hard to find, 
however. The master map format is described in auto.master(5) and the indirect 
map format in autofs(5); be careful, or you’ll get autofs(8), which documents the 
syntax of the autofs command. (As one of the man pages says, “The documenta-
tion leaves a lot to be desired.”) To cause changes to the master map to take effect, 
run /etc/init.d/autofs reload, which is equivalent to automount in Sun-land. 

The Linux implementation does not support the Solaris-style -hosts clause for 
automatic automounts.

18.9 RECOMMENDED READING

CALLAGHAN, BRENT. NFS Illustrated. Reading, MA: Addison-Wesley, 1999.

STERN, HAL, MIKE EISLER, AND RICARDO LABIAGA. Managing NFS and NIS (2nd 
Edition). Sebastopol, CA: O’Reilly Media, 2001.

Table 18.11 lists the various RFCs for the NFS protocol.

Table 18.11 NFS-related RFCs

RFC Title Author Date

1094 Network File System Protocol Specification Sun Microsystems Mar 1989 
1813 NFS Version 3 Protocol Specification B. Callaghan et al. Jun 1995 
2623 NFS Version 2 and Version 3 Security Issues M. Eisler Jun 1999 
2624 NFS Version 4 Design Considerations S. Shepler Jun 1999
3530 NFS Version 4 Protocol S. Shepler et al. April 2003

  



ptg

718 Chapter 18 The Network File System

18.10 EXERCISES

E18.1 Explore your local NFS setup. Is NFS used, or is a different solution in 
place? Is automounting used? What tradeoffs have been made?

E18.2 In NFS versions 2 and 3, what is the relationship between mountd, 
nfsd, and portmap? What does the NFS dependency on portmap
mean in terms of security? 

E18.3 What are some of the conceptual changes between NFS versions 3 and 
4? How does the issue of stateful versus stateless change other attri-
butes of the protocol?

E18.4 Your employer needs you to export /usr and /usr/local through NFS. 
You have been given the following information and requests:

a) Because of office politics, you want only your department (local 
subnet 192.168.123.0/24) to be able to use these exported filesys-
tems. What lines must be added to which files to implement this 
configuration? Pay attention to the proper export options.

b) List the steps needed to make mountd and nfsd recognize these 
new shared filesystems. How could you verify that the directories 
were being shared without mounting them?

c) Outline a strategy that would make all machines on your local sub-
net automatically mount the exported directories on the mount 
points /mnt/usr and /mnt/usr/local.

  



ptg

719

Sy
st

em
 F

ile
s

19 Sharing System Files

We’re all familiar with the concept of sharing data among computers, whether 
that’s accomplished through email attachments, transfer protocols such as HTTP 
and FTP, or file-sharing services like those provided by NFS and CIFS. These 
mechanisms are designed primarily as a way for users to share files and applica-
tion data. However, UNIX and Linux systems can benefit from another type of 
sharing: the distribution of administrative configuration data. This kind of shar-
ing centralizes administrative control and promotes consistency among systems.

User logins and passwords are a real-world example of the need for this kind of 
sharing. You rarely want to add a user to a single machine; in most cases, you want 
to define that user on an entire class or network of machines. In addition, most 
organizations are now faced with the need to support a mix of platforms—some 
UNIX, some Linux, and some Windows—and users are increasingly annoyed 
when they have to remember (and change) a different password on each platform. 
Fortunately, it’s not that hard to synchronize configuration and user information 
across different systems.

Sharing system files isn’t as easy as it sounds. Attempts to develop distributed ad-
ministrative databases for large networks go back several decades and have pro-
duced a number of interesting systems. However, none of the systems in general 

System Files

  



ptg

720 Chapter 19 Sharing System Files

use seem exactly right in their approach. Some are simple but not secure and not 
scalable. Others are functional but unwieldy. All the systems have limitations that 
can prevent you from setting up the network the way you want to, and none of 
them manage all the information you may want to share across your machines.

In this chapter we first discuss some basic techniques for keeping configuration 
files synchronized on a network. Next, we address the Lightweight Directory Ac-
cess Protocol (LDAP), a more sophisticated, platform-independent database sys-
tem that is becoming a de facto standard in both the UNIX and Windows worlds. 
Most sites today are migrating toward LDAP, in large part because of Microsoft’s 
adoption of (most of) the LDAP standard in their Active Directory product and 
the desire to better integrate Linux and Windows environments. Finally, we cover 
NIS, a historically popular database system that lingers on in some environments 
but probably should not be deployed at new sites.

Note that sharing system files is different from system configuration and software 
deployment. These domains have different needs, and in practice, they are ad-
dressed by different solutions. See Chapter 12, Software Installation and Manage-
ment, for details about what goes on behind that particular wall.

19.1 WHAT TO SHARE

Of the many configuration files on a UNIX or Linux system, only a subset can be 
usefully shared among machines. In modern times, the most pressing need for 
sharing relates to the contents of the passwd, hosts, and aliases files; however, 
other configuration files can become shared entities as well. Table 19.1 shows 
some of the most commonly shared files. 

Table 19.1 is far from being a comprehensive list; your exact configuration de-
pends on how similar you want the machines at your site to be. For the most part, 
though, additional configuration files are associated with specific applications 
and are not supported by administrative directory systems such as LDAP; you 
must share the files by copying them.

Table 19.1 System files that are commonly shared

Filename Function 

/etc/passwd User account information database 
/etc/shadow a Holds user account passwords 
/etc/group Defines UNIX groups 
/etc/hosts Maps between hostnames and IP addresses 
/etc/mail/aliases Holds electronic mail aliases 
/etc/sudoers Grants privileges for the sudo command 
/etc/skel/* Holds default configuration files for new home directories

a. Not necessarily sharable among all flavors of UNIX since the encryption can vary; see page 179.

  



ptg

The NFS option 721

Sy
st

em
 F

ile
s

See page 908 for 
more information 
about PAM.

Many of the files in Table 19.1 are intended to be accessed through routines in the 
standard C library. For example, the /etc/passwd file can be searched with the 
getpwuid, getpwnam, and getpwent routines. These routines take care of open-
ing, reading, and parsing the passwd file so that user-level programs don’t have to 
do it themselves. Modern systems can also use pluggable authentication modules 
(PAM), which define a standard programming interface for performing security-
related lookups. PAM allows systems such as Kerberos and LDAP to be easily in-
tegrated into the system. The exact complement of data sources that are consulted 
is set by the system administrator; see Prioritizing sources of administrative infor-
mation on page 739 for details.

19.2 COPYING FILES AROUND

Brute-force file copying is not an elegant solution, but it works on every kind of 
machine and is easy to set up and maintain. It’s a reliable system because it mini-
mizes the interdependencies among machines (although it may also make it easier 
for machines to fall out of sync). File copying also offers the most flexibility in 
terms of what can be distributed, and how. It is often used to keep applications 
and data files, as well as system files, up to date.

Quite a few configuration files are not supported by any of the common database 
services. /etc/ntp.conf, which determines how hosts keep their clocks synchro-
nized, is an example. To keep such files in sync, you really have no choice but to 
use some sort of file-copying system.

The NFS option

Some sites distribute configuration files by publishing them on an NFS server. 
This is perhaps the simplest possible technique from an automation point of 
view—all you need on the client is cp, at least in theory.

See Chapter 18, for 
more information 
about NFS.

NFS used to have security issues that made this approach a bit risky, but in NFSv4, 
those concerns have largely been addressed. For extra security, you can use en-
cryption to protect sensitive files from inspection by prying eyes.

See page 925 for 
more information 
about PGP.

Another step that increases security is to have the publisher sign configuration 
files with a public key cryptography package such as PGP. Clients can then verify 
that the files they are being offered through NFS are authentic and unmodified 
before installing them.

Many software packages let you specify a nonstandard location for configuration 
files. Therefore, it’s theoretically possible to point these packages at configuration 
files that live on an NFS filesystem, thus making no local copies at all. However, 
we strongly advise against this configuration. It makes every system in the world 
dependent on one NFS server, and that server then has to actively serve all those 
clients. Worse yet, many packages don’t expect remote systems to be locking their 
configuration files or creating temporary files in their configuration directories; 
the setup may not even work correctly. More accurately, it may work perfectly 

  



ptg

722 Chapter 19 Sharing System Files

almost all of the time but fail mysteriously and sporadically, leaving no evidence 
of what went wrong. Welcome to hell.

Push systems vs. pull systems

Once you get away from the shared filesystem model, file-copying systems gener-
ally use either a “push” model or a “pull” model. With push, the master server 
periodically distributes the freshest files to each client, whether the client wants 
them or not. Files can be pushed explicitly whenever a change is made, or they can 
simply be distributed on a regular schedule (perhaps with some files being trans-
ferred more often than others).

The push model has the advantage of keeping the distribution system centralized 
on one machine. Files, lists of clients, update scripts, and timetables are stored in 
one place, making the scheme easy to control. One disadvantage is that each client 
must let the master modify its system files, thereby creating a security hazard.

In a pull system, each client is responsible for updating itself from the server. This 
is a less centralized way of distributing files, but it is also more adaptable and more 
secure. When data is shared across administrative boundaries, a pull system is 
especially attractive because the master and client machines need not be run by 
the same administrative group or political faction. 

rdist: push files

The rdist command is the easiest way to distribute files from a central server. It 
has something of the flavor of make: you use a text editor to create a specification 
of the files to be distributed, and then you use rdist to bring reality into line with 
your specification. rdist copies files only when they are out of date, so you can 
write your specification as if all files were to be copied and let rdist optimize out 
unnecessary work. 

rdist preserves the owner, group, mode, and modification time of files. When it 
updates an existing file, rdist first deletes the old version before installing the new. 
This feature makes rdist suitable for transferring executables that might be in use 
during the update.1

rdist historically ran on top of rsh and used rsh’s authentication system to gain 
access to remote systems. However, this system is not secure and is disabled by 
default on modern operating systems. Even though the rdist documentation con-
tinues to talk about rsh, do not be fooled into thinking that rsh security is a rea-
sonable choice.

Current versions of rdist are better in that they allow any command that under-
stands the same syntax to be substituted for rsh. In practice, the substitute is ssh, 
which uses cryptography to verify the identity of hosts and to prevent network 
eavesdroppers from obtaining copies of your data. The downside is that you must 

1. Though the old version disappears from the filesystem namespace, it continues to exist until all refer-
ences have been released. You must also be aware of this effect when managing log files.

  



ptg

rdist: push files 723

Sy
st

em
 F

ile
s

run remote ssh servers in a mode that does not require a password (but authenti-
cates the client with a cryptographic key pair). This is a less secure configuration 
than we would normally recommend, but it is still a huge improvement over rsh. 
See page 926 for more information about sshd and its authentication modes.

Now that we’ve belabored the perils of rdist, let’s look at how it actually works. 
Like make, rdist looks for a control file (Distfile or distfile) in the current direc-
tory. rdist -f distfile explicitly specifies the control file’s pathname. Within the con-
trol file, tabs, spaces, and newlines are used interchangeably as separators. Com-
ments are introduced with a pound sign (#).

The meat of a Distfile consists of statements of the form
label: pathnames -> destinations commands

The label field associates a name with the statement. From the shell, you can run 
rdist label to distribute only the files described in a particular statement.

The pathnames and destinations are lists of files to be copied and hosts to copy 
them to, respectively. If a list contains more than one entry, the list must be sur-
rounded with parentheses and the elements separated by whitespace. The path-
names can include shell-style globbing characters (e.g., /usr/man/man[123] or 
/usr/lib/*). The notation ~user is also acceptable, but it is evaluated separately on 
the source and destination machines.

By default, rdist copies the files and directories listed in pathnames to the equiva-
lent paths on each destination machine. You can modify this behavior by supply-
ing a sequence of commands and terminating each with a semicolon.

The following commands are understood:
install options [destdir]; 
notify namelist; 
except pathlist; 
except_pat patternlist; 
special [pathlist] string; 
cmdspecial [pathlist] string;

The install command sets options that affect the way rdist copies files. Options 
typically control the treatment of symbolic links, the correctness (vs. efficiency) of 
rdist’s difference-checking algorithm, and the way that deletions are handled. The 
options, which must be preceded by -o, consist of a comma-separated list of op-
tion names. For example, the line

install -oremove,follow;

makes rdist follow symbolic links (instead of just copying them as links) and re-
moves existing files on the destination machine that have no counterpart on the 
source machine. See the rdist man page for a complete list of options. The defaults 
are almost always what you want.

  



ptg

724 Chapter 19 Sharing System Files

The name “install” is somewhat misleading, since files are copied whether or not 
an install command is present. Options are specified as they would be on the 
rdist command line, but when included in the Distfile, they apply only to the set 
of files handled by that install command. 

The optional destdir specifies an installation directory on the destination hosts. By 
default, rdist uses the original pathnames.

The notify command takes a list of email addresses as its argument. rdist sends 
mail to these addresses whenever a file is updated. Any addresses that do not con-
tain an at sign (@) are suffixed with the name of the destination host. For exam-
ple, rdist would expand “pete” to “pete@anchor” when reporting a list of files up-
dated on host anchor.

See the section starting 
on page 48 for more 
information about reg-
ular expressions.

The except and except_pat commands remove pathnames from the list of files to 
be copied. Arguments to except are matched literally, and those of except_pat are 
interpreted as regular expressions. These exception commands are useful because 
rdist, like make, allows macros to be defined at the beginning of its control file. 
You might want to use a similar list of files for several statements, specifying only 
the additions and deletions for each host.

The special command executes a shell command (the string argument, in quota-
tion marks) on each remote host. If a pathlist is present, rdist executes the com-
mand once after copying each of the specified files. Without a pathlist, rdist exe-
cutes the command after every file. cmdspecial is similar, but it executes the shell 
command once after all copying is complete. (The contents of the pathlist are 
passed to the shell as an environment variable.)

Here’s a simple example of a Distfile:
SYS_FILES = (/etc/passwd /etc/group /etc/mail/aliases) 
GET_ALL = (chimchim lollipop barkadon) 
GET_SOME = (whammo spiff) 

all: ${SYS_FILES} -> ${GET_ALL}
    notify barb;
    special /etc/mail/aliases "/usr/bin/newaliases";

some: ${SYS_FILES} -> ${GET_SOME}
    except /etc/mail/aliases;
    notify eddie@spiff;

See page 760 for 
more information 
about newaliases.

This configuration replicates the three listed system files on chimchim, lollipop, 
and barkadon and sends mail to barb@destination describing any updates or er-
rors that occur. After /etc/mail/aliases is copied, rdist runs newaliases on each 
destination. Only two files are copied to whammo and spiff. newaliases is not 
run, and a report is mailed to eddie@spiff.

To get rdist working among machines, you must also tell sshd on the recipient 
hosts to trust the host from which you are distributing files. To do this, you gener-
ate a plaintext key for the master host and store a copy of the public portion in the 

  



ptg

rsync: transfer files more securely 725

Sy
st

em
 F

ile
s

file ~root/.ssh/authorized_keys on each recipient. It’s probably also wise to re-
strict what this key can do and where it can log in from. See the description of 
“method B” on page 926 for more information. 

rsync: transfer files more securely

rsync is available from 
rsync.samba.org. 

rsync, written by Andrew Tridgell and Paul Mackerras, is similar in spirit to rdist
but with a somewhat different focus. It does not use a file-copying control file in 
the manner of rdist (although the server side does have a configuration file). 
rsync is a bit like a souped-up version of scp that is scrupulous about preserving 
links, modification times, and permissions. It is more network efficient than rdist
because it looks inside individual files and attempts to transmit only the differ-
ences between versions. 

From our perspective, the main advantage of rsync is the fact that receiving ma-
chines can run the remote side as a server process out of xinetd or inetd. The 
server (actually just a different mode of rsync, which must be installed on both 
the master and the clients) is quite configurable: it can restrict remote access to a 
set of given directories and can require the master to prove its identity with a 
password. Since no ssh access is necessary, you can set up rsync to distribute sys-
tem files without making too many security compromises. (However, if you prefer 
to use ssh instead of an inetd-based server process, rsync lets you do that too.) 
What’s more, rsync can also run in pull mode (pulling files down from the rsync
server rather than letting the server push files to the local system), which is even 
more secure (see the section on pulling files, page 727). 

Unfortunately, rsync isn’t nearly as flexible as rdist, and its configuration is less 
sophisticated than rdist’s distfile. You can’t execute arbitrary commands on the 
clients, and you can’t rsync to multiple hosts at once.

As an example, the command
# rsync -gopt --password-file=/etc/rsync.pwd /etc/passwd lollipop::sysfiles

transfers the /etc/passwd file to the machine lollipop. The -gopt options preserve 
the permissions, ownerships, and modification times of the file. The double colon 
in lollipop::sysfiles makes rsync contact the remote rsync directly on port 873 
instead of using ssh. The password stored in /etc/rsync.pwd authenticates the 
connection.2 

This example transfers only one file, but rsync is capable of handling multiple files 
at once. In addition, the --include and --exclude flags let you specify a list of reg-
ular expressions to match against filenames, so you can set up a sophisticated set 

2. Although the password is encrypted for transmission across the network, the transferred files are not. 
If you use ssh as the transport (rsync -gopt -e ssh /etc/passwd /etc/shadow lollipop:/etc – note the 
single colon), the connection will be encrypted, but sshd will have to be configured not to require a 
password. Name your poison!

  



ptg

726 Chapter 19 Sharing System Files

of transfer criteria. If the command line gets too unwieldy, you can read the pat-
terns from separate files with the --include-file and --exclude-file options.

Linux rsync packages usually include a xinetd configuration for rsync. However, 
you must edit /etc/xinetd.d/rsync and change disable = yes to disable = no to 
actually enable the server.

As of this writing, rsync isn’t shipped as part of the Solaris distribution. You can 
download the source code from rsync.samba.org and install it, or google for a pre-
made Solaris binary. You may need to use inetconv to convert the daemon’s star-
tup method to be compatible with Solaris’s new SMF framework.

HP-UX doesn’t include rsync either, but you can get precompiled HP-UX binaries 
in swinstall depot form from 

hpux.connect.org.uk/hppd/hpux/Networking/Admin/rsync-3.0.6

An AIX version of rsync is available from 

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/rsync

As of this writing, an RPM package for AIX 6.1 is still under development. In the 
interim, many people have reported success in using the AIX 5.3 RPM on their 
AIX 6.1 systems.

Once you have enabled rsync, you need to set up a couple of config files to tell the 
rsync server how to behave. The main file is /etc/rsyncd.conf, which contains 
both global configuration parameters and a set of “modules,” each of which is a 
directory tree to export or import. A reasonable configuration for a module that 
you can push to (i.e., that will accept incoming file transfers initiated by the con-
necting client) looks something like this:

# sysfiles is just an arbitrary title for the particular module. 
[sysfiles] 
# This is the path you allow files to be pushed to. It could be just /. 
path = /etc 
# This is the file specifying the user/password pair to authenticate the module 
secrets file = /etc/rsyncd.secrets 
# Can be read only if you are pulling files 
read only = false 
# UID and GID under which the transfer will be done 
uid = root 
gid = root 
# List of hosts that are allowed to connect 
hosts allow = distribution_master_hostname

Many other options can be set, but the defaults are reasonable. This configuration 
limits operations to the /etc directory and allows access only by the listed host. 
From the user’s or client’s point of view, you can rsync files to the server with the 
destination hostname::sysfiles, which maps to the module above. If you want to 
set up rsync in pull mode (pulling files from a central rsync server), the lines 

  



ptg

Pulling files 727

Sy
st

em
 F

ile
s

above will still work, but you may want to tighten things up a bit; for example, by 
setting the transfer mode to read-only.

The last thing you need to do is set up an rsyncd.secrets file. It’s generally kept in 
/etc (although you can put it elsewhere) and contains the passwords that clients 
use to authenticate themselves. For example:

root:password

As a general rule, rsync passwords should be different from system passwords. 
Because the passwords are shown in plaintext, rsyncd.secrets must be readable 
only by root.

Pulling files

You can implement a pulling system in several ways. The most straightforward 
way is to make the files available on a central FTP or web server3 and to have the 
clients automatically download them as needed. In historical times, administra-
tors would roll their own utilities to do this (often scripting ftp with a system such 
as expect), but standard utilities can now do it for you.

One such utility that ships with most systems is the popular wget. It’s a straight-
forward little program that fetches the contents of a URL (either FTP or HTTP). 
For example, to FTP a file with wget, just run 

wget ftp://user:password@hostname/path/to/file

The specified file is deposited in the current directory.

An alternative option for FTP is ncftp, which ships with many systems. It’s really 
just an enhanced FTP client that allows for easy scripting.

You can also use rsync as described in the previous section. If you run an rsync
server on your central distribution host, clients can simply rsync the files down. 
Using this method is perhaps slightly more complex than using FTP, but you then 
have access to all of rsync’s features.

Whatever system you use, be careful not to overload your data server. If a lot of 
machines on the network try to access the server simultaneously (e.g., if everyone 
runs an update out of cron at the same time), you can cause an inadvertent denial 
of service attack. Large sites should keep this problem in mind and allow for stag-
gering or randomization. A simple way to do this is to wrap cron jobs in a Perl 
script such as this:

#!/usr/bin/perl 
sleep rand() * 600; # sleep between 0 and 600 seconds (i.e., 10 minutes) 
system(command_to_copy_files_down);

3. Keep in mind that both HTTP and FTP transport data in plaintext. You should consider HTTPS or 
SFTP, respectively, if the contents of the transferred files are sensitive.

  



ptg

728 Chapter 19 Sharing System Files

19.3 LDAP: THE LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL

UNIX and Linux sites need a good way to distribute their administrative configu-
ration data; however, the problem is really more general than that. What about 
nonadministrative data such as telephone and email directories? What about in-
formation that you want to share with the outside world? What everyone really 
needs is a generalized directory service.

A directory service is just a database, but one that makes a few assumptions. Any 
data set that has characteristics matching the assumptions is a candidate for inclu-
sion in the directory. The basic assumptions are as follows:

• Data objects are relatively small.
• The database will be widely replicated and cached.
• The information is attribute based.
• Data are read often but written infrequently.
• Searching is a common operation.

The current IETF standards-track system designed to fill this role is the Light-
weight Directory Access Protocol (LDAP). The LDAP specifications don’t really 
speak to the database itself, just the way that it’s accessed through a network. But 
because they specify how the data is schematized and how searches are per-
formed, they imply a fairly specific data model as well.

LDAP was originally designed as a gateway protocol that would allow TCP/IP 
clients to talk to an older directory service called X.500, which is now obsolete. 
Over time, it became apparent both that X.500 was going to die out and that 
UNIX really needed a standard directory of some sort. These factors have led to 
LDAP being developed as a full-fledged directory system in its own right (and 
perhaps to its no longer being quite so deserving of the L).4

At this point, LDAP has become quite mainstream, spurred perhaps in part by 
Microsoft’s adoption of LDAP as the basis for its Active Directory service. On the 
UNIX and Linux side, the OpenLDAP package (openldap.org) has become the 
standard implementation. The 389 Directory Server (formerly known as Fedora 
Directory Server and Netscape Directory Server) is also open source and can be 
found at port389.org. It runs on Linux, Solaris, and HP-UX. 

The structure of LDAP data

LDAP data takes the form of property lists, which are known in LDAP world as 
“entries.” Each entry consists of a set of named attributes (such as description or 
uid) along with those attributes’ values. Windows users might recognize this 
structure as being similar to that of the Windows registry. As in the registry, an 
individual attribute can have several values.

4. Because of LDAP’s tortured history, many sources tend to go into great detail about LDAP’s X.500 and 
OSI connections. However, this history is not relevant to contemporary use of LDAP. Ignore it.

  



ptg

The structure of LDAP data 729

Sy
st

em
 F

ile
s

As an example, here’s a typical (but simplified) /etc/passwd line expressed as an 
LDAP entry:

uid: ghopper 
cn: Grace Hopper 
userPassword: {crypt}$1$pZaGA2RL$MPDJoc0afuhHY6yk8HQFp0 
loginShell: /bin/bash 
uidNumber: 1202 
gidNumber: 1202 
homeDirectory: /home/ghopper

This notation is a simple example of LDIF, the LDAP Data Interchange Format, 
which is used by most LDAP-related tools and server implementations. The fact 
that LDAP data can be easily converted back and forth from plain text is part of 
the reason for its success.

Entries are organized into a hierarchy through the use of “distinguished names” 
(attribute name: dn) that form a sort of search path. For example, the dn for the 
user above might be

dn: uid=ghopper,ou=People,dc=navy,dc=mil

As in DNS, the “most significant bit” goes on the right. Here, the DNS name 
navy.mil has been used to structure the top levels of the LDAP hierarchy. It has 
been broken down into two domain components (dc’s), “navy” and “mil,” but this 
is only one of several common conventions.

Every entry has exactly one distinguished name. Therefore, the entry hierarchy 
looks like a simple branching tree with no loops. There are, however, provisions 
for symbolic links between entries and for referrals to other servers.

LDAP entries are typically schematized through the use of an objectClass attri-
bute. Object classes specify the attributes that an entry can contain, some of which 
may be required for validity. The schema also assigns a data type to each attribute. 
Object classes nest and combine in the traditional object-oriented fashion. The 
top level of the object class tree is the class named top, which specifies merely that 
an entry must have an objectClass attribute.

Table 19.2 shows some common LDAP attributes whose meanings might not be 
immediately apparent.

Table 19.2 Some common attribute names found in LDAP hierarchies

Attribute Stands for What it is

o Organization Often identifies a site’s top-level entrya

ou Organizational unit A logical subdivision, e.g., “marketing” 
cn Common name The most natural name to represent the entry
dc Domain component Used at sites that model their hierarchy on DNS 

objectClass Object class Schema to which this entry’s attributes conform

a. Typically not used by sites that model their LDAP hierarchy on DNS

  



ptg

730 Chapter 19 Sharing System Files

The point of LDAP

Until you’ve had some experience with it, LDAP can be a slippery concept to grab 
hold of. LDAP by itself doesn’t solve any specific administrative problem. There’s 
no “primary task” that LDAP is tailor-made to handle, and sites diverge widely in 
their reasons for deploying LDAP servers. So before we move on to the specifics 
of installing and configuring OpenLDAP, it’s probably worth reviewing some rea-
sons why you might want to investigate LDAP for use at your site.

Here are the big ones:

• LDAP can act as a central repository for information about your users, 
including everything from their phone numbers and home addresses to 
their login names and passwords. 

See page 774 for 
more information 
about using LDAP 
with sendmail.

• In a similar vein, you can use LDAP to distribute configuration informa-
tion for ancillary applications. Most mail systems—including sendmail, 
Exim, and Postfix—can draw a large part of their routing information 
from LDAP, and this is in fact one of LDAP’s most popular applications. 
Tools as varied as the Apache web server and the autofs automounter can 
be configured to pay attention to LDAP, too. It’s likely that LDAP sup-
port will become more and more common over time.

• LDAP makes it easy for applications (even those written by other teams 
and other departments) to authenticate users without having to worry 
about the exact details of account management.

• Changes to LDAP data take effect immediately and are instantly visible 
to all hosts and client applications.

• It’s easy to access LDAP data through command-line tools such as 
ldapsearch. In addition, LDAP is well supported by common scripting 
languages such as Perl and Python (through the use of libraries). Ergo, 
LDAP is a terrific way to distribute configuration information for locally 
written scripts and administrative utilities.

• Excellent web-based tools are available for managing LDAP, some exam-
ples being phpLDAPadmin (phpldapadmin.sourceforge.net) and Direc-
tory Administrator (diradmin.open-it.org). These tools are so easy to 
use that you can just rip the box open and start playing without reading 
the manual.

• LDAP is well supported as a public directory service. Most major email 
clients support the use of LDAP to access user directories. Simple LDAP 
searches are also supported by many web browsers through the use of an 
LDAP URL type.

• Microsoft’s Active Directory architecture is based on LDAP, and the cur-
rent release of Windows Server includes extensions (originally called 
“Services for UNIX,” then “Windows Security and Directory Services for 

  



ptg

OpenLDAP: the traditional open source LDAP server 731

Sy
st

em
 F

ile
s

UNIX,” and now “Windows Server 2008 UNIX Interoperability Compo-
nents”) that facilitate the mapping of UNIX users and groups. See Chap-
ter 30, Cooperating with Windows, for more information about integrat-
ing your UNIX systems with Active Directory-based LDAP.

LDAP documentation and specifications

A good general introduction to LDAP is LDAP for Rocket Scientists, which covers 
LDAP architecture and protocol. Find it on-line at zytrax.com/books/ldap. An-
other good source of information is the LDAP-related RFCs, which are numerous 
and varied. As a group, they tend to convey an impression of great complexity, 
which is somewhat unrepresentative of average use. Table 19.3 list some of the 
high points. 

OpenLDAP: the traditional open source LDAP server

OpenLDAP is an extension of work originally done at the University of Michigan; 
it now continues as an open source project. It’s shipped with most Linux distribu-
tions, though it is not necessarily included in the default installation. You’ll need 
to download and install the software to run it on Solaris, HP-UX, or AIX. The 
documentation is perhaps best described as “brisk.”

In the OpenLDAP distribution, slapd is the standard LDAP server daemon. In an 
environment with multiple OpenLDAP servers, slurpd runs on the master server 
and handles replication by pushing changes out to slave servers. A selection of 
command-line tools enable the querying and modification of LDAP data.

Setup is straightforward. First, create an /etc/openldap/slapd.conf file by copying 
the sample installed with the OpenLDAP server.

Table 19.3 Important LDAP-related RFCs

RFC Title

2307 An Approach for Using LDAP as a Network Information Service 
2820 Access Control Requirements for LDAP 
2849 LDAP Data Interchange Format (LDIF)—Technical Specification 
3112 LDAP Authentication Password Schema 
3672 Subentries in the Lightweight Directory Access Protocol (LDAP) 
4511 LDAP: The Protocol 
4512 LDAP: Directory Information Models 
4513 LDAP: Authentication Methods and Security Mechanisms 
4514 LDAP: String Representation of Distinguished Names 
4515 LDAP: String Representation of Search Filters 
4516 LDAP: Uniform Resource Locator 
4517 LDAP: Syntaxes and Matching Rules 
4519 LDAP: Schema for User Applications

  



ptg

732 Chapter 19 Sharing System Files

These are the lines you need to pay attention to:
database bdb 
suffix "dc=mydomain, dc=com" 
rootdn "cn=admin, dc=mydomain, dc=com" 
rootpw {crypt}abJnggxhB/yWI 
directory /var/lib/ldap

The database format defaults to Berkeley DB, which is fine for data that will live 
within the OpenLDAP system. You can use a variety of other back ends, including 
ad hoc methods such as scripts that create the data on the fly.

suffix is your “LDAP basename.” It’s the root of your portion of the LDAP 
namespace, similar in concept to your DNS domain name. In fact, this example 
illustrates the use of a DNS domain name as an LDAP basename, which is a com-
mon practice.

rootdn is your administrator’s name, and rootpw is the administrator’s UNIX-
format (DES) password. Note that the domain components leading up to the ad-
ministrator’s name must also be specified. You can either copy and paste the pass-
word from /etc/shadow (if you don’t use MD5 passwords) or generate it with a 
simple Perl one-liner

perl -e "print crypt('password','salt');"

where password is the desired password and salt is an arbitrary two-character 
string. Because of the presence of this password, make sure that the permissions 
on your slapd.conf file are 600 and that the file is owned by root.

Edit /etc/openldap/ldap.conf to set the default server and basename for LDAP 
client requests. It’s pretty straightforward—just set the argument of the host entry 
to your server and set the base to the same value as the suffix in slapd.conf. 
(Make sure both lines are uncommented.) 

At this point, you should be able to start up slapd by simply running it with no 
arguments.

389 Directory Server: alternative open source LDAP server

Like OpenLDAP, the 389 Directory Server (port389.org) is an extension of the 
work done at the University of Michigan. However, it spent some years in the 
commercial world (at Netscape) before returning as an open source project.

There are many reasons to consider the 389 Directory Server as an alternative to 
OpenLDAP, but its superior documentation is one clear advantage. The 389 Di-
rectory Server comes with several professional-grade administration and use 
guides, including detailed installation and deployment instructions.

A few other key features of the 389 Directory Server are

• Multimaster replication for fault tolerance and high write performance
• Active Directory user and group synchronization

  



ptg

LDAP instead of /etc/passwd and /etc/group 733

Sy
st

em
 F

ile
s

• A graphical console for all facets of user, group, and server management 
• On-line, zero downtime, LDAP-based update of schema, configuration, 

management and in-tree Access Control Information (ACIs)

As of this writing, the 389 Directory Server appears to have a more active develop-
ment community than OpenLDAP. We generally recommend it over OpenLDAP 
for new installations.

From an administrative standpoint, the structure and operation of the two open 
source servers are strikingly similar. This fact is perhaps not too surprising since 
both packages were built on the same original code base.

LDAP instead of /etc/passwd and /etc/group

Client-side LDAP support is relatively easy to add. Some systems install the neces-
sary nss_ldap package by default, but if not, they usually provide the package as 
an option. This package includes a PAM module that lets you use LDAP with 
pluggable authentication modules in addition to the name service switch. (See 
Chapter 30, Cooperating with Windows, for more information about integrating 
UNIX and Linux systems with Active Directory-based LDAP.)

Client-side LDAP defaults for nss_ldap are set in /etc/ldap.conf, which shares its 
format with /etc/openldap/ldap.conf (described on page 732) but which includes 
additional options specific to the name service and PAM contexts. You must also 
edit the /etc/nsswitch.conf file on each client to add ldap as a source for each type 
of data you want to LDAPify. (The nsswitch.conf changes make the C library pass 
requests to the libnss_ldap library, which then uses the /etc/ldap.conf informa-
tion to figure out how to perform the LDAP queries. See Prioritizing sources of 
administrative information on page 739 for details.)

RFC2307 defines the standard mapping from traditional UNIX data sets, such as 
the passwd and group files, into the LDAP namespace. It’s a useful reference doc-
ument for sysadmins using LDAP in a UNIX environment, at least in theory. In 
practice, the specifications are a lot easier for computers to read than for humans; 
you’re better off looking at examples.

Padl Software offers a free set of Perl scripts that migrate existing flat files or NIS 
maps to LDAP. It’s available from padl.com/OSS/MigrationTools.html, and the 
scripts are straightforward to run. They can be used as filters to generate LDIF, or 
they can be run against a live server to upload the data directly. For example, the 
migrate_group script converts this line from /etc/group

csstaff:x:2033:evi,matthew,trent

to the following LDIF:
dn: cn=csstaff,ou=Group,dc=domainname,dc=com 
cn: csstaff 
objectClass: posixGroup 
objectClass: top

  



ptg

734 Chapter 19 Sharing System Files

userPassword: {crypt}x 
gidNumber: 2033 
memberuid: evi 
memberuid: matthew 
memberuid: trent

(Note the object class and distinguished name specifications, which were omitted 
from the passwd example on page 729.)

Once a database has been imported, you can verify that the transfer worked cor-
rectly by running the slapcat utility, which displays the entire database.

LDAP querying

To administer LDAP, you need to be able to see and manipulate the contents of 
the database. The phpLDAPadmin tool mentioned earlier is one of the nicer free 
tools for this purpose because it gives you an intuitive point-and-click interface. If 
phpLDAPadmin isn’t an option, ldapsearch (distributed with both OpenLDAP 
and 389 Directory Server) is an analogous command-line tool that produces out-
put in LDIF format. ldapsearch is especially useful for calling from scripts and for 
debugging environments in which Active Directory is acting as the LDAP server.

The following example query uses ldapsearch to look up directory information 
for every user whose cn starts with “ned”. (In this case, there’s only one result.) 
The meanings of the various flags are discussed below.

$ ldapsearch -h atlantic.atrust.com -p 389 
-x -D "cn=trent,cn=users,dc=boulder,dc=atrust,dc=com" -W 
-b "CN=users,DC=boulder,DC=atrust,DC=com" "cn=ned*"

Enter LDAP Password: password

# LDAPv3 
# base <CN=users,DC=boulder,DC=atrust,DC=com> with scope sub 
# filter: cn=ned* 
# requesting: ALL 
# 
# ned, Users, boulder.atrust.com 
dn: CN=ned,CN=Users,DC=boulder,DC=atrust,DC=com 
objectClass: top 
objectClass: person 
objectClass: organizationalPerson 
objectClass: user 
cn: ned 
sn: McClain 
telephoneNumber: 303 245 4505 
givenName: Ned 
distinguishedName: CN=ned,CN=Users,DC=boulder,DC=atrust,DC=com 
displayName: Ned McClain 
memberOf: CN=Users,CN=Builtin,DC=boulder,DC=atrust,DC=com

  



ptg

LDAP and security 735

Sy
st

em
 F

ile
s

memberOf: CN=Enterprise Admins,CN=Users,DC=boulder,DC=atrust,DC=com 
name: ned 
sAMAccountName: ned 
userPrincipalName: ned@boulder.atrust.com 
lastLogonTimestamp: 129086952498943974 
mail: ned@atrust.com

ldapsearch’s -h and -p flags specify the host and port of the LDAP server you 
want to query, respectively.

You usually need to authenticate yourself to the LDAP server. In this case, the -x
flag requests simple authentication (as opposed to SASL). The -D flag identifies 
the distinguished name of a user account that has the privileges needed to execute 
the query, and the -W flag makes ldapsearch prompt you for the corresponding 
password.

The -b flag tells ldapsearch where in the LDAP hierarchy to start the search. This 
parameter is known as the baseDN; hence the b. By default, ldapsearch returns all 
matching entries below the baseDN; you can tweak this behavior with the -s flag. 

The last argument is a “filter,” which is a description of what you’re searching for. 
It doesn’t require an option flag. This filter, cn=ned*, returns all LDAP entries that 
have a common name that starts with “ned”. The filter is quoted to protect the star 
from shell globbing.

If you want to extract all entries below a given baseDN, just use objectClass=* as 
the search filter—or leave the filter out, since this is the default.

Any arguments that follow the filter select specific attributes to return. For exam-
ple, if you added mail givenName to the command line above, ldapsearch would 
return only those attributes of matching entries.

LDAP and security

Traditionally, LDAP was used more in the manner of a phone directory than any-
thing else, and for that purpose, sending data without encrypting it was usually 
acceptable. As a result, the “standard” LDAP implementation grants unencrypted 
access through TCP port 389. However, we strongly advise against the use of un-
encrypted LDAP for the transmission of authentication information, even if pass-
words are individually hashed or encrypted.

As an alternative, LDAP-over-SSL (known as LDAPS, usually running on TCP 
port 686) is available in most situations (including the Microsoft world) on both 
the client and server. This access method is preferred because it protects the infor-
mation contained in both the query and the response. Use LDAPS when possible.

A system as complex as LDAP inevitably has the potential to be misconfigured in 
a way that weakens security. Of course, it is likely to contain some plain, old-
fashioned security holes, too. Caveat administrator.

  



ptg

736 Chapter 19 Sharing System Files

19.4 NIS: THE NETWORK INFORMATION SERVICE

NIS, released by Sun in the 1980s, was the first “prime time” administrative data-
base. It was originally called the Sun Yellow Pages, but eventually had to be re-
named for legal reasons. NIS commands still begin with the letters yp, so it’s hard 
to forget the original name. NIS was widely adopted among UNIX vendors and is 
supported by every Linux distribution.

These days, however, NIS is an old grey mare. NIS should not be used for new 
deployments. We say this primarily because of the inevitable need to integrate 
with Windows systems, but also because of NIS’s various security and scalability 
shortcomings.

Nevertheless, we include some brief coverage of NIS in deference to the large 
number of legacy sites where it’s still in use.

The NIS model

The unit of sharing in NIS is the record, not the file. A record usually corresponds 
to one line in a config file. A master server maintains the authoritative copies of 
system files, which are kept in their original locations and formats and are edited 
with a text editor just as before. A server process makes the contents of the files 
available over the network. A server and its clients constitute an NIS “domain.”5

Data files are preprocessed into database files by a hashing library to improve the 
efficiency of lookups. After editing files on the master server, you use make to tell 
NIS to convert them to their hashed format.

Only one key can be associated with each entry, so a system file may have to be 
translated into several NIS “maps.” For example, the /etc/passwd file is translated 
into two different maps called passwd.byname and passwd.byuid. One map is 
used to look up entries by username and the other to look up entries by UID. 
Either map can be used to enumerate the entries in the passwd file. However, 
because hashing libraries do not preserve the order of records, there is no way to 
reconstruct an exact duplicate of the original file.

NIS lets you replicate the network maps on a set of slave servers. Providing more 
than one server helps relieve the load on the master and helps keep clients work-
ing even when some servers become unavailable. Whenever a file is changed on 
the master server, the corresponding NIS map must be pushed out to the slaves so 
that all servers provide the same data. Clients do not distinguish between the 
master server and the slaves.

Understanding how NIS works

NIS’s data files are stored in one directory, usually /var/yp. Hereafter, we refer to 
this as “the NIS directory.” Each NIS map is stored in a hashed database format in 

5. Do not confuse NIS domains with DNS domains. They are completely separate and have nothing to 
do with each other.

  



ptg

Understanding how NIS works 737

Sy
st

em
 F

ile
s

a subdirectory of the NIS directory named for the NIS domain. The exact name 
and number of the map files depends on the hashing library being used. There is 
one map (file) for each key by which a file can be searched. For example, in the 
domain cssuns, the DB files for the /etc/passwd maps might be

/var/yp/cssuns/passwd.byname 
/var/yp/cssuns/passwd.byuid

The makedbm command generates NIS maps from flat files. However, you need 
not invoke this command directly; a Makefile in /var/yp generates all the com-
mon NIS maps. After you modify a system file, cd to /var/yp and run make. The 
make command checks the modification time of each file against the modifica-
tion times of the maps derived from it and runs makedbm for each map that 
needs to be rebuilt. 

On HP-UX systems, a command called ypmake is used instead of make.

The ypxfr command copies maps from the master server to the slave servers. 
ypxfr is a pull command; it must be run on each slave server to make that server 
import the map. Slaves usually execute ypxfr every so often just to verify that they 
have the most recent maps; you can use cron to control how often this is done.

The default implementation of map copying is somewhat inefficient. On most 
systems, a daemon called ypxfrd (or rpc.ypxfrd) can be run on the master server 
to speed responses to ypxfr requests. ypxfrd sidesteps the normal NIS protocol 
and simply hands out copies of the map files. Unfortunately, map files are stored 
with different database formats and byte ordering on different systems, so the use 
of ypxfrd introduces some potential incompatibilities.

yppush is a “push” command that’s used on the master server. It actually does not 
transfer any data but rather instructs each slave to execute a ypxfr. The yppush
command is used by the Makefile in the NIS directory to ensure that newly up-
dated maps are propagated to slaves.

The special map called ypservers does not correspond to any flat file. This map 
contains a list of all the servers of the domain. It’s automatically constructed when 
the domain is set up with ypinit. Its contents are examined when the master 
server needs to distribute maps to slaves.

After initial configuration, the only active components of the NIS system are the 
ypserv and ypbind daemons. ypserv runs only on servers (both master and 
slave); it accepts queries from clients and answers them by looking up informa-
tion in the hashed map files. 

ypbind runs on every machine in the NIS domain, including servers. The C li-
brary contacts the local ypbind daemon when it needs to answer an administra-
tive query (provided that /etc/nsswitch.conf says to do so). ypbind locates a 
ypserv in the appropriate domain and returns its identity to the C library, which 
then contacts the server directly. 

  



ptg

738 Chapter 19 Sharing System Files

Latter-day versions of ypbind periodically check to be sure they are dealing with 
the most responsive server for an NIS domain. This is an improvement over the 
traditional implementation, which fixates on a particular server. 

NIS includes a number of minor commands that examine maps, find out which 
version of a map each server is using, and control the binding between clients and 
servers. A complete list of NIS commands and daemons is given in Table 19.4.

NIS security

NIS is not secure. Broadcast mode is particularly bad; any host on a network can 
claim to serve a particular domain and then feed bogus administrative data to NIS 
clients. On Linux systems, you can mitigate this particular problem by explicitly 
enumerating the permissible NIS servers for each client. 

If you’re at all concerned about the security in your environment, you shouldn’t 
use NIS to serve the passwd or shadow files. Use alternative distributed authenti-
cation mechanisms, such as LDAP, for this purpose.

Many security vulnerabilities have been found in older versions of NIS. Make sure 
you’re running the current version.

Table 19.4 NIS commands and daemons

Program Description 

ypserv Is the NIS server daemon, started at boot time 
ypbind Is the NIS client daemon, started at boot time 
domainname Sets the NIS domain for a machine (runs at boot time) 
ypxfr Downloads current version of a map from master server 
ypxfrd Serves requests from ypxfr (runs on master server) 
yppush Makes slave servers update their versions of a map 
makedbm Builds a hashed map from a flat file 
ypmakea Rebuilds hashed maps from flat files that have changed 
ypinit Configures a host as a master or slave server 
ypset Makes ypbind connect to a particular server b

ypwhich Finds out which server the current host is using 
yppoll Finds out what version of a map a server is using 
ypcat Prints the values contained in an NIS map 
ypmatch Prints map entries for a specified key 
yppasswd Changes a password on the NIS master server 
ypchfn Changes GECOS information on the NIS master server 
ypchsh Changes a login shell on NIS master server 
yppasswdd Is the server for yppasswd, ypchsh, and ypchfn 

ypupdateda Is the server for updating NIS maps (managed by inetd)

a. Not used or supported on all systems
b. Must be specifically enabled with ypbind -ypsetme or ypbind -ypset (dangerous)

  



ptg

Prioritizing sources of administrative information 739

Sy
st

em
 F

ile
s

19.5 PRIORITIZING SOURCES OF ADMINISTRATIVE INFORMATION

Administrative information can be distributed in several ways. Every system un-
derstands flat files and knows how to use DNS to look up hostnames and Internet 
addresses. Since a given piece of information could come from several potential 
sources, there’s also a way for you to specify the sources that are to be checked and 
the order in which the checks are made.

The /etc/nsswitch.conf (/etc/netsvc.conf on AIX) config file allows an explicit 
search path to be specified for each type of configuration information. A typical 
nsswitch.conf file looks something like this:

passwd: files ldap 
hosts: files dns 
group: files 
…

Each line configures one type of information (usually, one flat-file equivalent). 
The common sources are nis, nisplus, files, dns, ldap, and compat; they refer to 
NIS, NIS+,6 vanilla flat files (ignoring tokens such as “+”), DNS, LDAP, and NIS-
ified flat files, respectively. DNS is a valid data source only for host and network 
information. 

Sources are tried from left to right until one of them produces an answer for the 
query. In the example above, the gethostbyname routine would first check the 
/etc/hosts file, and if the host was not listed there, would then check DNS. Que-
ries about UNIX groups, on the other hand, would check only the /etc/group file.

If necessary, you can define the “failure” of a source more specifically by putting 
bracketed expressions after it. For example, the line

hosts:   dns [NOTFOUND=return] files

causes DNS to be used exclusively if it is available; a negative response from the 
name server makes queries return immediately (with a failure code) without 
checking flat files. However, flat files are used if no name server is available. The 
various types of failures are shown in Table 19.5; each can be set to return or 
continue, signifying whether the query should be aborted or forwarded to the 
next source.

6. An ill-starred successor to the original NIS, now discontinued by Sun but still supported by some sys-
tems for historical reasons.

Table 19.5 Failure modes recognized in /etc/nsswitch.conf

Condition Meaning

UNAVAIL The source doesn’t exist or is down.
NOTFOUND The source exists, but couldn’t answer the query. 
TRYAGAIN The source exists but is busy.
SUCCESS The source was able to answer the query.

  



ptg

740 Chapter 19 Sharing System Files

By default, most systems ship with nsswitch.conf files that are reasonable for a 
stand-alone machine. All entries go to the flat files, with the exception of host 
lookups, which first consult flat files and then DNS. A few systems default to 
compat mode for passwd and group, which is probably worth changing. If you 
really use NIS, just explicitly put it in the nsswitch.conf file.

nscd: cache the results of lookups

On some Linux distributions, another finger in the system file pie belongs to 
nscd, the somewhat misleadingly titled name service cache daemon.

nscd works in conjunction with the C library to cache the results of library calls 
such as getpwent. nscd is simply a wrapper for these library routines; it knows 
nothing about the actual data sources being consulted. nscd should in theory im-
prove the performance of lookups, but any improvement is largely unnoticeable 
from the user’s viewpoint.

See Chapter 17 for 
more information 
about DNS.

We say that “name service cache daemon” is misleading because the term “name 
service” usually refers to DNS, the distributed database system that maps between 
hostnames and Internet addresses. nscd does in fact cache the results of DNS 
lookups (because it wraps gethostbyname, etc.), but it also wraps the library rou-
tines that access information from the passwd and group files and their network 
database equivalents. (For security, lookups to /etc/shadow are not cached.)

In concept, nscd should have no effect on the operation of the system other than 
to speed up repeated lookups. In practice, it can cause unexpected behavior be-
cause it maintains its own copy of the lookup results. Lookups are stored in the 
cache for a fixed amount of time (set in nscd’s configuration file, /etc/nscd.conf), 
and there is always the possibility that recent changes will not be reflected in 
nscd’s cache until the previous data has timed out. nscd is smart enough to moni-
tor local data sources (such as /etc/passwd) for changes, so local updates should 
propagate within 15 seconds. For remote entries, such as those retrieved through 
NIS, you may have to wait for the full timeout period before changes take effect.

Among our example distributions, only SUSE runs nscd by default. Red Hat in-
stalls nscd but does not start it at boot time by default; to enable the use of nscd, 
run chkconfig nscd on. Ubuntu is nscd compatible but does not include nscd in 
the default installation; run apt-get install nscd to download it.

nscd starts at boot time and runs continuously. The default /etc/nscd.conf speci-
fies a timeout of 10 minutes for passwd data and an hour for hosts and group, 
with a 20-second negative timeout (the amount of time before an unsuccessful 
lookup is retried). In practice, these values rarely need changing. If a change you 
recently made doesn’t seem to show up, nscd is probably the reason. 

  



ptg

Exercises 741

Sy
st

em
 F

ile
s

19.6 RECOMMENDED READING

CARTER, GERALD. LDAP System Administration. Sebastopol, CA: O’Reilly 
Media, 2003.

MALÈRE, LUIZ ERNESTO PINHEIRO. LDAP Linux HOWTO. tldp.org

VOGLMAIER, REINHARD. The ABCs of LDAP: How to Install, Run, and Administer 
LDAP Services. Boca Raton, FL: Auerbach Publications, 2004.

LDAP for Rocket Scientists. zytrax.com/books/ldap

19.7 EXERCISES

E19.1 Why is a “pull” method of updating a local machine’s files more secure 
than a “push” method?

E19.2 Explain the following excerpt from an rdist distfile:
LINUX_PASSWD = ( redhatbox ubuntubox susebox )

passwd: 
( /etc/passwd ) -> ( ${LINUX_PASSWD} ) 
install /etc/passwd.rdist; 
cmdspecial /etc/passwd.rdist "/usr/local/sbin/mkpasswd";

E19.3 Explain the differences between rdist and rsync. In what situations 
would it be better to use one than the other?

E19.4 What method does your site use to share system files? What security 
issues are related to that method? Suggest an alternative way to share 
system files at your site, and detail the concerns that it addresses. 
What, if any, are the drawbacks?

E19.5 Design an LDAP schema that stores user information such as login, 
password, shell, authorized machines, etc. Build a tool that enters new 
users into the database interactively or from a file containing a list of 
users. Build a tool that generates the passwd, group, and shadow files 
from the LDAP database for the machines in your lab. Allow users to 
have different passwords on each machine if they want. (Not all users 
are necessarily authorized to use each computer.) Your adduser sys-
tem should be able to print lists of existing user login names and to 
print login/password pairs for new users.

  



ptg

742

20 Electronic Mail

Social networks and SMS messages have started to push email into the “old tech-
nology” category as they reduce the world to relationships and microthoughts. 
Nevertheless, email remains the universal standard for on-line communication. 
Everyone from grandmas to the stodgiest of corporations now routinely uses 
email to communicate with family, co-workers, partners, customers, and even the 
government. It’s a mad, mad, mad email-enabled world.1 

Email is easy and just works; if you know someone’s email address, you type a 
message addressed to them and press Send. Voilà! Seconds later, the message is 
delivered to their electronic mailbox, whether they’re next door or halfway 
around the world. From the user’s perspective, nothing could be easier. 

The underlying infrastructure that makes electronic mail possible on such a large 
scale is complex. There are several software packages you can run on your system 
to transport and manage electronic mail (three of which are discussed later in this 
chapter), but they all require a certain degree of configuration and management. 
In addition, it’s important that you understand the underlying concepts and 

1. Even as Evi is sailing in the middle of the ocean, she is almost always in email contact through her 
HAM/SSB radio and a “speedy” packet radio connection that approaches 30 baud at good times.

Electronic Mail

  



ptg

Electronic Mail 743

El
ec

tr
on

ic
 M

ai
l

protocols associated with email so that you don’t spoil your users’ illusion that 
cross-platform interorganizational email is a gift from the gods that magically 
works every time.

Understanding and administering your own email infrastructure isn’t your only 
option. Many providers now offer “managed” email service, which hosts your 
email system on remote servers in exchange for a monthly or yearly fee (possibly 
per-user). Likewise, a number of “free” hosted services, such as Google’s Gmail, 
Yahoo! Mail, and MSN Hotmail have become popular for individuals. If you’re an 
individual looking for a personal email account or an account for a small business, 
these may be viable options for you. In addition to offering personal email ac-
counts, Gmail has an interesting step-up feature that hosts email for an entire do-
main. See google.com/a for details or google for “hosted Gmail” to find several 
useful how-to guides that describe the setup process.

Hosted services relieve you of multiple burdens, including storage, server man-
agement, software updates, configuration, spam filtering, backups, and security 
vigilance, to name a few. In return for the “free” services, you’ll probably see some 
advertising and may wonder about your privacy and exactly who is reading your 
mail. It seems like a good deal in many cases; if the hosted option works for you, 
you at least get the benefit of not needing to read the rest of this huge chapter.

However, hosted email isn’t the solution for everyone. Businesses and other large 
organizations that depend on email service often cannot take the risk of hosting 
email off-site. Such organizations may have a variety of reasons to host their own 
email systems, including security, performance, and availability. This chapter is 
for those people.

The sheer bulk of this chapter—almost 120 pages—attests to the complexity of 
email systems (or perhaps just to the wordiness of the authors). Table 20.1 pres-
ents a mini-roadmap.

Table 20.1 Roadmap to the giant email chapter

Topic Page

Background info 744
Mail system design issues 753
Spam and malware 761
amavisd virus/spam content filtering 769 
sendmail configuration 775 
Exim configuration 807
Postfix configuration 828
DKIM 845 
Integrated email solutions 853

  



ptg

744 Chapter 20 Electronic Mail

20.1 MAIL SYSTEMS

In theory, a mail system consists of several distinct components: 

• A “mail user agent” (MUA or UA) that lets users read and compose mail
• A “mail submission agent” (MSA) that accepts outgoing mail from an 

MUA, grooms it, and submits it to the transport system
• A “mail transport agent” (MTA) that routes messages among machines
• A “delivery agent” (DA) that places messages in a local message store2

• An optional “access agent” (AA) that connects the user agent to the mes-
sage store (e.g., through the IMAP or POP protocol)

Attached to some of these agents are tools for recognizing spam, viruses, and 
(outbound) internal company secrets. Exhibit A illustrates how the various pieces 
fit together as a message winds its way from sender to receiver.

Exhibit A Mail system components

User agents

Email users employ a user agent (sometimes called an email client) to read and 
compose messages. Email messages originally consisted only of text, but a stan-
dard known as Multipurpose Internet Mail Extensions (MIME) is now used to 
encode text formats and attachments (including viruses) into email. It is sup-
ported by most user agents. Since MIME generally does not affect the addressing 
or transport of mail, we do not discuss it further.

/bin/mail was the original user agent, and it remains the “good ol’ standby” for 
reading text email messages at a shell prompt. Since email on the Internet has 

2. The receiving users’ mailboxes or, sometimes, a database

Host A – sender Host B – receiver

= User agent 
= Submission agent 
= Transport agent 
= Delivery agent 
= Access agent

UA 
MSA
MTA

DA 
AA

Thunderbird
UA

sendmail
Exim 

MS Exchange 
Postfix
(port 25)

MTA

sendmail
Exim 

MS Exchange 
Postfix
(port 25)

MTA

local 
mail.local 

(port 25)

DA

to local user agents

UW imapd

AA

Cyrus
AA

(port 587)

MSA

In
te

rn
e

t

MS Outlook
UA

OS X Mail
UA

Alpine
UA

/bin/mail

UA

  



ptg

Submission agents 745

El
ec

tr
on

ic
 M

ai
l

moved beyond the text era, text-based user agents are no longer practical for most 
users. But we shouldn’t throw /bin/mail away; it’s still a handy interface for scripts 
and other programs. (One avid Linux user we know routes nightly emails from 
cron to calendaring software so that a glance at the calendar tells him the status of 
all his software builds. By default, cron uses /bin/mail to notify a user when it 
cannot run a scheduled job.)

One of the elegant features illustrated in Exhibit A is that a user agent doesn’t 
necessarily need to be running on the same system—or even on the same plat-
form—as the rest of your mail system. Users can reach their email from a Win-
dows laptop or smartphone through access agent protocols like IMAP and POP. 

Wikipedia’s “comparison of e-mail clients” page contains a detailed listing of 
many, many email clients, the operating systems they run on, and the features 
they support. Popular clients include Thunderbird, Alpine, Zimbra, and of course, 
Microsoft Outlook. The “comparison of webmail providers” page has similar in-
formation for web-based services like Gmail, Hotmail, and Yahoo! Mail.

Submission agents

MSAs, a late addition to the email pantheon, were invented to offload some of the 
computational tasks of MTAs. MSAs make it easy for mail hub servers to distin-
guish incoming from outbound email (when making decisions about allowing re-
laying, for example) and give user agents a uniform and simple configuration for 
outbound mail.

The MSA is a sort of “receptionist” for new messages injected into the system by 
local user agents. An MSA sits between the user agent and the transport agent and 
takes over several functions that were formerly a part of the MTA’s job. An MSA 
implements secure (encrypted and authenticated) communication with user 
agents and often does minor header rewriting and cleanup on incoming messages. 
In many cases, the MSA is really just the MTA listening on a different port with a 
different configuration applied.

MSAs speak the same mail transfer protocol used by MTAs, so they appear to be 
MTAs from the perspective of user agents. However, they typically listen for con-
nections on port 587 rather than port 25, the MTA standard. For this scheme to 
work, user agents must connect on port 587 instead of port 25. If your user agents 
cannot be taught to use port 587, you can still run an MSA on port 25, but you 
must do so on a system other than the one that runs your MTA; only one process 
at a time can listen on a particular port. 

An MSA can help with several spam-induced problems. Infected home PCs are 
being used to send large amounts of spam. As a result, many ISPs that offer home 
service either block outgoing connections to port 25 or require account verifica-
tion as part of the SMTP conversation. A home PC could use the ISP’s own mail 
server for outgoing mail, but some of the newer spam-fighting mechanisms such 

  



ptg

746 Chapter 20 Electronic Mail

as SPF (page 767) and DKIM (page 845) require that mail that appears to be sent 
from an organization actually originate there.

If you use an MSA, be sure to configure your transport agent so that it doesn’t 
duplicate any of the rewriting or header fix-up work done by the MSA. Duplicate 
processing won’t affect the correctness of mail handling, but it does represent use-
less extra work. 

Since your MSA uses your MTA to relay messages, the MSA and MTA must use 
SMTP-AUTH to authenticate each other. Otherwise, you will have a so-called 
open relay that spammers can exploit and that other sites will blacklist you for.

Transport agents

A transport agent must accept mail from a user agent or submission agent, under-
stand the recipients’ addresses, and somehow get the mail to the correct hosts for 
delivery. Transport agents speak the Simple Mail Transport Protocol (SMTP), 
which was originally defined in RFC821 but has now been superseded and ex-
tended by RFC5321. The extended version is called ESMTP.

An MTA’s list of chores, as both a mail sender and receiver, includes

• Receiving email messages from remote mail servers
• Understanding the recipients’ addresses
• Rewriting addresses to a form understood by the delivery agent
• Forwarding the message to the next responsible mail server or passing it 

to a local delivery agent to be saved to a user’s mailbox

The bulk of the work involved in setting up a mail system relates to the configura-
tion of the MTA. In this book, we cover three open source MTAs: sendmail, 
Exim, and Postfix.

Local delivery agents

A delivery agent, sometimes called a local delivery agent (LDA), accepts mail 
from a transport agent and delivers it to the appropriate recipients’ mailboxes on 
the local machine. As originally specified, email can be delivered to a person, to a 
mailing list, to a file, or even to a program. However, the last two types of recipi-
ents can weaken the security and safety of your system.

MTAs usually include a built-in local delivery agent for easy deliveries. procmail
(procmail.org) and Maildrop (courier-mta.org/maildrop) are LDAs that can filter 
or sort mail before delivering it. Some access agents (AAs) also have built-in LDAs 
that do both delivery and local housekeeping chores.

Message stores

The message store is the final resting place of an email message once it has com-
pleted its journey across the Internet and been delivered to recipients.

  



ptg

So many pieces, so little time 747

El
ec

tr
on

ic
 M

ai
l

Mail has traditionally been stored in either mbox format or Maildir format. The 
former stores all mail in a single file, typically /var/mail/username, with individ-
ual messages separated by a special From line. Maildir format stores each message 
in a separate file. A file for each message is more convenient but creates directo-
ries with many, many small files; some filesystems may not be amused.

These flat files are still common message stores, but ISPs with thousands or mil-
lions of email clients are looking to other technologies for their message stores, 
usually databases. Message stores are becoming more opaque.

Access agents

Two protocols are used to access message stores and download email messages to 
a local device (workstation, laptop, telephone, etc.): IMAP4 and POP. Earlier ver-
sions of these protocols had security issues. Be sure to use a version (IMAPS or 
POP3S) that incorporates SSL encryption and hence does not transmit passwords 
in cleartext over the Internet.

We like IMAP, the Internet Message Access Protocol, better than POP. It delivers 
your mail one message at a time rather than all at once, which is kinder to the 
network (especially on slow links) and better for someone who travels from loca-
tion to location. IMAP is especially good at dealing with the giant attachments 
that some folks like to send: you can browse the headers of your messages and not 
download the attachments until you are ready to deal with them.

IMAP manages mail folders among multiple sites; for example, between your mail 
server and your PC. Mail that stays on the server can be part of the normal backup 
schedule. The Wikipedia page for IMAP contains lots of information and a list of 
available implementations.

POP, the Post Office Protocol, is similar to IMAP but assumes a model in which 
all email is downloaded from the server to the client. The mail can either be de-
leted from the server (in which case it might not be backed up) or saved on the 
server (in which case your mail spool file grows larger and larger). The “mailbox 
at a time” paradigm is hard on the network and less flexible for the user. It can be 
really slow if you are a pack rat and have a large mail spool file.

Some IMAP/POP server implementations are Courier, Cyrus IMAP, Dovecot, 
UW3 imapd, and Zimbra. Dovecot and Zimbra4 are our favorites. Nearly every 
email user agent supports both IMAP and POP.

So many pieces, so little time

With a mail system consisting of so many pieces (and we haven’t even addressed 
spam and virus scanning!), the architecture of email probably sounds overly com-
plex. But at smaller sites, the MTA can largely absorb the functions of the MSA 
and LDA, and that helps keep things simple. Larger sites may want to keep all the 

3. University of Washington, Seattle, WA.
4. Zimbra is not just an access agent, but rather a complete industrial-strength mail system; see page 853.

  



ptg

748 Chapter 20 Electronic Mail

pieces separated and run multiple instances of each piece to help spread load. The 
reality is that email handling systems can be as simple or as complicated as you 
want them to be. We cover design suggestions beginning on page 753.

20.2 THE ANATOMY OF A MAIL MESSAGE

A mail message has three distinct parts:

• The envelope
• The headers
• The body of the message

The envelope determines where the message will be delivered or, if the message 
can’t be delivered, to whom it should be returned. The envelope is invisible to 
users and is not part of the message itself; it’s used internally by the MTA.

The envelope addresses generally agree with the From and To lines of the header 
when the sender and recipient are individuals. The envelope and headers may not 
agree if the message was sent to a mailing list or was generated by a spammer who 
is trying to conceal his identity. 

The headers are a collection of property/value pairs as specified in RFC5322. 
They record all kinds of information about the message, such as the date and time 
it was sent, the transport agents through which it passed on its journey, and who it 
is to and from. The headers are a bona fide part of the mail message, but user 
agents often hide the less interesting ones when displaying messages for the user.

The body of the message is the content to be sent. It usually consists of plain text, 
although that text often represents a mail-safe encoding of various types of binary 
content.

Reading mail headers

Dissecting mail headers and using them to locate problems within the mail sys-
tem is an essential sysadmin skill. Many user agents hide the headers, but there is 
usually a way to see them, even if you have to use an editor on the message store. 
Below are most of the headers (with occasional truncations indicated by …) from 
a typical nonspam message. We removed another half page of headers that Gmail 
uses as part of its spam filtering. 

Delivered-To: sailingevi@gmail.com 
Received: by 10.231.39.205 with SMTP id…; Fri, 16 Oct 2009 08:14:27 -700 (PDT) 
Received: by 10.114.163.26 with SMTP id…; Fri, 16 Oct 2009 08:14:26 -700 (PDT) 
Return-Path: <david@schweikert.ch>
Received: from mail-relay.atrust.com (mail-relay.atrust.com [63.173.189.2]) 

by mx.google.com with ESMTP id 17si2166978pxi.34.2009.10.16.08.14.20; 
Fri, 16 Oct 2009 08:14:25 -0700 (PDT)

Received-SPF: fail (google.com: domain of david@schweikert.ch does not 
designate 63.173.189.2 as permitted sender) client-ip=63.173.189.2;

  



ptg

Reading mail headers 749

El
ec

tr
on

ic
 M

ai
l

Authentication-Results: mx.google.com; spf=hardfail (google.com: domain of 
david@schweikert.ch does not designate 63.173.189.2 as permitted sender) 
smtp.mail=david@schweikert.ch

Received: from mail.schweikert.ch (nigel.schweikert.ch [88.198.52.145]) 
by mail-relay.atrust.com (8.12.11/8.12.11) with ESMTP id n9GFEDKA029250 
for <evi@atrust.com>; Fri, 16 Oct 2009 09:14:14 -0600

Received: from localhost (localhost.localdomain [127.0.0.1]) 
by mail.schweikert.ch (Postfix) with ESMTP id 3251112DA79; 
Fri, 16 Oct 2009 17:14:12 +0200 (CEST)

X-Virus-Scanned: Debian amavisd-new at mail.schweikert.ch 
Received: from mail.schweikert.ch ([127.0.0.1])

by localhost (mail.schweikert.ch [127.0.0.1]) (amavisd-new, port 10024) 
with ESMTP id dV8BpT7rhJKC; Fri, 16 Oct 2009 17:14:07 +0200 (CEST)

Received: by mail.schweikert.ch (Postfix, from userid 1000) 
id 2A15612DB89; Fri, 16 Oct 2009 17:14:07 +0200 (CEST)

Date: Fri, 16 Oct 2009 17:14:06 +0200 
From: David Schweikert <david@schweikert.ch> 
To: evi@atrust.com 
Cc: Garth Snyder <garth@garthsnyder.com> 
Subject: Email chapter comments

To read this beast, start reading the Received lines, but start from the bottom 
(sender side). This message went from David Schweikert’s home machine in the 
schweikert.ch domain to his mail server (mail.schweikert.ch), where it was 
scanned for viruses. It was then forwarded to the recipient evi@atrust.com. How-
ever, the receiving host mail-relay.atrust.com sent it on to sailingevi@gmail.com, 
where it entered Evi’s mailbox.

See page 767 for more 
information about SPF. 

Midway through the headers, you see an SPF validation failure. This happened 
because Google checked the IP address of mail-relay.atrust.com and compared it 
to the SPF record at schweikert.ch; of course, it doesn’t match. This is an inherent 
weakness of using SPF records to identify forgeries—they don’t work for mail that 
has been relayed.

You can often see the MTAs that were used (Postfix at schweikert.ch, sendmail 
8.12 at atrust.com), and in this case, you can also see that virus scanning was 
performed through amavisd-new on port 10,024 on a machine running Debian 
Linux. You can follow the progress of the message from the Central European 
Summer Time zone (CEST +0200), to Colorado (-0600), and on to the Gmail 
server (PDT -0700); the numbers are the differences between local time and UTC, 
Coordinated Universal Time. There is a lot of info stashed in the headers!

Here are the headers, again truncated, from a spam message:
Delivered-To: sailingevi@gmail.com 
Received: by 10.231.39.205 with SMTP id…; Mon, 19 Oct 2009 08:59:32 -0700… 
Received: by 10.231.5.143 with SMTP id…; Mon, 19 Oct 2009 08:59:31 -0700… 
Return-Path: <smotheringl39@sherman.dp.ua>
Received: from mail-relay.atrust.com (mail-relay.atrust.com [63.173.189.2]) …

  



ptg

750 Chapter 20 Electronic Mail

Received-SPF: neutral (google.com: 63.173.189.2 is neither permitted nor denied 
by best guess record for domain of smotheringl39@sherman.dp.ua) client-
ip=63.173.189.2;

Authentication-Results: mx.google.com; spf=neutral (google.com: 63.173.189.2 is 
neither permitted nor denied by best guess record for domain of 
smotheringl39@sherman.dp.ua) smtp.mail=smotheringl39@sherman.dp.ua

Received: from SpeedTouch.lan (187-10-167-249.dsl.telesp.net.br 
[187.10.167.249] (may be forged)) by mail-relay.atrust.com …

Received: from 187.10.167.249 by relay2.trifle.net; Mon, 19 Oct 2009 13:59: … 
From: "alert@atrust.com" <alert@atrust.com>
To: <ned@atrust.com>
Subject: A new settings file for the ned@atrust.com mailbox 
Date: Mon, 19 Oct 2009 13:59:12 -0300 …

According to the From header, this message’s sender is alert@atrust.com. But ac-
cording to the Return-Path header, which contains a copy of the envelope sender, 
the originator was smotheringl39@sherman.dp.ua, an address in the Ukraine. 
The first MTA that handled the message is at IP address 187.10.167.249, which is 
in Brazil. Sneaky spammers…5

The SPF check at Google fails again, this time with a “neutral” result because the 
domain sherman.dp.ua does not have an SPF record with which to compare the 
IP address of mail-relay.atrust.com.

The recipient information is also at least partially untrue. The To header says the 
message is addressed to ned@atrust.com. However, the envelope recipient ad-
dresses must have included evi@atrust.com in order for the message to be for-
warded to sailingevi@gmail.com for delivery. 

20.3 THE SMTP PROTOCOL

The Simple Mail Transport Protocol (SMTP) and its extended version, ESMTP, 
have been standardized in the RFC series (RFC5321) and are used for most mes-
sage hand-offs among the various pieces of the mail system:

• UA-to-MSA or -MTA as a message is injected into the mail system
• MSA-to-MTA as the message starts its delivery journey
• MTA- or MSA-to-antivirus or -antispam scanning programs
• MTA-to-MTA as a message is forwarded from one site to another
• MTA-to-DA as a message is delivered to the local message store

Because the format of messages and the transfer protocol are both standardized, 
my MTA and your MTA don’t have to be the same or even know each other’s 
identity; they just have to both speak SMTP or ESMTP. Your various mail servers 
can run different MTAs and interoperate just fine.

5. It’s important to note that many of the lines in the header, including the Received lines, may have been 
forged. Use this data with extreme caution.

  



ptg

SMTP error codes 751

El
ec

tr
on

ic
 M

ai
l

True to its name, SMTP is quite simple. An MTA connects to your mail server and 
says, in essence, “Here’s a message; please deliver it to user@your.domain.” Your 
MTA says “OK.”

Requiring strict adherence to the SMTP protocol has become a technique for 
fighting spam and malware, so it’s important for mail administrators to be some-
what familiar with the protocol. The language has only a few commands; Table 
20.2 shows the most important ones.

You had me at EHLO

ESMTP speakers start conversations with EHLO instead of HELO. If the process 
at the other end understands and responds with an OK, then the participants ne-
gotiate supported extensions and agree on a lowest common denominator for the 
exchange. If the peer returns an error in response to the EHLO, then the ESMTP 
speaker falls back to SMTP. But today, almost everything uses ESMTP.

A typical SMTP conversation to deliver an email message goes as follows: HELO 
or EHLO, MAIL FROM:, RCPT TO:, DATA, and QUIT. The sender does most of 
the talking, with the recipient contributing error codes and acknowledgments.

SMTP and ESMTP are both text-based protocols, so you can use them directly 
when debugging the mail system. Just telnet to TCP port 25 or 587 and start en-
tering SMTP commands. See the example on page 845 in the Postfix section.

SMTP error codes

Also specified in the RFCs that define SMTP are a set of temporary and perma-
nent error codes. These were originally three-digit codes (e.g., 550), with each 
digit being interpreted separately. A first digit of 2 indicated success, a 4 signified 
a temporary error, and a 5 indicated a permanent error.

Table 20.2 SMTP commands

Command Function

HELO hostname Identifies the connecting host if speaking SMTP 
EHLO hostname Identifies the connecting host if speaking ESMTP 
MAIL FROM: revpath Initiates a mail transaction (envelope sender) 
RCPT TO: fwdpath a Identifies envelope recipient(s)
VRFY address Verifies that address is valid (deliverable) 
EXPN address Shows expansion of aliases and .forward mappings
DATA Begins the message bodyb

QUIT Ends the exchange and closes the connection
RSET Resets the state of the connection
HELP Prints a summary of SMTP commands

a. There can be multiple RCPT commands for a message.
b. You terminate the body by entering a dot on its own line.

  



ptg

752 Chapter 20 Electronic Mail 

The three-digit error code system did not scale, so RFC3463 restructured it to 
create more flexibility. It defined an expanded error code format known as a deliv-
ery status notification or DSN. DSNs have the format X.X.X instead of the old 
XXX, and each of the individual Xs can be a multidigit number. The initial X must 
still be 2, 4, or 5. The second digit specifies a topic, and the third provides the 
details. The new system uses the second number to distinguish host errors from 
mailbox errors. We’ve listed a few of the DSN codes in Table 20.3. RFC3463’s Ap-
pendix A shows them all.

SMTP authentication

RFC4954 defines an extension to the original SMTP protocol that allows an 
SMTP client to identify and authenticate itself to a mail server. The server might 
then let the client relay mail through it. The protocol supports several different 
authentication mechanisms. The exchange is as follows:

• The client says EHLO, announcing that it speaks ESMTP.

• The server responds and advertises its authentication mechanisms.

• The client says AUTH and names a specific mechanism that it wants to 
use, optionally including its authentication data.

• The server accepts the data sent with AUTH or starts a challenge and 
response sequence with the client.

• The server either accepts or denies the authentication attempt.

To see what authentication mechanisms a server supports, you can telnet to port 
25 and say EHLO. For example, here is a truncated conversation with the mail 
server mail-relay.atrust.com (the commands we typed are in bold):

solaris$ telnet mail-relay.atrust.com 25 
Trying 192.168.2.10…
Connected to mail-relay.atrust.com. 
Escape character is '^]'.

Table 20.3 RFC3463 delivery status notifications

Temporary Permanent Meaning

4.2.1 5.2.1 Mailbox is disabled
4.2.2 5.2.2 Mailbox is full
4.2.3 5.2.3 Message is too long
4.4.1 5.4.1 No answer from host
4.4.4 5.4.4 Unable to route
4.5.3 5.5.3 Too many recipients
4.7.1 5.7.1 Delivery not authorized, message refused
4.7.* 5.7.* Site policy violation

  



ptg

Mail system design 753

El
ec

tr
on

ic
 M

ai
l

220 mail-relay.atrust.com ESMTP ATE Mail Service 24.1.2/24.1.2; Tue, 20 Oct 
2009 14:28:53 -0600

ehlo solaris.booklab.atrust.com
250-mail-relay.atrust.com Hello solaris.booklab.atrust.com, pleased to meet 

you
250-ENHANCEDSTATUSCODES 
250-AUTH LOGIN PLAIN 
… 
250 HELP 
quit 
221 2.0.0 mail-relay.atrust.com closing connection

In this case, the mail server supports the LOGIN and PLAIN authentication 
mechanisms. sendmail, Exim, and Postfix all support SMTP authentication; de-
tails of configuration are covered on pages 801, 820, and 830, respectively.

20.4 MAIL SYSTEM DESIGN

The mail design we outline in this chapter is almost mandatory for keeping the 
administration of medium and large sites manageable and for protecting users 
from viruses and spam. However, it is also appropriate for small sites. The main 
concepts that lead to easy administration are

• Servers for incoming and outgoing mail; for really large sites, a hierarchy
• Filtering for spam and viruses before admitting messages to your site
• Filtering for spam, viruses, and data leaks before sending messages out
• For busy sites, a backup MTA for outgoing mail that fails on the first try
• Journaling and archiving ability for legal purposes (e.g., discovery)
• A mail home for each user at a physical site
• IMAP or POP to integrate PCs, Macs, cell phones, and remote clients

See page 583 for 
more information 
about MX records.

We discuss each of these key issues below and then give a few examples. Other 
subsystems must cooperate with the design of your mail system as well: DNS MX 
records must be set correctly, Internet firewalls must let mail in and out, the mes-
sage store machine(s) must be identified, and so on. 

Mail servers have at least five functions:

• To accept outgoing mail from MSAs or user agents
• To receive incoming mail from the outside world
• To filter mail for spam, viruses, and other malware
• To deliver mail to end-users’ mailboxes
• To allow users to access their mailboxes with IMAP or POP

At a small site, the servers that implement these functions might all be the same 
machine wearing different hats. At larger sites, they should be separate machines. 
It is much easier to configure your network firewall rules if incoming mail arrives 
at only one machine and outgoing mail appears to originate from only one 

  



ptg

754 Chapter 20 Electronic Mail 

machine. The realities of today’s unsecured Internet force content-scanning 
chores on mail servers as well.

Using mail servers

There are two basic types of mail server: Internet-facing servers, to handle incom-
ing and outgoing mail; and internal servers, to interface with users. Here, we out-
line a mail system design that is secure, seems to scale well, and is relatively easy 
to manage. It centralizes the handling of both incoming and outgoing mail on 
servers dedicated to those purposes. Exhibit B illustrates one form of this system.

Exhibit B Mail system architecture

See page 932 for 
more information 
about firewalls.

The mail system depicted here shows two regions of your site: a DMZ (demilita-
rized zone) whose machines connect directly to the Internet, and an internal zone 
that is separated from the DMZ and the Internet by a firewall. In the DMZ are 
several servers: 

• An MTA listening on port 25 and handing incoming mail to filters
• Virus and spam filters that reject or quarantine dangerous messages
• An LDAP (Lightweight Directory Access Protocol) database replica that 

contains mail routing information
• An outgoing MTA that tries to deliver mail submitted by the MSA
• A fallback MTA, for messages that fail on the first delivery attempt
• A caching DNS server: used by the outgoing MTA for MX lookups, and 

by the incoming MTA for blacklist lookups (senders’ domains) and 
cryptographic lookups for signed messages

The server that accepts messages from the wild and woolly Internet is the most 
vulnerable one. It should be well secured, have few users, and have no extraneous 

Incoming 
MTA

Antivirus 
Antispam

Client

Client

Client

Outgoing 
MTA

Routing 
MTAs

Fallback 
outgoing

MTA

Outgoing 
MSA/MTA

Antivirus 
Antispam

DLP

Message store

Message store

LDAP

DNS

LDAP

DLP = Data leak prevention

DMZInternet Internal network

  



ptg

Using mail servers 755

El
ec

tr
on

ic
 M

ai
l

processes or services running. Each message it handles should be checked to en-
sure that

• The sender’s site is not on a blacklist.
• The sender’s SPF record is OK.
• The local recipients are valid.
• If the message is signed, its DKIM signature can be verified.
• No malware is embedded in the message.
• The message is not spam.

All of this scanning can be done within the MTA or by a separate package such as 
amavisd-new. Spam and malware scanning are covered starting on page 761.

The server that handles outgoing mail must also be well maintained. If your site 
manages large mailing lists, a fallback MTA can improve overall performance by 
isolating problem recipients and handling them separately. We assume that the 
filtering and scanning of outbound mail happens at the MSA in the internal zone.

The servers in the internal zone are

• An internal routing MTA that routes accepted mail to message stores
• The original LDAP database, which includes mail routing information
• An outgoing MSA or MTA
• Filters for viruses, spam, and data leak prevention (DLP)

Outgoing mail should be scanned for viruses and spam to verify that local ma-
chines are not infected and to limit the spread of malware to other sites. If your 
site has concerns about the leakage of confidential or proprietary information 
(e.g., credit card or Social Security numbers), DLP filtering should be performed 
by the internal MSA before the message reaches the outgoing MTA in the more 
vulnerable DMZ.

Most current DLP filtering solutions seem to be embedded in commercial 
web/email products (e.g., ClearEmail, Cisco’s IronPort, WebSense, Content Con-
trol, etc.) and include a large dose of marketing hype. Some have routines to rec-
ognize things like Social Security numbers and credit card numbers in addition to 
recognizing words or phrases that you configure. DLP scanning is in its infancy 
and has privacy ramifications. Make sure employee or use agreements mention 
that you intend to scan both incoming and outgoing email for spam, malware, 
and proprietary data.

At the end of the road are the users in the internal zone who access both the 
message stores (to read incoming mail) and the MSA (to send outgoing mail). 
These same users can be remote, in which case they should use SMTP-AUTH to 
authenticate themselves.

Both incoming and outgoing mail servers can be replicated if your mail load re-
quires this. For example, multiple inbound mail servers can hide behind a load 

  



ptg

756 Chapter 20 Electronic Mail 

balancing box or can use DNS MX records to crudely balance load. Different cli-
ent machines can route mail through different outbound servers. 

In the opposite direction, sites with modest mail loads might carefully combine 
incoming and outgoing mail servers. Some types of processing, like BATV or Pen-
pals backscatter, are easier to implement with a single server. BATV (bounce ad-
dress tag validation) is a scheme for determining whether a bounce address is real 
or forged; it rejects email backscatter from bounces to forged sender addresses. 
Pen-pals (part of amavisd-new) is a scheme that lowers the spam score of a mes-
sage if the sender is replying to email previously sent by one of your users.

See page 721 for a 
discussion of file 
distribution issues.

Most hosts at your site can use a minimal MSA/MTA configuration that forwards 
all outgoing mail to a smarter server for processing. They do not need to accept 
mail from the Internet and can all share the same configuration. You might want 
to distribute the configuration with a tool such as rdist or rsync.

Sites that use software such as Microsoft Exchange or Lotus Notes but are not 
comfortable directly exposing these applications to the Internet can use a design 
similar to the one outlined above in which Exchange assumes the routing role in 
the internal zone.

Whatever design you choose, make sure that your MTA configuration, your DNS 
MX records, and your firewall rules are all implementing the same policy with 
respect to mail.

20.5 MAIL ALIASES

Aliases allow mail to be rerouted either by the system administrator or by individ-
ual users.6 Aliases can define mailing lists, forward mail among machines, or al-
low users to be referred to by more than one name. Alias processing is recursive, 
so it’s legal for an alias to point to other destinations that are themselves aliases.

Sysadmins often use role or functional aliases (e.g., printers@example.com) to 
route email about a particular issue to whatever person is currently handling that 
issue. Other examples might include an alias that receives the results of a nightly 
security scan or an alias for the postmaster in charge of email. 

Mail systems typically support several aliasing mechanisms: 

• Flat-file maps such as those generated from the /etc/mail/aliases file
• Various mail routing databases associated with a particular MTA
• LDAP databases
• Other sharing mechanisms such as NIS

See Chapter 19 for 
more information 
about LDAP.

Flat files such as the /etc/mail/aliases file (discussed later in this section) are by 
far the most straightforward and easiest way to set up aliases at small- to mid-
sized sites. If you want to use the mail homes concept and you have a large, 

6. Technically, aliases are configured only by sysadmins. A user’s control of mail routing through the use 
of a .forward file is not really aliasing, but we have lumped them together here.

  



ptg

Mail aliases 757

El
ec

tr
on

ic
 M

ai
l

complex site, we recommend that you implement mail homes by storing aliases in 
an LDAP server. 

Most user agents provide some sort of aliasing feature (usually called “my groups,” 
“my mailing lists,” or something like that). However, the user agent expands such 
aliases before the mail ever reaches the MSA or MTA. These aliases are internal to 
the user agent and don’t require support from the rest of the mail system.

Another place where aliases can be defined is in a forwarding file in the home 
directory of each user (~/.forward). These aliases, which use a slightly nonstan-
dard syntax, apply to all mail delivered to that particular user. They’re often used 
to forward mail to a different account or to implement automatic “I’m on vaca-
tion” responses.

Transport agents look for aliases in the global aliases file (/etc/mail/aliases or 
/etc/aliases) and then in recipients’ forwarding files. Aliasing is applied only to 
messages that the MTA considers to be local.

The format of an entry in the aliases file is
local-name: recipient1,recipient2,…

where local-name is the original address to be matched against incoming mes-
sages and the recipient list contains either recipient addresses or the names of 
other aliases. Indented lines are considered continuations of the preceding lines.

From mail’s point of view, the aliases file supersedes /etc/passwd, so the entry
david: david@somewhere-else.edu

would prevent the local user david from ever receiving any mail. Therefore, ad-
ministrators and adduser tools should check both the passwd file and the aliases
file when selecting new usernames.

The aliases file should always contain an alias named “postmaster” that forwards 
mail to whoever maintains the mail system. Similarly, an alias for “abuse” is ap-
propriate in case someone outside your organization needs to contact you regard-
ing spam or suspicious network behavior that originates at your site. An alias for 
automatic messages from the MTA must also be present; it’s usually called Mailer-
Daemon and is often aliased to postmaster. 

Sadly, there is so much abuse of the mail system these days that some sites config-
ure these standard contact addresses to throw mail away instead of forwarding it 
to a human user. Entries such as 

# Basic system aliases -- these MUST be present. 
mailer-daemon: postmaster 
postmaster: "/dev/null"

are common. We don’t recommend this practice because humans having trouble 
reaching your site by email do write to the postmaster address. 

  



ptg

758 Chapter 20 Electronic Mail

A better paradigm might be
# Basic system aliases -- these MUST be present. 
mailer-daemon: "/dev/null" 
postmaster: root

You should redirect root’s mail to your site’s sysadmins or to someone who logs in 
every day. The bin, sys, daemon, nobody, and hostmaster accounts (and any other 
pseudo-user accounts you set up) should have similar aliases. 

In addition to a list of users, aliases can refer to

• A file containing a list of addresses
• A file to which messages should be appended
• A command to which messages should be given as input

These last two targets should push your “What about security?” button because 
the sender of a message totally determines its content. Being able to append that 
content to a file or deliver it as input to a command sounds pretty scary. Many 
MTAs either do not allow these targets or severely limit the commands and file 
permissions that are acceptable.

Aliases can cause mail loops. MTAs try to detect loops that would cause mail to be 
forwarded back and forth forever and return the errant messages to the sender. To 
determine when mail is looping, an MTA can count the number of Received lines 
in a message’s header and stop forwarding it when the count reaches a preset limit 
(usually 25). Each visit to a new machine is called a “hop” in email jargon; return-
ing a message to the sender is known as “bouncing” it. So a more typically jargon-
ized summary of loop handling would be, “Mail bounces after 25 hops.”7 Another 
way MTAs can detect mail loops is by adding a Delivered-To header for each host 
to which a message is forwarded. If an MTA finds itself wanting to send a message 
to a host that’s already mentioned in a Delivered-To header, it knows the message 
has traveled in a loop.

Getting aliases from files

The :include: directive in the aliases file (or a user’s .forward file) allows the list 
of targets for the alias to be taken from the specified file. It is a great way to let 
users manage their own local mailing lists. The included file can be owned by the 
user and changed without involving a system administrator. However, such an 
alias can also become a tasty and effective spam expander, so don’t let email from 
outside your site be directed there. If users outside your site need to send mail to 
the alias, use mailing list software such as Mailman (covered on page 760) to help 
keep the system secure.

7. We have been inconsistent with terminology in this chapter, sometimes calling a returned message a 
“bounce” and sometimes calling it an “error.” What we really mean is that a delivery status notification 
(DSN, a specially formatted email message) has been generated. Such a notification usually means that 
a message was undeliverable and is therefore being returned to the sender.

  



ptg

Mailing to programs 759

El
ec

tr
on

ic
 M

ai
l

When setting up a list to use :include:, the sysadmin must enter the alias into the 
global aliases file, create the included file, and chown the included file to the user 
that is maintaining the mailing list. For example, the aliases file might contain

sa-book: :include:/usr/local/mail/ulsah.authors

The file ulsah.authors should be on a local filesystem and should be writable only 
by its owner. To be really complete, we should also include aliases for the mailing 
list’s owner so that errors (bounces) are sent to the owner of the list and not to the 
sender of a message addressed to the list:

owner-sa-book: evi

See page 760 for more information about mailing lists and their interaction with 
the aliases file. 

Mailing to files

If the target of an alias is an absolute pathname (double-quoted if it includes spe-
cial characters), messages are appended to the specified file. The file must already 
exist. For example:

cron-status: /usr/local/admin/cron-status-messages

It’s useful to be able to send mail to files, but this feature arouses the interest of the 
security police and is therefore restricted. This syntax is only valid in the aliases
file and in a user’s .forward file (or in a file that’s interpolated into one of these 
files with the :include: directive). A filename is not understood as a normal ad-
dress, so mail addressed to /etc/passwd@example.com would bounce.

If the destination file is referenced from the aliases file, it must be world-writable 
(not advisable), setuid but not executable, or owned by the MTA’s default user. 
The identity of the default user is set in the MTA’s configuration file.

If the file is referenced in a .forward file, it must be owned and writable by the 
original message recipient, who must be a valid user with an entry in the passwd
file and a valid shell that’s listed in /etc/shells. For files owned by root, use mode 
4644 or 4600, setuid but not executable.

Mailing to programs

An alias can also route mail to the standard input of a program. This behavior is 
specified with a line such as

autoftp: "|/usr/local/bin/ftpserver"

It’s even easier to create security holes with this feature than with mailing to a file, 
so once again it is only permitted in aliases, .forward, or :include: files, and often 
requires the use of a restricted shell.

  



ptg

760 Chapter 20 Electronic Mail

Aliasing by example

Here are some typical aliases that a system administrator might use.
# General redirections for pseudo-accounts. 
bin: root 
daemon: root 
adm: root 
abuse: root 
junk: "/dev/null" 
root: ned

# Pager aliases 
pigdog: :include:/usr/local/etc/pigdog 
tier1coverage: :include:/usr/local/etc/tier1coverage 
tier2coverage: :include:/usr/local/etc/tier2coverage

# Sysadmin conveniences 
diary: "/usr/local/admin/diary" 
info: "|/usr/local/bin/sendinfo"

# Class aliases that change every semester 
sa-class: real-sa-class@nag.cs.colorado.edu 
real-sa-class: :include:/usr/local/adm/sa-class.list

The sa-class alias has two levels so that the data file containing the list of students 
only needs to be maintained on a single machine, nag. The diary alias is a nice 
convenience and works well as a documentation extraction technique for squir-
relly student sysadmins who bristle at documenting what they do. Sysadmins can 
easily memorialize important events in the life of the machine (OS upgrades, 
hardware changes, crashes, etc.) by sending mail to the diary file. 

Building the hashed alias database

Since entries in the aliases file are in no particular order, it would be inefficient 
for the MTA to search this file directly. Instead, a hashed version is constructed 
with the Berkeley DB system. This hashing significantly speeds alias lookups, es-
pecially when the file gets big. 

The file derived from /etc/mail/aliases is called aliases.db. Every time you change 
the aliases file, you must rebuild the hashed database with the newaliases com-
mand. Save the error output if you run newaliases automatically—you might have 
introduced formatting errors.

Using mailing lists and list wrangling software

A mailing list is a giant alias that sends a copy of each message posted to it to each 
person who has joined the list. Some mailing lists have thousands of recipients. 

Mailing lists are usually specified in the aliases file but maintained in an external 
file. Some standard naming conventions are understood by MTAs and most mail-
ing list software. Experienced users have come to rely on them as well. The most 

  



ptg

Content scanning: spam and malware 761

El
ec

tr
on

ic
 M

ai
l

common are the “-request” suffix and the “owner-” prefix, which are used to reach 
the maintainers of the list. The conventions are illustrated by the following aliases: 

mylist: :include:/etc/mail/include/mylist 
owner-mylist: mylist-request 
mylist-request: evi 
owner-owner: postmaster

In this example, mylist is the name of the mailing list. The members are read from 
the file /etc/mail/include/mylist. Bounces generated by mailing to the list are 
sent to the list’s owner, evi, as are requests to join the list. The indirection from 
owner-mylist to mylist-request to evi is useful because the owner’s address (in this 
case, mylist-request) becomes the Return-Path address on each message sent to 
the list. The mylist-request alias is a bit more appropriate for this field than the 
address of the actual maintainer. Errors in messages to the owner-mylist alias (evi, 
really) would be sent to owner-owner.

If you use a site-wide aliases file, you need to add an extra level of indirection 
pointing mylist to myreallist@master so that the data file containing the list of 
members only needs to exist in one place.

Software packages for maintaining mailing lists

Two software packages, Mailman and Sympa, that automate the maintenance of 
mailing lists have clawed their way to “best of breed” status from a pack of about 
ten major contenders. These packages typically let users obtain information about 
the list and give users an easy way to subscribe and unsubscribe. They facilitate 
moderation of the list and filter it for spam and viruses. Each package is available 
in several (spoken, not programming) languages.

Both Mailman (gnu.org/software/mailman), written in Python, and Sympa 
(sympa.org), written in Perl, have web interfaces that let users subscribe and un-
subscribe without involving the list manager.

20.6 CONTENT SCANNING: SPAM AND MALWARE

This section covers the generic issues involved in fighting spam and viruses, in-
cluding the use of an external antivirus tool, amavis-new. The details specific to a 
particular MTA are covered in each MTA’s section.

Some issues to decide before you implement content scanning include

• Where to scan: in the DMZ or on the internal network?
• When to scan: at the initial connection or after a message is accepted?
• In what order to scan?
• What to do with the viruses and spam messages you identify?

Incoming mail is traditionally scanned at the incoming mail hub in the DMZ. 
Ideally, it should be scanned in-line so that bad messages can be refused while the 

  



ptg

762 Chapter 20 Electronic Mail 

original SMTP connection is still open. Outgoing email can be scanned for vi-
ruses and spam on an internal smart host through which all messages are routed.

We suggest the following order of operations for sanity-checking a message:

• Checking RFC compliance of the sender’s SMTP implementation
• Verifying the existence of local recipients
• IP blacklisting; see page 766
• Reputation checking; see page 766
• DKIM and SPF verification; see page 767
• Antispam filtering; see pages 764 and 765
• Antivirus scanning; see pages 768 and 769

Many spam robots do not follow the SMTP protocol correctly; they typically start 
talking before the EHLO response. A slight delay by your server can often expose 
their “early talker” behavior. You can use this information either to reject the con-
nection or to increase the spam score of the received messages.

Checking recipients to verify that they are valid local users is good unless your 
later checks might transform the recipients’ addresses. Early checking minimizes 
the work your mail server has to do for mail that will eventually turn out to be 
undeliverable. It also eliminates a lot of “shotgun” spam. However, it does let the 
sender probe your user address space.

The order of the other checks is primarily driven by their cost. Check quick and 
easy things before more time-consuming things, so that, on average, bad messages 
are refused as soon possible.

Once you have identified a message as bad, what do you do with it? Refuse it, drop 
it, quarantine it, archive it? We recommend that you quarantine and archive while 
you are testing your setup. When you are satisfied that the system is doing what 
you want, refuse or drop all viruses and refuse or archive spam, according to your 
users’ preferences. Delete archived spam that is more than a month old; mean-
while, users can move false positives from the spam box to their regular mailbox.

Spam

Spam is the jargon word for junk mail, also known as unsolicited commercial 
email or UCE. It has become a serious problem because although the response 
rate is low, the responses per dollar spent is high. (A list of 30 million email ad-
dresses costs about $40.) If it didn’t work for the spammers, it wouldn’t be such a 
problem. Surveys show that 95%–98% of all mail is spam. Refer to spamological 
sites such spamlinks.net for the latest numbers.

Our main recommendation regarding spam is that you use the preventive mea-
sures and publicly maintained blacklists that are available to you. A good one is 
zen.spamhaus.org. Another possibility is to redirect your incoming email to an 
outsourced spam fighting company such as Postini (now part of Google) or 

  



ptg

Message privacy 763

El
ec

tr
on

ic
 M

ai
l

Message Labs (now part of Symantec). However, this option may entail some 
compromises in performance, privacy, or reliability.

Advise your users to simply delete the spam they receive. Many spam messages 
contain instructions on how recipients can be removed from the mailing list. If 
you follow those instructions, the spammers may remove you from the current 
list, but they immediately add you to several other lists with the annotation 
“reaches a real human who reads the message.” Your email address is then worth 
even more.

Folks that sell email addresses to spammers use a form of dictionary attack to 
harvest addresses. Starting with a list of common last names, the scanning soft-
ware adds different first initials in hopes of hitting on a valid email address. To 
check the addresses, the software connects to the mail servers at, say, 50 large ISPs 
and does a VRFY, EXPN, or RCPT on each of zillions of addresses. MTAs can 
block the SMTP commands VRFY and EXPN, but not RCPT. Such actions ham-
mer your mail server and interfere with it being able to accept and deliver real 
email promptly. To protect themselves from this sort of abuse, MTAs can rate-
limit the number of RCPTs from a single source.

Forgeries

Forging email is trivial; many user agents let you fill in the sender’s address with 
anything you want. MTAs can use SMTP authentication between local servers, 
but that doesn’t scale to Internet sizes. Some MTAs add warning headers to outgo-
ing local messages that they think might be forged.

Any user can be impersonated in mail messages. Be careful if email is your organi-
zation’s authorization vehicle for things like door keys, access cards, and money. 
You should warn administrative users of this fact and suggest that if they see sus-
picious mail that appears to come from a person in authority, they should verify 
the validity of the message. Caution is doubly appropriate if the message asks that 
unreasonable privileges be given to an unusual person.

Message privacy

See page 925 for 
more information 
about PGP and GPG.

Message privacy essentially does not exist unless you use an external encryption 
package such as Pretty Good Privacy (PGP), its GNU-ified clone (GPG), or 
S/MIME. By default, all mail is sent unencrypted. End-to-end encryption requires 
support from mail user agents. Tell your users that they must do their own en-
cryption if they want their mail to be private.

Both S/MIME and PGP are documented in the RFC series, with S/MIME being 
on the standards track. However, we prefer PGP and GPG; they’re more widely 
available. PGP was designed by an excellent cryptographer, Phil Zimmermann, 
whom we trust.

  



ptg

764 Chapter 20 Electronic Mail

These standards offer a basis for email confidentiality, authentication, message 
integrity assurance, and nonrepudiation of origin. However, traffic analysis is still 
possible since the headers and envelope are sent as plaintext.

Spam filtering

The spam problem has led to an arms race between the spam abatement folks and 
the spammers, with ever-more-sophisticated techniques being deployed on both 
sides. Some of the current control measures are

• Greylisting: temporary deferrals (a form of RFC compliance checking)
• SpamAssassin, a heuristic, pattern-matching spam recognition tool
• Blacklists: lists of known bad guys in the spam world, often DNS-based
• Whitelists: lists of known good guys, DNS-based, avoid false positives
• Mail filters (“milters”) that scan both the headers and body of a message
• SPF and DKIM/ADSP records to identify senders’ domains and policies
• amavisd-new and MailScanner: antivirus/antispam filtering systems

We cover each of these options in more detail later in this section.

When to filter

When to filter is a fundamental question, and one with no perfect answer. The 
main question is whether you filter “in line” during the SMTP transaction with 
the sender or after the mail has been accepted. There are advantages and disad-
vantages to both schemes. The advantages of in-line (pre-queue) filtering include 
the following:

• You can reject the mail and thus not take responsibility for delivery. 
(This may even be required for legal reasons in some countries!)

• The sender is notified reliably about why the mail couldn’t be delivered. 
You don’t need to trust the sender of the mail; you just state the reason 
for rejecting the message and let the originating server deal with inform-
ing the sender. Much cleaner and more reliable than accepting the mail 
and then bouncing it.

However, there are advantages to post-queue filtering, too:

• The performance of your Internet-facing mail server is not dragged 
down by extensive spam checking. This is especially valuable when 
bursts of mail arrive at the same time.

• Filtering after a message has been queued is simpler and more robust.

At first glance you might think post-queue filtering is best. It doesn’t impact your 
mail server and is easier on your sysadmins. However, the bounce messages gen-
erated by post-queue filtering become their own type of spam when the sender’s 
address is forged—as it usually is on spam. 

  



ptg

SpamAssassin 765

El
ec

tr
on

ic
 M

ai
l

This problem is called “backscatter spam,” and a system called BATV (bounce 
address tag validation) has been devised to help with it. But problems remain. 
BATV can determine the validity of the bounce address (envelope address of the 
sender) if the original submitter of the message has signed the envelope address. 
BATV milters are available to help sites send only valid bounce messages.

A reasonable compromise might be to do basic virus and spam scanning in-line 
and then do additional scanning after messages have been queued.

Greylisting/DCC

Greylisting is a scheme in which you configure your mail server to defer all con-
nections from new, unrecognized IP addresses for, say, 15 minutes to an hour. The 
server rejects the mail with a “try again later” message. Real MTAs sending real 
users’ email will wait and then try again; spambots will move on down their lists 
and won’t retry.

Greylisting has been implemented for a host of MTAs; see greylisting.org for cur-
rent details. It is especially effective as part of a spam-fighting tool called DCC 
(the Distributed Checksum Clearinghouses; see rhyolite.com/dcc) that detects the 
“bulkiness” of a message by computing a fuzzy checksum and seeing how many 
other mail servers have seen that same checksum. It is not really a spam detector 
per se, but a bulk email detector. If you whitelist all the bulk email you expect to 
receive (such as mailing lists you belong to), then the remaining detections consist 
of unsolicited bulk email, which is pretty much the definition of spam.

DCC can do greylisting as well; it is used as a milter and can greylist or reject in-
line during an SMTP session. Because DCC does not do pattern matching as 
SpamAssassin-type tools do, it is not fooled by spammers who add randomness to 
their messages in an attempt to foil the pattern matchers.

The effectiveness of greylisting has declined (from more than 97% effective to 
below 90%) as spambots have begun to take it seriously and spruced up their 
SMTP implementations. However, it is still effective when used in combination 
with blacklists because the automated blacklist maintainers often manage to get 
spamming sites onto the blacklist before the retry period has elapsed. Go Zen!

SpamAssassin

SpamAssassin (spamassassin.apache.org) is an open source Perl module written 
by Habeeb Dihu and maintained by Ian Justman. It does a pretty good job of iden-
tifying spam. It can be invoked through a milter and is used in lots of antispam 
products.

SpamAssassin uses a variety of ad hoc rules to identify spam. The rules used to be 
updated frequently, but they seem to be less actively maintained these days. Spam-
Assassin catches essentially all the real spam but has occasional false positives, 
especially if configured with the auto-Bayes option turned on. Be sure to 

  



ptg

766 Chapter 20 Electronic Mail 

scrutinize your haul of spam carefully as you are setting up SpamAssassin and 
tuning its parameters.

SpamAssassin uses a point system to score messages. If a message accumulates too 
many points (configurable on both a site-wide and per-user basis), SpamAssassin 
tags the message as spam. You can then refile suspicious messages in a spam 
folder, either by running a server-side filter such as Cyrus’s sieve or by configur-
ing your user agent. You can even teach SpamAssassin about good and bad mes-
sages (“ham” and “spam”) by using its Bayesian filter feature.

Blacklists

See Chapter 17 for 
more information 
about DNS.

Several organizations (e.g., spamhaus.org) compile lists of spammers and publish 
them in the DNS. MTAs can be configured to check these blacklists (also known 
as Realtime Black Lists or RBLs) and reject mail that comes from listed sites.

There are also lists of open relays, that is, mail servers that are willing to forward a 
message from the Internet to a user outside their local site without authenticating 
the sending server. Spammers use open relays to obfuscate the origin of their mes-
sages and to foist the work of sending their huge volumes of email onto other sites.

Whitelists

Whitelists are DNS-based reputation lists that are essentially the opposite of the 
blacklists described above. They are used to reduce the number of false positives 
generated by spam filters. One whitelist, dnswl.org, rates domains as follows:

• High – never sends spam
• Medium – rarely sends spam, fixes spam problems when they occur
• Low – occasionally sends spam, slower to correct it
• None – legitimate mail server but might send spam

They recommend that you omit some of your usual mail scanning based on the 
rating in the whitelist:

• Skip both blacklisting and greylisting for every domain with a rating.
• Skip spam filtering for domains with ratings of high or medium.
• Never skip virus scanning.

The web site includes details for using the whitelist with each of the MTAs we 
describe in this book. Lookups are done through DNS, as with blacklists. For ex-
ample, if you want to know the rating of IP address 1.2.3.4, you do a DNS query 
for the pseudo-host 4.3.2.1.list.dnswl.org. The return value is an IP address of the 
form 127.0.x.y, where x is a number that identifies the sending domain’s general 
category of business (e.g., financial services or email marketing) and y is the site’s 
whitelist rating from 0–3 (0 = none, 3 = high).

To speed up whitelist evaluations, you can download the data for the entire 
whitelist and rsync it daily to keep current; don’t choose the even hour or half 
hour for your cron job.

  



ptg

SPF and Sender ID 767

El
ec

tr
on

ic
 M

ai
l

You can check your own site’s status at the dnswl.org web site. Here is typical out-
put for a nonspammy site, caida.org:

IP range 192.172.226.32/32 
Domain/Hostname jungle.caida.org 
Score med

IP range 192.172.226.36/32 
Domain/Hostname fido.caida.org 
Score med

IP range 192.172.226.78/32 
Domain/Hostname rommie.caida.org 
Score med

The domain hotmail.com yielded about ten pages of entries, all with score “none.”

Miltering: mail filtering

The developers of sendmail created an API that lets third-party programs filter 
the headers and content of mail messages as they are being processed by the MTA. 
These “milters” are used for spam fighting, virus detection, statistical analysis, en-
cryption, and a host of other purposes. Milters are fully supported in both the 
sendmail and Postfix MTAs; Exim uses filters and ACLs instead. See milter.org 
for a catalog of available milters, complete with user ratings, license information, 
and statistics on downloads and updates.

MTAs invoke milters on incoming messages while they are still connected to the 
sending site. Milters can recognize the profile of a virus or spam message and 
report back to the MTA, discard the message, create log entries, or take whatever 
other action you feel is appropriate. Milters have access to both metadata and 
message content. 

Miltering is potentially a powerful tool both for fighting spam and viruses and for 
violating users’ privacy. A touchy situation evolves when managers want to know 
exactly what proprietary information is leaving the organization by email, while 
employees feel that their email should be private. Make sure employee agreements 
are explicit about any kind of scanning you intend to do.

SPF and Sender ID

The best way to fight spam is to stop it at its source. This sounds simple and easy, 
but in reality it’s almost an impossible challenge. The structure of the Internet 
makes it difficult to track the real source of a message and to verify its authentic-
ity. The community needs a sure-fire way to verify that the entity sending an 
email is really who or what it claims to be.

Many proposals have addressed this problem, but SPF and Sender ID have 
achieved the most traction. SPF, or Sender Policy Framework, has been described 
by the IETF in RFC4408. SPF defines a set of DNS records (see page 588) through 
which an organization can identify its official outbound mail servers. MTAs can 

  



ptg

768 Chapter 20 Electronic Mail 

then refuse email purporting to be from that organization’s domain if the email 
does not originate from one of these official sources. Of course, the system only 
works well if the majority of organizations publish SPF records. Several milters 
available for download implement SPF-checking functionality.

Sender ID and SPF are virtually identical in form and function. However, key 
parts of Sender ID are patented by Microsoft, and hence it has been the subject of 
much controversy. As of this writing, Microsoft is still trying to strong-arm the 
industry into adopting its proprietary standards. The IETF chose not to choose 
and published RFC4406 on Sender ID and RFC4408 on SPF. Both are classified as 
experimental, so it’s up to the marketplace to decide between them.

Messages that are relayed break SPF and Sender ID, which is a serious flaw in both 
systems. The receiver consults the SPF record for the original sender to discover 
its list of authorized servers. However, those addresses won’t match any relay ma-
chines that were involved in transporting the message. Be careful what decisions 
you make based on SPF failures.

DomainKeys, DKIM, and ADSP

See Chapter 17 for 
more information 
about DKIM in DNS.

DKIM (DomainKeys Identified Mail) is a cryptographic signature system for 
email messages. It lets the receiver verify not only the sender’s identity but also the 
fact that a message has not been tampered with in transit. The system uses DNS 
records to publish a domain’s cryptographic keys and message-signing policy.

The original DomainKeys system is a precursor to DKIM that offers similar func-
tionality and was championed by Yahoo!. It is still in use. DKIM and DomainKeys 
do not collide, and sites can verify signatures of both types. For signing new mes-
sages, it’s best to use DKIM.

ADSP (Author Domain Signing Practice) DNS records let senders declare their 
signing policies for each subdomain. For example, a bank might state that it signs 
all mail from transactions.mybank.com. Anyone who receives unsigned mail (or 
mail on which the signature can’t be verified) that claims to be from that domain 
should refuse or quarantine it. However, marketing.mybank.com might not sign 
its messages at all. 

For a while, ADSP was called SSP (sender signing policy), so you might still see 
either type of DNS TXT record. DKIM is supported by all the MTAs described in 
this chapter, but real-world deployment has been slow. We are not sure why.

Even if you don’t want to refuse messages based on DKIM or SPF verification 
failures, you can still use the information to increase the messages’ spam score or 
to change your behavior to accord with the sender’s reputation.

MTA-specific antispam features

Each MTA has configuration options that can help ameliorate spam problems. 
For example, some MTAs can determine that they are being asked to do a zillion 

  



ptg

amavisd-new 769

El
ec

tr
on

ic
 M

ai
l

RCPTs and can introduce a delay of, say, 15 seconds between RCPTs for connec-
tions that are abusing them.

We cover spam-related configuration options with the rest of the details of MTA 
configuration. For sendmail, see page 789; for Exim, see page 818; and for Postfix, 
see page 840. DKIM and ADSP are discussed in more detail on page 845 of this 
chapter and in Chapter 17, beginning on page 590.

MailScanner

Julian Field’s MailScanner (mailscanner.info) is an actively maintained, flexible, 
open source scanner for mail hubs; it recognizes spam, viruses, and phishing at-
tempts. It’s written in Perl and uses external antivirus (ClamAV and 25 other 
tools) and antispam (SpamAssassin) software. Its antiphishing component, called 
ScamNailer (scamnailer.info), is independent and does not depend on MailScan-
ner. You can adjust MailScanner’s configuration rulesets at the granularity of us-
ers, domains, or IP addresses. 

MailScanner is not a milter, but rather a stand-alone program that operates on the 
MTA’s mail queues. For example, you might configure the MTA in your DMZ to 
accept messages (after in-line checks with milters, blacklists, etc.) and put them in 
an inbound queue. You’d have MailScanner read messages from that queue, do its 
antispam, antivirus, and antiphishing magic, and transfer the messages that pass 
muster into a separate outbound queue. Another instance of the MTA could then 
process the outbound queue and deliver the messages. 

One disadvantage of this system is that mail rejected by MailScanner creates 
bounce messages and can therefore contribute to backscatter spam.

Although MailScanner is free, commercial support is available. It also has an ac-
tive user mailing list and a dedicated IRC channel that is monitored 24/7. It’s well 
documented both on-line and in the book MailScanner: A User Guide and Train-
ing Manual by Julian Field. MailScanner’s configuration file comes with so many 
comments that the configuration primitives almost get lost; once you’re an expert, 
you might want to delete some of the boilerplate.

You can capture statistics from MailScanner through a web front-end called Mail-
Watch. MRTG can graph the data, as illustrated in Exhibit C (next page). Note the 
huge spike that occurred on September 19th, probably an attack of some type.

amavisd-new

amavisd-new is an interface between MTAs and various virus and spam scanners 
such as ClamAV and SpamAssassin. It was originally based on AMaViS (A Mail 
Virus Scanner) but has little in common with the original these days. It’s written 
in Perl and is developed by Mark Martinec; the web site is ijs.si/software/amavisd. 
We follow the maintainers’ conventions in referring to the overall package as 
(boldfaced) amavisd-new; however, the daemon itself is called amavisd.

  



ptg

770 Chapter 20 Electronic Mail

Exhibit C MRTG graph of mail traffic

amavisd-new communicates with the MTA through a local domain or TCP 
socket. It can filter either in-line (when used as a milter, before the MTA has ac-
cepted a message) or after a message has been accepted but before it is delivered to 
the recipients.

Why use another piece of software when your MTA can do its own scanning with 
milters and the like? One answer is that it’s convenient to keep the configuration 
of all your filters in one place. It’s also likely to be easier to respond to a new attack 
or to include a new tool if all your filtering is coordinated through one interface. 
Another benefit is that the scanner can run on a separate machine and thereby 
distribute some of the load of accepting and processing messages on a busy server. 
A good compromise is to do easy, quick checks in your MTA and to hand the 
more expensive checks to a tool like amavisd.

amavisd can interface to many antispam and antivirus scanning packages. It is 
quite powerful but has a couple of disadvantages:

• The documentation is a bit scattered, and it’s not clear what is current 
and what is old and no longer true.

• The configuration is complicated. There are lots of parameters and sub-
tly different variants of those parameters.

How amavisd works
amavisd stands between the MTA that holds the message to be vetted and the 
software that will actually do the checking. amavisd listens for connections from 
the MTA on TCP port 10,024, speaks SMTP or LMTP to receive messages, and 
returns its answers to the MTA on port 10,025. It can also use a local domain 
socket if it is running on the same machine as the MTA. 

Vo
lu

m
e 

(g
ig

ab
yt

es
)

N
o.

 o
f m

es
sa

ge
s

Total Mail Processed by Date
3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

Volume (Gb) Mail Spam

  



ptg

Basic amavisd configuration 771

El
ec

tr
on

ic
 M

ai
l

If amavisd hands the scanned message and results back to the MTA from which 
the message was originally received, filtering can be done in-line and the message 
rejected during the MTA’s initial SMTP session. If amavisd instead queues mes-
sages for an internal mail hub, the filtering is off-line and naughty messages can 
be dropped or bounced.

See Chapter 21 for 
more information 
about SNMP.

amavisd is meticulous about not losing mail, not letting messages slip by without 
being checked, honoring individual recipients’ wishes, and following the stan-
dards laid out in the various email-related RFCs. Despite being written in Perl, 
amavisd has pretty good performance. It scans each message only once, no matter 
how many recipients are associated with it. Logging can be quite extensive, and 
tools in the distribution can monitor filtering through SNMP. amavisd does not 
need to run as root and has a good security history. 

amavisd installation
Download the latest version of the software from ijs.si/software/amavisd or grab a 
Linux package and skip the steps detailed in the INSTALL file at the top of the 
distribution hierarchy. The project home page has pointers to precompiled pack-
ages. amavisd expects to run as user and group vscan or amavis, so it might be 
easiest to create that user and group and then log in as vscan to get the software 
and install it. After you have amavisd installed and working correctly, change the 
account’s login shell to /bin/false or some other restricted shell.

The file amavisd.conf-default contains a list of every possible configuration pa-
rameter and its default value. amavisd.conf-sample is a more typical commented 
sample config file. Finally, amavisd.conf is a minimal starting place (but still over 
750 lines long!) with some comments for variables that must be changed. The 
configuration language is Perl.

Basic amavisd configuration
Here is a basic amavisd configuration for a host called mail.example.com, where 
the MTA and amavisd are running on the same machine and using TCP and the 
SMTP protocol to communicate with each other.

use strict;

$myhostname = 'mail.example.com'; 
@local_domains_maps = (['.example.com']); 
@mynetworks = qw(127.0.0.0/8 192.168.0.0/16);

$forward_method = 'smtp:[127.0.0.1]:10025'; 
$enable_db = 1; 
$enable_global_cache = 1; 
$max_servers = 5; 
$DO_SYSLOG = 1; 
$SYSLOG_LEVEL = "mail.info"; 
$bypass_decode_parts = 1;

  



ptg

772 Chapter 20 Electronic Mail

$final_virus_destiny = D_REJECT; 
$final_banned_destiny = D_REJECT; 
$final_bad_header_destiny = D_PASS; 
$log_recip_templ = undef;

@av_scanners = ( 
['ClamAV-clamd',

\&ask_daemon, ["CONTSCAN {}\n", "/var/run/clamav/clamd"], 
qr/\bOK$/m, qr/\bFOUND$/m, 
qr/^.*?: (?!Infected Archive)(.*) FOUND$/m ],

); 
1;

More than 40 antispam and antivirus programs are listed in the sample config-
uration’s av_scanners array; this excerpt shows only ClamAV. The 1; at the end of 
the file is a Perlism that ensures that the file itself will evaluate to true in any Perl 
context that reads it.

amavisd-new tools
The amavisd-new distribution includes two handy tools: amavisd-nanny and 
amavisd-agent. The nanny monitors the health of amavisd, and the agent 
provides access to lots of SNMP-like counters and gauges in real time. Both 
require the Berkeley DB library.

amavisd-nanny shows the state of all amavisd processes, what messages they are 
working on, what they are doing, and how long they have been doing it. Running 
it with the -h flag shows a usage message and also a list of states that amavisd can 
be in. Most interesting are S for spam scanning, V for virus scanning, and a dot 
(period) for being idle. A state character is printed every second with a colon 
character every ten to make it easier to count. You should run the amavisd-nanny
occasionally just to see how the system is doing. Here’s an example:

$ sudo amavisd-nanny 
process-id task-id elapsed in elapsed-bar (dots indicate idle)

or state idle or busy 
PID 01422: 0:09:51 .........:.........:.........:..... 
PID 26784: 26784-18 0:00:01 ==
PID 01422: 0:09:53 .........:.........:.........:..... 
PID 26784: 0:00:03 ...

amavisd-agent is an SNMP-like agent that collects statistics from all the running 
daemons and can show things like the number of messages processed, the time to 
process each, the percent that contain viruses, the most common viruses, etc. 
Here is a massively truncated example:

$ sudo amavisd-agent 
entropy STR ipwvEIo5VA 
sysContact STR 
sysDescr STR amavisd-new-2.6.1 (20080629) 
sysLocation STR 
sysObjectID OID 1.3.6.1.4.1.15312.2.1

  



ptg

Tests of your MTA’s scanning effectiveness 773

El
ec

tr
on

ic
 M

ai
l

sysServices INT 64 
sysUpTime Timeticks 111090596 (12 days, 20:35:05.96)
…
ContentVirusMsgs 1274 3/h 0.5% (InMsgs)…
InMsgs 247458 515/h 100.0% (InMsgs)…
InMsgsRecips 297574 619/h 120.3% (InMsgs)…
InMsgsSize 28728MB 60MB/h 100.0% (InMsgsSize)…
TimeElapsedTotal 62518s 0.253s/msg (InMsgs)… 
virus.byname.W32/MyDoom-N 9 0/h 15.5% (ContentVirusM…
virus.byname.Troj/BredoZp-H 8 0/h 13.8% (ContentVirusM…

The first numerical column is the absolute count of an item, followed by the cal-
culated rate and a percentage value in relation to the baseline of which it’s a subset, 
shown in parentheses.

In this case, the mail server processed 247,458 messages in 12 days with an aver-
age of 1.2 recipients per message (InMsgsRecips is 120.3% of InMsgs). The server 
detected 1,274 viruses, which represents about 0.5% of the total mail traffic. The 
scanners required 0.253 seconds on average to process a mail message. The two 
most frequent viruses were MyDoom-N and BredoZp-H.

Tests of your MTA’s scanning effectiveness

When testing that your MTA is correctly identifying viruses and other malware, 
you need to use real, infected messages to verify that your countermeasures are 
actually identifying them and dealing with them appropriately. So don’t do this in 
a production environment in case things get out of hand. Set up a secure, physi-
cally separate test lab that is not connected to your production network. 

Antivirus researchers have compiled a small test file and given it to EICAR, the 
European Expert Group for IT-Security (eicar.org/anti_virus_test_file.htm) to 
distribute. It is not actually a virus, just a distinctive sequence of bytes that antivi-
rus applications add to their databases as a virus (usually under a descriptive 
name such as EICAR-AV-Test). You can email, share, and reproduce the test file 
freely without worrying about starting a virus outbreak. EICAR provides several 
versions of the file so that you can test for the file in various wrappers such as ZIP.

GTUBE, the generic test for unsolicited bulk email, is a similar file for testing 
spam filters. It’s available from spamassassin.apache.org/gtube.

If you are testing and debugging by speaking SMTP to your MTA, check out the 
SWAKS tool (SWiss Army Knife SMTP, jetmore.org/john/code/#swaks) by John 
Jetmore. It’s written in Perl and lets you test SMTP conversations easily with com-
mand-line arguments. The man page or swaks --help gets you documentation. It 
requires the libraries libnet-ssleay-perl and libnet-dns-perl if you want to test 
SMTP authentication. It’s not rocket science, but it’s definitely faster than typing 
SMTP commands by hand.

  



ptg

774 Chapter 20 Electronic Mail

20.7 EMAIL CONFIGURATION 

The heart of an email system is its MTA, or mail transport agent. sendmail was 
the original UNIX MTA, written by Eric Allman while he was a graduate student 
at UC Berkeley many years ago. Since then, a host of other MTAs have been devel-
oped. Some of them are commercial products and some are open source imple-
mentations. In this chapter, we cover three open source mail transport agents: 
sendmail, Postfix by Wietse Venema of IBM Research, and Exim by Philip Hazel 
of the University of Cambridge. 

After the top-level design of the mail system, configuration of the MTA is the next 
big sysadmin chore. Fortunately, the default or sample configurations that ship 
with MTAs are often very close to what the average site needs. You don’t have to 
start from scratch when configuring your MTA.

SecuritySpace (securityspace.com) does a monthly survey to determine the mar-
ket share of the various MTAs. In their December 2009 survey, 1.7 million out of 2 
million MTAs responded, and 950,000 replied with a banner that identified the 
MTA software in use. Table 20.4 shows these results, as well as the SecuritySpace 
results for 2007 and some 2001 values from a different survey.

The trend is clearly away from sendmail and toward Exim and Postfix, with Mi-
crosoft gaining market share and then leveling off. Among our example operating 
systems, the UNIX variants all ship sendmail. Ubuntu is moving from Postfix to 
Exim, SUSE ships Postfix, and Red Hat includes all three but defaults to sendmail.

For each of our MTAs, we include details on the configuration necessary to ac-
complish many of the features of our suggested mail system design, including

• Configuration of simple clients
• Configuration of an Internet-facing mail server
• Control of both inbound and outbound mail routing
• Stamping of mail as coming from a central server or the domain itself
• Security
• Debugging

Table 20.4 Mail transport agent market share

MTA Source
Market share 

2009 2007 2001

Exim exim.org 30% 20% 8%
Postfix postfix.org 20% 15% 2%
MS Exchange microsoft.com/exchange 20% 22% 4%
sendmail sendmail.org 19% 29% 60%
All others – <3% each <3% each < 3% each

  



ptg

sendmail 775

El
ec

tr
on

ic
 M

ai
l

If you are implementing a mail system from scratch and have no site politics or 
biases to deal with, it may be hard to choose an MTA. sendmail and Exim are 
certainly the most complex and probably the most configurable and most power-
ful options. Postfix is simpler, faster, and was designed with security as a primary 
goal. If your site or your sysadmins have a history with a particular MTA, it’s 
probably not worth switching unless you need functionality that’s not available in 
your old MTA.

sendmail configuration is covered in the next section. Exim configuration begins 
on page 807, and Postfix configuration on page 828.

20.8 SENDMAIL

The sendmail distribution in source form is available from sendmail.org, but it’s 
rarely necessary to build it from scratch these days. If you have to, refer to the top-
level INSTALL file. If you need to tweak some of the build defaults, you can find 
sendmail’s assumptions in devtools/OS/your-OS-name, and you can add features 
by editing devtools/Site/site.config.m4. sendmail uses the m4 macro preproces-
sor not only during compilation but also for configuration. An m4 configuration 
file is usually named hostname.mc and is then translated from a slightly user-
friendly syntax into a totally inscrutable low-level language in the file hostname.cf, 
which is in turn installed as /etc/mail/sendmail.cf.

To see what version of sendmail is installed on your system and how it was com-
piled, try the following command:

linux$ /usr/sbin/sendmail -d0.1 -bt < /dev/null 
Version 8.13.8
 Compiled with: DNSMAP HESIOD HES_GETMAILHOST LDAPMAP LOG 

MAP_REGEX MATCHGECOS MILTER MIME7TO8 MIME8TO7 NAMED_BIND 
NETINET NETINET6 NETUNIX NEWDB NIS PIPELINING SASLv2 SCANF 
SOCKETMAP STARTTLS TCPWRAPPERS USERDB USE_LDAP_INIT

============ SYSTEM IDENTITY (after readcf) ============
      (short domain name) $w = ross
  (canonical domain name) $j = ross.atrust.com
         (subdomain name) $m = atrust.com
              (node name) $k = ross.atrust.com 
========================================================

This command puts sendmail in address test mode (-bt) and debug mode (-d0.1) 
but gives it no addresses to test (</dev/null). A side effect is that sendmail tells us 
its version and the compiler flags it was built with. Once you know the version 
number, you can look at the sendmail.org web site to see if any known security 
vulnerabilities are associated with that release.

To find the sendmail files on your system, look at the beginning of the installed 
/etc/mail/sendmail.cf file. The comments there mention the directory in which 
the configuration was built. That directory should in turn lead you to the .mc file 
that is the original source of the configuration.

  



ptg

776 Chapter 20 Electronic Mail 

Most vendors that ship sendmail include not only the binary but also the cf direc-
tory from the distribution tree, which they hide somewhere among the operating 
system files. Table 20.5 will help you find it.

The switch file

The service switch is 
covered in more detail 
in Chapter 19.

Most systems have a “service switch” configuration file, /etc/nsswitch.conf, that 
enumerates the methods that can satisfy various standard queries such as user and 
host lookups. If more than one resolution method is listed for a given type of 
query, the service switch file also determines the order in which the various meth-
ods are consulted.

The existence of the service switch is normally transparent to software. However, 
sendmail likes to exert fine-grained control over its lookups, so it currently ig-
nores the system switch file and uses its own internal service configuration file 
(/etc/mail/service.switch) instead.

Two fields in the switch file impact the mail system: aliases and hosts. The possi-
ble values for the hosts service are dns, nis, nisplus, and files. For aliases, the 
possible values are files, nis, nisplus, and ldap. Support for the mechanisms you 
use (except files) must be compiled into sendmail before the service can be used.

Starting sendmail

sendmail should not be controlled by inetd or xinetd, so it must be explicitly 
started at boot time. See Chapter 3, Booting and Shutting Down, for startup de-
tails. The flags that sendmail is started with determine its behavior. You can run 
sendmail in several modes, selected with the -b flag. -b stands for “be” or “be-
come” and is always used with another flag that determines the role sendmail will 
play. Table 20.6 lists the legal values and also includes the -A flag, which selects 
between MTA and MSA behavior. 

If you are configuring a server that will accept incoming mail from the Internet, 
run sendmail in daemon mode (-bd). In this mode, sendmail listens on network 
port 25 and waits for work.8 You will usually specify the -q flag, too—it sets the 

Table 20.5 sendmail configuration directory location

System Directory

Ubuntu /usr/share/sendmail 

SUSE /usr/share/sendmail

Red Hat /usr/share/sendmail-cf

Solaris /etc/mail/cf

HP-UX /usr/newconfig/etc/mail/cf

AIX /usr/samples/tcpip/sendmail/cf

8. The ports that sendmail listens on are determined by DAEMON_OPTIONS; port 25 is the default.

  



ptg

Starting sendmail 777

El
ec

tr
on

ic
 M

ai
l

interval at which sendmail processes the mail queue. For example, -q30m runs 
the queue every thirty minutes, and -q1h runs it every hour. 

sendmail normally tries to deliver a message immediately, saving it in the queue 
only momentarily to guarantee reliability. But if your host is too busy or the desti-
nation machine is unreachable, sendmail queues the message and tries to send it 
again later. sendmail uses persistent queue runners that are usually started at boot 
time. It does locking, so multiple, simultaneous queue runs are safe. The “queue 
groups” configuration feature helps with large mailing lists and queues. It is cov-
ered in more detail starting on page 802.

sendmail reads its configuration file, sendmail.cf, only when it starts up. There-
fore, you must either kill and restart sendmail or send it a HUP signal when you 
change the config file. sendmail creates a sendmail.pid file that contains its pro-
cess ID and the command that started it. You should start sendmail with an abso-
lute path because it re-execs itself on receipt of the HUP signal. The sendmail.pid
file allows the process to be HUPed with the command

$ sudo kill -HUP ‘head -1 sendmail.pid‘ 

The location of the PID file is OS-dependent. It’s usually /var/run/sendmail.pid
or /etc/mail/sendmail.pid but can be set in the config file with the confPID_FILE
option:

define(confPID_FILE, `/var/run/sendmail.pid')

Table 20.6 Command-line flags for sendmail’s major modes

Flag Meaning 

-Ac Uses the submit.cf config file and acts as an MSA 
-Am Uses the sendmail.cf config file and acts as an MTA

-ba Runs in ARPANET mode (expects CR/LF at the ends of lines) 
-bd Runs in daemon mode and listens for connections on port 25 
-bD Runs in daemon mode, but in the foreground rather than the backgrounda

-bh Views recent connection info (same as hoststat) 
-bH Purges disk copy of outdated connection info (same as purgestat) 
-bi Initializes hashed aliases (same as newaliases) 

-bm Runs as a mailer, delivers mail in the usual way (default) 
-bp Prints mail queue (same as mailq) 
-bP Prints the number of entries in queues via shared memory 
-bs Enters SMTP server mode (on standard input, not port 25) 
-bt Enters address test mode 
-bv Verifies mail addresses only; doesn’t send mail

a. This mode is used for debugging so that you can see the error and debugging messages.

  



ptg

778 Chapter 20 Electronic Mail 

Mail queues

sendmail uses at least two queues: /var/spool/mqueue when acting as an MTA 
on port 25, and /var/spool/clientmqueue when acting as an MSA on port 587.9
All messages make at least a brief stop in the queue before being sent on their way.

A queued message is saved in pieces in several different files. Each filename has a 
two-letter prefix that identifies the piece, followed by a random ID built from 
sendmail’s process ID. Table 20.7 shows the six possible pieces. 

If subdirectories qf, df, or xf exist in a queue directory, then those pieces of the 
message are put in the proper subdirectory. The qf file contains not only the mes-
sage header but also the envelope addresses, the date at which the message should 
be returned as undeliverable, the message’s priority in the queue, and the reason 
the message is in the queue. Each line begins with a single-letter code that identi-
fies the rest of the line.

Each message that is queued must have a qf and df file. All the other prefixes are 
used by sendmail during attempted delivery. When a machine crashes and re-
boots, the startup sequence for sendmail should delete the tf, xf, and Tf files from 
each queue. The sysadmin responsible for mail should check occasionally for Qf
files in case local configuration is causing the bounces. An occasional glance at 
the queue directories lets you spot problems before they become disasters.

The mail queue opens up several opportunities for things to go wrong. For exam-
ple, the filesystem can fill up (avoid putting /var/spool/mqueue and /var/log on 
the same partition), the queue can become clogged, or orphaned mail messages 
can get stuck in the queue. sendmail has configuration options to help with per-
formance on very busy machines; we have collected these in the performance sec-
tion starting on page 802.

20.9 SENDMAIL CONFIGURATION

sendmail’s actions are controlled by a single configuration file, typically called 
/etc/mail/sendmail.cf for a sendmail running as an MTA or /etc/mail/submit.cf 

9. sendmail can use multiple queues beneath mqueue to increase performance; see page 802.

Table 20.7 Prefixes for files in the mail queue

Prefix File contents 

qf The message header and control file 
df The body of the message 
tf A temporary version of the qf file while the qf file is being updated 
Tf Signifies that 32 or more failed locking attempts have occurred 
Qf Signifies that the message bounced and could not be returned 
xf Temporary transcript file of error messages from mailers

  



ptg

The sendmail configuration pieces 779

El
ec

tr
on

ic
 M

ai
l

for a sendmail acting as an MSA. The flags with which sendmail is started deter-
mine which config file it uses: -bm, -bs, and -bt use submit.cf if it exists, and all 
other modes use sendmail.cf. You can change these names with command-line 
flags or config file options, but it is best not to. 

The raw config file format was designed to be easy to parse by machines, not 
humans. The m4 source (.mc) file from which the .cf file is generated is an im-
provement, but its picky and rigid syntax isn’t going to win any awards for user 
friendliness, either. Fortunately, many of the paradigms you might want to set up 
have already been hammered out by others with similar needs and are supplied in 
the distribution as prepackaged features. 

sendmail configuration involves several steps:

• Deciding the role of the machine you are configuring: client, server, 
Internet-facing mail receiver, etc.

• Choosing the features needed to implement that role and building an 
.mc file for the configuration

• Compiling the .mc file with m4 to produce a .cf config file

We cover the features commonly used for site-wide, Internet-facing servers and 
for little desktop clients. For more detailed coverage, we refer you to two key 
pieces of documentation on the care and feeding of sendmail: the O’Reilly book 
sendmail  by Bryan Costales et al. and the file cf/README from the distribution.

The m4 preprocessor

m4, originally intended as a front end for programming languages, lets users write 
more readable (or perhaps more cryptic) programs. m4 is powerful enough to be 
useful in many input transformation situations, and it works nicely for sendmail
configuration files.

m4 macros have the form
name(arg1, arg2, …, argn)

There cannot be any space between the name and the opening parenthesis. Left 
and right single quotes designate strings as arguments. m4’s quote conventions 
are weird, since the left and right quotes are different characters. Quotes nest, too. 

m4 has some built-in macros, and users can also define their own. Table 20.8 on 
the next page lists the most common built-in macros that are used in sendmail
configuration.

The sendmail configuration pieces

The sendmail distribution includes a cf subdirectory beneath which are all the 
pieces necessary for m4 configuration. Table 20.5 on page 776 shows the location 
of the cf directory if you did not install the sendmail source but relied on your 
vendor. The README file there is sendmail’s configuration documentation. The 

  



ptg

780 Chapter 20 Electronic Mail

subdirectories, listed in Table 20.9, contain examples and snippets you can include 
in your own configuration.

The cf/cf directory contains examples of .mc files. In fact, it contains so many 
examples that yours may get lost in the clutter. We recommend that you keep your 
own .mc files separate from those in the distributed cf directory. Either create a 
new directory named for your site (cf/sitename) or move the cf directory aside to 
cf.examples and create a new cf directory. If you do this, copy the Makefile and 
Build script over to your new directory so the instructions in the README file 
still work. Alternatively, you can copy all of your own configuration .mc files to a 
central location rather than leaving them inside the sendmail distribution. The 
Build script uses relative pathnames, so you’ll have to modify it if you want to 
build a .cf file from an .mc file and are not in the sendmail distribution hierarchy.

The files in the cf/ostype directory configure sendmail for each specific operating 
system. Many are predefined, but if you have moved things around on your sys-
tem, you might have to modify one or create a new one. Copy one that is close to 
reality for your system and give it a new name.

The cf/feature directory is where you will shop for all the configuration pieces 
you might need. There is a feature for just about anything that any site running 
sendmail has found useful.

Table 20.8 m4 macros commonly used with sendmail

Macro Function

define Defines a macro named arg1 with value arg2 
undefine Discards a previous definition of macro named arg1 
include Includes (interpolates) the file named arg1 
dnl Discards characters up to and including the next newline 
divert Manages output streams

Table 20.9 sendmail configuration subdirectories

Directory Contents 

cf Sample .mc (master configuration) files 
domain Sample m4 files for various domains at Berkeley 
feature Fragments that implement various features 
hack Special features of dubious value or implementation 
m4 The basic config file and other core files 
ostype OS-dependent file locations and quirks 
mailer m4 files that describe common mailers (delivery agents) 
sh Shell scripts used by m4

  



ptg

A configuration file built from a sample .mc file 781

El
ec

tr
on

ic
 M

ai
l

The other directories beneath cf are pretty much boilerplate and do not need to be 
tweaked or even understood—just use them.

A configuration file built from a sample .mc file

Before we dive into the details of the various configuration macros, features, and 
options you might use in a sendmail configuration, let’s put the cart before the 
horse and create a “no frills” configuration to illustrate the general process. Our 
example is for a leaf node, myhost.example.com; the master configuration file is 
called myhost.mc. Here’s the complete .mc file:

divert(-1) 
#### basic .mc file for example.com 
divert(0)
VERSIONID(`$Id$')
OSTYPE(`linux')
MAILER(`local')
MAILER(`smtp')

Except for the diversions and comments, each line invokes a prepackaged macro. 
The first four lines are boilerplate; they insert comments in the compiled file to 
note the version of sendmail, the directory the configuration was built in, etc. The 
OSTYPE macro includes the ../ostype/linux.m4 file. The MAILER lines allow for 
local delivery (to users with accounts on myhost.example.com) and for delivery to 
Internet sites. 

To build the real configuration file, just run the Build command you copied over 
to the new cf directory:

$ ./Build myhost.cf

Finally, install myhost.cf in the right spot—normally /etc/mail/sendmail.cf, but 
some vendors move it. Favorite vendor hiding places are /etc and /usr/lib.

At a larger site, you may want to create a separate m4 file to hold site-wide de-
faults; put it in the cf/domain directory. Individual hosts can then include the 
contents of this file by using the DOMAIN macro. Not every host needs a separate 
config file, but each group of similar hosts (same architecture and same role: 
server, client, etc.) will probably need its own configuration.

The order of the macros in the .mc file is not arbitrary. It should be
VERSIONID 
OSTYPE 
DOMAIN 
FEATURE 
local macro definitions 
MAILER

Even with sendmail’s easy m4 configuration system, you still have to make several 
configuration decisions for your site. As you read about the features described 
below, think about how they might fit into your site’s organization. A small site 

  



ptg

782 Chapter 20 Electronic Mail 

will probably have only a hub node and leaf nodes and thus will need only two 
versions of the config file. A larger site may need separate hubs for incoming and 
outgoing mail and, perhaps, a separate POP/IMAP server.

Whatever the complexity of your site and whatever face it shows to the outside 
world (exposed, behind a firewall, or on a virtual private network, for example), 
it’s likely that the cf directory contains some appropriate ready-made configura-
tion snippets just waiting to be customized and put to work.

20.10 SENDMAIL CONFIGURATION PRIMITIVES

sendmail configuration commands are case sensitive. By convention, the names 
of predefined macros are all caps (e.g., OSTYPE), m4 commands are all lower case 
(e.g., define), and configurable option names usually start with lowercase conf
and end with an all-caps variable name (e.g., confFALLBACK_MX). Macros usu-
ally refer to an m4 file called ../macroname/arg1.m4. For example, the reference 
OSTYPE(`linux') causes the file ../ostype/linux.m4 to be included.

Tables and databases

Before we dive into specific configuration primitives, we must first discuss tables 
(sometimes called maps or databases), which sendmail can use to do mail routing 
or address rewriting. Most are used in conjunction with the FEATURE macro.

A table is a cache (usually a text file) of routing, aliasing, policy, or other informa-
tion that is converted to a database format with the makemap command and then 
used as an information source for one or more of sendmail’s various lookup oper-
ations. Although the data usually starts as a text file, data for sendmail tables can 
come from DNS, NIS, LDAP, or other sources. The use of a centralized IMAP 
server relieves sendmail of the chore of chasing down users and obsoletes some of 
its tables.

Two database libraries are supported: the dbm/ndbm library that is standard with 
most versions of UNIX and Linux, and Berkeley DB, which is a more extensible 
library that supports multiple storage schemes. We recommend BDB if your sys-
tem has it or you can install it. It’s faster than dbm and creates smaller files. 

sendmail defines three database map types:

• dbm – uses an extensible hashing algorithm (dbm/ndbm)
• hash – uses a standard hashing scheme (DB)
• btree – uses a B-tree data structure (DB)

For most table applications in sendmail, the hash database type—the default—is 
the best. Use the makemap command to build the database file from a text file; 
you specify the database type and the output file base name. The text version of 
the database should appear on makemap’s standard input. For example:

$ sudo makemap hash /etc/mail/access < /etc/mail/access

  



ptg

OSTYPE macro 783

El
ec

tr
on

ic
 M

ai
l

At first glance this command looks like a mistake that would cause the input file 
to be overwritten by an empty output file. However, makemap tacks on an appro-
priate suffix, so the actual output file is /etc/mail/access.db and in fact there is no 
conflict. Each time the text file is changed, the database file must be rebuilt with 
makemap (but sendmail need not be HUPed).

Comments can appear in the text files from which maps are produced. They begin 
with # and continue until the end of the line.

In most circumstances, the longest possible match is used for database keys. As 
with any hashed data structure, the order of entries in the input text file is not 
significant. FEATUREs that expect a database file as a parameter default to hash as 
the database type and /etc/mail/tablename.db as the filename for the database. 

Generic macros and features

Table 20.10 lists common configuration primitives, whether they are typically 
used (yes, no, maybe), and a brief description of what they do. More details and 
examples are given in the sections following the table.

OSTYPE macro
An OSTYPE file packages a variety of vendor-specific information, such as the 
expected locations of mail-related files, paths to commands that sendmail needs, 
flags to mailer programs, etc. See cf/README for a list of all the variables that 
can be defined in an OSTYPE file.10 

Table 20.10 Sendmail generic configuration primitives

Primitive Used? Description

OSTYPE Yes Includes OS-specific paths and mailer flags
DOMAIN No Includes site-specific configuration details
MAILER Yes Enables mailers, typically smtp and local
FEATURE Maybe Enables a variety of sendmail features

use_cw_file Yes (servers) Lists hosts for which you accept mail
redirect Maybe (servers) Bounces mail nicely when users move 
always_add_domain Yes Fully qualifies hostnames if UA didn’t
access_db Maybe (servers) Sets database of hosts to relay mail for 
virtusertable Maybe (servers) Turns on domain aliasing (virtual domains) 
ldap_routing Maybe (servers) Routes incoming mail using LDAP 

MASQUERADE_AS Yes Makes all mail seem to come from one place
EXPOSED_USER Yes Lists users who shouldn’t be masqueraded
MAIL_HUB Yes (servers) Specifies mail server for incoming mail
SMART_HOST Yes (clients) Specifies mail server for outgoing mail

10. So where is the OSTYPE macro itself defined? In a file in the cf/m4 directory, which is magically 
prepended to your config file when you run the Build script.

  



ptg

784 Chapter 20 Electronic Mail

Each of our example systems except SUSE includes the appropriate OSTYPE file 
from the sendmail distribution. SUSE instead has its own suse_linux.m4 file. 
That file is long (over 80 lines compared to 5 lines in the comparable linux.m4
file) and contains numerous FEATUREs and other macros that are usually found 
in a site’s master configuration file (the .mc file) and not in the OSTYPE file. This 
hides the real configuration from the sysadmin—a mixed blessing, perhaps, but 
not a practice we recommend. 

DOMAIN macro
The DOMAIN directive lets you specify site-wide generic information in one place 
(cf/domain/filename.m4) and then include it in each host’s config file with

DOMAIN(`filename')

MAILER macro
You must include a MAILER macro for every delivery agent you want to enable. 
You’ll find a complete list of supported mailers in the directory cf/mailers, but 
typically you need only local, smtp, and maybe cyrus. MAILER lines are generally 
the last thing in the .mc file.

FEATURE macro
The FEATURE macro enables a whole host of common scenarios (56 at last 
count!) by including m4 files from the feature directory. The syntax is

FEATURE(keyword, arg, arg, …)

where keyword corresponds to a file keyword.m4 in the cf/feature directory and 
the args are passed to it. There can be at most nine arguments to a feature.

use_cw_file feature
The sendmail internal class w (hence the name cw) contains the names of all local 
hosts for which this host accepts and delivers mail. This feature specifies that mail 
be accepted for the hosts listed, one per line, in /etc/mail/local-host-names. The 
configuration line

FEATURE(`use_cw_file')

invokes the feature. A client machine does not really need this feature unless it has 
nicknames, but your incoming mail hub machine does. The local-host-names file 
should include any local hosts and virtual domains for which you accept email, 
including sites whose backup MX records point to you. 

Without this feature, sendmail delivers mail locally only if it is addressed to the 
machine on which sendmail is running.

If you add a new host at your site, you must add it to the local-host-names file 
and send a HUP signal to sendmail to make your changes take effect. Unfortu-
nately, sendmail reads this file only when it starts.

  



ptg

access_db feature 785

El
ec

tr
on

ic
 M

ai
l

redirect feature
When people leave your organization, you usually either forward their mail or let 
mail to them bounce back to the sender with an error. The redirect feature pro-
vides support for a more elegant way of bouncing mail. 

If Joe Smith has graduated from oldsite.edu (login smithj) to newsite.com (login 
joe), then enabling redirect with

FEATURE(`redirect')

and adding the line
smithj: joe@newsite.com.REDIRECT

to the aliases file at oldsite.edu causes mail to smithj to be returned to the sender 
with an error message suggesting that the sender try the address joe@newsite.com 
instead. The message itself is not automatically forwarded.

always_add_domain feature
The always_add_domain feature makes all email addresses fully qualified. It 
should always be used.

access_db feature
The access_db feature controls relaying and other policy issues. Typically, the raw 
data that drives this feature either comes from LDAP or is kept in a text file called 
/etc/mail/access. In the latter case, the text file must be converted to some kind of 
indexed format with the makemap command, as described on page 782. To use 
the flat file, use FEATURE(`access_db') in the configuration file; for the LDAP ver-
sion, use FEATURE(`access_db', `LDAP').11

The key field in the access database is an IP network or a domain name with an 
optional tag such as Connect:, To:, or From:. The value field specifies what to do 
with the message.

The most common values are OK to accept the message, RELAY to allow it to be 
relayed, REJECT to reject it with a generic error indication, or ERROR:"error code 
and message" to reject it with a specific message. Other possible values allow for 
finer-grained control. Here is a snippet from a sample /etc/mail/access file:

localhost RELAY 
127.0.0.1 RELAY 
192.168.1.1 RELAY 
192.168.1.17 RELAY
66.77.123.1 OK 
fax.com OK
61 ERROR:"550 We don't accept mail from spammers"
67.106.63 ERROR:"550 We don't accept mail from spammers"

11. This form uses the default LDAP schema defined in the file cf/sendmail.schema; if you want a differ-
ent schema file, use additional arguments in your FEATURE statement.

  



ptg

786 Chapter 20 Electronic Mail 

virtusertable feature
The virtusertable feature supports domain aliasing for incoming mail. This fea-
ture allows multiple virtual domains to be hosted on one machine and is used 
frequently at web hosting sites. The key field of the table contains either an email 
address (user@host.domain) or a domain specification (@domain). The value field 
is a local or external email address. If the key is a domain, the value can either pass 
the user field along as the variable %1 or route the mail to a different user. Here 
are some examples:

@appliedtrust.com %1@atrust.com 
unix@book.admin.com sa-book-authors@atrust.com 
linux@book.admin.com sa-book-authors@atrust.com 
webmaster@example.com billy.q.zakowski@colorado.edu 
info@testdomain.net ausername@hotmail.com

All the host keys on the left side of the data mappings must be listed in the cw file, 
/etc/mail/local-host-names, or be included in the VIRTUSER_DOMAIN list. If 
they are not, sendmail will not know to accept the mail locally and will try to find 
the destination host on the Internet. But DNS MX records will point sendmail
back to this same server and you will get a “local configuration error” message in 
the resulting bounce message. Unfortunately, sendmail cannot tell that the error 
message for this instance should really be “virtusertable key not in cw file.”

ldap_routing feature
LDAP, the Lightweight Directory Access Protocol, can be a source of data for 
aliases or mail routing information as well general tabular data as described ear-
lier. The cf/README file has a long section on LDAP with lots of examples. 

To use LDAP in this way, you must have built sendmail to include LDAP support. 
In your .mc file, add the lines

define(`confLDAP_DEFAULT_SPEC', `-h server -b searchbase') 
FEATURE(`ldap_routing') 
LDAPROUTE_DOMAIN(`my_domain')

Those lines tell sendmail that you want to use an LDAP database to route incom-
ing mail addressed to the specified domain. The LDAP_DEFAULT_SPEC option 
identifies the LDAP server and the LDAP basename for searches. LDAP uses port 
389 unless you specify a different port by adding -p ldap_port to the define.

sendmail uses the values of two tags in the LDAP database:

• mailLocalAddress for the addressee on incoming mail
• mailRoutingAddress for the destination to which email should be sent

sendmail also supports the tag mailHost, which if present routes mail to the MX-
designated mail handler for the specified host. The recipient address remains the 
value of the mailRoutingAddress tag.

  



ptg

MAIL_HUB and SMART_HOST macros 787

El
ec

tr
on

ic
 M

ai
l

LDAP database entries support a wild card entry, @domain, that reroutes mail 
addressed to anyone at the specified domain (as was done in the virtusertable).

By default, mail addressed to user@host1.mydomain would first trigger a lookup 
on user@host1.mydomain. If that failed, sendmail would try @host1.mydomain 
but not user@mydomain. Including the line

LDAPROUTE_EQUIVALENT(`host1.mydomain')

would also try the keys user@mydomain and @mydomain. This feature enables a 
single database to route mail at a complex site. You can also take the entries for the 
LDAPROUTE_EQUIVALENT clauses from a file, which makes the feature quite us-
able. The syntax for that form is

LDAPROUTE_EQUIVALENT_FILE(‘filename‘)

Additional arguments to the ldap_routing feature let you specify more details 
about the LDAP schema and control the handling of addressee names that have a 
+detail part. As always, see the cf/README file for exact details.

Masquerading features
An email address is usually made up of a username, a host, and a domain, but 
many sites do not want the names of their hosts exposed on the Internet. The 
MASQUERADE_AS macro lets you specify a single identity for other machines to 
hide behind. All mail appears to emanate from the designated machine or do-
main. This is fine for regular users, but for debugging purposes, system users such 
as root should be excluded from the masquerade.

For example, the sequence
MASQUERADE_AS(`atrust.com') 
EXPOSED_USER(`root') 
EXPOSED_USER(`Mailer-Daemon')

would stamp mail as coming from user@atrust.com unless it was sent by root or 
the mail system; in these cases, the mail would carry the name of the originating 
host. MASQUERADE_AS is just the tip of a vast masquerading iceberg that ex-
tends downward through a dozen variations and exceptions. The allmasquerade
and masquerade_envelope features (in combination with MASQUERADE_AS) 
hide just the right amount of local info. See the cf/README for details.

MAIL_HUB and SMART_HOST macros
Masquerading makes all mail appear to come from a single host or domain by 
rewriting the headers and, optionally, the envelope. But most sites will want all 
mail to actually come from (or go to) a single machine so that they can control the 
flow of viruses, spam, and company secrets. You can achieve this control with a 
combination of MX records in the DNS, the MAIL_HUB macro for incoming mail, 
and the SMART_HOST macro for outgoing mail.

  



ptg

788 Chapter 20 Electronic Mail

See page 583 for more 
information about 
DNS MX records.

For example, in the architectural diagram on page 754, MX records would direct 
incoming email from the Internet to the MTA in the demilitarized zone. After 
verification that the received email was free of viruses and spam and was directed 
to valid local users, the mail could be relayed, with the following define, to the 
internal routing MTA for delivery:

define(`MAIL_HUB', `smtp:routingMTA.mydomain')

See the next section for 
more about nullclient. 

Likewise, client machines would relay their mail to the SMART_HOST designated 
in the nullclient feature in their configuration. The SMART_HOST could then 
filter for viruses and spam so that mail from your site did not pollute the Internet. 

The syntax of SMART_HOST parallels that of MAIL_HUB, and the default delivery 
agent is again relay. For example:

define(`SMART_HOST', `smtp:outgoingMTA.mydomain')

You can use the same machine as the server for both incoming and outgoing mail. 
Both the SMART_HOST and the MAIL_HUB must allow relaying, the first from 
clients inside your domain and the second from the MTA in the DMZ. 

Client configuration

If your site follows the paradigms illustrated in the mail system design section 
(page 753), most of your machines will need to be configured as clients who just 
submit outgoing mail generated by users and don’t receive mail at all. One of 
sendmail’s FEATUREs, nullclient, is just right for this situation. It creates a config 
file that forwards all mail to a central hub via SMTP. The entire config file, after 
the VERSIONID and OSTYPE lines, would be simply

FEATURE(`nocanonify') 
FEATURE(`nullclient', `mailserver') 
EXPOSED_USER(`root')

where mailserver is the name of your central hub. The nocanonify feature tells 
sendmail not to do DNS lookups or rewrite addresses with fully qualified domain 
names. All of that work will be done by the mailserver host. This feature is similar 
to SMART_HOST and assumes that the client will MASQUERADE_AS mailserver. 
The EXPOSED_USER clause exempts root from the masquerading and so facili-
tates debugging.

The mailserver machine must allow relaying from its null clients. That permission 
is granted in the access_db, described on page 785. The null client must have an 
associated MX record that points to mailserver and must also be included in the 
mailserver’s cw file (usually /etc/mail/local-host-names). These settings allow the 
mailserver to accept mail for the client.

sendmail should run as an MSA (without the -bd flag) if the user agents on the 
client machine can be taught to use port 587 for submitting mail. If not, you can 
run sendmail in daemon mode (-bd) but set the DAEMON_OPTIONS configura-
tion option to listen for connections only on the loopback interface.

  



ptg

Spam-related features in sendmail 789

El
ec

tr
on

ic
 M

ai
l

SUSE provides a sample .mc file for a null client in /etc/mail/linux.nullclient.mc. 
Fill in the name of your mail server, build the sendmail.cf file, and you’re done.

Configuration options

You set config file options with m4’s define command. A complete list of options 
that are accessible as m4 variables (along with their default values) is given in the 
cf/README file. 

The defaults are OK for a typical site that is not too paranoid about security and 
not too concerned with performance. The defaults try to protect you from spam 
by turning off relaying, by requiring addresses to be fully qualified, and by requir-
ing that senders’ domains resolve to an IP address. If your mail hub machine is 
very busy and services a lot of mailing lists, you may need to tweak some of the 
performance values.

Table 20.11 on the next page lists some options that you might need to adjust 
(about 10% of over 175 configuration options). Their default values are shown in 
parentheses. To save space, the option names are shown without their conf prefix; 
for example, the FALLBACK_MX option is really named confFALLBACK_MX. We 
divided the table into subsections that identify the kind of issue the variable ad-
dresses: resource management, performance, security and spam abatement, and 
miscellaneous options. Some options fit in more than one category, but we listed 
them only once.

Spam-related features in sendmail

sendmail has a variety of features and configuration options that can help you 
control spam and viruses:

• Rules that control third-party (aka promiscuous, aka open) relaying; that 
is, the use of your mail server by one off-site user to send mail to another 
off-site user. Spammers often use relaying to mask the true source of 
their mail and thereby avoid detection by ISPs. Relaying also lets spam-
mers use your cycles and save their own.

• The access database for filtering recipient addresses. This feature is 
rather like a firewall for email.

• Blacklists that catalog open relays and known spam-friendly sites that 
sendmail can check against.

• Throttles that can slow down mail acceptance when certain types of bad 
behavior are detected.

• Header checking and input mail filtering by means of a generic mail fil-
tering interface called libmilter. It allows arbitrary scanning of message 
headers and content and lets you reject messages that match a particular 
profile. Milters are plentiful and very powerful; see milter.org.

  



ptg

790 Chapter 20 Electronic Mail

Couple these with techniques like greylisting (page 764), content scanning with 
amavisd-new (page 769), and the new DNS records for email authentication 
(page 767), and you might stand a fighting chance against the spammers.

Table 20.11 Basic sendmail configuration options

Option name Description (default value)

Re
so

ur
ce

s MAX_DAEMON_CHILDREN Max number of child processesa (no limit)
MAX_MESSAGE_SIZE Max size in bytes of a single message (infinite)
MIN_FREE_BLOCKS Min filesystem space to accept mail (100)
TO_lots_of_stuff Timeouts for all kinds of things (various)

Pe
rfo

rm
an

ce

DELAY_LA Load avg. to slow down deliveries (0 = no limit)
FALLBACK_MX See page 803 for description (no default)
FAST_SPLIT Suppresses MX lookups as recipients are sorted 

and split across queues (1 = true)
HOST_STATUS_DIRECTORY See page 803 for description (no default)
MCI_CACHE_SIZE # of open outgoing TCP connections cached (2)
MCI_CACHE_TIMEOUT Time to keep cached connections open (5m)
MIN_QUEUE_AGE Minimum time jobs must stay in queue; makes a 

busy machine handle the queue better (0)
QUEUE_LA Load average at which mail should be queued 

instead of delivered immediately (8 * #CPUs)
REFUSE_LA Load avg. at which to refuse mail (12 * #CPUs)

Se
cu

rit
y 

an
d 

sp
am

AUTH_MECHANISMS SMTP auth mechanisms for Cyrus SASLb

CONNECTION_RATE_THROTTLE Slows DOS attacks by limiting the rate at which 
mail connections are accepted (no limit)

DONT_BLAME_SENDMAIL Overrides sendmail’s security and file checking; 
don’t change casually! (safe)

MAX_MIME_HEADER_LENGTH Sets max size of MIME headers (no limit)c

MAX_RCPTS_PER_MESSAGE Slows spam delivery; defers extra recipients and 
sends a temporary error msg (infinite)

PRIVACY_FLAGS Limits info given out by SMTP (authwarnings)

M
isc

DOUBLE_BOUNCE_ADDRESS Catches a lot of spam; some sites use /dev/null, 
but that can hide serious problems (postmaster)

LDAP_DEFAULT_SPEC Map spec for LDAP database, including the host 
and port the server is running on (undefined)

a. More specifically, the maximum number of child processes that can run at once. When the limit is 
reached, sendmail refuses connections. This option can prevent (or create) denial of service attacks.

b. The default value is EXTERNAL GSSAPI KERBEROS_V4 DIGEST-MD5 CRAM-MD5; don’t add PLAIN LOGIN, 
because the password is transmitted as cleartext. That may be OK internally, but not on the Internet 
unless the connection is also secured through the use of SSL.

c. This option can prevent user agent buffer overflows. “256/128” is a good value to use—it means 256 
bytes per header and 128 bytes per parameter to that header.

  



ptg

Relay control 791

El
ec

tr
on

ic
 M

ai
l

Relay control
sendmail accepts incoming mail, looks at the envelope addresses, decides where 
the mail should go, and then passes it along to an appropriate destination. That 
destination can be local or it can be another transport agent farther along in the 
delivery chain. When an incoming message has no local recipients, the transport 
agent that handles it is said to be acting as a relay. 

Only hosts that are tagged with RELAY in the access database (see page 785) or 
that are listed in /etc/mail/relay-domains are allowed to submit mail for relaying. 
Some types of relaying are useful and legitimate. How can you tell which messages 
to relay and which to reject? Relaying is actually necessary in only three situations:

• When the transport agent acts as a gateway for hosts that are not reach-
able in any other way; for example, hosts that are not always turned on 
(laptops, Windows PCs) and virtual hosts. In this situation, all the recip-
ients for which you want to relay lie within the same domain.

• When the transport agent is the outgoing mail server for other, not-so-
smart hosts. In this case, all the senders’ hostnames or IP addresses will 
be local (or at least enumerable).

• When you have agreed to be a backup MX destination for another site.

Any other situation that appears to require relaying is probably just an indication 
of bad design (with the possible exception of support for mobile users). You can 
obviate the first use of relaying (above) by designating a centralized server to re-
ceive mail, with POP or IMAP being used for client access. The second case 
should always be allowed, but only for your own hosts. You can check IP ad-
dresses or hostnames. In the third case, you can list the other site in your access 
database and allow relaying just for that site’s IP address blocks.

Although sendmail comes with relaying turned off by default, several features 
have been added to turn relaying back on, either fully or in a limited and con-
trolled way. These features are listed below for completeness, but our recommen-
dation is that you be careful about opening things up too much. The access_db
feature is the safest way to allow limited relaying.

• FEATURE(`relay_entire_domain') – allows relaying for just your domain
• RELAY_DOMAIN(`domain, …') – adds more domains to be relayed
• RELAY_DOMAIN_FILE(`filename') – same; takes domain list from a file
• FEATURE(`relay_hosts_only') – affects RELAY_DOMAIN, accessdb

You will need to make an exception if you use the SMART_HOST or MAIL_HUB
designations to route mail through a particular mail server machine. That server 
will have to be set up to relay mail from local hosts. Configure it with

FEATURE(`relay_entire_domain')

  



ptg

792 Chapter 20 Electronic Mail

If you consider turning on relaying in some form, consult the sendmail docu-
mentation in cf/README to be sure you don’t inadvertently become a friend of 
spammers. When you are done, have one of the relay-checking sites verify that 
you did not inadvertently create an open relay—try spamhelp.org.

User or site blacklisting
If you have local users or hosts to which you want to block mail, use

FEATURE(`blacklist_recipients')

which supports the following types of entries in your access file:
To:nobody@ ERROR:550 Mailbox disabled for this user 
To:printer.mydomain ERROR:550 This host does not accept mail 
To:user@host.mydomain ERROR:550 Mailbox disabled for this user

These lines block incoming mail to user nobody on any host, to host printer, and 
to a particular user’s address on one machine. The use of the To: tag lets these 
users send messages, just not receive them; some printers have that capability.

To include a DNS-style blacklist for incoming email, use the dnsbl feature:
FEATURE(`dnsbl', `zen.spamhaus.org')

This feature makes sendmail reject mail from any site whose IP address is in any 
of the three blacklists of known spammers (SBL, XBL, and PBL) maintained at 
spamhaus.org. Other lists catalog sites that run open relays and known blocks of 
addresses that are likely to be a haven for spammers. These blacklists are distrib-
uted through a clever tweak of the DNS system; hence the name dnsbl. See page 
766 for a more complete explanation of how the system works.

You can pass a third argument to the dnsbl feature to specify the error message 
you would like returned. If you omit this argument, sendmail returns a fixed er-
ror message from the DNS database that contains the records.

You can include the dnsbl feature several times to check different lists of abusers.

Throttles, rates, and connection limits
Table 20.12 lists several sendmail controls that can slow down mail processing 
when clients’ behavior appears suspicious.

Table 20.12 sendmail’s “slow down” configuration primitives

Primitive Description

BAD_RCPT_THROTTLE Slows down spammers collecting addresses 
MAX_RCPTS_PER_MESSAGE Defers delivery if a message has too many recipients 
ratecontrol feature Limits the rate of incoming connections 
conncontrol feature Limits the number of simultaneous connections 
greet_pause feature Delays HELO response, requires strict SMTP compliance

  



ptg

Throttles, rates, and connection limits 793

El
ec

tr
on

ic
 M

ai
l

After the no-such-login count reaches the limit set in the BAD_RCPT_THROTTLE
option, sendmail sleeps for one second after each rejected RCPT command, slow-
ing a spammer’s address harvesting to a crawl. To set that threshold to 3, use

define(`confBAD_RCPT_THROTTLE', `3')

Setting the MAX_RCPTS_PER_MESSAGE option causes the sender to queue extra 
recipients for later. This is a cheap form of greylisting for messages that have a 
suspiciously large number of recipients.

The ratecontrol and conncontrol features allow per-host or per-net limits on the 
rate at which incoming connections are accepted and the number of simultaneous 
connections, respectively. Both use the /etc/mail/access file to specify the limits 
and the domains to which that they should apply, the first with the tag ClientRate:
in the key field and the second with tag ClientConn:. To enable rate controls, in-
sert lines like these in your .mc file:12

FEATURE(`ratecontrol', `nodelay',`terminate') 
FEATURE(`conncontrol', `nodelay',`terminate')

Then, add to your /etc/mail/access file the list of hosts or nets to be controlled 
and their restriction thresholds. For example, the lines

ClientRate:192.168.6.17 2 
ClientRate:170.65.3.4 10

limit the hosts 192.168.6.17 and 170.65.3.4 to two new connections per minute 
and ten new connections per minute, respectively. The lines

ClientConn:192.168.2.8 2 
ClientConn:175.14.4.1 7 
ClientConn: 10

set limits of two simultaneous connections for 192.168.2.8, seven for 175.14.4.1, 
and ten simultaneous connections for all other hosts.

Another nifty feature is greet_pause. When a remote MTA connects to your 
sendmail server, the SMTP protocol mandates that it wait for your server’s wel-
come greeting before speaking. However, it’s common for spam mailers to blurt 
out an EHLO/HELO command immediately. This behavior is partially explain-
able as poor implementation of the SMTP protocol in spam-sending tools, but it 
may also be a feature that aims to save time on the spammer’s behalf. Whatever 
the cause, this behavior is suspicious and is known as “slamming.”

The greet_pause feature makes sendmail wait for a specified period of time at the 
beginning of the connection before greeting its newfound friend. If the remote 
MTA does not wait to be properly greeted and proceeds with an EHLO or HELO 
command during the planned awkward moment, sendmail logs an error and re-
fuses subsequent commands from the remote MTA. 

12. FEATURE(`access_db') must be there too.

  



ptg

794 Chapter 20 Electronic Mail

You can enable greeting pauses with this entry in the .mc file:
FEATURE(`greet_pause', `700')

This line causes a 700 millisecond delay at the beginning of every new connec-
tion. You can set per-host or per-net delays with a GreetPause: prefix in the access 
database, but most sites use a blanket value for this feature. 

Milter configuration in sendmail

Miltering in general is introduced on page 767; this section describes how to con-
figure miltering in sendmail. The configuration directives INPUT_MAIL_FILTER
and MAIL_FILTER control the miltering action. A slew of options give you fine-
grained control over exactly when in the SMTP conversation each filter is applied 
(MILTER_MACROS_*). For example, the line

INPUT_MAIL_FILTER(`filtername', `S=mailer:/var/run/filtername.socket')

passes each incoming message to the /etc/mail/filtername program through the 
socket specified in the second argument. Below is a more realistic example that 
uses milters to connect to SpamAssassin through a local domain socket and to 
check DKIM signatures with the dkim-filter program through a TCP socket at 
port 8699.

dnl # Enable SpamAssassin 
INPUT_MAIL_FILTER(`spamassassin', 
`S=local:/var/run/spamass-milter.sock, F=, T=C:15m;S:4m;R:4m;E:10m')

dnl # Enable DomainKeys and DKIM 
INPUT_MAIL_FILTER(`dkim-filter', `S=inet:8699@127.0.0.1, T=R:2m')

define(`confMILTER_MACROS_CONNECT', `j, {daemon_name}') 
define(`confMILTER_MACROS_ENVFROM', `i, {auth_type}')

The last two statements set parameters passed to the milters when the session 
connection starts and after the MAIL FROM command, respectively. 

For more information, see libmilter/README or the HTML documentation in 
the libmilter/docs directory of the sendmail distribution. The README file 
gives an overview and a simple example of a filter that logs messages to a file. The 
files in docs describe the library interface and tell how to use the various calls to 
build your own mail filtering programs. milter.org is a great reference.

amavisd and sendmail connection

amavisd is an external, industrial strength virus and spam scanner introduced on 
page 769. This section illustrates how to use it with sendmail.

The easiest way to connect sendmail and amavisd is to use two mail servers: one 
that receives mail from the Internet and passes it to amavisd; the other that runs 
in queue-only mode, receives scanned messages from amavisd, and transmits 
them on their way, either for local delivery or to the Internet. amavisd sits in the 

  



ptg

Security and sendmail 795

El
ec

tr
on

ic
 M

ai
l

middle, acting as a MAIL_HUB for incoming mail and a SMART_HOST for outgo-
ing mail.

Unfortunately, this scheme scans messages off-line, after sendmail has already ac-
cepted them for delivery. To use amavisd in-line, see the file README.milter in 
the amavisd-new documentation.

The key configuration lines on the Internet-facing server—the ones that pass all 
mail to the amavisd process listening on port 10,024—are

FEATURE(`stickyhost') 
define(`MAIL_HUB', `esmtp:[127.0.0.1]') 
define(`SMART_HOST', `esmtp:[127.0.0.1]') 
define(`confDELIVERY_MODE', `q') 
define(`ESMTP_MAILER_ARGS', `TCP $h 10024') 
DAEMON_OPTIONS(`Name=receivingMTA')

This last line makes debugging the configuration much easier because you can 
then tell which process (the receiving sendmail, the transmitting sendmail, or 
amavisd) is logging what messages.

After scanning, amavisd passes messages to the queueing-only sendmail process 
listening on port 10,025 (not port 25 as usual), and from there, queue runners 
either complete local delivery or ship the messages out to the Internet.

On the transmitting server, setting
DAEMON_OPTIONS(`Addr=127.0.0.1, Port=10025, Name=transmittingMTA')

tells sendmail to listen on port 10,025 for messages returning from amavisd. It 
logs any info or error messages with the name transmittingMTA to distinguish it 
from the receivingMTA.

There are more settings you can tweak (for example, performance limits) to make 
sure the two instances of sendmail play well together. Some thought needs to go 
into deciding exactly what checks will be done, which process will do them, and 
in what order they will occur.

The file README_FILES/README.sendmail-dual in the amavisd-new distri-
bution is a good reference.

20.11 SECURITY AND SENDMAIL

With the explosive growth of the Internet, programs such as sendmail that accept 
arbitrary user-supplied input and deliver it to local users, files, or shells have fre-
quently provided an avenue of attack for hackers. sendmail, along with DNS and 
even IP, is flirting with authentication and encryption as a built-in solution to 
some of these fundamental security issues.

sendmail supports both SMTP authentication and encryption with TLS, Trans-
port Layer Security (formerly known as SSL, the Secure Socket Layer). TLS 

  



ptg

796 Chapter 20 Electronic Mail 

brought with it six new configuration options for certificate files and key files. 
New actions for access database matches can require that authentication must 
have succeeded.

In this section, we describe sendmail’s permissions model, ownerships, and pri-
vacy protection. We then briefly discuss TLS and SASL (the Simple Authentica-
tion and Security Layer) and their use with sendmail.

sendmail carefully inspects file permissions before it believes the contents of, say, 
a .forward or an aliases file. Although this tightening of security is generally wel-
come, it’s sometimes necessary to relax the tough policies. To this end, sendmail
introduced the DontBlameSendmail option, so named in hopes that the name 
will suggest to sysadmins that what they are doing is considered unsafe.

This option has many possible values—55 at last count. The default is safe, the 
strictest possible. For a complete list of values, see doc/op/op.ps in the sendmail
distribution or the O’Reilly sendmail book. Or just leave the option set to safe.

Ownerships

Three user accounts are important in the sendmail universe: the DefaultUser, the 
RunAsUser, and the TrustedUser.

By default, all of sendmail’s mailers run as the DefaultUser unless the mailer’s 
flags specify otherwise. If a user mailnull, sendmail, or daemon exists in the 
/etc/passwd file, DefaultUser will be that. Otherwise, it defaults to UID 1 and 
GID 1. We recommend the use of the mailnull account and a mailnull group. Add 
it to /etc/passwd with a star as the password, no valid shell, no home directory, 
and a default group of mailnull. You’ll have to add the mailnull entry to the group
file, too. The mailnull account should not own any files. If sendmail is not run-
ning as root, the mailers must be setuid.

If RunAsUser is set, sendmail ignores the value of DefaultUser and does every-
thing as RunAsUser. If you are running sendmail setgid (to smmsp), then the 
submission sendmail just passes messages to the real sendmail through SMTP. 
The real sendmail does not have its setuid bit set, but it runs as root from the 
startup files.

The RunAsUser is the UID that sendmail runs under after opening its socket 
connection to port 25. Ports numbered less than 1,024 can be opened only by the 
superuser; therefore, sendmail must initially run as root. However, after perform-
ing this operation, sendmail can switch to a different UID. Such a switch reduces 
the risk of damage or access if sendmail is tricked into doing something bad. 
Don’t use the RunAsUser feature on machines that support user accounts or other 
services; it is meant for use on firewalls or bastion hosts only.13

13. Bastion hosts are specially hardened hosts intended to withstand attack when placed in a DMZ or out-
side a firewall.

  



ptg

Permissions 797

El
ec

tr
on

ic
 M

ai
l

By default, sendmail does not switch identities and continues to run as root. If 
you change the RunAsUser to something other than root, you must change sev-
eral other things as well. The RunAsUser must own the mail queue, be able to 
read all maps and include files, be able to run programs, etc. Expect to spend a few 
hours finding all the file and directory ownerships that must be changed.

sendmail’s TrustedUser can own maps and alias files. The TrustedUser is allowed 
to start the daemon or rebuild the aliases file. This facility exists mostly to sup-
port GUI interfaces to sendmail that need to provide limited administrative con-
trol to certain users. If you set TrustedUser, be sure to guard the account that it 
points to because this account can easily be exploited to gain root access. The 
TrustedUser is different from the TRUSTED_USERS class, which determines who 
can rewrite the From line of messages.14

Permissions

File and directory permissions are important to sendmail security. Use the set-
tings listed in Table 20.13 to be safe.

sendmail refuses to read files that have lax permissions (for example, files that are 
group- or world-writable or that live in group- or world-writable directories). In 
particular, sendmail is very picky about the complete path to any alias file or for-
ward file. This pickiness sometimes clashes with the way sites like to manage 
mailing list aliases. To see where you stand with respect to sendmail’s ideas about 
permissions, run sendmail -v -bi. The -bi flag initializes the alias database and 
warns you of inappropriate permissions.

Solaris has a handy program, check-permissions, that understands sendmail’s se-
curity standards and reports unsafe paths or files. It follows includes in aliases and 
.forward files. It can check either the invoking user or all users, depending on the 
command-line flags.

sendmail no longer reads .forward files that have link counts greater than 1 if the 
directory paths that lead to them have lax permissions. This rule bit Evi when one 
of her .forward files, which she usually hard-linked to either .forward.to.boulder 

14. The TRUSTED_USERS feature is typically used to support mailing list software.

Table 20.13 Owner and permissions for sendmail-related directories

Path Owner Mode What it contains 

/var/spool/clientmqueue smmsp:smmsp 770 Queue for initial submissions 
/var/spool/mqueue RunAsUser 700 Mail queue directory
/, /var, /var/spool root 755 Path to mqueue

/etc/mail/* TrustedUser 644 Maps, the config file, aliases
/etc/mail TrustedUser 755 Parent directory for maps
/etc root 755 Path to mail directory

  



ptg

798 Chapter 20 Electronic Mail 

or .forward.to.sandiego, silently failed to forward her mail from a small site at 
which she did not receive much mail. It was months before she realized that “I 
never got your mail” was her own fault and not a valid excuse.

You can turn off many of the restrictive file access policies mentioned above with 
the DontBlameSendmail option. But don’t do that.

Safer mail to files and programs

We recommend that you use smrsh instead of /bin/sh as your program mailer 
and that you use mail.local instead of /bin/mail as your local mailer. Both pro-
grams are included in the sendmail distribution. To incorporate them into your 
configuration, add the lines

FEATURE(`smrsh', `path-to-smrsh') 
FEATURE(`local_lmtp', `path-to-mail.local')

to your .mc file. If you omit the explicit paths, the commands are assumed to live 
in /usr/libexec. You can use sendmail’s confEBINDIR option to change the default 
location of the binaries to whatever you want. Table 20.14 may help you find 
where our friendly vendors have stashed things.

smrsh is a restricted shell that executes only the programs contained in one direc-
tory (/usr/adm/sm.bin by default). smrsh ignores user-specified paths and tries 
to find any requested commands in its own known-safe directory. smrsh also 
blocks the use of certain shell metacharacters such as <, the input redirection 
symbol. Symbolic links are allowed in sm.bin, so you don’t need to make dupli-
cate copies of the programs you allow. The vacation program is a good candidate 
for sm.bin. Don’t put procmail there; it’s insecure.

Here are some example shell commands and their possible smrsh interpretations:
vacation eric # Executes /usr/adm/sm.bin/vacation eric
cat /etc/passwd # Rejected, cat not in sm.bin 
vacation eric < /etc/passwd # Rejected, no < allowed

Table 20.14 Location of sendmail’s restricted delivery agents

OS smrsh mail.local sm.bin

sendmail /usr/libexec /usr/libexec /usr/adm

Ubuntu /usr/lib/sm.bin /usr/lib/sm.bin /usr/adm

SUSE /usr/lib/sendmail.d/bin /usr/lib/sendmail.d/bin – 
Red Hat /usr/sbin – /etc/smrsh

Solaris /usr/lib /usr/lib /var/adm

HP-UX /usr/sbin – /usr/adma

AIX /usr/sbin – /usr/adma

a. This directory does not exist on either HP-UX or AIX as shipped, so you must create it.

  



ptg

Privacy options 799

El
ec

tr
on

ic
 M

ai
l

sendmail’s SafeFileEnvironment option controls where files can be written when 
email is redirected to a file by aliases or a .forward file. It causes sendmail to 
execute a chroot system call, making the root of the filesystem no longer / but 
rather /safe or whatever path you specified in the SafeFileEnvironment option. 
An alias that directed mail to the /etc/passwd file, for example, would really be 
written to /safe/etc/passwd. 

The SafeFileEnvironment option also protects device files, directories, and other 
special files by allowing writes only to regular files. Besides increasing security, 
this option ameliorates the effects of user mistakes. Some sites set the option to 
/home to allow access to home directories while keeping system files off-limits.

Mailers can also be run in a chrooted directory.

Privacy options

sendmail also has privacy options that control 

• What external folks can determine about your site through SMTP
• What you require of the host on the other end of an SMTP connection
• Whether your users can see or run the mail queue

Table 20.15 lists the possible values for the privacy options as of this writing; see 
the file doc/op/op.ps in the distribution for current information.

Table 20.15 Values of the PrivacyOption variable

Value Meaning

public Does no privacy/security checking 
needmailhelo Requires SMTP HELO (identifies remote host) 
noexpn Disallows the SMTP EXPN command
novrfy Disallows the SMTP VRFY command 
needexpnhelo Does not expand addresses (EXPN) without a HELO 
needvrfyhelo Does not verify addresses (VRFY) without a HELO 
noverba Disallows verbose mode for EXPN 
restrictmailq Allows only mqueue directory’s group to see the queue 
restrictqrun Allows only mqueue directory’s owner to run the queue 
restrictexpand Restricts info displayed by the -bv and -v flagsb

noetrnc Disallows asynchronous queue runs 
authwarnings Adds warning header if outgoing message seems forged 
noreceipts Turns off delivery status notification for success return receipts 
nobodyreturn Does not return message body in a DSN 
goaway Disables all SMTP status queries (EXPN, VRFY, etc.)

a. Verbose mode follows .forward files when an EXPN command is given and reports more informa-
tion on the whereabouts of a user’s mail. Use noverb or, better yet, noexpn, on any machine 
exposed to the outside world.

b. Unless executed by root or the TrustedUser.

c. ETRN is an ESMTP command intended for use by dial-up hosts. It requests that the queue be run 
just for messages to that host.

  



ptg

800 Chapter 20 Electronic Mail

We recommend conservatism; in your .mc file, use
define(`confPRIVACY_OPTIONS', ``goaway, authwarnings, restrictmailq, 

restrictqrun'')

sendmail’s default value for the privacy options is authwarnings; the line above 
would reset that value. Notice the double sets of quotes; some versions of m4 re-
quire them to protect the commas in the list of privacy option values. Red Hat, 
Solaris, and AIX default to authwarnings; SUSE and Ubuntu to authwarnings, 
needmailhelo, novrfy, noexpn, and noverb; and HP-UX defaults to restrictqrun, 
goaway, and authwarnings, the most secure—go, HP!

Running a chrooted sendmail (for the truly paranoid)

If you are worried about the access that sendmail has to your filesystem, you can 
start it in a chrooted jail. (See page 913 in Chapter 22, Security, for more informa-
tion about chroot.) Create a minimal filesystem in your jail, including things like 
/dev/null, /etc essentials (passwd, group, resolv.conf, sendmail.cf, any map files, 
mail/*), the shared libraries that sendmail needs, the sendmail binary, the mail 
queue directory, and any log files. You will probably have to fiddle with the list to 
get it just right. Use the chroot command to start a jailed sendmail. For example:

$ sudo chroot /jail /usr/sbin/sendmail -bd -q30m

Denial of service attacks

Denial of service attacks are difficult to prevent because there is no a priori way to 
determine that a message is an attack rather than a valid piece of email. Attackers 
can try various nasty things, including flooding the SMTP port with bogus con-
nections, filling disk partitions with giant messages, clogging outgoing connec-
tions, and mail bombing. sendmail has some configuration parameters that can 
help slow down or limit the impact of a denial of service attack, but these parame-
ters can also interfere with legitimate mail. Milters can help sysadmins thwart a 
prolonged denial of service attack.

The MaxDaemonChildren option limits the number of sendmail processes. It 
prevents the system from being overwhelmed with sendmail work, but it also al-
lows an attacker to easily shut down SMTP service. The MaxMessageSize option 
can help prevent the mail queue directory from filling, but if you set it too low, 
legitimate mail will bounce. (You might mention your limit to users so that they 
aren’t surprised when their mail bounces. We recommend a fairly high limit any-
way, since some legitimate mail is huge.) The ConnectionRateThrottle option, 
which limits the number of permitted connections per second, can slow things 
down a bit. And finally, setting MaxRcptsPerMessage, which controls the maxi-
mum number of recipients allowed on a single message, might help.

sendmail has always been able to refuse connections (option REFUSE_LA) or 
queue email (QUEUE_LA) according to the system load average. A variation, 

  



ptg

TLS: Transport Layer Security 801

El
ec

tr
on

ic
 M

ai
l

DELAY_LA, keeps the mail flowing, but at a reduced rate. See page 803 in the 
performance section for details.

In spite of all these protections for your mail system, someone mail bombing you 
will still interfere with legitimate mail. Mail bombing can be quite nasty.

SASL: the Simple Authentication and Security Layer

sendmail supports the SMTP authentication system defined in RFC4954. It’s 
based on SASL, the Simple Authentication and Security Layer (RFCs 4422 and 
4752). SASL is a shared-secret system that is typically host-to-host; you must 
make explicit arrangements for each pair of servers that are to mutually authenti-
cate. It is usually used between user agents and MSAs or between MSAs and 
MTAs within a site.

SASL is a generic authentication mechanism that can be integrated into a variety 
of protocols. The SASL framework (it’s a library) has two fundamental concepts: 
an authorization identifier (like a login name) and an authentication identifier 
(like a password). It can map these to permissions on files, account passwords, 
Kerberos tickets, etc. SASL contains both an authentication part and an encryp-
tion component. To use SASL with sendmail, get a copy of Cyrus SASL from 
ftp.andrew.dmu.edu/pub/cyrus-mail.

TLS: Transport Layer Security

TLS, another encryption/authentication system, is specified in RFC3207. It is im-
plemented in sendmail as an extension to SMTP called STARTTLS. You can even 
use both SASL and TLS.

TLS is a bit harder to set up and requires a certificate authority. You can pay Veri-
Sign big bucks to issue you certificates (signed public keys identifying an entity), 
set up your own certificate authority, or go to OpenCA or equivalent. Strong au-
thentication is used in place of a hostname or IP address as the authorization to-
ken for relaying mail or for accepting a connection from a host in the first place. 
An entry such as

TLS_Srv:secure.example.com ENCR:112
TLS_Clt:laptop.example.com PERM+VERIFY:112

in the access_db indicates that STARTTLS is in use and that email to the domain 
secure.example.com must be encrypted with at least 112-bit encryption keys. 
Email from a host in the laptop.example.com domain should be accepted only if 
the client has authenticated itself.

Greg Shapiro and Claus Assmann of Sendmail, Inc., have stashed some (slightly 
dated) extra documentation about security and sendmail on the web. It’s available 
from sendmail.org/~gshapiro and sendmail.org/~ca. The index link in ~ca is es-
pecially useful.

  



ptg

802 Chapter 20 Electronic Mail

20.12 SENDMAIL PERFORMANCE

sendmail has several configuration options that improve performance. Although 
we have scattered them throughout the chapter, we expand on the most important 
ones in this section. These are options and features you should consider if you run 
a high-volume mail system (in either direction). Actually, if you really need to 
send 1,000,000 mail messages an hour and you aren’t a spammer, your best bet 
might be to use the commercial side of sendmail, Sendmail, Inc.

Delivery modes

sendmail has four basic delivery modes: background, interactive, queue, and de-
fer. Each represents a tradeoff between latency and throughput. Background 
mode delivers the mail immediately but requires sendmail to fork a new process 
to do it. Interactive mode also delivers immediately, but delivery is done by the 
same process and makes the remote side wait for the results. Queue mode queues 
incoming mail for delivery by a queue runner at some later time. Defer mode is 
similar to queue mode, but it also defers all map, DNS, alias, and forwarding look-
ups. Interactive mode is rarely used. Background mode favors lower latency, and 
defer or queueing mode favors higher throughput. The delivery mode is set with 
the option confDELIVERY_MODE and defaults to background.

Queue groups and envelope splitting

Queue groups let you create multiple queues for outgoing mail and control the 
attributes of each queue group individually. Queue groups are used with an enve-
lope-splitting feature that distributes an envelope with many recipients (such as a 
message sent to a mailing list) across multiple queue groups. Several configura-
tion primitives are used with queue groups. See the O’Reilly sendmail book or the 
cf/README file for examples and details.

Queue runners

sendmail forks copies of itself to perform the actual transport of mail. You can 
control how many copies are running at any given time and even how many cop-
ies are attached to each queue group. By using this feature, you can balance the 
activities of sendmail and the operating system on your busy mail hub machines.

Three sendmail options control the number of queue runner daemons processing 
each queue:

• The MAX_DAEMON_CHILDREN option specifies the total number of 
copies of the sendmail daemon that are allowed to run at any one time, 
including those running queues and those accepting incoming mail.

• The MAX_QUEUE_CHILDREN option sets the maximum number of 
queue runners allowed at one time.

  



ptg

Undeliverable messages in the queue 803

El
ec

tr
on

ic
 M

ai
l

• The MAX_RUNNERS_PER_QUEUE option sets the default runner limit 
per queue if no explicit value is set with the Runners= (or R=) parameter 
in the queue group definition.

Load average controls

sendmail has always been able to refuse connections or queue messages instead of 
delivering them when the system load average goes too high. Unfortunately, the 
load average has only a one-minute granularity, so it’s not a very finely honed tool 
for smoothing out the resources consumed by sendmail. The DELAY_LA primi-
tive lets you set a value of the load average at which sendmail should slow down; 
it will sleep for one second between SMTP commands for current connections 
and before accepting new connections. The default value is 0, which turns the 
mechanism off. 

Undeliverable messages in the queue

Undeliverable messages in the mail queue can really kill performance on a busy 
mail server. sendmail has several features that help with the issue of undeliverable 
messages. The most effective is the FALLBACK_MX option, which hands a mes-
sage off to another machine if it cannot be delivered on the first attempt. Your 
primary machine cranks out the messages to good addresses and shunts the prob-
lem children to a secondary fallback machine. Another aid is the host status direc-
tory, which stores the status of remote hosts across queue runs. 

The FALLBACK_MX option is a big performance win for a site with large mailing 
lists that invariably contain addresses that are temporarily or permanently unde-
liverable. To use it, you specify the host to handle the deferred mail. For example,

define(`confFALLBACK_MX', `mailbackup.atrust.com')

forwards messages that fail their first delivery attempt to mailbackup.atrust.com 
for further processing. There can be multiple fallback machines if the designated 
hosts have multiple MX records in DNS.

The TO_ICONNECT option sets a timeout on the initial attempt to connect and 
send a message. If you set it short, more work is shunted to the fallback MTA. 
However, it does let the main server whip through the first pass at a large mailing 
list in record time.

On the fallback machines, you can use the HOST_STATUS_DIRECTORY option to 
help with multiple failures. This option directs sendmail to maintain a status file 
for each host to which mail is sent and to use that status information to prioritize 
the hosts each time the queue is run. This status information effectively imple-
ments negative caching and allows information to be shared across queue runs. 
It’s a performance win on servers that handle mailing lists with a lot of bad ad-
dresses, but it can be expensive in terms of file I/O.

  



ptg

804 Chapter 20 Electronic Mail

Here is an example that uses the directory /var/spool/mqueue/.hoststat. (You 
must create the directory first.)

define(`confHOST_STATUS_DIRECTORY', `/var/spool/mqueue/.hoststat')

If the .hoststat directory is specified with a relative path, it is stored beneath the 
queue directory. sendmail creates its own internal hierarchy of subdirectories 
based on the destination hostname.

For example, if mail to evi@anchor.cs.colorado.edu were to fail, status informa-
tion would go in the /var/spool/mqueue/.hoststat/edu./colorado./cs. directory 
in a file called anchor. That’s because the host anchor has an MX record with itself 
as highest priority. If the DNS MX records had directed anchor’s email to host foo, 
then the filename would have been foo, not anchor.

A third performance enhancement for busy machines involves setting a mini-
mum queue age so that any message that cannot be delivered on the initial try 
stays in the queue for a minimum time between delivery attempts. This technique 
is usually coupled with command-line flags that run the queue more often (e.g., 
-q5m). If a queue runner hangs on a bad message, another one starts in 5 minutes, 
improving performance for the messages that can be delivered. The entire queue 
is run in batches determined by which messages have been there for the required 
minimum time. Running sendmail with the flags -bd -q5m and including

define(`confMIN-QUEUE_AGE', `27m')

in the config file could result in a more responsive system.

Kernel tuning

If you plan to use a UNIX or Linux box as a high-volume mail server, you should 
modify several of the kernel’s networking configuration parameters. Table 20.16 
shows the parameters to change under Linux on a high-volume mail server along 
with their suggested and default values. Similar parameters exist for UNIX, per-
haps under slightly different names.

To reset the parameters of the networking stack on a Linux box, use the shell’s 
echo command redirected to the proper variable in the /proc filesystem. Chapter 
14, TCP/IP Networking, contains a general description of this procedure starting 

Table 20.16 Kernel parameters to change on high-volume mail servers

Variable (relative to /proc/sys) Default Suggested 

net/ipv4/tcp_fin_timeout 180 30
net/ipv4/tcp_keepalive_time 7200 1800
net/core/netdev_max_backlog 300 1024
fs/file_max 4096 16384
fs/inode_max 16384 65536

  



ptg

sendmail testing and debugging 805

El
ec

tr
on

ic
 M

ai
l

on page 490. These changes can be made permanent with the sysctl command or 
by putting the appropriate echo commands in a shell script that runs at boot time.

For example, to change TCP’s FIN timeout value, you could use the following 
command:

linux$ sudo sh -c "echo 30 > /proc/sys/net/ipv4/tcp_fin_timeout"15

Solaris and HP-UX use the ndd command to tune network parameters. The HP-
UX implementation is well documented, and ndd -h (help) gives a clear descrip-
tion of each variable, its range of values, and the default value. Solaris’s ndd un-
derstands a question mark to mean that you want documentation, but you must 
backslash it (ndd \?) to protect it from the shell. Unfortunately, Solaris’s ndd just 
names the tunable variables instead of describing them.

For example, to change the FIN timeout value with ndd on HP-UX, run 
hp-ux$ sudo ndd -set tcp_fin_wait_2_timeout 30000

The time unit for ndd is milliseconds, thus the 30,000 instead of 30. On Solaris, 
the variable is called tcp_fin_wait_2_flush_interval, with no units given in the 
man page…but Google knows! In fact, the units are milliseconds, with the default 
value being 675,000. ndd is described in more detail in Chapter 14, TCP/IP Net-
working on page 498 for Solaris and page 504 for HP-UX.

AIX uses the no command to tune network parameters. sudo no -L lists tunable 
variables with their min, max, and current values along with the units of these 
values. If you want a change to be permanent, use no with the -p flag—your 
change will then survive a reboot.

For example, to set the TCP FIN_WAIT parameter, use
aix$ sudo no -p -o tcp_finwait2=60

The units are half-seconds, so the value 60 achieves the 30 seconds recommended 
in the tuning table above. no is also discussed on page 507.

20.13 SENDMAIL TESTING AND DEBUGGING

m4-based configurations are to some extent pretested. You probably won’t need to 
do low-level debugging if you use them. One thing the debugging flags cannot test 
is your design. While researching this chapter, we found errors in several of the 
configuration files and designs that we examined. The errors ranged from invok-
ing a feature without the prerequisite macro (e.g., using masquerade_envelope
without having turned on masquerading with MASQUERADE_AS) to total con-
flict between the design of the sendmail configuration and the firewall that con-
trolled whether and under what conditions mail was allowed in.

15. If you try this command in the form sudo echo 30 > /proc/sys/net/ipv4/tcp_fin_timeout, you just 
generate a “permission denied” message—your shell attempts to open the output file before it runs 
sudo. You want the sudo to apply to both the echo command and the redirection. Ergo, you must cre-
ate a root subshell in which to execute the entire command: sudo sh -c "echo…"

  



ptg

806 Chapter 20 Electronic Mail

You cannot design a mail system in a vacuum. You must be synchronized with (or 
at least not be in conflict with) your DNS MX records and your firewall policy.

Queue monitoring

You can use the mailq command (which is equivalent to sendmail -bp) to view 
the status of queued messages. Messages are queued while they are being deliv-
ered or when delivery has been attempted but has failed.

mailq prints a human-readable summary of the files in /var/spool/mqueue at any 
given moment. The output is useful for determining why a message may have 
been delayed. If it appears that a mail backlog is developing, you can monitor the 
status of sendmail’s attempts to clear the jam.

There are two default queues: one for messages received on port 25 and another 
for messages received on port 587 (the client submission queue). You can invoke 
mailq -Ac to see the client queue.

Here is some typical output from mailq. This case shows three messages waiting 
to be delivered:

$ sudo mailq 
/var/spool/mqueue (3 requests) 
-----Q-ID----- --Size-- -----Q-Time----- ------------Sender/Recipient-----------
k623gYYk008732 23217 Sat Jul 1 21:42 MAILER-DAEMON
      8BITMIME   (Deferred: Connection refused by agribusinessonline.com.) 

<Nimtz@agribusinessonline.com>
k5ULkAHB032374 279 Fri Jun 30 15:46 <randy@atrust.com>
                 (Deferred: Name server: k2wireless.com.: host name lookup fa) 

<relder@k2wireless.com>
k5UJDm72023576 2485 Fri Jun 30 13:13 MAILER-DAEMON
                 (reply: read error from mx4.level3.com.) 

<lfinist@bbnplanet.com>

If you think you understand the situation better than sendmail or you just want 
sendmail to try to redeliver the queued messages immediately, you can force a 
queue run with sendmail -q. If you use sendmail -q -v, sendmail shows the play-
by-play results of each delivery attempt, information that is often useful for de-
bugging. Left to its own devices, sendmail retries delivery every queue run inter-
val (typically every 30 minutes).

Logging

See Chapter 11 for 
more information 
about syslog.

sendmail uses syslog to log error and status messages with the syslog facility 
“mail” and levels “debug” through “crit”; messages are tagged with the string 
“sendmail.” You can override the logging string “sendmail” with the -L command-
line option; this capability is handy if you are debugging one copy of sendmail
while other copies are doing regular email chores.

  



ptg

Exim 807

El
ec

tr
on

ic
 M

ai
l

The confLOG_LEVEL option, specified on the command line or in the config file, 
determines the severity level that sendmail uses as a threshold for logging. High 
values of the log level imply low severity levels and cause more info to be logged.

Table 20.17 gives an approximate mapping between sendmail log levels and sys-
log severity levels.

Recall that a message logged to syslog at a particular level is reported to that level 
and all those above it. The /etc/syslog.conf file determines the eventual destina-
tion of each message. Table 20.18 shows their default locations:16

Several programs can summarize sendmail log files, with the end products rang-
ing from simple counts and text tables (mreport) to fancy web pages (Yasma). 
You might need to—or want to—limit access to this data or at least inform your 
users that you are collecting it. Yasma (Yet Another Sendmail Log Analyzer), for 
example, lets you hide the username part of email addresses in its reports.

20.14 EXIM

The Exim mail transport and submission agent was written in 1995 by Philip Ha-
zel of the University of Cambridge and is distributed under the GNU General 
Public License. The current release, Exim version 4.71, came out in late 2009. 

Table 20.17 sendmail log levels vs. syslog levels

L Syslog levels L Syslog levels

0 No logging 4 notice
1 alert or crit 5–11 info
2 crit 12 debug
3 err or warning

16. Wouldn’t it be nice if standardization efforts could sort out some of these random and apparently 
meaningless differences so our scripts could be more portable?

Table 20.18 Vendor’s sendmail logging locations

System Log file location

Ubuntu /var/log/mail.log 

SUSE /var/log/mail

Red Hat /var/log/maillog

Solaris /var/log/syslog and /var/adm/messages

HP-UX /var/adm/syslog/mail.log

AIX /var/log/mail

  



ptg

808 Chapter 20 Electronic Mail

Tons of Exim documentation are available on-line, as are a couple of books by the 
author of the software.

Googling for Exim questions often seems to lead to old, undated, and sometimes 
inappropriate materials, so check the official documentation first. A 400+ page 
specification and configuration document (doc/spec.txt) is included in the distri-
bution. This document is also available from exim.org as a PDF file. It’s the defin-
itive reference work for Exim and is updated religiously with each new release.

There are two cultures with respect to Exim configuration: Debian’s and the rest 
of the world’s. Debian adds m4 preprocessing and runs its own set of mailing lists 
to support users. We do not cover the Debian-specific configuration extensions.

Exim releases 4.70 and later have dropped support for DomainKeys (the precur-
sor to DKIM) and now include internal DKIM support by default. Both systems 
can and do coexist in the real world, but DKIM is on the IETF standards track and 
will eventually replace DomainKeys.

Exim is like sendmail in that it is implemented as a single process that performs 
all the mail chores. However, it does not carry all of sendmail’s historical baggage 
(support for ancient address formats, needing to get mail to hosts not on the In-
ternet, etc.). When compiled with content scanning, it interfaces with common 
spam and virus scanners such as SpamAssassin and ClamAV. Policy control is 
implemented through ACLs (access control lists) that can accept or reject mes-
sages or pass them to external scanning software. Per-user filters are available 
through a special type of entry in users’ .forward files. Many aspects of Exim’s 
behavior are specified at compile time, the chief examples being Exim’s database 
and message store formats.

The workhorses in the Exim system are called routers and transports. Both are 
included in the general category of “drivers.” Routers decide how messages should 
be delivered, and transports decide on the mechanics of making deliveries. Rout-
ers are an ordered list of things to try, whereas transports are an unordered set of 
delivery methods.

Exim installation

You can download the latest distribution from exim.org, or if yours is a Linux site, 
from your favorite package repository. Refer to the top-level README file and 
the file src/EDITME, where you must set installation locations, user IDs, and 
other parameters. EDITME is over 1,000 lines long, but it’s mostly comments that 
lead you through the compilation process; required changes are well labeled. After 
your edits, save the file as ../Local/Makefile or ../Local/Makefile-osname (if you 
are building configurations for several different operating systems from the same 
distribution directory) before you run make.

Here are a few of the important variables (our opinion) and suggested values 
(Exim developers’ opinion) from the EDITME file. The first five are required, and 
the rest are recommended.

  



ptg

Exim installation 809

El
ec

tr
on

ic
 M

ai
l

BIN_DIRECTORY=/usr/exim/bin # Where the exim binary should live 
SPOOL_DIRECTORY=/var/spool/exim # Mail spool directory 
CONFIGURE_FILE=/usr/exim/configure # Exim’s configuration file 
SYSTEM_ALIASES_FILE=/etc/aliases # Location of aliases file
EXIM_USER=ref:exim # User to run as after rootly chores

ROUTER_ACCEPT=yes # Router drivers to include
ROUTER_DNSLOOKUP=yes 
ROUTER_IPLITERAL=yes 
ROUTER_MANUALROUTE=yes 
ROUTER_QUERYPROGRAM=yes 
ROUTER_REDIRECT=yes

TRANSPORT_APPENDFILE=yes # Transport drivers to include 
TRANSPORT_AUTOREPLY=yes 
TRANSPORT_PIPE=yes 
TRANSPORT_SMTP=yes

SUPPORT_MAILDIR=yes # Mailbox formats to understand
SUPPORT_MAILSTORE=yes 
SUPPORT_MBX=yes

LOOKUP_DBM=yes # Database lookup methods to include
LOOKUP_LSEARCH=yes # Linear search lookup
LOOKUP_DNSDB=yes # Allow almost arbitrary DNS lookups
LOOKUP_CDB=yes # Dan Bernstein’s constant DB lookups
USE_DB=yes # Use Berkeley DB (from README)
DBMLIB=-ldb # (from README)
WITH_CONTENT_SCAN=yes # Include content scanning via ACLs

EXPERIMENTAL_SPF=yes # Include SPF support, needs libspf2 
CFLAGS  += -I/usr/local/include # From www.libspf2.org
LDFLAGS += -lspf2

LOG_FILE_PATH=/var/log/exim_%slog # Log files: file, syslog, or both 
LOG_FILE_PATH=syslog 
LOG_FILE_PATH=syslog:/var/log/exim_%slog 
EXICYCLOG_MAX=10 # Compress/cycle log files, keep 10

Routers and transports must be compiled into the code if you intend to use them. 
In these days of large memories, you might as well leave them all in. Some default 
paths are certainly nonstandard: for example, the binary in /usr/exim/bin and the 
PID file in /var/spool/exim. You might want to tweak these values to match your 
other installed software.

About ten database lookup methods are available, including MySQL, Oracle, 
CDB,17 and LDAP. If you include LDAP, you must specify the LDAP_LIB_TYPE
variable to tell Exim what LDAP library you are using (the options are Netscape, 
Solaris, and a couple of versions of OpenLDAP). You may also need to specify the 
path to LDAP include files and libraries.

17. CDB is Dan Bernstein’s constant database system; it scales well.

  



ptg

810 Chapter 20 Electronic Mail

The EDITME file does a good job of telling you about any dependencies your 
database choices may require. Any entries above that have “(from README)” in 
their comment line were not listed in src/EDITME but rather in the README.

EDITME has many additional security options that you might want to include, 
such as support for SMTP AUTH, TLS, SASL, PAM, and options for controlling 
file ownerships and permissions. You can disable certain Exim options at compile 
time to limit the damage a hacker might cause if the software is compromised.

It’s advisable to read the entire EDITME file before you complete the installation. 
It will give you a good feel for what you can control at run time through the con-
figuration file. The top-level README file has lots of detail about OS-specific 
quirks that you may need to add to the EDITME file as well.

Once you have modified EDITME and installed it as Local/Makefile, run make
at the top of the distribution tree followed by sudo make install. The next step is 
to test your shiny new exim binary and see if it delivers mail as expected. The 
doc/spec.txt file contains good testing documentation.

Once you are satisfied that Exim is working properly, link /usr/sbin/sendmail to 
exim so that Exim can emulate the traditional command-line interface to the mail 
system used by many user agents. You must also arrange for exim to be started at 
boot time.

Exim startup

On a mail hub machine, exim typically starts at boot time in daemon mode and 
runs continuously, listening on port 25 and accepting messages through SMTP. 
See Chapter 3, Booting and Shutting Down, page 97, for startup details for your 
operating system.

Like sendmail, Exim can wear several hats, and if started with specific flags or 
alternative command names, it performs different functions. Exim’s mode flags 
are similar to those understood by sendmail because exim works hard to main-
tain compatibility when called by user agents and other tools. Table 20.19 lists a 
few common flags.

Table 20.19 Common exim command-line flags

Flag Meaning 

-bd Runs in daemon mode and listens for connections on port 25 
-bf or -bF Runs in user or system filter test mode 

-bi Rebuilds hashed aliases (same as newaliases) 
-bp Prints the mail queue (same as mailq) 
-bt Enters address test mode 
-bV Checks for syntax errors in the configuration file 

-d+-category Runs in debug mode, very flexible category-based configuration
-q Starts a queue runner (same as runq)

  



ptg

Exim configuration language 811

El
ec

tr
on

ic
 M

ai
l

Any errors in the config file that can be detected at parse time are caught by exim 
-bV, but some errors can only be caught at run time. Misplaced braces are a com-
mon mistake.

The exim man page gives lots of detail on all the nooks and crannies of exim’s 
command-line flags and options, including extensive debugging information.

Exim utilities

The Exim distribution includes a bunch of utilities to help you monitor, debug, 
and sanity-check your installation. Below is the current list along with a brief de-
scription of each. See the documentation from the distribution for more detail.

• exiwhat – lists what Exim processes are doing
• exiqgrep – searches the queue
• exiqsumm – summarizes the queue
• exigrep – searches the main log
• exipick – selects messages based on various criteria
• exicyclog – rotates log files
• eximstats – extracts statistics from the log
• exim_checkaccess – checks address acceptance from a given IP address
• exim_dbmbuild – builds a DBM file
• exinext – extracts retry information
• exim_dumpdb – dumps a hints database
• exim_tidydb – cleans up a hints database
• exim_fixdb – patches a hints database
• exim_lock – locks a mailbox file
• exilog – visualizes log files across multiple servers

Another utility that is part of the Exim suite is eximon, an X Windows application 
that displays Exim’s state, the state of Exim’s queue, and the tail of the log file. Like 
the main distribution, you build it by editing a well-commented EDITME file in 
the exim_monitor directory and running make. However, in the case of eximon
the defaults are usually fine, so you should not have to do much configuration to 
build the application. Some configuration and queue management can be done 
from the eximon GUI as well.

Exim configuration language

The Exim configuration language (or more accurately, languages: one for filters, 
one for regular expressions, etc.) feels a bit like the ancient (1970s) language 
Forth.18 When first reading an Exim configuration, you might find it hard to dis-
tinguish between keywords and option names that are fixed by Exim and variable 
names that sysadmins define with configuration statements. We have tried to 
preface all variable names with my_ to help with this issue.

18. For CS wizards, it’s Turing-complete; mere mortals can substitute “powerful and complicated.”

  



ptg

812 Chapter 20 Electronic Mail

Although Exim is advertised as being easy to configure and is extensively docu-
mented, there is quite a learning curve for new users. The section “How Exim 
receives and delivers mail” in the specification document is essential reading for 
newcomers. It gives a good feel for the underlying concepts of the system.

When assigned a value, the Exim language’s predefined options sometimes cause 
an action to occur. There are also about 120 predefined variables whose values 
may change as a result of one of the actions. These variables can be included in 
conditional statements.

The language for evaluating if statements and the like may remind you of the re-
verse Polish notation used during the heyday of Hewlett-Packard calculators. Let’s 
look at a simple example. In the line

acl_smtp_rcpt = ${if ={25}{$interface_port} \ 
{acl_check_rcpt} {acl_check_rcpt_submit} }

the acl_smtp_rcpt option, when set, causes an ACL to be implemented for each 
recipient (SMTP RCPT command) in the SMTP exchange. The value assigned to 
this option is either acl_check_rcpt or acl_check_rcpt_submit, depending on 
whether or not the Exim variable $interface_port has value 25.

We do not detail the Exim configuration language further, but refer you to its 
extensive documentation. In particular, pay close attention to the string expan-
sion section of the Exim specification.

Exim configuration file

Exim’s run-time behavior is controlled by a single configuration file, usually called 
/usr/exim/configure. Its name is one of the required variables specified in the 
EDITME file and compiled into the binary. 

The supplied default configuration file, src/configure.default, is well commented 
and a good starting place for sites just getting set up with Exim. In fact, we recom-
mend that you don’t stray far from it until you really understand the Exim para-
digm and need to elaborate on the default configuration for a specific purpose. 
Exim works hard to support common situations and has sensible defaults.

It is also helpful to stick with the variable names used in the default config file 
because they are assumed by the folks on the exim-users mailing list who will be 
answering your configuration questions.

exim prints a message to stderr and exits if you have a syntax error in your config-
uration file. It doesn’t catch all syntax errors immediately, however, because it 
does not expand variables until it needs to.

The order of entries in the configuration file is not quite arbitrary: the global con-
figuration options section must be first and must exist. All other sections are op-
tional and can appear in any order.

  



ptg

Options 813

El
ec

tr
on

ic
 M

ai
l

Possible sections include

• Global configuration options (mandatory)
• acl – access control lists that filter addresses and messages
• authenticators – for SMTP AUTH or TLS authentication
• routers – ordered sequence to determine where a message should go
• transports – definitions of the drivers that do the actual delivery
• retry – policy settings for dealing with problem messages
• rewrite – global address rewriting rules
• local_scan – a hook for fancy flexibility

Each section except the first starts with a begin section-name statement—for ex-
ample, begin acl. There is no end section-name statement; the end is signaled by 
the next section’s begin statement. Indentation to show subordination makes the 
config file easier to read for humans, but it is not meaningful to Exim.

Some configuration statements name objects that will later be used to control the 
flow of messages. Those names must begin with a letter and contain only letters, 
numbers, and the underscore character. If the first non-whitespace character on a 
line is #, the rest of the line is treated as a comment. Note that this means you 
cannot put a comment on the same line as a statement; it will not be recognized as 
a comment because the first character is not #.

Exim lets you include files anywhere in the configuration file. Two forms of in-
clude are used:

.include absolute-path 

.include_if_exists absolute-path

The first form generates an error if the file does not exist. Although include files 
keep your config file tidy, they are read several times during the life of a message, 
so it might be best to just include their contents directly into your configuration.

Global options

Lots of stuff is specified in the global options section, including operating param-
eters (limits, sizes, timeouts, properties of the mail server on this host), list defini-
tions (local hosts, local hosts to relay for, remote domains to relay for), and mac-
ros (hostname, contact, location, error messages, SMTP banner).

Options
Options are set with the basic syntax

option_name = value[s]

where the values can be Booleans, strings, integers, decimal numbers, or time in-
tervals. Multivalued options are allowed, in which case the various values are sep-
arated by colons.

  



ptg

814 Chapter 20 Electronic Mail

Using the colon as a value separator presents a problem when you express IPv6 
addresses, which use colons as part of the address. You can escape the colons by 
doubling them, but the easiest and most readable fix is to redefine the separator 
character with the < character as you assign values to the option. For example, 
both of the following two lines set the value of the localhost_interfaces option, 
which contains the IPv4 and IPv6 localhost addresses:

local_interfaces = 127.0.0.1 : ::::1 
local_interfaces = <; 127.0.0.1 ; ::1

The second form, in which the semicolon has been defined as the separator, is 
more readable and less fragile.

There are a zillion options—more than 500 in the options index of the documen-
tation. And we said sendmail was complicated! Most options have sensible de-
faults, and all have descriptive names. It’s handy to have a copy of the doc/spec.txt
file from the distribution in your favorite text editor when you are researching a 
new option. We don’t cover all the options, just the ones that occur in our example 
configuration bits. 

Lists
Exim has four kinds of lists, introduced by the keywords hostlist, domainlist, 
addresslist, and localpartslist. Here are two examples using hostlist:

hostlist my_relay_list = 192.168.1.0/24 : myfriend.example.com 
hostlist my_relay_list = /usr/local/exim/relay_hosts.txt

Members can be listed in-line or taken from a file. If in-line, they are separated by 
colons. There can be up to 16 named lists of each type. In the in-line example 
above, we included all machines on a local /24 network and a specific hostname.

The symbol @ can be a member of a list; it means the name of the local host and 
helps make it possible to write a single generic configuration file that works for 
most nonhub machines at your site. The notation @[] is also useful and means all 
IP addresses on which Exim is listening; that is, all the IP addresses of localhost.

To reference a list, just put + in front of its name to match members of the list or !+
to match nonmembers; for example, +my_relay_list. There must be no space be-
tween the + and the name of the list. 

Lists can include references to other lists and the ! character to indicate negation. 
Lists that include references to variables (e.g., $variable_name) make processing 
slower because Exim cannot cache the results of evaluating the list, which it does 
by default.

Macros
You can use macros to define parameters, error messages, etc. The parsing is 
primitive, so you cannot define a macro whose name is a subset of another macro 
without unpredictable results.

  



ptg

ACLs (access control lists) 815

El
ec

tr
on

ic
 M

ai
l

The syntax is
MACRO_NAME = rest of the line

For example, the first of the following lines define a macro named ALIAS_QUERY
that looks up a user’s alias entry in a MySQL database. The second line shows the 
use of the macro to do an actual lookup, with the result being stored in the vari-
able called data.

ALIAS_QUERY = \ 
select mailbox from user where login = '${quote_mysql:$local_part}';

data = ${lookup mysql{ALIAS_QUERY}}

Macro names are not required to be all caps, but they must begin with a capital 
letter. However, the all-caps convention aids clarity. The configuration file can in-
clude ifdefs that evaluate a macro and use it to determine whether or not to in-
clude a portion of the config file. Every imaginable form of ifdef is supported; 
they all begin with a dot.

ACLs (access control lists)

Access control lists filter the addresses of incoming messages and either accept or 
deny them. Exim divides incoming addresses into a local part that represents the 
user and a domain part that is the recipient’s domain.

ACLs can be applied at any of the various stages of an SMTP conversation: HELO, 
MAIL, RCPT, DATA, etc. Typically, an ACL enforces strict adherence to the 
SMTP protocol at the HELO stage, checks the sender and the sender’s domain at 
the MAIL stage, checks the recipients at the RCPT stage, and scans the message 
content at the DATA stage.

A slew of options named acl_smtp_command specify which ACL should be ap-
plied after each command in the SMTP protocol. For example, the acl_smtp_rcpt
option specifies the ACL to run on each address that is a recipient of the message. 
You can define ACLs in the acl section of the config file, in a file that is referenced 
by the acl_smtp_command option, or in-line when the option is defined.

A sample ACL called my_acl_check_rcpt is defined below. We would invoke it by 
assigning its name to the acl_smtp_rcpt option in the global options section of 
the config file. If this ACL denies an address at the RCPT command, the sending 
server should give up and not try the address again. Another common ACL to use 
is acl_smtp_data, which would run on the message after it has been received, for 
example, to scan content. 

begin acl 
my_acl_check_rcpt:

accept hosts = : 
control = dkim_disable_verify

deny message = Restricted characters in address 
domains = +local_domains 
local_parts = ^[.] : ^.*[@%!/|]

  



ptg

816 Chapter 20 Electronic Mail

deny message = Restricted characters in address 
domains = !+local_domains 
local_parts = ^[./|] : ^.*[@%!] : ^.*/\\.\\./

accept local_parts = postmaster 
domains = +local_domains

require verify = sender

accept hosts = +relay_from_hosts 
control = submission 
control = dkim_disable_verify

accept authenticated = * 
control = submission 
control = dkim_disable_verify

require message = Relay not permitted 
domains = +local_domains : +relay_to_domains

require verify = recipient 
accept

This ACL, adapted from examples in the Exim documentation, ends with a de-
fault accept; you might want to rethink your ACLs to deny by default, as firewalls 
typically do. The default name for this access control list is acl_check_rcpt; you 
probably should not change its name (as we did, to emphasize that the name is 
something you specify, not a predefined Exim configuration option).

The first accept line, containing just a colon, is an empty list. The empty list of 
remote hosts matches cases in which a local MUA submitted a message on the 
MTA’s standard input. If the address being tested meets this condition, the ACL 
accepts the address and disables DKIM signature validation, which is turned on 
by default. If the address does not match this address clause, control drops 
through to the next clause in the ACL definition.

The first deny stanza is intended for messages coming into your local domains. It 
rejects any address whose local part (the username) starts with a dot or contains 
the special characters @, %, !, /, or |. The second deny applies to messages being 
sent out by your users. It, too, disallows certain special characters and sequences 
in the local parts of addresses, in case your users’ machines have been infected 
with a virus or other malware. In the past, such addresses have been used by 
spammers to confuse ACLs or have been guilty of creating security problems.

In general, if you are intending to use $local_parts (supposedly, the recipient’s 
username) in a directory path (to store mail or look for a vacation file, for exam-
ple) be very careful that your ACLs have filtered out any special characters that 
could cause unwanted behavior. (This example looks for the sequence /../, which 
could be problematic if the username is inserted into a path.)

  



ptg

ACLs (access control lists) 817

El
ec

tr
on

ic
 M

ai
l

The next accept stanza guarantees that mail to postmaster will always get through 
if it’s sent to a local domain; this can help with debugging.

The require line checks to see if a bounce message can be returned, but it checks 
only the sender’s domain.19 If the sender’s username is forged, a bounce message 
could still fail (that is, the bounce itself could bounce). You can add more exten-
sive checking here by calling another program, but some sites consider such call-
outs abusive and might add your mail server to a blacklist or bad-reputation list.

The next accept stanza checks for hosts that are allowed to relay through this 
host, namely, local hosts that are submitting mail into the system. The control line 
specifies that exim should act as a mail submission agent and fix up any header 
deficiencies as the message arrives from the user agent. The sender’s address is not 
checked because many user agents get confused by error returns. (This is appro-
priate only for local machines relaying to a smart host, not for external domains 
that you might be willing to relay for.) DKIM verification is disabled because 
these messages are outbound from your users or relay friends.

The last accept stanza deals with local hosts that authenticate through SMTP 
AUTH. Once again, these messages are treated as submissions from user agents. 

We next check the destination domain to which the message is headed and re-
quire that it be either in our list of local_domains or in our list of domains to 
which we allow relaying, relay_to_domains. (These domain lists are defined else-
where.) Any destinations not in one of those lists are refused with the specified 
error message. DKIM verification is again disabled.

Finally, given that all previous requirements have been met but that no more-spe-
cific accept or deny rule has been triggered, we verify the recipient and accept the 
message. Most Internet messages to local users will fall into this category.

We haven’t included any blacklist scanning in the example above. To access a 
blacklist, use one of the examples in the default config file or something like this:

deny condition = ${if isip4{$sender_host_address}} 
!authenticated = * 
!hosts = +my_whitelist_ips 
!dnslists = list.dnswl.org 
domains = +local_domains 
verify = recipient 
message = You are on RBL $dnslist_domain: $dnslist_text 
dnslists = zen.spamhaus.org 
logwrite = Blacklisted sender [$sender_host_address] \

$dnslist_domain: $dnslist_text

Translated to English, this code specifies that if a message matches all of the fol-
lowing criteria, it is rejected with a custom error message and logged (also with a 
custom message).

19. require means “deny if not matched.”

  



ptg

818 Chapter 20 Electronic Mail

• It’s from an IPv4 address (some lists don’t handle IPv6 correctly).
• It’s not associated with an authenticated SMTP session.
• It’s from a sender not in the local whitelist.
• It’s from a sender not in the global (Internet) whitelist.
• It’s addressed to a valid local recipient.
• The sending host is on the zen.spamhaus.org blacklist.

The variables dnslist_text and dnslist_domain are set by the assignment to 
dnslists, which triggers the blacklist lookup. This deny clause could be placed 
right after your checks for unusual characters in addresses.

Here’s another example ACL that rejects mail if the remote side does not say 
HELO properly:

acl_check_mail: 
deny message = 503 Bad sequence of cmds - must send HELO/EHLO first

condition = ${if !def:sender_helo_name} 
accept

Exim solves the early talker problem (a more specific case of “not saying HELO 
properly”) with the smtp_enforce_sync option, which is turned on by default.

Content scanning at ACL time

Exim supports powerful content scanning at several points in a message’s traversal 
of the mail system: at ACL time (after the SMTP DATA command), at delivery 
time through the transport_filter option, or with a local_scan function after all 
ACL checks have been completed. You must compile support for content scan-
ning into Exim by setting the WITH_CONTENT_SCAN variable in the EDITME
file; it is commented out by default. This option endows ACLs with extra power 
and flexibility and adds two new configuration options: spamd_address and 
av_scanner.

Scanning at ACL time allows a message to be rejected in-line with the MTA’s con-
versation with the sending host. The message is never accepted for delivery, so it 
need not be bounced. This way of rejecting the message is nice because it avoids 
backscatter spam caused by bounce messages to forged sender addresses.

Scanning for viruses
To scan for viruses, first assign your scanner type and its parameters to the 
av_scanner variable in the global options section of the config file. Table 20.20 
lists the scanners understood by the current version of Exim and their corre-
sponding av_scanner specifications.

Once you’ve set av_scanner, you can use the malware condition in the ACL that 
checks things after the DATA command in the SMTP conversation. Here is an 
example from the Exim documentation:

deny message = This message contains malware ($malware_name) 
demime = * 
malware = *

  



ptg

Scanning for spam 819

El
ec

tr
on

ic
 M

ai
l

The malware clause calls the virus scanner if the value passed to it is true (which 
is always the case in this example). If you turn on demime and a message contains 
a MIME-encoded attachment, exim will de-MIME it for the antivirus scanner. 
Most scanners can do this decoding for themselves, however. To avoid having 
both exim and the scanner try to perform this task, include the demime clause 
only if the virus scanner needs it. Duplication won’t cause errors, but it wastes 
resources and slows mail processing.

Scanning for spam
Exim uses SpamAssassin for spam scanning. SpamAssassin usually accepts mes-
sages on TCP port 783, but it can also use a local domain socket. Set the connec-
tion parameters in exim’s config file by assigning a value to the spamd_address
variable. It accepts either an IP address and port separated by a space, or the abso-
lute path to a local domain socket. You can specify multiple address/port pairs— 
up to 32 of them—to use multiple copies of SpamAssassin.

From the ACL associated with the SMTP DATA command, call SpamAssassin by 
assigning a username to the spam variable. If you specify nobody as the user, 
SpamAssassin uses a generic scanning profile; otherwise, it uses the profile associ-
ated with the user you specify (if such a profile exists).20 These lines

deny message = This message was classified as spam 
spam = nobody

would use the system-wide default spam profile. Just putting a spam statement in 
the config file doesn’t work; you must assign a value. 

Since SpamAssassin scanning is slow and most spam messages are short, you 
might do a size check and only scan small messages. For example:

deny message = This message was classified as spam 
condition = ${if < {$message_size}{10K}} 
spam = nobody

Table 20.20 Antivirus scanners known to Exim

Scanner specification Daemon or service

aveserver:path-to-socket Kaspersky scanner daemon version 5 
clamd: ip-address port or path-to-socket ClamAV through TCP or local socket 
cmdline:path found-regex name-regex Generic command-line interface 
drweb: ip-address port or path-to-socket DrWeb daemon scanner (sald.com) 
fsecure:path-to-.fsav-file F-Secure daemon scanner (f-secure.com)
kavdaemon:path-to-socket Kaspersky scanner daemon version 4
sophie:path-to-socket Sophie interface to Sophosa

a. See clanfield.info/sophie. This scanner is the default (with path /var/run/sophie).

20. At first glance, the fact that you get to specify a username seems flexible and nice. But because the 
scanning is done after the DATA command instead of at the RCPT command, the message has already 
qualified its recipients, and if there are several recipients, whose spam profile should you use?

  



ptg

820 Chapter 20 Electronic Mail

There are much fancier things you can do with SpamAssassin scanning; refer to 
the Exim specification for all the details.

Authenticators

Authenticators are drivers that interact with the SMTP AUTH command’s chal-
lenge/response sequence and identify an authentication mechanism acceptable to 
both client and server. Exim supports four mechanisms:

• AUTH_CRAM_MD5 (RFC2195)
• AUTH_CYRUS_SASL for use with the Cyrus IMAP software
• AUTH_PLAINTEXT, which includes both PLAIN and LOGIN
• AUTH_SPA, which supports Microsoft’s Secure Password Authentication

If exim is receiving email, it is acting as an SMTP AUTH server. If it is sending 
mail, it is a client. Options that appear in the definitions of authenticator instances 
are tagged with a prefix of either server_ or client_ to allow for different configu-
rations depending on the role Exim is playing.

Authenticators are used in access control lists, as in the following clause in the 
ACL example on page 817:

accept authenticated = *

Below is an example that shows both the client-side and server-side LOGIN 
mechanisms. This simple example uses a fixed username and password, which is 
OK for small sites but probably inadvisable for larger installations.

begin authenticators

my_client_fixed_login: 
driver = plaintext 
public_name = LOGIN 
client_send = : myusername : mypasswd

my_server_fixed_login: 
driver = plaintext 
public_name = LOGIN 
server_advertise_condition = ${if def:tis_cipher} 
server_prompts = User Name : Password 
server_condition = ${if and {{eq{$auth1}{username}} \ 

{eq{$auth2}{mypasswd}}}} 
server_set_id = $auth1

Authentication data can come from many sources: LDAP, PAM, /etc/passwd, etc. 
The server_advertise_condition clause above prevents mail clients from sending 
passwords in the clear by requiring TLS security (through STARTTLS or SSL) on 
connection. If you want the same behavior when exim acts as the client system, 
use the client_condition option in the client clause, too, again with tis_cipher.

Refer to the documentation for details of all the possible Exim authentication op-
tions and for examples.

  



ptg

The accept router 821

El
ec

tr
on

ic
 M

ai
l

Routers

Routers work on recipient email addresses, either by rewriting them or by assign-
ing them to a transport and sending them on their way. A particular router can 
have multiple instances, each with different options. 

You specify a sequence of routers. A message starts with the first router and pro-
gresses through the list until the message is either accepted or rejected. The ac-
cepting router typically hands the message to a transport driver. Routers handle 
both incoming and outgoing messages. They feel a bit like subroutines in a pro-
gramming language.

A router can return any of the following dispositions for a message:

• accept – the router accepts the address and hands it to a transport driver
• pass – this router can’t handle the address; go on to the next router
• decline – router chooses not to handle the address; next router, please!
• fail – the address is invalid; router queues it for a bounce message
• defer – leaves the message in the queue for later
• error – there is an error in the router specification; message is deferred

If a message receives a pass or decline from all the routers in the sequence, it is 
bounced as an unroutable address.

If a message meets the preconditions for a router and the router ends with a 
no_more statement, then that message will not be presented to any additional 
routers, regardless of its disposition by the current router. For example, if your 
remote SMTP router has the precondition domains = !+local_domains and has 
no_more set, then only messages to local users (that is, those that would fail the 
domains precondition) will continue to the next router in the sequence.

Routers have many possible options; some common examples are preconditions, 
acceptance or failure conditions, error messages to return, and transport drivers 
to use.

The next few sections detail the routers called accept, dnslookup, manualroute, 
and redirect. The example configuration snippets assume that exim is running on 
a local machine in the example.com domain. They’re all pretty straightforward; 
refer to the documentation if you want to use some of the fancier routers.

The accept router
The accept router labels an address as OK and passes the associated message to a 
transport driver. Below are examples of accept router instances called localusers
for delivering local mail and save_to_file for appending to an archive.

localusers: 
driver = accept 
domains = example.com 
check_local_user 
transport = my_local_delivery

  



ptg

822 Chapter 20 Electronic Mail 

save_to_file:
driver = accept 
domains = dialup.example.com 
transport = batchsmtp_appendfile

The localusers router instance checks that the domain part of the destination ad-
dress is example.com and that the local part of the address is the login name of a 
local user. If both conditions are met, the router hands the message to the trans-
port driver instance called my_local_delivery, which is defined in the transports
section. The save_to_file instance is designed for dial-up users; it appends the 
message to a file specified in the batchsmtp_appendfile transport definition.

The dnslookup router
The dnslookup router is typically used for outgoing messages. It looks up the MX 
record of the recipient’s domain and hands the message to an SMTP transport 
driver for delivery. Here is an instance called remoteusers:

remoteusers: 
driver = dnslookup 
domains = !+example.com 
transport = my_remote_delivery

See page 462 for more 
information about 
RFC1918 private 
address spaces.

The dnslookup code looks up the MX records for the addressee. If there are none, 
it tries the A record. A common extension to this router instance is to prohibit 
delivery to certain IP addresses; a prime example is the RFC1918 private ad-
dresses that cannot be routed on the Internet. See the ignore_target_hosts option 
for more information.

The manualroute router
The flexible manualroute driver can pretty much route email in whatever way 
you want. The routing information can be a table of rules matching by recipient 
domain (route_list) or a single rule that applies to all domains (route_data).

Below are two examples of manualroute instances. The first example implements 
the “smart host” concept, in which all outgoing nonlocal mail is sent to a central 
(“smart”) host for processing. This instance is called smarthost and applies to all 
recipients’ domains that are not (the ! character) in the local_domains list.

smarthost: 
driver = manualroute 
domains = !+local_domains 
transport = remote_snmp 
route_data = smarthost.example.com

The router instance below, firewall, uses SMTP to send incoming messages to 
hosts inside the firewall (perhaps after scanning them for spam and viruses). It 
looks up the routing data for each recipient domain in a CDB database that con-
tains the names of local hosts. (You must build Exim with the LOOKUP_CDB op-
tion to be able to use CDB.) 

  



ptg

Per-user filtering via .forward files 823

El
ec

tr
on

ic
 M

ai
l

firewall: 
driver = manualroute 
transport = remote-smtp 
route_data = ${lookup{$domain} cdb {/internal/host/routes}}

The redirect router
The redirect driver does address rewriting, such as that called for in the system-
wide aliases file or in a user’s ~/.forward file. It usually does not assign the rewrit-
ten address to a transport; that task is left to other routers in the chain.

The first instance shown below, system_aliases, looks up aliases with a linear 
search (lsearch) of the /etc/aliases file. That’s fine for a small aliases file, but if 
yours is huge, replace that linear search with a database lookup. The second in-
stance, forwardfile, first verifies that mail is addressed to a local user, then checks 
that user’s .forward file.

system_aliases: 
driver = redirect 
data = ${lookup{$local_part} lsearch {/etc/aliases}}

user_forward: 
driver = redirect 
check_local_user 
file = $home/.forward 
no_verify

The check_local_user option ensures that the recipient is a valid local user. The 
no_verify says not to verify that the address to which the forward file redirects the 
message is valid; just ship it. 

Per-user filtering via .forward files
Exim allows not only forwarding through .forward files, but also filtering based 
on the contents of a user’s .forward file. It supports its own filtering as well as the 
Sieve filtering that is being standardized by the IETF. If the first line of a user’s 
.forward file is

#Exim filter

or
#Sieve filter

then the subsequent filtering commands (there are about 15 of them) can be used 
to determine where the message should be delivered. Filtering does not actually 
deliver messages—it just meddles with the destination. For example:

#Exim filter 
if $header_subject: contains SAGE or $header_subject: contains sysadmin 
then

save $home/mail/sage-sysadmin 
endif

  



ptg

824 Chapter 20 Electronic Mail

Lots of options are available that control what users can and cannot do in their 
.forward files. The option names begin with forbid_ or allow_. They’re important 
to prevent users from running shells, loading libraries into binaries, or using the 
embedded Perl interpreter when they shouldn’t. Check for new forbid_* options 
when you upgrade to be sure your users can’t get too fancy in their .forward files.

Transports

Routers decide where messages should go, and transports actually take them 
there. Local transports typically append to a file, pipe to a local program, or speak 
the LMTP protocol to IMAP servers. Remote transports speak SMTP to their 
counterparts across the Internet.

There are five Exim transports: appendfile, lmtp, smtp, autoreply, and pipe; we 
detail appendfile and smtp. The autoreply transport is typically used to send 
vacation messages, and the pipe transport hands messages as input to a command 
through a UNIX pipe. As with routers, you must define instances of transports, 
and it’s fine to have multiple instances of the same type of transport. Order is 
significant for routers, but not for transports.

The appendfile transport
The appendfile driver stores messages in mbox, mbx, Maildir, or mailstore for-
mat in a specified file or directory. You must have included the appropriate mail-
box formats when you compiled Exim; they are commented out of the EDITME
file by default. The following example defines the my_local_delivery transport 
(an instance of the appendfile transport) referred to in the localusers router in-
stance definition on page 821.

my_local_delivery: 
driver = appendfile 
file = /var/mail/$local_part 
delivery_date_add 
envelope_to_add 
return_path_add 
group = mail 
mode = 0660

The various *_add lines add headers to the message. The group and mode clauses 
ensure that the transport agent can write to the file.

The smtp transport
The smtp transport is the workhorse of any mail system. Here, we define two 
instances, one for the standard SMTP port (25) and one for the mail submission 
port (587).

  



ptg

Local scan function 825

El
ec

tr
on

ic
 M

ai
l

my_remote_delivery: 
driver = smtp

my_remote_delivery_port587: 
driver = smtp 
port = 587 
headers_add = X-processed-by: MACRO_HEADER port 587

The second instance, my_remote_delivery_port587, specifies the port and also a 
header to be added to the message that includes an indication of the outgoing 
port. MACRO_HEADER would be defined elsewhere in the configuration file.

Retry configuration

The retry section of the configuration file must exist or Exim will never attempt 
redelivery of messages that could not be delivered on the first attempt. You can 
specify three time intervals, each less frequent than the previous one. After the 
last interval has expired, messages bounce back to the sender as undeliverable. 
retry statements understand the suffixes m, h, d, and w to indicate minutes, 
hours, days, and weeks. You can specify different intervals for different hosts or 
domains.

Here’s what a retry section looks like:
begin retry

* * F, 2h, 15m;  F, 24h, 1h;  F, 4d, 6h

This example means, “For any domain, an address that fails temporarily should be 
retried every 15 minutes for 2 hours, then every hour for the next 24 hours, then 
every 6 hours for 4 days, and finally, bounced as undeliverable.”

Rewriting configuration

The rewriting section of the configuration file starts with begin rewrite. It’s used 
to fix up addresses, not to reroute messages. For example, you could use it on your 
outgoing addresses

• To make mail appear to be from your domain, not from individual hosts
• To map usernames to a standard format such as First.Last

Rewriting should not be used on addresses in incoming mail.

Local scan function

If you want to further customize exim, for example, to filter for the latest and 
greatest virus, you can write a C function to do your scanning and install it in the 
local_scan section of the config file. Refer to the Exim documentation for details 
and examples that show how to do this.

  



ptg

826 Chapter 20 Electronic Mail 

amavisd and Exim connection

To configure exim to send all mail destined for your domain to amavisd for virus 
or spam scanning, make the first router in your config file something like this:

amavis: 
no_verify_recipient 
driver = manualroute 
condition = ${if or {eq {$interface_port} {10025} \

{eq {$received_protocol} {scanned-ok} } } {0} {1} } 
domain = local_domains 
transport = amavis 
route_list = * localhost byname 
self = send

The condition line says not to forward messages originating from port 10,025 to 
amavisd. This is the port on which messages return from amavisd after scanning, 
so such messages cannot go back to amavisd without creating a loop. The amavis
transport is configured as follows:

amavis: 
driver = smtp 
port = 10024 
allow_localhost

You must also add the line
local_interfaces = 0.0.0.0.25 : 127.0.0.1.10025

to the start of the configuration file where global options are set, to tell exim to 
accept messages from any address on port 25 and from localhost on port 10,025, 
the amavisd return port.

This configuration would cause all scanning to be done off-line, so the bounce 
messages generated in response to virus and spam detections might themselves 
become backscatter spam. Placing amavis later in the ordered list of routers and 
letting Exim’s rich ACL language take care of the easiest and most lightweight 
message checks might be a better solution. Even better, use exim’s ${run…} con-
struct to force amavisd checking to occur in-line. Overall, exim’s built-in scan-
ning ability makes amavisd somewhat less compelling.

Logging

Exim by default writes three different log files: a main log, a reject log, and a panic 
log. Each log entry includes the time the message was written. You specify the 
location of the log files in the EDITME file (before building exim) or in the run-
time config file in the value of the log_file_path option. By default, logs are kept 
in the /var/spool/exim/log directory.

The log_file_path option accepts up to two colon-separated values. Each value 
must be either the keyword syslog or an absolute path with a %s embedded where 
the names main, reject, and panic can be substituted. For example,

  



ptg

Debugging 827

El
ec

tr
on

ic
 M

ai
l

log_file_path = syslog : /var/log/exim_%s

would log both to syslog (with facility “mail”) and to the files exim_main, 
exim_reject, and exim_panic in the /var/log directory. Exim submits the main
log entries to syslog at priority info, the reject entries at priority notice, and the 
panic entries at priority alert.

The main log contains one line for the arrival and delivery of each message. It can 
be summarized by the Perl script eximstats, included in the Exim distribution. 

The reject log records information on the messages that have been rejected for 
policy reasons: malware, spam, etc. It includes the summary line for the message 
from the main log and also the original headers of the message that was rejected. 
If you change your policies, check the reject log to make sure that all is still well. 

The panic log is for serious errors in the software; exim writes here just before it 
gives up. The panic log should not exist in the absence of problems. Ask cron to 
check it for you and if it exists, fix the problem that caused the panic and then 
delete the file. exim will recreate it when the next panic-worthy situation arises.

When debugging, you can increase the amount and type of data logged with the 
log_selector option. For example:

log_selector = +smtp_connection +snmp_incomplete_transaction +…

The logging categories that can be included or excluded by the log_selector
mechanism are listed in the Exim specification, in the section called “Log files” 
toward the end. There are about 35 possibilities, including +all, which will really 
fill your disks!

exim also keeps a temporary log for each message it handles. It is named with the 
message ID and lives in /var/spool/exim/msglog. If you are having trouble with a 
particular destination, you should check there.

Debugging

Exim has powerful debugging aids. You can configure the amount of information 
you want to see about each potential debugging topic. exim -d tells exim to go 
into debugging mode, in which it stays in the foreground and does not fork copies 
of itself. You can add specific debugging categories to the -d with a + or - in front 
of them to verbosify or eliminate a category. For example, -d+expand+acl re-
quests regular debugging output plus extra details regarding string expansions 
and ACL interpretation. (These two categories are common problem spots.) You 
can tune more than 30 categories of debugging information; see the man page for 
a list.

A common technique when debugging mail systems is to start the MTA on a non-
standard port and then talk to it through telnet. For example, to start exim in 
daemon mode, listening on port 26, with debugging info turned on, use

$ sudo exim -d -oX 26 -bd

  



ptg

828 Chapter 20 Electronic Mail 

You can then telnet to port 26 and type SMTP commands in an attempt to repro-
duce the problem you are debugging.

Alternatively, you can have swaks do your SMTP talking for you. It’s a Perl script 
that makes SMTP debugging faster and easier. swaks --help gets you some docu-
mentation, and jetmore.org/john/code/#swaks supplies complete details.

If your log files show timeouts of around 30 seconds, that’s suggestive of a DNS 
issue. Timeouts of 5 seconds are more likely to be identd query timeouts. (identd
was a daemon intended to identify the actual sender of a mail message, but since 
it’s so easily fooled, no one uses it anymore.)

20.15 POSTFIX

Postfix is another popular alternative to sendmail. Wietse Venema started the 
Postfix project when he spent a sabbatical year at IBM’s T. J. Watson Research 
Center in 1996, and he is still actively developing it. Postfix’s design goals included 
not only security (first and foremost!), but also an open source distribution policy, 
speedy performance, robustness, and flexibility. All major Linux distributions in-
clude Postfix, and since version 10.3, Mac OS X has shipped Postfix instead of 
sendmail as the default mail system.

See page 48 for more 
information about reg-
ular expressions.

The most important things to know about Postfix are, first, that it works almost 
out of the box (the simplest config files are only a line or two long), and second, 
that it leverages regular expression maps to filter email effectively, especially in 
conjunction with the PCRE (Perl Compatible Regular Expression) library. Postfix 
is compatible with sendmail in the sense that Postfix’s aliases and .forward files 
have the same format and semantics as those of sendmail.

Postfix speaks ESMTP. Virtual domains and spam filtering are both supported. 
For address rewriting, Postfix relies on table lookups from flat files, Berkeley DB, 
DBM, LDAP, NIS, NetInfo, or SQL databases. Postfix also supports sendmail’s 
milter protocol, so you can easily customize its behavior with a multitude of pub-
licly available milters (external programs that take over specific tasks during an 
SMTP session; see page 767).

Postfix architecture

Postfix is composed of several small, cooperating programs that send network 
messages, receive messages, deliver email locally, etc. Communication among 
them is performed through local domain sockets or FIFOs. This architecture is 
quite different from that of sendmail and Exim, wherein a single large program 
does most of the work.

The master program starts and monitors all Postfix processes. Its configuration 
file, master.cf, lists the subsidiary programs along with information about how 
they should be started. The default values set in that file cover most needs; in 

  



ptg

Managing mail-waiting queues 829

El
ec

tr
on

ic
 M

ai
l

general, no tweaking is necessary. One common change is to comment out a pro-
gram, for example, smtpd, when a client should not listen on the SMTP port.

The most important server programs involved in the delivery of email are shown 
in Exhibit D.

Exhibit D Postfix server programs

Receiving mail
smtpd receives mail entering the system through SMTP. It also verifies that the 
connecting clients are authorized to send the mail they are trying to deliver. When 
email is sent locally through the /usr/lib/sendmail compatibility program, a file is 
written to the /var/spool/postfix/maildrop directory. That directory is periodi-
cally scanned by the pickup program, which processes any new files it finds.

All incoming email passes through cleanup, which adds missing headers and re-
writes addresses according to the canonical and virtual maps. Before inserting it 
in the incoming queue, cleanup gives the email to trivial-rewrite, which does 
minor fixing of the addresses, such as appending a mail domain to addresses that 
are not fully qualified.

Managing mail-waiting queues
qmgr manages five queues that contain mail waiting to be delivered:

• incoming – mail that is arriving
• active – mail that is being delivered
• deferred – mail for which delivery has failed in the past
• hold – mail blocked in the queue by the administrator
• corrupt – mail that can’t be read or parsed

The queue manager generally selects the next message to process with a simple 
FIFO strategy, but it also supports a a complex preemption algorithm that prefers 
messages with few recipients over bulk mail. 

smtp 

lmtp 

local

virtual 

pipe

qmgr

bounce

trivial-rewrite

cleanup

smtpd

pickup

  



ptg

830 Chapter 20 Electronic Mail

In order not to overwhelm a receiving host, especially after it has been down, 
Postfix uses a slow-start algorithm to control how fast it tries to deliver email. 
Deferred messages are given a try-again time stamp that exponentially backs off 
so as not to waste resources on undeliverable messages. A status cache of unreach-
able destinations avoids unnecessary delivery attempts.

Sending mail
qmgr decides with the help of trivial-rewrite where a message should be sent. 
The routing decision made by trivial-rewrite can be overridden with lookup ta-
bles (transport_maps).

Delivery to remote hosts through the SMTP protocol is performed by the smtp
program. lmtp delivers mail by using LMTP, the Local Mail Transfer Protocol de-
fined in RFC2033. LMTP is based on SMTP, but the protocol has been modified 
so that the mail server is not required to manage a mail queue. This mailer is 
particularly useful for delivering email to mailbox servers such as the Cyrus 
IMAP suite.

local’s job is to deliver email locally. It resolves addresses in the aliases table and 
follows instructions found in recipients’ .forward files. Messages are forwarded to 
another address, passed to an external program for processing, or stored in users’ 
mail folders.

The virtual program delivers email to “virtual mailboxes”; that is, mailboxes that 
are not related to a local Linux account but that still represent valid email destina-
tions. Finally, pipe implements delivery through external programs.

Security

Postfix implements security at several levels. Most of the Postfix server programs 
can run in a chrooted environment. They are separate programs with no par-
ent/child relationship. None of them are setuid. The mail drop directory is group-
writable by the postdrop group, to which the postdrop program is setgid.

Impressively, no remotely exploitable vulnerabilities have yet been identified in 
any version of Postfix.

Postfix commands and documentation

Several command-line utilities permit user interaction with the mail system:

• sendmail, mailq, newaliases – are sendmail-compatible replacements
• postfix – starts and stops the mail system (must be run as root)
• postalias – builds, modifies, and queries alias tables
• postcat – prints the contents of queue files
• postconf – displays and edits the main configuration file, main.cf
• postmap – builds, modifies, or queries lookup tables
• postsuper – manages the mail queues

  



ptg

Basic settings 831

El
ec

tr
on

ic
 M

ai
l

The Postfix distribution includes a set of man pages that describe all the programs 
and their options. On-line documents at postfix.org explain how to configure and 
manage various aspects of Postfix. These documents are also included in the Post-
fix distribution in the README_FILES directory.

Postfix configuration

The main.cf file is Postfix’s principal configuration file. The master.cf file config-
ures the server programs. It also defines various lookup tables that are referenced 
from main.cf and that provide different types of service mappings.

The postconf(5) man page describes every parameter you can set in the main.cf
file. There is also a postconf program, so if you just type man postconf, you’ll get 
the man page for that instead of postconf(5). Use man -s 5 postconf to get the 
right version (man 5 postconf on HP-UX and AIX).

The Postfix configuration language looks a bit like a series of sh comments and 
assignment statements. Variables can be referenced in the definition of other vari-
ables by being prefixed with a $. Variable definitions are stored just as they appear 
in the config file; they are not expanded until they are used, and any substitutions 
occur at that time.

You can create new variables by assigning them values. Be careful to choose 
names that do not conflict with existing configuration variables.

All Postfix configuration files, including the lookup tables, consider lines starting 
with whitespace to be continuation lines. This convention results in very readable 
configuration files, but you must start new lines in column one.

What to put in main.cf
More than 500 parameters can be specified in the main.cf file. However, just a few 
of them need to be set at an average site. The author of Postfix strongly recom-
mends that only parameters with nondefault values be included in your configu-
ration. That way, if the default value of a parameter changes in the future, your 
configuration will automatically adopt the new value.

The sample main.cf file that comes with the distribution includes many com-
mented-out example parameters, along with some brief documentation. The orig-
inal version is best left alone as a reference. Start with an empty file for your own 
configuration so that your settings are not lost in a sea of comments.

Basic settings
Let’s start with as simple a configuration as possible: an empty file. Surprisingly, 
this is a perfectly reasonable Postfix configuration. It results in a mail server that 
delivers email locally within the same domain as the local hostname and that 
sends any messages directed to nonlocal addresses directly to the appropriate re-
mote servers.

  



ptg

832 Chapter 20 Electronic Mail

Another simple configuration is a “null client”; that is, a system that doesn’t de-
liver any email locally but rather forwards outbound mail to a designated central 
server. To implement this configuration, we define several parameters, starting 
with mydomain, which defines the domain part of the hostname, and myorigin, 
which is the mail domain appended to unqualified email addresses. If these two 
parameters are the same, we can write something like this:

mydomain = cs.colorado.edu 
myorigin = $mydomain

Another parameter we should set is mydestination, which specifies the mail do-
mains that are local. If the recipient address of a message has mydestination as its 
mail domain, the message is delivered through the local program to the corre-
sponding user (assuming that no relevant alias or .forward file is found). If more 
than one mail domain is included in mydestination, these domains are all con-
sidered aliases for the same domain. 

For a null client, we want no local delivery, so this parameter should be empty:
mydestination =

Finally, the relayhost parameter tells Postfix to send all nonlocal messages to a 
specified host instead of sending them directly to their apparent destinations:

relayhost = [mail.cs.colorado.edu]

The square brackets tell Postfix to treat the specified string as a hostname (DNS A 
record) instead of a mail domain name (DNS MX record).

Since null clients should not receive mail from other systems, the last thing to do 
in a null client configuration is to comment out the smtpd line in the master.cf
file. This change prevents Postfix from running smtpd at all. With just these few 
lines, we’ve defined a fully functional null client!

For a “real” mail server, you’ll need a few more configuration options as well as 
some mapping tables. We cover these in the next few sections.

Use of postconf
postconf is a handy tool that helps you configure Postfix. When run without ar-
guments, it prints all the parameters as they are currently configured. If you name 
a specific parameter as an argument, postconf prints the value of that parameter. 
The -d option makes postconf print the defaults instead of the currently config-
ured values. For example:

$ postconf mydestination 
mydestination = 
$ postconf -d mydestination 
mydestination = $myhostname, localhost.$mydomain, localhost

  



ptg

Lookup tables 833

El
ec

tr
on

ic
 M

ai
l

Another useful option is -n, which makes postconf print only the parameters that 
differ from the default. If you ask for help on the Postfix mailing list, that’s the 
configuration information you should put in your email.

Lookup tables
Many aspects of Postfix’s behavior are shaped through the use of lookup tables, 
which can map keys to values or implement simple lists. For example, the default 
setting for the alias_maps table is

alias_maps = dbm:/etc/mail/aliases, nis:mail.aliases

Data sources are specified with the notation type:path. Note that this particular 
table actually uses two distinct sources of information simultaneously: a dbm da-
tabase and an NIS map. Multiple values can be separated by commas, spaces, or 
both. Table 20.21 lists the available data sources; postconf -m shows this informa-
tion as well.

Use the dbm and sdbm types only for compatibility with the traditional sendmail
alias table. Berkeley DB (hash) is a more modern implementation; it’s safer and 
faster. If compatibility is not a problem, use

alias_database = hash:/etc/mail/aliases 
alias_maps = hash:/etc/mail/aliases

The alias_database specifies the table that is rebuilt by newaliases and should 
correspond to the table that you specify in alias_maps. The reason for having two 
parameters is that alias_maps might include non-DB sources such as mysql or 
nis that do not need to be rebuilt.

Table 20.21 Information sources for Postfix lookup tables

Type Description

dbm/sdbm Traditional dbm or gdbm database file 
cidr Network addresses in CIDR form 
hash/btree Berkeley DB hash table or B-tree file (replaces dbm) 
ldap LDAP directory service 
mysql MySQL database
nis NIS directory service 
pcre Perl-Compatible Regular Expressions 
pgsql PostgreSQL database 
proxy Access through proxymap, e.g., to escape a chroot 

regexp POSIX regular expressions 
static Returns the value specified as path regardless of the key 
unix The /etc/passwd and /etc/group files; uses NIS syntax a

a. unix:passwd.byname is the passwd file, and unix:group.byname is the group file.

  



ptg

834 Chapter 20 Electronic Mail

All DB-class tables (dbm, sdbm, hash, and btree) are based on a text file that is 
compiled to an efficiently searchable binary format. The syntax for these text files 
is similar to that of the configuration files with respect to comments and continu-
ation lines. Entries are specified as simple key/value pairs separated by white-
space, except for alias tables, which use a colon after the key to retain sendmail
compatibility. For example, the following lines are appropriate for an alias table:

postmaster: david, tobias 
webmaster: evi

As another example, here’s an access table for relaying mail from any client with a 
hostname ending in cs.colorado.edu.

.cs.colorado.edu OK

Text files are compiled to their binary formats with the postmap command for 
normal tables and the postalias command for alias tables. The table specification 
(including the type) must be given as the first argument. For example:

$ sudo postmap hash:/etc/postfix/access

postmap can also query values in a lookup table (no match = no output):
$ postmap -q blabla hash:/etc/postfix/access 
$ postmap -q .cs.colorado.edu hash:/etc/postfix/access 
OK

Local delivery
The local program delivers mail to local recipients. It also handles local aliasing. 
For example, if mydestination is set to cs.colorado.edu and email arrives for 
evi@cs.colorado.edu, local first consults the alias_maps tables and then substi-
tutes any matching entries recursively.

If no aliases match, local looks for a .forward file in user evi’s home directory and 
follows the instructions in this file if it exists. (The syntax is the same as the right 
side of an alias map.) Finally, if no .forward file is found, the email is delivered to 
evi’s local mailbox.

By default, local writes to standard mbox-format files under /var/mail. You can 
change that behavior with the parameters shown in Table 20.22.

Table 20.22 Parameters for local mailbox delivery (set in main.cf)

Parameter Description

mail_spool_directory Delivers mail to a central directory serving all users 
home_mailbox Delivers mail to ~user under the specified relative path 
mailbox_command Delivers mail with an external program, typically procmail 

mailbox_transport Delivers mail through a service as defined in master.cf a

recipient_delimiter Allows extended usernames (see description below)

a. This option interfaces with mailbox servers such as the Cyrus imapd.

  



ptg

Virtual alias domains 835

El
ec

tr
on

ic
 M

ai
l

The mail_spool_directory and home_mailbox options normally generate mbox-
format mailboxes, but they can also produce Maildir mailboxes. To request this 
behavior, add a slash to the end of the pathname. 

If recipient_delimiter is +, mail addressed to evi+whatever@cs.colorado.edu is 
accepted for delivery to the evi account. With this facility, users can create special-
purpose addresses and sort their mail by destination address. Postfix first at-
tempts lookups on the full address, and only if that fails does it strip the extended 
components and fall back to the base address. Postfix also looks for a correspond-
ing forwarding file, .forward+whatever, for further aliasing.

Virtual domains

To host a mail domain on your Postfix mail server, you have three choices:

• List the domain in mydestination. Delivery is performed as described 
above: aliases are expanded and mail is delivered to the corresponding 
accounts.

• List the domain in the virtual_alias_domains parameter. This option 
gives the domain its own addressing namespace that is independent of 
the system’s user accounts. All addresses within the domain must be 
resolvable (through mapping) to real addresses outside of it.

• List the domain in the virtual_mailbox_domains parameter. As with 
the virtual_alias_domains option, the domain has its own namespace.
All mailboxes must live beneath a specified directory.

List the domain in only one of these three places. Choose carefully, because many 
configuration elements depend on that choice. We have already reviewed the han-
dling of the mydestination method. The other options are discussed below.

Virtual alias domains
If a domain is listed as a value of the virtual_alias_domains parameter, mail to 
that domain is accepted by Postfix and must be forwarded to an actual recipient 
either on the local machine or elsewhere.

The forwarding for addresses in the virtual domain must be defined in a lookup 
table included in the virtual_alias_maps parameter. Entries in the table have the 
address in the virtual domain on the left side and the actual destination address 
on the right.

An unqualified name on the right is interpreted as a local username.

Consider the following example from main.cf:
myorigin = cs.colorado.edu 
mydestination = cs.colorado.edu 
virtual_alias_domains = admin.com 
virtual_alias_maps = hash:/etc/mail/admin.com/virtual

  



ptg

836 Chapter 20 Electronic Mail

In /etc/mail/admin.com/virtual we could then have the lines
postmaster@admin.com evi, david@admin.com 
david@admin.com david@schweikert.ch 
evi@admin.com evi

Mail for evi@admin.com would be redirected to evi@cs.colorado.edu (myorigin
is appended) and would ultimately be delivered to the mailbox of user evi because 
cs.colorado.edu is included in mydestination.

Definitions can be recursive: the right hand side can contain addresses that are 
further defined on the left hand side. Note that the right hand side can only be a 
list of addresses. If you need to execute an external program or to use :include:
files, then you need to redirect the email to an alias, which can then be expanded 
according to your needs.

To keep everything in one file, you can set virtual_alias_domains to the same 
lookup table as virtual_alias_maps and put a special entry in the table to mark it 
as a virtual alias domain. In main.cf:

virtual_alias_domains = $virtual_alias_maps 
virtual_alias_maps = hash:/etc/mail/admin.com/virtual

In /etc/mail/admin.com/virtual:
admin.com notused 
postmaster@admin.com evi, david@admin.com 
…

The right hand side of the entry for the mail domain (admin.com) is never actu-
ally used; admin.com’s existence in the table as an independent entry is enough to 
make Postfix consider it a virtual alias domain.

Virtual mailbox domains
Domains listed under virtual_mailbox_domains are similar to local domains, 
but the list of users and their corresponding mailboxes must be managed inde-
pendently of the system’s user accounts.

The parameter virtual_mailbox_maps points to a table that lists all valid users in 
the domain. The map format is

user@domain /path/to/mailbox

If the path ends with a slash, the mailboxes are stored in Maildir format. The 
value of virtual_mailbox_base is always prefixed to the specified paths.

You often want to alias some of the addresses in the virtual mailbox domain. Use a 
virtual_alias_map to do this. Here is a complete example. In main.cf:

virtual_mailbox_domains = admin.com 
virtual_mailbox_base = /var/mail/virtual 
virtual_mailbox_maps = hash:/etc/mail/admin.com/vmailboxes 
virtual_alias_maps = hash:/etc/mail/admin.com/valiases

  



ptg

Access control 837

El
ec

tr
on

ic
 M

ai
l

/etc/mail/admin.com/vmailboxes might contain entries like these:
evi@admin.com nemeth/evi/

/etc/mail/admin.com/valiases might contain:
postmaster@admin.com evi@admin.com

You can use virtual alias maps even on addresses that are not virtual alias do-
mains. Virtual alias maps let you redirect any address from any domain, indepen-
dently of the type of the domain (canonical, virtual alias, or virtual mailbox). 
Since mailbox paths can only be put on the right hand side of the virtual mailbox 
map, use of this mechanism is the only way to set up aliases in that domain.

Access control

Mail servers should relay mail for third parties only on behalf of trusted clients. If 
a mail server forwards mail from unknown clients to other servers, it is a so-called 
open relay, which is bad. See Relay control on page 791 for more details.

Fortunately, Postfix doesn’t act as an open relay by default. In fact, its defaults are 
quite restrictive; you are more likely to need to liberalize the permissions than to 
tighten them. Access control for SMTP transactions is configured in Postfix 
through “access restriction lists.” The parameters shown in Table 20.23 control 
what should be checked during the different phases of an SMTP session.

The most important parameter is smtpd_recipient_restrictions since access con-
trol is most easily performed when the recipient address is known and can be 
identified as being local or not. All the other parameters in Table 20.23 are empty 
in the default configuration. The default value is

smtpd_recipient_restrictions = permit_mynetworks, reject_unauth_destination

Each of the specified restrictions is tested in turn until a definitive decision about 
what to do with the mail is reached. Table 20.24 on the next page shows the com-
mon restrictions. 

Table 20.23 Postfix parameters for SMTP access restriction

Parameter When applied

smtpd_client_restrictions On connection request 
smtpd_helo_restrictions On HELO/EHLO command (start of the session) 
smtpd_sender_restrictions On MAIL FROM command (sender specification) 
smtpd_recipient_restrictions On RCPT TO command (recipient specification) 
smtpd_data_restrictions On DATA command (mail body) 
smtpd_etrn_restrictions On ETRN command a

a. This is a special command used for resending messages in the queue.

  



ptg

838 Chapter 20 Electronic Mail

Everything can be tested in these restrictions, not just specific information like 
the sender address in the smtpd_sender_restrictions. Therefore, for simplicity, 
you might want to put all the restrictions under a single parameter, which should 
be smtpd_recipient_restrictions since it is the only one that can test everything 
(except the DATA part).

smtpd_recipient_restriction is also where mail relaying is tested. You should 
keep the reject_unauth_destination restriction and carefully choose the “per-
mit” restrictions before it.

Access tables
Each restriction returns one of the actions shown in Table 20.25. Access tables are 
used in restrictions such as check_client_access and check_recipient_access to 
select an action based on the client host address or recipient address, respectively. 

As an example, suppose you wanted to allow relaying for all machines within the 
cs.colorado.edu domain and that you wanted to allow only trusted clients to post 

Table 20.24 Common Postfix access restrictions

Restriction Function

check_client_access Checks client host address by using a lookup table 
check_recipient_access Checks recipient mail address by using a lookup table 
permit_mynetworks Grants access to addresses listed in mynetworks 
reject_unauth_destination Rejects mail for nonlocal recipients; no relaying

Table 20.25 Actions for access tables

Action Meaning

4nn text Returns temporary error code 4nn and message text
5nn text Returns permanent error code 5nn and message text 
DEFER_IF_PERMIT If restrictions result in PERMIT, changes it to a temp error 
DEFER_IF_REJECT If restrictions result in REJECT, changes it to a temp error 
DISCARD Accepts the message but silently discards it
DUNNO Pretends the key was not found; tests further restrictions 
FILTER transport:dest Passes the mail through the filter transport:dest a 

HOLD Blocks the mail in the queue
OK Accepts the mail 
PREPEND header Adds a header to the message 
REDIRECT addr Forwards this mail to a specified address
REJECT Rejects the mail 
WARN message Enters the given warning message in the logs

a. See the section about spam and virus handling in Postfix starting on page 840.

  



ptg

Authentication of clients and encryption 839

El
ec

tr
on

ic
 M

ai
l

to the internal mailing list newsletter@cs.colorado.edu. You could implement 
these policies with the following lines in main.cf:

smtpd_recipient_restrictions = 
permit_mynetworks 
check_client_access hash:/etc/postfix/relaying_access 
reject_unauth_destination 
check_recipient_access hash:/etc/postfix/restricted_recipients

Note that commas are optional when the list of values for a parameter is specified.

In /etc/postfix/relaying_access:
.cs.colorado.edu OK

In /etc/postfix/restricted_recipients:
newsletter@cs.colorado.edu REJECT Internal list

The text after REJECT is an optional string that is sent to the client along with the 
error code. It tells the sender why the mail was rejected.

Authentication of clients and encryption
For users sending mail from home, it is usually easiest to route outgoing mail 
through the home ISP’s mail server, regardless of the sender address that appears 
on that mail. Most ISPs trust their direct clients and allow relaying. If this config-
uration isn’t possible or if you are using a system such as Sender ID or SPF, ensure 
that mobile users outside your network can be authorized to submit messages to 
your smtpd.

The solution to this problem is to use the SMTP AUTH mechanism to authenti-
cate directly at the SMTP level. Postfix must be compiled with support for the 
SASL library to make this work. You can then configure the feature like this:

smtpd_sasl_auth_enable = yes 
smtpd_recipient_restrictions =

permit_mynetworks 
permit_sasl_authenticated 
…

You also need to support encrypted connections to avoid sending passwords in 
clear text. Add lines like the following to main.cf:

smtpd_tls_security_level = may 
smtpd_tls_auth_only = yes 
smtpd_tls_loglevel = 1 
smtpd_tls_received_header = yes 
smtpd_tls_cert_file = /etc/certs/smtp.pem 
smtpd_tls_key_file = $smtpd_tls_cert_file 
smtpd_tls_protocols = !SSLv2

  



ptg

840 Chapter 20 Electronic Mail

You will need to put a properly signed certificate in /etc/certs/smtp.pem. It’s also 
a good idea to turn on encryption on outgoing SMTP connections:

smtp_tls_security_level = may 
smtp_tls_loglevel = 1

Fighting spam and viruses

Postfix has many features that can help block suspicious email.

One class of protection features calls for strict implementation of the SMTP pro-
tocol. Legitimate mail servers should respect the protocol, but spam and virus 
senders often play fast and loose with it, thus giving themselves away. Unfortu-
nately, broken mailers handling legitimate mail are still out there, so this tech-
nique isn’t quite foolproof. Choose restrictions carefully, and monitor the log files. 

Here are some of the main features in this category:

• reject_non_fqdn_* – rejects messages without a fully qualified sender 
domain (sender), recipient domain, (recipient) or HELO/EHLO host-
name (hostname).

• reject_unauth_pipelining – aborts the session if the client doesn’t wait 
to see the status of a command before proceeding.

• reject_unknown_sender_domain – rejects messages with an unresolv-
able sender domain. Postfix returns a temporary error message because 
the problem may result from a transient DNS glitch.

• reject_unknown_reverse_client_hostname – rejects messages from 
hosts that have no reverse DNS record.

• smtpd_helo_required – requires HELO/EHLO at the start of the con-
versation (parameter, either yes or no).

• strict_rfc821_envelopes – requires correct syntax for email addresses in 
the MAIL FROM and RCPT TO commands (parameter, yes or no).

The items above that are not marked as parameters are restrictions. You invoke 
them by including their names in smtpd_helo_restrictions (reject_non_fqdn_*) 
or smtpd_client_restrictions (the others). To test a restriction before putting it in 
production (always a good idea), insert the restriction warn_if_reject in front of 
it to convert the effect from outright rejection to warning log messages.

Blacklists
You can tell Postfix to check incoming email against a DNS-based blacklist; see 
User or site blacklisting on page 792 for more details. To enable this behavior, use 
the reject_rbl_client restriction followed by address of the DNS server to be con-
sulted. A similar feature is reject_rhsbl_sender, which checks the domain name 
of the sender’s address rather than the client’s hostname.

  



ptg

Policy daemons 841

El
ec

tr
on

ic
 M

ai
l

Spam-fighting example
The following example represents a relatively complete spam-fighting configura-
tion from the main.cf file:

strict_rfc821_envelopes = yes 
smtpd_helo_required = yes 
smtpd_recipient_restrictions =

reject_unknown_sender_domain 
reject_non_fqdn_sender 
reject_non_fqdn_recipient 
permit_mynetworks 
permit_sasl_authenticated 
check_client_access hash:/etc/postfix/relaying_access 
reject_unauth_destination 
reject_unauth_pipelining 
reject_unknown_reverse_client_hostname 
reject_rbl_client zen.spamhaus.org 
permit

Note that we put some restrictions in front of permit_mynetworks. That tweak 
lets us verify that our own clients are sending out correctly formatted mail. This is 
an easy way to find out about configuration errors. The final permit action is the 
default but has been made explicit for clarity.

SpamAssassin and procmail
Postfix supports SpamAssassin and other filters of that ilk. See Content scanning: 
spam and malware on page 761 for general information about these tools.

procmail can be started from users’ .forward files, but that’s complicated and er-
ror prone. A better solution is to put the following line in main.cf:

mailbox_command = /usr/bin/procmail -a "$EXTENSION"

Postfix then uses procmail to deliver mail instead of writing messages directly to 
the mail spool. The arguments given to procmail pass the address extension (the 
portion after the +); it can then be accessed in procmail as $1.

Policy daemons
Postfix version 2.1 introduced a mechanism for delegating access control to exter-
nal programs. These programs, called policy daemons, receive all the information 
that Postfix has about an email message and must return one of the disposition 
actions listed in Table 20.25 on page 838.

Greylisting is one of the more interesting features that can be implemented with a 
policy daemon. See page 765 for more information about greylisting and why you 
might want to employ it.

  



ptg

842 Chapter 20 Electronic Mail

Content filtering
Postfix can use regular expressions to check the headers and bodies of email mes-
sages for contraband. It can also pass messages to other programs such as dedi-
cated spam fighting tools or antivirus applications.

Header and body checks are performed in real time as messages are accepted 
through SMTP. Each regular expression that is checked invokes an action as spec-
ified in Table 20.25 on page 838 if the regex matches. For example, the line

header_checks = regexp:/etc/postfix/header_checks

in main.cf along with the following line in /etc/postfix/header_checks
/^Subject: reject-me/ REJECT You asked for it

would reject any message whose subject started with “reject-me”. Though regular 
expression support is always nice, it comes with caveats in the context of email 
processing. In particular, this is not an effective method of spam or virus filtering.

Content filtering with amavisd

Industrial-strength virus filtering is usually implemented through amavisd (see 
page 769), a Perl program that interfaces mail server software with one or more 
antivirus applications. Such filters are configured with Postfix’s content_filter pa-
rameter, which instructs Postfix to pass every incoming message once through the 
specified service. In addition to setting the content_filter parameter, you must 
modify some existing entries in the master.cf file and add some new ones.

Postfix and amavisd interact with each other by means of the standard SMTP and 
LMTP protocols. Postfix sends the mail to be analyzed to amavisd through 
LMTP. amavisd scans it and sends it back to Postfix through SMTP at an alterna-
tive port that’s accessible only on the local machine and that has content-scanning 
disabled (thus avoiding a loop). 

For mail coming in from the Internet, amavisd typically listens on port 10,024, 
and Postfix’s back-door port is often 10,025. If we also process outgoing mail and 
want to differentiate it from incoming mail, we need a separate amavisd port for 
that—say, 10,026. The incoming mail can return to Postfix on the same return 
port as outgoing mail.

The configuration outlined below is a “post queue” setup that scans mail after it 
has been accepted into Postfix’s queue. If you want to implement an in-line scan-
ning setup, whereby the mail is scanned during the client’s initial SMTP dialog, 
try the amavisd-milter helper tool, which lets you connect Postfix to amavisd as 
a milter.

On the amavisd side, make sure that amavisd’s configuration contains lines such 
as the following. (This configuration uses separate ports for inbound and out-
bound messages.)

  



ptg

Content filtering with amavisd 843

El
ec

tr
on

ic
 M

ai
l

$inet_socket_port = [10024,10026]; 
$notify_method  = 'smtp:[127.0.0.1]:10025'; 
$forward_method = 'smtp:[127.0.0.1]:10025'; 
$interface_policy{'10026'} = 'ORIGINATING'; 
$policy_bank{'ORIGINATING'} = {

originating => 1,  # indicates client is ours 
};

You now need to configure Postfix to send the mail to amavisd. 

The README.Postfix file in the amavisd-new distribution includes about 20 
lines of boilerplate configuration you can put into /etc/postfix/master.cf to make 
amavisd accessible and able to send mail back to Postfix. We don’t duplicate it 
here; just cut and paste from the README.

To tell Postfix to send mail to amavisd for scanning, add this line to main.cf:
content_filter = amavisfeed:[127.0.0.1]:10024

For differentiating between incoming and outgoing mail, the configuration gets a 
bit more complicated. Instead of just the above directive, you need to modify 
smtpd_recipient_restrictions like this (changes in boldface):

smtpd_recipient_restrictions = 
reject_unknown_sender_domain 
reject_non_fqdn_sender 
reject_non_fqdn_recipient 
check_sender_access regexp:/etc/postfix/tag_as_originating.re 
permit_mynetworks 
permit_sasl_authenticated 
check_sender_access regexp:/etc/postfix/tag_as_foreign.re 
check_client_access hash:/etc/postfix/relaying_access 
reject_unauth_destination 
reject_unauth_pipelining 
reject_unknown_reverse_client_hostname 
reject_rbl_client zen.spamhaus.org 
permit

Then put the following line in the file tag_as_originating.re:
/^/  FILTER amavisfeed:[127.0.0.1]:10026

And in tag_as_foreign.re:
/^/  FILTER amavisfeed:[127.0.0.1]:10024

Mail from external hosts matches the tag_as_foreign.re restriction, which in-
structs Postfix to filter the mail by sending it to port 10,024. All mail matches the 
tag_as_originating.re restriction, but for external hosts it is replaced by the for-
eign restriction tag.

  



ptg

844 Chapter 20 Electronic Mail

Debugging

When you have a problem with Postfix, first check the log files. The answers to 
your questions are most likely there; it’s just a question of finding them. Every 
Postfix program normally issues a log entry for every message it processes. For 
example, the trail of an outbound message might look like this:

Aug 18 22:41:33 nova postfix/pickup: 0E4A93688: uid=506 
from=<dws@ee.ethz.ch>

Aug 18 22:41:33 nova postfix/cleanup: 0E4A93688: message-id= 
<20040818204132.GA11444@ee.ethz.ch>

Aug 18 22:41:33 nova postfix/qmgr: 0E4A93688: from=<dws@ee.ethz.ch>, 
size=577,nrcpt=1 (queue active)

Aug 18 22:41:33 nova postfix/smtp: 0E4A93688: 
to=<evi@ee.ethz.ch>,relay=tardis.ee.ethz.ch[129.132.2.217],delay=0, 
status=sent (250 Ok: queued as 154D4D930B)

Aug 18 22:41:33 nova postfix/qmgr: 0E4A93688: removed

As you can see, the interesting information is spread over many lines. Note that 
the identifier 0E4A93688 is common to every line: Postfix assigns a queue ID as 
soon as a message enters the mail system and never changes it. Therefore, when 
searching the logs for the history of a message, first concentrate on determining 
the message’s queue ID. Once you know that, it’s easy to grep the logs for all the 
relevant entries.

Postfix is good at logging helpful messages about problems that it notices. How-
ever, it’s sometimes difficult to spot the important lines among the thousands of 
normal status messages. This is a good place to consider using some of the tools 
discussed in the section Condensing log files to useful information, which starts on 
page 358.

Looking at the queue
Another place to look for problems is the mail queue. As in the sendmail system, 
a mailq command prints the contents of a queue. You can use it to see if and why 
a message has become stuck. 

Another helpful tool is the qshape script that’s shipped with recent Postfix ver-
sions. It shows summary statistics about the contents of a queue. The output looks 
like this:

$ sudo qshape deferred 
T 5 10 20 40 80 160 320 640 1280 1280+ 

TOTAL 78 0 0 0 7 3 3 2 12 2 49
expn.com 34 0 0 0 0 0 0 0 9 0 25

chinabank.ph 5 0 0 0 1 1 1 2 0 0 0
prob-helper.biz 3 0 0 0 0 0 0 0 0 0 3

qshape summarizes the given queue (here, the deferred queue), sorted by recipi-
ent domain. The columns report the number of minutes the relevant messages 
have been in the queue. For example, you can see that 25 messages bound for 

  



ptg

DKIM Configuration 845

El
ec

tr
on

ic
 M

ai
l

expn.com have been in the queue longer than 1,280 minutes. All the destinations 
in this example are suggestive of messages having been sent from vacation scripts 
in response to spam.

qshape can also summarize by sender domain with the -s flag.

Soft-bouncing
If soft_bounce is set to yes, Postfix sends temporary error messages whenever it 
would normally send permanent error messages such as “user unknown” or “re-
laying denied.” This is a great testing feature; it lets you monitor the disposition of 
messages after a configuration change without the risk of permanently losing le-
gitimate email. Anything you reject will eventually come back for another try. 
Don’t forget to turn off this feature when you are done testing or you will have to 
deal with every rejected message over and over again.

Testing access control
The easiest way to test access control restrictions is to try to send a message from 
an outside host and see what happens. This is a good basic test, but it doesn’t cover 
special conditions such as mail from a domain where you have no login.

Postfix 2.1 introduced an extension to the SMTP protocol called XCLIENT that 
simulates submissions from another place. This feature is disabled by default, but 
with the following configuration line in main.cf, you can enable it for connections 
originating from localhost:

smtpd_authorized_xclient_hosts = localhost

A testing session might look something like this:
$ telnet localhost 25 
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'. 
220 tardis.ee.ethz.ch ESMTP Postfix 
XCLIENT NAME=mail.cs.colorado.edu ADDR=192.168.1.1 
250 Ok 
HELO mail.cs.colorado.edu 
250 tardis.ee.ethz.ch 
MAIL FROM: <evi@colorado.edu> 
250 Ok 
RCPT TO: <david@colorado.edu> 
554 <david@colorado.edu>: Relay access denied

20.16 DKIM CONFIGURATION

Our DKIM coverage is a bit scattered. The introductory material is in the DNS 
chapter (on page 591) and on page 768 of this chapter. Here we concentrate on the 
email-related details of using DKIM through an external tool, amavisd, and di-
rectly, in conjunction with sendmail, Exim, and Postfix. sendmail and Postfix use 

  



ptg

846 Chapter 20 Electronic Mail

milters to implement DKIM; Exim does it natively. The Exim implementation is 
new (late 2009) and still a bit rough around the edges.

DKIM: DomainKeys Identified Mail

DKIM is the new hope for positively identifying a sender’s organization. If widely 
deployed, it would curb spammers’ and phishers’ ability to forge the sender’s do-
main. Mail from your bank would really be from your bank—or at the very least, 
would not be categorized as phishing or spam.

DKIM replaces an earlier system called DomainKeys. DKIM uses public key 
cryptography (with keys stored in DNS) to let receivers verify both the origin and 
integrity of a message. These guarantees are becoming essential in our intercon-
nected world, where so much business is done electronically. DKIM also prevents 
a sender from denying that he sent a message, a feature known as nonrepudiation.

A DKIM implementation has two halves: the part that signs outbound email as it 
leaves your site, and the part that verifies signatures on inbound email as it ar-
rives. The first operation should be performed by your outgoing mail hub just 
before the mail leaves your site (after any internal rewriting and content scanning 
has been done). The second part, verification, should be done as soon as a mes-
sage is received, before other scanning tools add to or change its headers.

sendmail.org has a couple of handy tools that are generic and can be used with 
any software that implements DKIM. The first is an ADSP wizard that accepts a 
domain name and generates the corresponding ADSP TXT records you must add 
to DNS to implement DKIM.21 The second tool is a verifier that you can use to 
check your setup after it’s all ready to go.

The details of DKIM and ADSP resource records are covered on page 591. They 
are currently still TXT records but may get their own DNS resource record types 
in the future. Both OpenSSL and amavisd include code to generate DKIM keys. 
Various DKIM milter packages also contain scripts that generate keys. 

Once you have configured your MTA to generate DKIM signatures, you can send 
a message to sa-test@sendmail.net to verify that everything is working correctly. 
The server will email you back to tell you what security features it received. 

If you have a Gmail account, another way to test is to send yourself a message 
there. Clicking on the “show details” link should reveal a signed-by field. You can 
also ask Gmail to “Show original” in the drop-down menu—this command shows 
you the raw message with all its headers, including the DKIM signature.

DKIM miltering

Software to implement DKIM was originally developed by Sendmail, Inc., for use 
as a milter to interface with the sendmail MTA. There are now two versions of 

21. Don’t publish your ADSP record until outbound message signing is set up and working properly, lest 
other sites start to reject your email.

  



ptg

DKIM miltering 847

El
ec

tr
on

ic
 M

ai
l

this code: the original, DKIM-milter; and a code fork, OpenDKIM. Both pack-
ages are available as source code from sourceforge.net and in precompiled form 
from various package repositories. We illustrate use of the sendmail version, 
DKIM-milter v2.8.3.

The package contains dkim-filter, the milter that creates and verifies signatures, 
and several utilities to help debug and monitor DKIM usage. Here is a list:

• dkim-filter – generates and verifies DKIM signatures
• dkim-genkey – generates key pairs and required DNS records
• dkim-stats – summarizes statistics gathered by dkim-filter
• dkim-testkey – tests that keys are in the correct format and accessible
• dkim-testssp – tests the ADSP record (which used to be called SSP)

The first step in setting up the DKIM-milter package is to create a dedicated user 
account and group to own DKIM-related files. Use the name “dkim” for both. 
Make sure the account has a restricted shell such as /bin/false.

The dkim-genkey script generates a DKIM key pair. You specify the domain for 
which the key is intended with -d and the selector (key name, really) with -s. The 
defaults are example.com and “default”. The -r flag restricts the key to use for 
email signing only, and -t indicates that you are testing DKIM. The keys are saved 
in separate files: selector.private for the private key and selector.txt for the DNS 
TXT record that contains the public key. 

For example,
$ dkim-genkey -r -d example.com -s email

generates a key pair in the files email.private and email.txt in the current direc-
tory. Install the private key somewhere like /etc/mail/dkim/keys. Set the mode of 
the /etc/mail/dkim directory to 600 and chown it (recursively) to your dkim user 
and group. Add the DNS TXT record to the appropriate zone file, bump the serial 
number of the zone, and signal your name server. You can add an ADSP record 
once everything is tested and working, but don’t do that just yet.

Run dkim-testkey to verify that your keys are OK. dkim-testkey produces no 
output if everything is fine, so silence is golden.

The next chore is the configuration of dkim-filter for use as a milter. Create a file 
/etc/mail/dkim.conf that’s owned by your dkim user and group. Sample contents 
adapted from T. J. Nelson’s on-line article Setting up DKIM with Sendmail follow:

Canonicalization simple 
Domain mail.example.com 
KeyFile /etc/mail/dkim/keys/email.key.pem 
MTA MSA 
PidFile /var/run/dkim-filter.pid

  



ptg

848 Chapter 20 Electronic Mail

Selector email
Socket inet:8891@localhost 
SignatureAlgorithm rsa-sha1 
Syslog Yes 
UserID dkim 
X-Header Yes 
Mode sv 
InternalHosts /etc/mail/dkim-internal-hosts

The general format of entries in dkim.conf is
parameter value

A hash mark (#) introduces a comment. The distribution includes a well-com-
mented sample configuration, dkim-filter.conf.sample, that includes a descrip-
tion of the variables and their default values. An even better description can be 
found in the dkim-filter.conf man page.

If you are configuring a central mail hub, the Domain line should be a comma-
separated list of fully qualified domain names you will sign for, or a filename con-
taining such a list.

The KeyFile parameter specifies the location of the private key used to sign mes-
sages. It is assumed that the first part of the filename is the selector (here, “email”).

The MTA line lists the names of MTAs whose mail should always be signed rather 
than verified. It’s analogous to the Name part of sendmail’s DAEMON_OPTIONS
configuration parameter.

The Socket specification identifies the listening TCP socket; here, port 8,891 on 
localhost. The SignatureAlgorithm can be either rsa-sha1 or rsa-sha256; the lat-
ter is the default but is new enough that not all MTAs can use it. The X-Header
parameter specifies that dkim-filter should add a header line to each scanned 
message. The Mode can be s for signing, v for verifying, or sv for both.

The InternalHosts parameter should point to a file that contains a list of the hosts 
whose outgoing mail should be signed. Hosts should be listed by fully qualified 
domain name.

Several configuration options can help with debugging. Check out MilterDebug, 
LogWhy, and SyslogSuccess. Some of these generate so much logging informa-
tion that you should be sure to turn them off once you are satisfied with things.

Another series of options specifies what to do with messages whose signatures 
cannot be verified: On-Default, On-BadSignature, On-DNSError, On-Security, 
On-InternalError, and On-NoSignature. They each accept the values reject, 
tempfail, accept, and discard.

The system is highly configurable, and many more parameters (over 80) are de-
scribed in the dkim-filter.conf man page.

  



ptg

DKIM configuration in amavisd-new 849

El
ec

tr
on

ic
 M

ai
l

DKIM configuration in amavisd-new

To use DKIM in amavisd-new, you must have the Perl module Mail::DKIM ver-
sion 0.33 or later. If not, download it from CPAN. You must generate a key pair, 
turn on DKIM verification and signing, point to your private key file, and set 
some signing options.

amavisd itself can generate keys for DKIM:
$ amavisd genrsa /var/db/dkim/example.com-email.key.pem

The second argument to amavisd is the file in which to store the keys. Since it 
contains both the private and the public key, it’s best to check the permissions and 
make sure that this file is not readable by the world or anyone you don’t trust. 

The following configuration snippet has been modified slightly from the section 
of the amavisd-new documentation called “bits and pieces.” This example as-
sumes that your site’s domain is example.com and that you are using the selector 
“email” for your keys.

$enable_dkim_verification = 1; 
$enable_dkim_signing = 1; 
dkim_key('example.com', 'email', '/var/db/dkim/example.com-email.key.pem'); 
@dkim_signature_options_bysender_maps = (
    { '.' => { ttl => 21*24*3600, c => 'relaxed/simple' } } ); 
@mynetworks = qw(127.0.0.0/8 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16);

The DKIM signature options line lets you override the default tags, which are 
stored in an associative array. Signatures can have 13 distinct tag values associated 
with them. Many, such as the d tag, which specifies the domain of the sender, are 
set automatically. An important tag is the s tag, which specifies the selector to use 
when DNS is queried for the public key to verify the signature. In this example, 
you override the default time-to-live (ttl) of 30 days with a value of 21 days. Some 
of the tags become important if mail is relayed (for example, through a mailing 
list) and you want signatures to survive the operation. 

You can also specify the header fields to be included in the signature by assigning 
Boolean values to the associative array signed_header_fields. For example,

$signed_header_fields{'received'} = 0; 
$signed_header_fields{'sender'} = 1; 
$signed_header_fields{'to'} = 1; 
$signed_header_fields{'cc'} = 1; 

excludes the Received header but includes Sender, To, and Cc. The defaults are 
probably just fine for most sites.

You can use amavisd showkeys and amavisd testkeys to test your configuration. 
The showkeys command displays the public key that you should add to your DNS 
zone file for example.com. (Don’t forget to change the zone’s serial number and to 
signal your name server!) The testkeys command both tests the signing process 
and verifies that your key has been published in DNS. 

  



ptg

850 Chapter 20 Electronic Mail

DKIM in sendmail

You can implement DKIM for sendmail by using either milters (for in-line filter-
ing; see page 767) or a dual-server setup in conjunction with amavisd. Here, we 
cover the use of DKIM-milter to sign and verify messages. 

sendmail’s configuration primitives masquerade_as and genericstable rewrite 
headers, so those primitives must be implemented before any DKIM signature is 
added; otherwise, the signature will not remain valid.

To support DKIM, sendmail must be built with milter support, have the OpenSSL 
and Berkeley DB libraries available, and have the DKIM-milter package installed 
(find it at sourceforge.net). Use OpenSSL to generate keys, and add them to your 
DNS zone as described on page 591, or use dkim-genkey as shown on page 846. 

For this example, our domain is example.com. We chose the selector “email” and 
stored our private key in email.private and our public key in email.key.pem. We 
can test the keys with dkim-testkey as follows:

$ dkim-testkey -d example.com -k /var/db/dkim/email.key.pem -s ma

If all’s well, dkim-testkey says nothing.

In your sendmail configuration file, sendmail.mc, add the line
INPUT_MAIL_FILTER(`dkim-filter', `S=inet:8891@localhost')

and rebuild the sendmail.cf file (./Build sendmail.cf; sudo make install-cf). 
Then restart sendmail and start the dkim-filter program.

DKIM in Exim

The Exim 4.70 release (late 2009) added native support for DKIM and dropped 
support for Yahoo!’s DomainKeys. Expect the feature set to continue to evolve as 
the Exim developers work out bugs and gain experience working with DKIM. 

Exim’s DKIM support is enabled by default. To turn it off, set DISABLE_DKIM=yes
in Local/Makefile and rebuild and reinstall the package.

The Exim implementation signs outgoing messages in the SMTP transport con-
figuration and verifies signatures on incoming messages through a new ACL, 
acl_smtp_dkim. Hub machines can disable the signature verification on messages 
they relay for local hosts by setting dkim_disable_verify for those messages.

Signing outgoing messages
The first DKIM implementation chore is to generate your cryptographic keys 
with OpenSSL as described on page 591 (in the DNS chapter). Several new Exim 
options must be defined for use by the SMTP transport. The options can include 
variables to be expanded when the transport is called. Table 20.26 contains a list of 
the DKIM-related signing options.

  



ptg

A complete example 851

El
ec

tr
on

ic
 M

ai
l

The first three “options” are required and must be configured; the rest are truly 
optional. By default, the canonicalization method (dkim_canon) is relaxed, mes-
sages that cause signing errors are sent without signatures (dkim_strict), and 
Exim uses the RFC4871 list of headers to sign (dkim_sign_headers). The manda-
tory options are straightforward, but if you have a complex site that hosts multiple 
real or virtual domains, you will have to be clever in defining them.

Verifying incoming signed messages
Incoming DKIM-signed mail messages are verified in the acl_smtp_dkim ACL. 
This ACL is called once for each signature and returns one of the following codes: 

• none – message is not signed
• invalid – signature could not be verified (key unavailable or invalid)
• fail – signature failed verification for headers, body, or both
• pass – signature is valid

The status is returned in the $dkim_verify_status variable, with failure details in 
$dkim_verify_reason. There are lots of other $dkim_variable tags that give you 
access to the various fields of the signature and allow you to implement special 
policies (e.g., flagging messages from gmail.com that do not have signatures, or 
rejecting messages from paypal.com that do not verify).

A complete example
The following example is adapted from Phil Pennock’s DKIM setup.22 It includes 
definitions of acl_process_dkim to verify signatures and a router and a transport 
(dnslookup_signed and remote_dksign, respectively) to do the actual signing.

This configuration allows multiple domains to be signed and provides for multi-
ple keys so that key rollover is possible. This file is stored in CDB format and 
maps keys such as “example.org” to values such as “d200912.”

Key selectors are named dyyyymm, where d is just the letter “d” for date, yyyy is 
the year the key was generated, and mm is the month it was generated. Key files 
are named rsa.private.selector.domain and are stored in a key directory defined 

Table 20.26 DKIM signing options in Exim

Option Type Req’d Contents

dkim_domain String Yes Domain to sign with 
dkim_selector String Yes Key selector (name) 
dkim_private_key String Yes Private key or filename that contains it 
dkim_canon String No Canonicalization method: simple or relaxed 
dkim_strict String No If true, signing errors defer mail back to queue 
dkim_sign_headers String No Headers to include in signature

22. Phil is an active exim-users mailing list contributor.

  



ptg

852 Chapter 20 Electronic Mail 

with the macro DKKEY_DIR. Be sure this directory is readable by exim but not by 
the rest of the world.

######## macros to define the directories for databases and keys 
CONFIG_DIR = path_to_config_dir 
DKKEY_DIR = path_to_key_dir

######## main section: define the domains to sign and required DKIM acl 
domainlist dksign_domains = cdb;CONFIG_DIR/dk.selector.cdb 
acl_smtp_dkim = acl_process_dkim

######## ACL section: verify signature on incoming mail, add a header 
acl_process_dkim:

warn !dkim_status = none 
add_header = :at_start:X-DKIM-Report: $dkim_verify_status \

${if !eq{$dkim_verify_status}{pass}{$dkim_verify_reason }{}} \ 
(Signer=$dkim_cur_signer) (Testing=$dkim_key_testing)

######## Router section: put just before “dnslookup” router, sign nonlocal 
dnslookup_signed:

driver = dnslookup 
domains = !+local_domains 
transport = remote_dksign 
condition = ${if match_domain{$sender_address_domain} \ 

{+dksign_domains}} 
no_verify

######## Transport section: does the actual signing 
remote_dksign:

driver = smtp 
dkim_domain = $sender_address_domain 
dkim_selector = ${lookup {$sender_address_domain} \

cdb{CONFIG_DIR/dk.selector.cdb} {$value}fail} 
dkim_private_key = DKKEY_DIR/rsa.private.$dkim_selector.$dkim_domain 
dkim_strict = 1

These fragments result in outgoing messages being signed and incoming mes-
sages having their signatures verified and a DKIM report header added. Here’s an 
example of that header:

X-DKIM-Report: pass (Signer=gmail.com) (Testing=0)

Further policy is needed if you are going to reject or punish messages whose sig-
natures do not verify.

The no_verify line in the router section refers not to DKIM verification but rather 
to verifying the recipient’s address; it is turned off in this router, but done in the 
dnslookup router that is next in line. No sense doing it twice.

DKIM in Postfix

DKIM is implemented in Postfix with the DKIM-milter software package de-
scribed on page 846. Generate your key pair and test it with dkim-testkey; build a 

  



ptg

Integrated email solutions 853

El
ec

tr
on

ic
 M

ai
l

dkim-filter.conf file from the sample in the distribution, and then teach Postfix 
to use dkim-filter. In main.cf, after any other milter options, add the lines

smtpd_milters = inet:localhost:8891 
non_smtpd_milters = inet:localhost:8891 
milter_protocol = 2 
milter_default_action = accept

Now all you need to do is start dkim-filter and restart postfix.

20.17 INTEGRATED EMAIL SOLUTIONS

A host of integrated email solutions are available, ranging from free, open source 
products to pricey commercial offerings. All handle more than just electronic 
mail. Common groupware and conferencing features include

• Address book and shared contact list management
• Calendar and task management
• Mailing lists and bulletin boards
• Instant messaging
• SSL/TLS encryption
• Archiving and automatic backups
• Support for mobile devices (BlackBerry, iPhone, etc.)

Most of these megapackages include a configuration GUI that more or less re-
places the need to read this humongous chapter. (Perhaps we should have put this 
section at the beginning of the chapter instead of the end.) Many are targeted as 
replacements for Microsoft Exchange.

Several products merit an explicit mention: 

• Citadel (citadel.org) is an open source email and groupware package that 
has support contracts available. 

• Zimbra (zimbra.com) straddles the divide between open source and 
proprietary systems. Its full-featured version is proprietary and costs 
money, but an only-slightly-hobbled version is open source and free. 

• Kerio MailServer (kerio.com) is a proprietary system that, like Zimbra, 
is licensed on a per-user basis. For a large organization, these options 
can get pricey.

• Communigate Pro (communigate.com) folds voice and video into the 
usual email/groupware suite and offers either traditional unlimited 
licensing or use-based licensing.

You might also consider email appliances, hardware boxes that are usually built on 
hardened, stripped-down versions of FreeBSD UNIX or Linux. Three choices in 
this space are Cisco’s IronPort Series and models from Sophos and Clearswift. 
These products typically perform antivirus and antispam filtering and then hand 
messages to Microsoft Exchange for delivery.

  



ptg

854 Chapter 20 Electronic Mail

20.18 RECOMMENDED READING

Rather than jumble together the references listed here, we’ve sorted them by MTA 
and topic.

General spam references

CLAYTON, RICHARD. “Good Practice for Combating Unsolicited Bulk Email.” 
RIPE/Demon Internet. 2000, ripe.net/ripe/docs/ripe-206.html.

This document is aimed at ISPs. It has lots of policy information and some good 
links to technical subjects.

FIELD, JULIAN. MailScanner: A User Guide and Training Manual. University of 
Southampton Department of Electronics, 2007.

MCDONALD, ALISTAIR. SpamAssassin: A Practical Guide to Configuration, Cus-
tomization, and Integration. Packt Publishing, 2004.

SCHWARTZ, ALAN. SpamAssassin. Sebastopol, CA: O’Reilly Media, 2004.

WOLFE, PAUL, CHARLIE SCOTT, AND MIKE ERWIN. The Anti-Spam Tool Kit. Em-
eryville, CA: Osborne, 2004.

sendmail references

COSTALES, BRYAN, CLAUS ASSMANN, GEORGE JANSEN, AND GREGORY NEIL SHA-
PIRO. sendmail, 4th Edition. Sebastopol, CA: O’Reilly Media, 2007.

This book is the definitive tome for sendmail configuration—1,300 pages’ worth. 
It includes a sysadmin guide as well as a complete reference section. An electronic 
edition is available, too. The author mix includes two key sendmail developers 
(Claus and Greg) who enforce technical correctness and add insight to the mix.

Installation instructions and a good description of the configuration file are cov-
ered in the Sendmail Installation and Operation Guide, which can be found in the 
doc/op subdirectory of the sendmail distribution. This document is quite com-
plete, and in conjunction with the README file in the cf directory, it gives a good 
nuts-and-bolts view of the sendmail system.

sendmail.org, sendmail.org/~ca, and sendmail.org/~gshapiro all contain docu-
ments, HOWTOs, and tutorials related to sendmail.

Exim references

HAZEL, PHILIP. The Exim SMTP Mail Server: Official Guide for Release 4, 2nd Edi-
tion. Cambridge, UK: User Interface Technologies, Ltd., 2007. 

HAZEL, PHILIP. Exim: The Mail Transfer Agent. Sebastapol, CA: O’Reilly Media, 
2001.

MEERS, JASON. Getting started with EXIM. exim-new-users.co.uk, 2007.

  



ptg

Exercises 855

El
ec

tr
on

ic
 M

ai
l

The Exim specification is the defining document for Exim configuration. It is 
very complete and is updated with each new distribution. A text version is in-
cluded in the file doc/spec.txt in the distribution, and a PDF version is available 
from exim.org. There are also several how-to documents on the web site.

Postfix references

BLUM, RICHARD. Postfix. Sams Publishing, 2001.

DENT, KYLE D. Postfix: The Definitive Guide. Sebastopol, CA: O’Reilly Media, 
2003.

HILDEBRANDT, RALF, AND PATRICK KOETTER. The Book of Postfix: State of the Art 
Message Transport. San Francisco, CA: No Starch Press, 2005.

This book is the best; it guides you through all the details of Postfix configuration, 
even for complex environments. The authors are active in the Postfix community 
and participate regularly on the postfix-users mailing list. The book is unfortu-
nately out of print, but used copies are easily available.

postfix.org/SOHO_README.html is a guide to using Postfix at home or in a 
small office environment.

RFCs

RFCs 5321 and 5322 are the current versions of RFCs 821 and 822. They define 
the SMTP protocol and the formats of messages and addresses for Internet email. 
RFCs 5335 and 5336 cover extensions for internationalized email addresses. 
There are currently almost 90 email-related RFCs, too many to list here. See the 
general RFC search engine at rfc-editor.org for more.

20.19 EXERCISES

E20.1 Briefly explain the difference between a user agent (MUA), a delivery 
agent (DA), and an access agent (AA). Then explain the difference be-
tween a mail transport agent (MTA) and a mail submission agent (MSA).

E20.2 Inspect the mail queue on your local mail server. Is there cruft in the 
directory? Are there messages with no control files or control files 
with no messages? What is the oldest message in the queue? (Requires 
root access.)

E20.3 Explain what an MX record is. Why are MX records important for 
mail delivery? Give an example in which a misconfigured MX record 
might make mail undeliverable.

E20.4 Determine the design of mail service at your site and diagram it in the 
style of Exhibit B on page 754. Where is incoming mail scanned for 
spam or viruses? What about outgoing mail?

  



ptg

856 Chapter 20 Electronic Mail

E20.5 Compare the use of /etc/mail/aliases with the use of an LDAP server 
or MySQL database to store mail aliases. What are the advantages and 
disadvantages of each?

E20.6 Write a brief description of the following email headers. What path 
did the email take? To whom was it addressed, and to whom was it 
delivered? How long did it spend in transit? 
Delivered-To: sailingevi@gmail.com
Received: by 10.231.143.81 with SMTP id t17cs175323ibu; 

Mon, 28 Dec 2009 20:15:20 -0800 (PST)
Received: by 10.231.157.131 with SMTP id 

b3mr2134004ibx.19.1262060119841;
Mon, 28 Dec 2009 20:15:19 -0800 (PST)

Return-Path: <garth@grsweb.us>
Received: from mail-relay.atrust.com (mail-relay.atrust.com 

[63.173.189.2]) by mx.google.com with ESMTP id 
12si19092249iwn.27.2009.12.28.20.15.19;
Mon, 28 Dec 2009 20:15:19 -0800 (PST)

Received-SPF: neutral (google.com: 63.173.189.2 is neither permitted nor 
denied by best guess record for domain of garth@grsweb.us) client-
ip=63.173.189.2;

Authentication-Results: mx.google.com; spf=neutral (google.com: 
63.173.189.2 is neither permitted nor denied by best guess record for 
domain of garth@grsweb.us) smtp.mail=garth@grsweb.us

Received: from mout.perfora.net (mout.perfora.net [74.208.4.194]) by 
mail-relay.atrust.com (8.12.11/8.12.11) with ESMTP id nBT4FI9r017821 
for <evi@atrust.com>; Mon, 28 Dec 2009 21:15:19 -0700

Received: from grsweb.us (wolverine.dreamhost.com [75.119.201.185]) by 
mrelay.perfora.net (node=mrus1) with ESMTP (Nemesis) id 0Ma0RD-
1NgKS52KT9-00LeuN; Mon, 28 Dec 2009 23:15:17 -0500

Date: Mon, 28 Dec 2009 20:15:13 -0800
From: UNIX and Linux System Administration Handbook 

<garth@grsweb.us>
Reply-To: garth@grsweb.us 
To: evi@atrust.com 
Cc: garth@grsweb.us 
Message-Id: <4b398251b11ab_e92383578b2d9b036f@wolverine.tmail> 
Subject: New comments on Printing 
Mime-Version: 1.0 
Content-Type: text/html; charset=utf-8 
X-Provags-ID: 

V01U2FsdGVkX18pouiYXif/bVfh+D9wFXMr24TahAzDNZqM+jA04iLR7S4 
olDXRpXlrbQMblNoZf5jO6edc+WIGC8Fi4hd5Ak15vBARASOFQYxNJWea9 
8SyQg==

X-Spam-Status: No, hits=-99.3 required=4.0 tests=BAYES_30,HTML_20_30, 
MIME_HTML_ONLY,USER_IN_WHITELIST version=2.55

X-Spam-Level: 
X-Spam-Checker-Version: SpamAssassin 2.55 (1.174.2.19-2003-05-19-exp)

  



ptg

sendmail-specific exercises 857

El
ec

tr
on

ic
 M

ai
l

E20.7 What are the implications of being blacklisted at spamhaus.org or a 
similar service? What should you do if you find that your site has be-
come blacklisted? Outline techniques you can use to stay off such lists 
in the first place.

E20.8 If your site allows procmail and if you have permission from your 
local sysadmin group, set up your personal procmail configuration 
file to illustrate how procmail can compromise security.

E20.9 Explore the current MTA configuration at your site. What are some of 
the special features of the MTA that are in use? Can you find any 
problems with the configuration? In what ways could the configura-
tion be made better?

E20.10 Find a piece of spam in your mailbox and inspect the headers. Report 
any signs that the mail has been forged. Then run some of the tools 
mentioned in this chapter, such as SpamAssassin, and report their 
findings. How did you do at recognizing faked headers? Submit the 
spam and your conclusions about the sender, the validity of the listed 
hosts, and anything else that looks out of place.

sendmail-specific exercises

E20.11 What is smrsh, and why should you use it instead of /bin/sh? If smrsh
is used at your site, what programs are allowed to run as the program 
mailer? Are any of them dangerously insecure?

E20.12 Write a small /etc/mail/aliases file that demonstrates three different 
types of aliases. Talk briefly about what each line does and why it 
could be useful.

E20.13 List the prefixes for files in the mail queue directory and explain what 
each one means. Why is it important to delete some queue files but 
very wrong to delete others? How can some of the prefixes be used to 
debug sendmail configuration mistakes?

E20.14 Explain the purpose of each of the following m4 macros. If the macro 
includes a file, provide a short description of what the contents of the 
file should be.

a) VERSIONID
b) OSTYPE
c) DOMAIN
d) MAILER
e) FEATURE

E20.15 Explain how you would configure a sendmail server to accept email 
for both your own domain and a virtual domain. Allow the virtual 
domain to relay mail to an off-site mailbox.

  



ptg

858 Chapter 20 Electronic Mail

Exim-specific exercises

E20.16 Take the ACL example for the SMTP RCPT command shown on page 
815 and reverse its default behavior to deny, while letting the same 
addresses pass through. 

E20.17 Version 4.70 and later removed the DomainKeys code in favor of 
DKIM. Simplify the example DKIM setup on page 851 to support 
only a single domain and single signing key. Then add some policy 
rules, such as logging unsigned mail from Gmail or Yahoo! or reject-
ing failed verifications from PayPal or your bank.

E20.18 Explain how you would configure an Exim server to accept mail for 
both your own domain and a virtual domain. Allow the virtual do-
main to relay mail to an off-site mailbox.

E20.19 Look through the configuration snippets in the spec.txt document in 
the Exim distribution and experiment with including some of them in 
your configuration. Turn on verbose logging for each thing you try 
and examine the log files to see if it has the desired behavior.

Postfix-specific exercises

E20.20 Try to set up a “null client”—that is, a mail system that only sends mail 
and can’t receive it. Make sure that port 25 is closed. 

E20.21 Configure Postfix to authenticate your site to your provider or com-
pany server (even Gmail!); use the following parameters:

smtp_sender_dependent_authentication 
sender_dependent_relayhost_maps 
smtp_sasl_auth_enable 
smtp_sasl_password_maps

E20.22 Why do you think that Postfix supports so many map types? 

E20.23 What would you use pcre maps for? Is value substitution something 
useful for mail systems? Do you need to use the postmap command 
to compile pcre maps?

E20.24 Look up the meaning of the recipient_delimiter parameter in the 
documentation (postconf man page). What could it be used for?

E20.25 Explain how you would configure Postfix to accept email for both 
your own domain and a virtual domain. Allow the virtual domain to 
relay mail to an off-site mailbox.

  



ptg

859

N
et

 M
gm

t

21 Network Management and 
Debugging

Because networks increase the number of interdependencies among machines, 
they tend to magnify problems. As the saying goes, “Networking is when you can’t 
get any work done because of the failure of a machine you have never heard of.”

Network management is the art and science of keeping a network healthy. It gen-
erally includes the following tasks:

• Fault detection for networks, gateways, and critical servers
• Schemes for notifying an administrator of problems
• General network monitoring, to balance load and plan expansion
• Documentation and visualization of the network
• Administration of network devices from a central site

On a single network segment, it is generally not worthwhile to establish formal 
procedures for network management. Just test the network thoroughly after in-
stallation and check it occasionally to be sure that its load is not excessive. When it 
breaks, fix it.

As your network grows, management procedures should become more auto-
mated. On a network consisting of several different subnets joined with switches 
or routers, you may want to start automating management tasks with shell scripts 

Net Mgmt

  



ptg

860 Chapter 21 Network Management and Debugging

and simple programs. If you have a WAN or a complex local network, consider 
installing a dedicated network management station.

In many cases, your organization’s reliability needs will dictate the sophistication 
of your network management system. A problem with the network can bring all 
work to a standstill. If your site cannot tolerate downtime, it may well be worth-
while to obtain and install a high-end enterprise network management system. 

Unfortunately, even the best network management system cannot prevent all fail-
ures. It is critical to have a well-documented network and a high-quality staff 
available to handle the inevitable collapses.

21.1 NETWORK TROUBLESHOOTING

Several good tools are available for debugging a network at the TCP/IP layer. Most 
give low-level information, so you must understand the main ideas of TCP/IP and 
routing in order to use the debugging tools.

On the other hand, network issues can also stem from problems with higher-level 
protocols such as DNS, NFS, and HTTP. You might want to read through Chapter 
14, TCP/IP Networking, and Chapter 15, Routing, before tackling this chapter.

In this section, we start with some general troubleshooting strategy. We then 
cover several essential tools, including ping, traceroute, netstat, tcpdump, and 
Wireshark. We don’t discuss the arp command in this chapter, though it, too, is 
sometimes a useful debugging tool—see page 468 for more information.

Before you attack your network, consider these principles:

• Make one change at a time. Test each change to make sure that it had the 
effect you intended. Back out any changes that have an undesired effect.

• Document the situation as it was before you got involved, and document 
every change you make along the way.

• Problems may be transient, so begin by capturing relevant information 
with tools like sar and nmon. This information may come in handy as 
you are unraveling the problem.

• Start at one end of a system or network and work through the system’s 
critical components until you reach the problem. For example, you 
might start by looking at the network configuration on a client, work 
your way up to the physical connections, investigate the network hard-
ware, and finally, check the server’s physical connections and software 
configuration.

• Communicate regularly. Most network problems affect lots of different 
people: users, ISPs, system administrators, telco engineers, network 
administrators, etc. Clear, consistent communication prevents you from 
hindering one another’s efforts to solve the problem.

  



ptg

ping: check to see if a host is alive 861

N
et

 M
gm

t

• Work as a team. Years of experience show that people make fewer stupid 
mistakes if they have a peer helping out. If the problem has any visibility, 
management will also want to be involved. Take advantage of managers’ 
interest to get technical people from other groups on board and to cut 
through red tape where necessary.

• Use the layers of the network to negotiate the problem. Start at the “top” 
or “bottom” and work your way through the protocol stack.

This last point deserves a bit more discussion. As described on page 450, the ar-
chitecture of TCP/IP defines several layers of abstraction at which components of 
the network can function. For example, HTTP depends on TCP, TCP depends on 
IP, IP depends on the Ethernet protocol, and the Ethernet protocol depends on 
the integrity of the network cable. You can dramatically reduce the amount of 
time spent debugging a problem if you first figure out which layer is misbehaving. 

Ask yourself questions like these as you work up or down the stack:

• Do you have physical connectivity and a link light?
• Is your interface configured properly?
• Do your ARP tables show other hosts?
• Is there a firewall on your local machine?
• Is there a firewall anywhere between you and the destination?
• If firewalls are involved, do they pass ICMP ping packets and responses?
• Can you ping the localhost address (127.0.0.1)?
• Can you ping other local hosts by IP address?
• Is DNS working properly?1

• Can you ping other local hosts by hostname?
• Can you ping hosts on another network?
• Do high-level services such as web and SSH servers work?
• Did you really check the firewalls?

Once you’ve identified where the problem lies and have a fix in mind, take a step 
back to consider the effect that your subsequent tests and prospective fixes will 
have on other services and hosts.

21.2 PING: CHECK TO SEE IF A HOST IS ALIVE

The ping command is embarrassingly simple, but in many situations it is the only 
command you need for network debugging. It sends an ICMP ECHO_REQUEST 
packet to a target host and waits to see if the host answers back.

1. If a machine hangs at boot time, boots very slowly, or hangs on inbound SSH connections, DNS 
should be a prime suspect. Solaris and Linux use a sophisticated approach to name resolution that’s 
configurable in /etc/nsswitch.conf. On these systems, the name service caching daemon (nscd) is of 
particular interest. If it crashes or is misconfigured, name lookups are affected. With the transition to 
IPv6 progressing, we find that many DSL routers provide DNS forwarding services that simply drop 
requests for IPv6 (AAAA) DNS records. This “optimization” causes long timeouts on all name resolu-
tion requests. Use the getent command to check whether your resolver and name servers are working 
properly (e.g., getent hosts google.com).

  



ptg

862 Chapter 21 Network Management and Debugging

You can use ping to check the status of individual hosts and to test segments of 
the network. Routing tables, physical networks, and gateways are all involved in 
processing a ping, so the network must be more or less working for ping to suc-
ceed. If ping doesn’t work, you can be pretty sure that nothing more sophisticated 
will work either. 

However, this rule does not apply to networks that block ICMP echo requests with 
a firewall. Make sure that a firewall isn’t interfering with your debugging before 
you conclude that the target host is ignoring a ping. You might consider disabling 
a meddlesome firewall for a short period of time to facilitate debugging.

If your network is in bad shape, chances are that DNS is not working. Simplify the 
situation by using numeric IP addresses when pinging, and use ping’s -n option to 
prevent ping from attempting to do reverse lookups on IP addresses—these look-
ups also trigger DNS requests.

Be aware of the firewall issue if you’re using ping to check your Internet connec-
tivity, too. Some well-known sites answer ping packets and others don’t. We’ve 
found google.com to be a consistent responder.

Most versions of ping run in an infinite loop unless you supply a packet count 
argument. Under Solaris, ping -s provides the extended output that other versions 
use by default. Once you’ve had your fill of pinging, type the interrupt character 
(usually <Control-C>) to get out.

Here’s an example:
linux$ ping beast
PING beast (10.1.1.46): 56 bytes of data. 
64 bytes from beast (10.1.1.46): icmp_seq=0 ttl=54 time=48.3ms 
64 bytes from beast (10.1.1.46): icmp_seq=1 ttl=54 time=46.4ms 
64 bytes from beast (10.1.1.46): icmp_seq=2 ttl=54 time=88.7ms 
^C 
--- beast ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2026ms 
rtt min/avg/max/mdev = 46.490/61.202/88.731/19.481 ms

The output for beast shows the host’s IP address, the ICMP sequence number of 
each response packet, and the round trip travel time. The most obvious thing that 
the output above tells you is that the server beast is alive and connected to the 
network. 

The ICMP sequence number is a particularly valuable piece of information. Dis-
continuities in the sequence indicate dropped packets. They’re normally accom-
panied by a message for each missing packet.

Despite the fact that IP does not guarantee the delivery of packets, a healthy net-
work should drop very few of them. Lost-packet problems are important to track 
down because they tend to be masked by higher-level protocols. The network may 
appear to function correctly, but it will be slower than it ought to be, not only 

  



ptg

ping: check to see if a host is alive 863

N
et

 M
gm

t

because of the retransmitted packets but also because of the protocol overhead 
needed to detect and manage them. 

To track down the cause of disappearing packets, first run traceroute (see the 
next section) to discover the route that packets are taking to the target host. Then 
ping the intermediate gateways in sequence to discover which link is dropping 
packets. To pin down the problem, you need to send a fair number of packets. The 
fault generally lies on the link between the last gateway you can ping without loss 
of packets and the gateway beyond that.

The round trip time reported by ping gives you insight into the overall perfor-
mance of a path through a network. Moderate variations in round trip time do 
not usually indicate problems. Packets may occasionally be delayed by tens or 
hundreds of milliseconds for no apparent reason; that’s just the way IP works. You 
should expect to see a fairly consistent round trip time for the majority of packets, 
with occasional lapses. Many of today’s routers implement rate-limited or lower-
priority responses to ICMP packets, which means that a router may delay re-
sponding to your ping if it is already dealing with a lot of other traffic.

The ping program can send echo request packets of any size, so by using a packet 
larger than the MTU of the network (1,500 bytes for Ethernet), you can force frag-
mentation. This practice helps you identify media errors or other low-level issues 
such as problems with a congested network or VPN.

On Linux systems, you specify the desired packet size in bytes with the -s flag. 
$ ping -s 1500 cuinfo.cornell.edu

Under Solaris, HP-UX, and AIX, you simply add the desired packet size to the end 
of the ping command.

$ ping cuinfo.cornell.edu 1500

Note that even a simple command like ping can have dramatic effects. In 1998, 
the so-called Ping of Death attack crashed large numbers of UNIX and Windows 
systems. It was launched simply by transmission of an overly large ping packet. 
When the fragmented packet was reassembled, it filled the receiver’s memory buf-
fer and crashed the machine. The Ping of Death issue has long since been fixed, 
but several other caveats should be kept in mind regarding ping. 

First, it is hard to distinguish the failure of a network from the failure of a server 
with only the ping command. In an environment where ping tests normally work, 
a failed ping just tells you that something is wrong.

Second, a successful ping does not guarantee much about the target machine’s 
state. Echo request packets are handled within the IP protocol stack and do not 
require a server process to be running on the probed host. A response guarantees 
only that a machine is powered on and has not experienced a kernel panic. You’ll 
need higher-level methods to verify the availability of individual services such as 
HTTP and DNS.

  



ptg

864 Chapter 21 Network Management and Debugging

21.3 SMOKEPING: GATHER PING STATISTICS OVER TIME

As mentioned earlier, even a healthy network occasionally drops a packet. On the 
other hand, networks should not drop packets regularly, even at a low rate, be-
cause the impact on users can be disproportionately severe. Because high-level 
protocols often function even in the presence of packet loss, you might never no-
tice dropped packets unless you’re actively monitoring for them.

For this purpose, you may want to check out SmokePing, an open source tool by 
Tobias Oetiker that keeps track of network latencies. SmokePing sends several 
ping packets to a target host at regular intervals. It shows the history of each mon-
itored link through a web front end and can send alarms when things go amiss.
You can get a copy from oss.oetiker.ch/smokeping.

Exhibit A shows a SmokePing graph. The vertical axis is the round trip time of 
pings, and the horizontal axis is time (weeks). The black line from which the gray 
spikes stick up indicates the median round trip time; the spikes themselves are the 
transit times of individual packets. Since the gray in this graph appears only above 
the median line, the great majority of packets must be traveling at close to the 
median speed, with just a few being delayed. This is a typical finding.

Exhibit A Sample SmokePing graph

The stair-stepped shape of the median line indicates that the baseline transit time 
to this destination has changed several times during the monitoring period. The 
most likely hypotheses to explain this observation are either that the host is reach-
able by several routes or that it is actually a collection of several hosts that have the 
same DNS name but multiple IP addresses.

  



ptg

traceroute: trace IP packets 865

N
et

 M
gm

t

21.4 TRACEROUTE: TRACE IP PACKETS

traceroute, originally written by Van Jacobson, uncovers the sequence of gate-
ways through which an IP packet travels to reach its destination. All modern op-
erating systems come with some version of traceroute.2 The syntax is simply 

traceroute hostname

There are a variety of options, most of which are not important in daily use. As 
usual, the hostname can be specified as either a DNS name or an IP address. The 
output is simply a list of hosts, starting with the first gateway and ending at the 
destination. For example, a traceroute from our host jaguar to our host nubark 
produces the following output:

$ traceroute nubark 
traceroute to nubark (192.168.2.10), 30 hops max, 38 byte packets
 1  lab-gw (172.16.8.254)  0.840 ms  0.693 ms  0.671 ms
 2  dmz-gw (192.168.1.254)  4.642 ms  4.582 ms  4.674 ms
 3  nubark (192.168.2.10)  7.959 ms  5.949 ms  5.908 ms

From this output we can tell that jaguar is three hops away from nubark, and we 
can see which gateways are involved in the connection. The round trip time for 
each gateway is also shown—three samples for each hop are measured and dis-
played. A typical traceroute between Internet hosts often includes more than 15 
hops, even if the two sites are just across town.

traceroute works by setting the time-to-live field (TTL, actually “hop count to 
live”) of an outbound packet to an artificially low number. As packets arrive at a 
gateway, their TTL is decreased. When a gateway decreases the TTL to 0, it dis-
cards the packet and sends an ICMP “time exceeded” message back to the origi-
nating host.

See page 582 for more 
information about 
reverse DNS lookups.

The first three traceroute packets have their TTL set to 1. The first gateway to see 
such a packet (lab-gw in this case) determines that the TTL has been exceeded 
and notifies jaguar of the dropped packet by sending back an ICMP message. The 
sender’s IP address in the header of the error packet identifies the gateway, and 
traceroute looks up this address in DNS to find the gateway’s hostname.

To identify the second-hop gateway, traceroute sends out a second round of 
packets with TTL fields set to 2. The first gateway routes the packets and de-
creases their TTL by 1. At the second gateway, the packets are then dropped and 
ICMP error messages are generated as before. This process continues until the 
TTL is equal to the number of hops to the destination host and the packets reach 
their destination successfully.

2. Even Windows has it, but the command is spelled tracert (extra history points if you can guess why).

  



ptg

866 Chapter 21 Network Management and Debugging

Most routers send their ICMP messages from the interface “closest” to the desti-
nation. If you run traceroute backward from the destination host, you may see 
different IP addresses being used to identify the same set of routers. You might 
also discover that packets flowing in the reverse direction take a completely differ-
ent path, a configuration known as asymmetric routing.

Since traceroute sends three packets for each value of the TTL field, you may 
sometimes observe an interesting artifact. If an intervening gateway multiplexes 
traffic across several routes, the packets might be returned by different hosts; in 
this case, traceroute simply prints them all. 

Let’s look at a more interesting example from a host in Switzerland to caida.org at 
the San Diego Supercomputer Center:3

linux$ traceroute caida.org 
traceroute to caida.org (192.172.226.78), 30 hops max, 46 byte packets
 1  gw-oetiker.init7.net (213.144.138.193)  1.122 ms  0.182 ms  0.170 ms
 2  r1zur1.core.init7.net (77.109.128.209)  0.527 ms  0.204 ms  0.202 ms
 3  r1fra1.core.init7.net (77.109.128.250)  18.279 ms  6.992 ms  16.597 ms
 4  r1ams1.core.init7.net (77.109.128.154)  19.549 ms  21.855 ms  13.514 ms
 5  r1lon1.core.init7.net (77.109.128.150)  19.165 ms  21.157 ms  24.866 ms
 6  r1lax1.ce.init7.net (82.197.168.69)  158.232 ms  158.224 ms  158.271 ms
 7  cenic.laap.net (198.32.146.32)  158.349 ms  158.309 ms  158.248 ms
 8  dc-lax-core2--lax-peer1-ge.cenic.net (137.164.46.119)  158.60 ms * 158.71 ms
 9  dc-tus-agg1--lax-core2-10ge.cenic.net (137.164.46.7) 159 ms 159 ms 159 ms 
10  dc-sdsc-sdsc2--tus-dc-ge.cenic.net (137.164.24.174) 161 ms 161 ms 161 ms 
11  pinot.sdsc.edu (198.17.46.56)  161.559 ms  161.381 ms  161.439 ms 
12  rommie.caida.org (192.172.226.78)  161.442 ms  161.445 ms  161.532 ms

This output shows that packets travel inside Init Seven’s network for a long time. 
Sometimes we can guess the location of the gateways from their names. Init 
Seven’s core stretches all the way from Zurich (zur) to Frankfurt (fra), Amster-
dam (ams), London (lon), and finally, Los Angeles (lax). Here, the traffic trans-
fers to cenic.net, which delivers the packets to the caida.org host within the net-
work of the San Diego Supercomputer Center (sdsc) in La Jolla, CA.

At hop 8, we see a star in place of one of the round trip times. This notation means 
that no response (error packet) was received in response to the probe. In this case, 
the cause is probably congestion, but that is not the only possibility. traceroute
relies on low-priority ICMP packets, which many routers are smart enough to 
drop in preference to “real” traffic. A few stars shouldn’t send you into a panic.

If you see stars in all the time fields for a given gateway, no “time exceeded” mes-
sages are arriving from that machine. Perhaps the gateway is simply down. Some-
times, a gateway or firewall is configured to silently discard packets with expired 
TTLs. In this case, you can still see through the silent host to the gateways beyond. 
Another possibility is that the gateway’s error packets are slow to return and that 
traceroute has stopped waiting for them by the time they arrive.

3. We removed a few fractions of milliseconds from the longer lines to keep them from folding.

  



ptg

traceroute: trace IP packets 867

N
et

 M
gm

t

Some firewalls block ICMP “time exceeded” messages entirely. If such a firewall 
lies along the path, you won’t get information about any of the gateways beyond it. 
However, you can still determine the total number of hops to the destination be-
cause the probe packets eventually get all the way there.

Also, some firewalls may block the outbound UDP datagrams that traceroute
sends to trigger the ICMP responses. This problem causes traceroute to report no 
useful information at all. If you find that your own firewall is preventing you from 
running traceroute, make sure the firewall has been configured to pass UDP 
ports 33434–33534 as well as ICMP ECHO (type 8) packets.

A slow link does not necessarily indicate a malfunction. Some physical networks 
have a naturally high latency; UMTS/EDGE/GPRS wireless networks are a good 
example. Sluggishness can also be a sign of high load on the receiving network. 
Inconsistent round trip times would support such a hypothesis.

Sometimes, you may see the notation !N instead of a star or round trip time. It 
indicates that the current gateway sent back a “network unreachable” error, mean-
ing that it doesn’t know how to route your packet. Other possibilities include !H
for “host unreachable” and !P for “protocol unreachable.” A gateway that returns 
any of these error messages is usually the last hop you can get to. That host usually 
has a routing problem (possibly caused by a broken network link): either its static 
routes are wrong, or dynamic protocols have failed to propagate a usable route to 
the destination.

If traceroute doesn’t seem to be working for you or is working slowly, it may be 
timing out while trying to resolve the hostnames of gateways through DNS. If 
DNS is broken on the host you are tracing from, use traceroute -n to request 
numeric output. This option disables hostname lookups; it may be the only way to 
get traceroute to function on a crippled network.

traceroute needs root privileges to operate. To be available to normal users, it 
must be installed setuid root. Several Linux distributions include the traceroute
command but leave off the setuid bit. Depending on your environment and needs, 
you can either turn the setuid bit back on or give interested users access to the 
command through sudo.

Recent years have seen the introduction of several new traceroute-like utilities 
that can bypass ICMP-blocking firewalls. See the PERTKB Wiki for an overview 
of these tools at tinyurl.com/y99qh6u. We especially like mtr, which has a top-like 
interface and shows a sort of live traceroute. Very neat!

When debugging routing issues, it can be helpful to take a look at your site from 
the perspective of the outside world. Several web-based route tracing services let 
you do this sort of inverse traceroute right from a browser window. Thomas 
Kernen maintains a list of these services at traceroute.org.

  



ptg

868 Chapter 21 Network Management and Debugging

21.5 NETSTAT: GET NETWORK STATISTICS

netstat collects a wealth of information about the state of your computer’s net-
working software, including interface statistics, routing information, and connec-
tion tables. There isn’t really a unifying theme to the different sets of output, ex-
cept that they all relate to the network. Think of netstat as the “kitchen sink” of 
network tools—it exposes a variety of network information that doesn’t fit any-
where else. Here, we discuss the five most common uses of netstat:

• Inspecting interface configuration information
• Monitoring the status of network connections
• Identifying listening network services
• Examining the routing table
• Viewing operational statistics for various network protocols

Inspecting interface configuration information

netstat -i shows the configuration and state of each of the host’s network inter-
faces along with the associated traffic counters. The output is generally tabular but 
the details vary by system:

solaris$ netstat -i 
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 loopback localhost 319589661 0 319589661  0 0 0
e1000g1 1500 host-if1 host-if1 369842112 0 348557584  0 0 0
e1000g2 1500 host-if2 host-if2 93141891 0 121107161  0 0 0

hp-ux$ netstat -i 
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lan0 1500 192.168.10.0 hpux11 2611259 0 2609847 0 0   
lo0 32808 loopback hpux11.atrust.com 

aix$ netstat -i 
Name Mtu Network Address ZoneID Ipkts Ierrs Opkts Oerrs Coll
en3 1500 link#2 0.11.25.39.e0.b6 41332 0 14173 3 0
en3 1500 192.168.10 IBM 41332 0 14173 3 0
lo0 16896 link#1 1145121 0 1087387 0 0
lo0 16896 127 loopback 1145121 0 1087387 0 0
lo0 16896 ::1 0 1145121 0 1087387 0 0

On Linux, you may want to use ifconfig -a instead of netstat -i. It prints similar 
information in a more detailed and more verbose format.

linux$ ifconfig -a 
eth0 Link encap:EthernetHWaddr 00:15:17:4c:4d:00 

inet addr:192.168.0.203Bcast:192.168.0.255Mask:255.255.255.0 
inet6 addr: fe80::215:17ff:fe4c:4d00/64 Scope:Link 
UP BROADCAST RUNNING MULTICASTMTU:1500Metric:1 
RX packets:559543852 errors:0 dropped:62 overruns:0 frame:0 
TX packets:457050867 errors:0 dropped:0 overruns:0 carrier:0

  



ptg

Inspecting interface configuration information 869

N
et

 M
gm

t

collisions:0 txqueuelen:1000 
RX bytes:478438325085 (478.4 GB)TX bytes:228502292340 (228.5 GB) 
Memory:b8820000-b8840000 

eth1 Link encap:EthernetHWaddr 00:15:17:4c:4d:01 
BROADCAST MULTICASTMTU:1500Metric:1 
RX packets:0 errors:0 dropped:0 overruns:0 frame:0 
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 
collisions:0 txqueuelen:1000 
RX bytes:0 (0.0 B)TX bytes:0 (0.0 B) 
Memory:b8800000-b8820000 

lo Link encap:Local Loopback 
inet addr:127.0.0.1Mask:255.0.0.0 
inet6 addr: ::1/128 Scope:Host 
UP LOOPBACK RUNNINGMTU:16436Metric:1 
RX packets:1441988 errors:0 dropped:0 overruns:0 frame:0 
TX packets:1441988 errors:0 dropped:0 overruns:0 carrier:0 
collisions:0 txqueuelen:0 
RX bytes:327048609 (327.0 MB)TX bytes:327048609 (327.0 MB)

This host has two network interfaces: one for regular traffic, plus a second inter-
face that is currently not in use (it has no IP address and is not marked UP). RX 
packets and TX packets report the number of packets that have been received 
and transmitted on each interface since the machine was booted. Many types of 
errors are counted in the error buckets, and it is normal for a few to show up.

Errors should be less than 1% of the associated packets. If your error rate is high, 
compare the rates of several neighboring machines. A large number of errors on a 
single machine suggests a problem with that machine’s interface or connection. A 
high error rate everywhere most likely indicates a media or network problem. 
One of the most common causes of a high error rate is an Ethernet speed or du-
plex mismatch caused by a failure of autosensing or autonegotiation.

Although a collision is a type of error, it is counted separately by netstat. The field 
labeled Collisions reports the number of collisions that were experienced while 
packets were being sent. Use this number to calculate the percentage of output 
packets (TX packets) that resulted in collisions. 

On a switched network with full duplex links—that is, on any modern variety of 
Ethernet—you should not see any collisions, even when the network is under 
heavy load. If you do see collisions, something is seriously wrong. You might also 
want to make sure that flow control is enabled on your switches and routers, espe-
cially if your network contains links of different speeds.

We have often traced network problems back to el cheapo pieces of desktop net-
work equipment, such as a switch that has gone haywire and needs to be power-
cycled or replaced.

  



ptg

870 Chapter 21 Network Management and Debugging

Monitoring the status of network connections

With no arguments, netstat displays the status of active TCP and UDP ports. In-
active (“listening”) servers that are waiting for connections are normally hidden, 
but you can see them with netstat -a.4 The output looks like this:

linux$ netstat -a 
Active Internet connections (servers and established) 
Proto Recv-Q Send-Q Local Address ForeignAddress State
tcp 0 0 *:ldap *:* LISTEN
tcp 0 0 *:mysql *:* LISTEN
tcp 0 0 *:imaps *:* LISTEN 
tcp 0 0 bull:ssh dhcp-32hw:4208 ESTABLISHED
tcp 0 0 bull:imaps nubark:54195 ESTABLISHED
tcp 0 0 bull:http dhcp-30hw:2563 ESTABLISHED
tcp 0 0 bull:imaps dhcp-18hw:2851 ESTABLISHED 
tcp 0 0 *:http *:* LISTEN
tcp 0 0 bull:37203 baikal:mysql ESTABLISHED
tcp 0 0 *:ssh *:* LISTEN
…

This example is from the host otter, and it has been severely pruned; for example, 
UDP and UNIX socket connections are not displayed. The output above shows an 
inbound SSH connection, two inbound IMAPS connections, one inbound HTTP 
connection, an outbound MySQL connection, and a bunch of ports listening for 
other connections.

Addresses are shown as hostname.service, where the service is a port number. For 
well-known services, netstat shows the port symbolically, using the mapping de-
fined in /etc/services. You can obtain numeric addresses and ports with the -n
option to netstat. Like most network debugging tools, netstat is painful to use 
without the -n flag if your DNS is broken.

Send-Q and Recv-Q show the sizes of the local host’s send and receive queues for 
the connection; the queue sizes on the other end of a TCP connection might be 
different. These numbers should tend toward 0 and at least not be consistently 
nonzero. (Of course, if you are running netstat over a network terminal, the send 
queue for your connection may never be 0.)

The connection state has meaning only for TCP; UDP is a connectionless proto-
col. The most common states you’ll see are ESTABLISHED for currently active 
connections, LISTEN for servers waiting for connections (not normally shown 
without -a), and TIME_WAIT for connections in the process of closing.

netstat -a is primarily useful for debugging higher-level problems once you have 
determined that basic networking facilities are working correctly. It lets you verify 
that servers are set up correctly and facilitates the diagnosis of certain types of 
miscommunication, particularly with TCP. For example, a connection that stays 

4. Connections for “UNIX domain sockets” are also shown, but since they aren’t related to networking, 
we do not discuss them here.

  



ptg

Examining the routing table 871

N
et

 M
gm

t

in state SYN_SENT identifies a process that is trying to contact a nonexistent or 
inaccessible network server.

See Chapter 13 for 
more information 
about kernel tuning.

If netstat shows a lot of connections in the SYN_WAIT condition, your host prob-
ably cannot handle the number of connections being requested. This inadequacy 
may be due to kernel tuning limitations or even to malicious flooding.

Identifying listening network services

One common question in this security-conscious era is “What processes on this 
machine are listening on the network for incoming connections?” netstat -a
shows all the ports that are actively listening (any TCP port in state LISTEN, and 
potentially any UDP port), but on a busy machine, those lines can get lost in the 
noise of established TCP connections. 

On Linux, use netstat -l to see only the listening ports. The output format is the 
same as for netstat -a. You can also add the -p flag to make netstat identify the 
specific process associated with each listening port.5 The sample output below 
shows three common services (sshd, sendmail, and named) followed by an un-
usual one:

linux$ netstat -lp 
… 
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 23858/sshd
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 10342/sendmail
udp 0 0 0.0.0.0:53 0.0.0.0:* 30016/named
udp 0 0 0.0.0.0:962 0.0.0.0:* 38221/mudd
…

mudd with PID 38221 is listening on UDP port 962. If you don’t know what 
mudd is, you might want to follow up on this.

For security, it’s also helpful to look at machines from an outsider’s perspective by 
running a port scanner. nmap is very helpful for this; see page 914.

Examining the routing table

netstat -r displays the kernel’s routing table. The following sample output is from 
a Red Hat machine with two network interfaces. (The output varies slightly 
among operating systems.)

redhat$ netstat -rn 
Kernel IP routing table 
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
10.2.5.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 192.168.1.254 0.0.0.0 UG 0 0 40 eth0
…

5. On UNIX systems that don’t support netstat’s -p flag, the lsof command can provide this information 
(and more). See page 145 for more about lsof.

  



ptg

872 Chapter 21 Network Management and Debugging

Destinations and gateways can be displayed either as hostnames or as IP ad-
dresses; the -n flag requests numeric output.

See page 466 for more 
information about the 
routing table.

Flags characterize the route: U means up (active), G is a gateway, and H is a host 
route. U, G, and H together indicate a host route that passes through an intermedi-
ate gateway. The D flag (not shown) indicates a route resulting from an ICMP 
redirect. The remaining fields show TCP segment and window sizes along this 
route along with an initial round trip time estimate and the name of the interface.

Use this form of netstat to check the health of your system’s routing table. It’s 
particularly important to verify that the system has a default route and that this 
route is correct. The default route is represented by an all-0 destination address 
(0.0.0.0) or by the word default. It is possible not to have a default route entry, but 
such a configuration would be highly atypical on anything but a backbone router.

Viewing operational statistics for network protocols

netstat -s dumps the contents of counters that are scattered throughout the net-
work code. The output has separate sections for IP, ICMP, TCP, and UDP. Below 
are pieces of netstat -s output from a typical server; they have been edited to show 
only the tastiest pieces of information.

Ip:
671349985 total packets received 
0 forwarded 
345 incoming packets discarded 
667912993 incoming packets delivered 
589623972 requests sent out 
60 dropped because of missing route 
203 fragments dropped after timeout

Be sure to check that packets are not being dropped or discarded. It is acceptable 
for a few incoming packets to be discarded, but a quick rise in this metric usually 
indicates a memory shortage or some other resource problem.

Icmp: 
242023 ICMP messages received 
912 input ICMP message failed. 
ICMP input histogram:

destination unreachable: 72120 
timeout in transit: 573 
echo requests: 17135 
echo replies: 152195

66049 ICMP messages sent 
0 ICMP messages failed 
ICMP output histogram:

destination unreachable: 48914
echo replies: 17135

In this example, the number of echo requests in the input section matches the 
number of echo replies in the output section. Note that “destination unreachable” 
messages can still be generated even when all packets are apparently forwardable. 

  



ptg

Inspection of live interface activity 873

N
et

 M
gm

t

Bad packets eventually reach a gateway that rejects them, and error messages are 
then sent back along the gateway chain.

Tcp:
4442780 active connections openings 
1023086 passive connection openings 
50399 failed connection attempts 
0 connection resets received 
44 connections established 
666674854 segments received 
585111784 segments send out 
107368 segments retransmited 
86 bad segments received. 
3047240 resets sent

Udp: 
4395827 packets received 
31586 packets to unknown port received. 
0 packet receive errors 
4289260 packets sent

It’s a good idea to develop a feel for the normal ranges of these statistics so that 
you can recognize pathological states.

21.6 INSPECTION OF LIVE INTERFACE ACTIVITY

One good way to identify network problems is to look at what’s happening right 
now. How many packets were sent in the last five minutes on a given interface? 
How many bytes? Are collisions or other errors occurring? You can answer all 
these questions by watching network activity in real time. Different tools come 
into play depending on your OS.

On Solaris, you can append an interval in seconds and a count value to netstat -i:
solaris$ netstat -i 2 3 

input e1000g output input (Total) output
packets errs packets errs colls packets errs packets errs colls 
17861 0 26208 0 0 17951 0 26298 0 0
4 0 2 0 0 4 0 2 0 0
1 0 1 0 0 1 0 1 0 0 
…

HP-UX and AIX expect a single number that sets the interval (in seconds) at 
which statistics are to be printed.

$ netstat -i 2 
(lan0)-> input output (Total)-> input output

packets packets packets packets
9053713 9052513 10115002 10113803

8 8 8 8
22 22 22 22

9 9 9 9
…

  



ptg

874 Chapter 21 Network Management and Debugging

Linux’s netstat has no interval option, so for Linux we recommend a completely 
different tool: sar. (We discuss sar from the perspective of general system moni-
toring on page 1129.) Most distributions don’t install sar by default, but it’s always 
available as an optional package. The example below requests reports every two 
seconds for a period of one minute (i.e., 30 reports). The DEV argument is a lit-
eral keyword, not a placeholder for a device or interface name.

redhat$ sar -n DEV 2 30 
17:50:43 IFACE rxpck/s txpck/s rxbyt/s txbyt/s rxcmp/s txcmp/s rxmcst/s 
17:50:45 lo 3.61 3.61 263.40 263.40 0.00 0.00 0.00
17:50:45 eth0 18.56 11.86 1364.43 1494.33 0.00 0.00 0.52
17:50:45 eth1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

This example is from a Red Hat machine with two network interfaces. The output 
includes instantaneous and average readings of interface utilization in units of 
both bytes and packets. The second interface (eth1) is clearly not in use.

The first two columns state the time at which the data was sampled and the names 
of the network interfaces. The next two columns show the number of packets re-
ceived and transmitted, respectively. 

The rxbyt/s and txbyt/s columns are probably the most useful since they show 
the actual bandwidth in use. The final three columns give statistics on compressed 
(rxcmp/s, txcmp/s) and multicast (rxmcst/s) packets.

sar -n DEV is especially useful for tracking down the source of errors. ifconfig
can alert you to the existence of problems, but it can’t tell you whether the errors 
came from a continuous, low-level problem or from a brief but catastrophic event. 
Observe the network over time and under a variety of load conditions to solidify 
your impression of what’s going on. Try running ping with a large packet payload 
(size) while you watch the output of sar -n DEV.

21.7 PACKET SNIFFERS

tcpdump and Wireshark belong to a class of tools known as packet sniffers. They 
listen to network traffic and record or print packets that meet criteria of your 
choice. For example, you can inspect all packets sent to or from a particular host, 
or TCP packets related to one particular network connection.

Packet sniffers are useful both for solving problems that you know about and for 
discovering entirely new problems. It’s a good idea to take an occasional sniff of 
your network to make sure the traffic is in order.

Packet sniffers need to be able to intercept traffic that the local machine would not 
normally receive (or at least, pay attention to), so the underlying network hard-
ware must allow access to every packet. Broadcast technologies such as Ethernet 
work fine, as do most other modern local area networks.

  



ptg

tcpdump: industry-standard packet sniffer 875

N
et

 M
gm

t

See page 537 for more 
information about net-
work switches.

Since packet sniffers need to see as much of the raw network traffic as possible, 
they can be thwarted by network switches, which by design try to limit the propa-
gation of “unnecessary” packets. However, it can still be informative to try out a 
sniffer on a switched network. You may discover problems related to broadcast or 
multicast packets. Depending on your switch vendor, you may be surprised at 
how much traffic you can see.

In addition to having access to all network packets, the interface hardware must 
transport those packets up to the software layer. Packet addresses are normally 
checked in hardware, and only broadcast/multicast packets and those addressed 
to the local host are relayed to the kernel. In “promiscuous mode,” an interface lets 
the kernel read all packets on the network, even the ones intended for other hosts.

Packet sniffers understand many of the packet formats used by standard network 
services, and they can print these packets in human-readable form. This capabil-
ity makes it easier to track the flow of a conversation between two programs. 
Some sniffers print the ASCII contents of a packet in addition to the packet 
header and so are useful for investigating high-level protocols.

Since some protocols send information (and even passwords) across the network 
as cleartext, you must take care not to invade the privacy of your users. On the 
other hand, nothing quite dramatizes the need for cryptographic security like the 
sight of a plaintext password captured in a network packet.

Sniffers read data from a raw network device, so they must run as root. Although 
this root limitation serves to decrease the chance that normal users will listen in 
on your network traffic, it is really not much of a barrier. Some sites choose to 
remove sniffer programs from most hosts to reduce the chance of abuse. If noth-
ing else, you should check your systems’ interfaces to be sure they are not running 
in promiscuous mode without your knowledge or consent. On all systems, the 
output of ifconfig labels promiscuous interfaces with the flag PROMISC. On Li-
nux systems, the fact that an interface has been switched to promiscuous mode is 
also recorded in the kernel log.

tcpdump: industry-standard packet sniffer

tcpdump, yet another amazing network tool by Van Jacobson, is available as a 
package for most Linux distributions and can be installed from source on our 
other example systems. tcpdump has long been the industry-standard sniffer, and 
most other network analysis tools read and write trace files in tcpdump format, 
also known as libpcap format.

By default, tcpdump tunes in on the first network interface it comes across. If it 
chooses the wrong interface, you can force an interface with the -i flag. If DNS is 
broken or you just don’t want tcpdump doing name lookups, use the -n option. 
This option is important because slow DNS service can cause the filter to start 
dropping packets before they can be dealt with by tcpdump.

  



ptg

876 Chapter 21 Network Management and Debugging

The -v flag increases the information you see about packets, and -vv gives you 
even more data. Finally, tcpdump can store packets to a file with the -w flag and 
can read them back in with the -r flag.

Note that tcpdump -w saves only packet headers by default. This default makes 
for small dumps, but the most helpful and relevant information may be missing. 
So, unless you are sure you need only headers, use the -s option with a value on 
the order of 1560 (actual values are MTU-dependent) to capture whole packets 
for later inspection.

As an example, the following truncated output comes from the machine named 
nubark. The filter specification host bull limits the display of packets to those that 
directly involve the machine bull, either as source or as destination.

$ sudo tcpdump host bull 
12:35:23.519339 bull.41537 > nubark.domain:  A? atrust.com. (28) (DF) 
12:35:23.519961 nubark.domain > bull.41537:  A 66.77.122.161 (112) (DF)

The first packet shows bull sending a DNS lookup request about atrust.com to 
nubark. The response is the IP address of the machine associated with that name, 
which is 66.77.122.161. Note the time stamp on the left and tcpdump’s under-
standing of the application-layer protocol (in this case, DNS). The port number 
on bull is arbitrary and is shown numerically (41537), but since the server port 
number (53) is well known, tcpdump shows its symbolic name, domain.

Packet sniffers can produce an overwhelming amount of information—over-
whelming not only for you but also for the underlying operating system. To avoid 
this problem on busy networks, tcpdump lets you specify complex filters. For ex-
ample, the following filter collects only incoming web traffic from one subnet:

$ sudo tcpdump src net 192.168.1.0/24 and dst port 80

The tcpdump man page contains several good examples of advanced filtering 
along with a complete listing of primitives.6

Solaris includes a sniffer in the base system that works much like tcpdump. It is 
called snoop. HP-UX, AIX, and most Linux distributions do not seem to include 
a packet sniffer in the base install.

solaris$ snoop 
Using device /dev/e1000g0 (promiscuous mode) 
nubark -> solaris TCP D=22 S=58689 Ack=2141650294 Seq=3569652094 Len=0 

Win=15008 Options=<nop,nop,tstamp 292567745 289381342> 
nubark -> solaris TCP D=22 S=58689 Ack=2141650358 Seq=3569652094 Len=0 

Win=15008 Options=<nop,nop,tstamp 292567745 289381342> 
? -> (multicast)  ETHER Type=023C (LLC/802.3), size = 53 bytes 
…

6. If your filtering needs exceed tcpdump’s capabilities, consider ngrep (ngrep.sourceforge.net), which 
can filter packets according to their contents.

  



ptg

Wireshark and TShark: tcpdump on steroids 877

N
et

 M
gm

t

If you are using Solaris zones, note that snoop only works properly in the global 
zone, even when you are debugging a problem in a nonglobal zone.

Wireshark and TShark: tcpdump on steroids

tcpdump has been around since approximately the dawn of time, but a newer 
open source package called Wireshark (formerly known as Ethereal) has been 
gaining ground rapidly. Wireshark is under active development and incorporates 
more functionality than most commercial sniffing products. It’s an incredibly 
powerful analysis tool and should be included in every networking expert’s tool 
kit. It’s also an invaluable learning aid. 

Wireshark includes both a GUI interface (wireshark) and a command-line inter-
face (tshark). Linux distributions make it a snap to install. UNIX administrators 
should check wireshark.org, which hosts the source code and a variety of precom-
piled binaries.

Wireshark can read and write trace files in the formats used by many other packet 
sniffers. Another handy feature is that you can click on any packet in a TCP con-
versation and ask Wireshark to reassemble (splice together) the payload data of all 
the packets in the stream. This feature is useful if you want to examine the data 
transferred during a complete TCP exchange, such as a connection used to trans-
mit an email message across the network.

Wireshark’s capture filters are functionally identical to tcpdump’s since Wireshark 
uses the same underlying libpcap library. Watch out, though—one important got-
cha with Wireshark is the added feature of “display filters,” which affect what you 
see rather than what’s actually captured by the sniffer. The display filter syntax is 
more powerful than the libpcap syntax supported at capture time. The display 
filters do look somewhat similar, but they are not the same.

See page 274 for 
more information 
about SANs.

Wireshark has built-in dissectors for a wide variety of network protocols, includ-
ing many used to implement SANs. It breaks packets into a structured tree of 
information in which every bit of the packet is described in plain English.

Exhibit B on the next page shows Wireshark’s capture of a DNS query and re-
sponse. The table near the top of the screen shows the two packets involved. The 
first packet is the request on its way to the DNS server, and the second packet is 
the answer coming back. The response packet is selected, so the middle panel 
shows its disassembly. The lower panel shows the packet in the form of raw bytes.

The expanded section of the tree shows the packet’s DNS payload. The raw con-
tent can also be interesting to look at because it sometimes contains telltale text 
fragments that hint at what is going on. Scanning the text is especially handy 
when there is no built-in dissector for the current protocol. Wireshark’s help 
menu provides many great examples to get you started. Experiment!

  



ptg

878 Chapter 21 Network Management and Debugging

Exhibit B A pair of DNS packets in Wireshark

A note of caution regarding Wireshark: although it has lots of neat features, it has 
also required many security updates over the years. Run a current copy, and do 
not leave it running indefinitely on sensitive machines; it might be a potential 
route of attack.

21.8 THE ICSI NETALYZR

We have looked at several tools for network debugging and for reviewing specific 
aspects of the network configuration. But even with your own best efforts at mon-
itoring, it’s useful to have someone else take a peek at your network from time to 
time. The Netalyzr is a service provided by the International Computer Science 
Institute at Berkeley that provides a useful “second opinion.” To use it, just point 
your Java-enabled browser at netalyzr.icsi.berkeley.edu (note: missing ‘e’).

The Netalyzr tests your Internet connection in a variety of ways. It has the advan-
tage of being able to access your network both from inside (through the Java pro-
gram that runs in your browser) and from the perspective of ICSI’s servers.

Exhibit C shows the Netalyzr report for a workstation on a private network that’s 
attached to the outside world through a DSL link. The Netalyzr seems to be gener-
ally happy with the setup except for a few quibbles about the Apache web proxy 
that’s in use. (Blocking malformed HTTP requests may actually be a useful fea-
ture, however.)

  



ptg

Network management protocols 879

N
et

 M
gm

t

Exhibit C A Netalyzr report

The full report contains sections that report on the environment’s IP connectivity, 
bandwidth, latency, buffering, and handling of fragmented packets, among other 
topics. The tests for DNS and HTTP anomalies are particularly strong.

21.9 NETWORK MANAGEMENT PROTOCOLS

Networks have grown rapidly in size and value over the last 20 years, and along 
with that growth has come the need for an efficient way to manage them. Com-
mercial vendors and standards organizations have approached this challenge in 
many different ways. The most significant developments have been the introduc-
tion of several standard device-management protocols and a glut of high-level 
products that exploit those protocols.

Network management protocols standardize a way of probing a device to discover 
its configuration, health, and network connections. In addition, they allow some 
of this information to be modified so that network management can be standard-
ized across different kinds of machinery and performed from a central location.

The most common protocol used with TCP/IP is the Simple Network Manage-
ment Protocol, SNMP. Despite its name, SNMP is actually quite complex. It 

  



ptg

880 Chapter 21 Network Management and Debugging 

defines a hierarchical namespace of management data and a way to read and write 
the data at each node. It also defines a way for managed servers and devices 
(“agents”) to send event notification messages (“traps”) to management stations. 

The protocol itself is simple; most of SNMP’s complexity lies above the protocol 
layer in the conventions for constructing the namespace and in the unnecessarily 
baroque vocabulary that surrounds SNMP like a protective shell. As long as you 
don’t think too hard about its internal mechanics, SNMP is easy to use.

Several other standards are floating around out there. Many of them originate 
from the Distributed Management Task Force (DMTF), which is responsible for 
concepts such as WBEM (Web-Based Enterprise Management), DMI (Desktop 
Management Interface), and the CIM (Conceptual Interface Model). Some of 
these concepts, particularly DMI, have been embraced by several major vendors 
and may eventually become a useful complement to (or even a replacement for) 
SNMP. For now, however, the vast majority of networking gear management takes 
place over SNMP.

Since SNMP is only an abstract protocol, you need both a server program 
(“agent”) and a client (“manager”) to use it. Perhaps counterintuitively, the server 
side of SNMP represents the thing being managed, and the client side is the man-
ager. Clients range from simple command-line utilities to dedicated management 
stations that graphically display networks and faults in eye-popping color.

Dedicated network management stations are the primary reason for the existence 
of management protocols. Most products let you build a topographic model of the 
network as well as a logical model; the two are presented together on-screen, 
along with a continuous indication of the status of each component.

Just as a chart can reveal the hidden meaning in a page of numbers, a network 
management station can summarize the state of a large network in a way that’s 
easily accepted by a human brain. This kind of executive summary is almost im-
possible to get in any other way.

A major advantage of network management by protocol is that it promotes all 
kinds of network hardware onto a level playing field. UNIX and Linux systems are 
all basically similar, but routers, switches, and other low-level components are 
not. With SNMP, they all speak a common language and can be probed, reset, and 
configured from a central location. It’s nice to have one consistent interface to all 
the network’s hardware.

21.10 SNMP: THE SIMPLE NETWORK MANAGEMENT PROTOCOL

When SNMP first became widely used in the early 1990s, it started a mini gold 
rush. Hundreds of companies came out with SNMP management packages. Most 
pieces of network hardware that are intended for production use (as opposed to 
household use) now incorporate an SNMP agent.

  



ptg

SNMP organization 881

N
et

 M
gm

t

Before we dive into the gritty details of SNMP, we should note that the terminol-
ogy associated with it is some of the most wretched technobabble to be found in 
the networking arena. The standard names for SNMP concepts and objects ac-
tively lead you away from an understanding of what’s going on. The people re-
sponsible for this state of affairs should have their keyboards smashed.

SNMP organization

SNMP data is arranged in a standardized hierarchy. This enforced organization 
allows the data space to remain both universal and extensible, at least in theory. 
Large portions are set aside for future expansion, and vendor-specific additions 
are localized to prevent conflicts. The naming hierarchy is made up of “Manage-
ment Information Bases” (MIBs), structured text files that describe the data acces-
sible through SNMP. MIBs contain descriptions of specific data variables, which 
are referred to with names known as object identifiers, or OIDs.

Translated into English, this means that SNMP defines a hierarchical namespace 
of variables whose values are tied to “interesting” parameters of the system. An 
OID is just a fancy way of naming a specific managed piece of information.

The SNMP hierarchy is much like a filesystem. However, a dot is used as the sepa-
rator character, and each node is given a number rather than a name. By conven-
tion, nodes are also given text names for ease of reference, but this naming is 
really just a high-level convenience and not a feature of the hierarchy. (It is similar 
in principle to the mapping of hostnames to IP addresses.) 

For example, the OID that refers to the uptime of the system is 1.3.6.1.2.1.1.3. This 
OID is also known by the human-readable (though not necessarily “human-un-
derstandable without additional documentation”) name

iso.org.dod.internet.mgmt.mib-2.system.sysUpTime

The top levels of the SNMP hierarchy are political artifacts and generally do not 
contain useful data. In fact, useful data can currently be found only beneath the 
OID iso.org.dod.internet.mgmt (numerically, 1.3.6.1.2).

The basic SNMP MIB for TCP/IP (MIB-I) defines access to common manage-
ment data: information about the system, its interfaces, address translation, and 
protocol operations (IP, ICMP, TCP, UDP, and others). A later and more complete 
reworking of this MIB (called MIB-II) is defined in RFC1213. Most vendors that 
provide an SNMP server support MIB-II. Table 21.1 on the next page presents a 
sampling of nodes from the MIB-II namespace.

In addition to the basic MIB, there are MIBs for various kinds of hardware inter-
faces and protocols, MIBs for individual vendors, and MIBs for particular hard-
ware products.

A MIB is only a schema for naming management data. To be useful, a MIB must 
be backed up with agent-side code that maps between the SNMP namespace and 
the device’s actual state. SNMP agents that run on UNIX, Linux, or Windows 

  



ptg

882 Chapter 21 Network Management and Debugging

come with built-in support for MIB-II. Most can be extended to support supple-
mental MIBs and to interface with scripts that do the actual work of fetching and 
storing these MIBs’ associated data.

SNMP agents are complex beasts, and they have seen their share of security issues. 
Instead of relying on whatever agent your vendor happens to toss over the wall to 
you, it may be prudent to compile and install a current copy of NET-SNMP. See 
The NET-SNMP agent, opposite page, for details.

SNMP protocol operations

There are only four basic SNMP operations: get, get-next, set, and trap. 

Get and set are the basic operations for reading and writing data to the node iden-
tified by a specific OID. Get-next steps through a MIB hierarchy and can read the 
contents of tables as well. 

A trap is an unsolicited, asynchronous notification from server (agent) to client 
(manager) that reports the occurrence of an interesting event or condition. Sev-
eral standard traps are defined, including “I’ve just come up” notifications, reports 
of failure or recovery of a network link, and announcements of various routing 
and authentication problems. Many other not-so-standard traps are in common 
use, including some that simply watch the values of other SNMP variables and fire 
off a message when a specified range has been exceeded. The mechanism by 
which the destinations of trap messages are specified depends on the implementa-
tion of the agent.

Since SNMP messages can potentially modify configuration information, some 
security mechanism is needed. The simplest version of SNMP security is based on 

Table 21.1 Selected OIDs from MIB-II

OIDa Type Contents

system.sysDescr string System info: vendor, model, OS type, etc. 
system.sysLocation string Physical location of the machine 
system.sysContact string Contact info for the machine’s owner 
system.sysName string System name, usually the full DNS name 
interfaces.ifNumber int Number of network interfaces present
interfaces.ifTable table Table of infobits about each interface
ip.ipForwarding int 1 if system is a gateway; otherwise, 2
ip.ipAddrTable table Table of IP addressing data (masks, etc.)
ip.ipRouteTable table The system’s routing table 
icmp.icmpInRedirects int Number of ICMP redirects received
icmp.icmpInEchos int Number of pings received
tcp.tcpConnTable table Table of current TCP connections
udp.udpTable table Table of UDP sockets with servers listening

a. Relative to iso.org.dod.internet.mgmt.mib-2.

  



ptg

The NET-SNMP agent 883

N
et

 M
gm

t

the concept of an SNMP “community string,” which is really just a horribly obfus-
cated way of saying “password.” There’s usually one community string for read-
only access and another that allows writing.

Although many organizations still use the original community-string-based au-
thentication, version 3 of the SNMP standard introduced access control methods 
with higher security. Although configuring this more advanced security requires a 
little extra work, the risk reduction is well worth the effort. If for some reason you 
can’t use version 3 SNMP security, at least be sure you’ve selected a hard-to-guess 
community string.

RMON: remote monitoring MIB

The RMON MIB permits the collection of generic network performance data 
(that is, data not tied to any one particular device). Network sniffers or “probes” 
can be deployed around the network to gather information about utilization and 
performance. Once a useful amount of data has been collected, statistics and in-
teresting information about the data can be shipped back to a central manage-
ment station for analysis and presentation. Many probes have a packet capture 
buffer and can provide a sort of remote tcpdump facility.

RMON is defined in RFC1757, which became a draft standard in 1995. The MIB 
is broken up into nine “RMON groups.” Each group contains a different set of 
network statistics. If you have a large network with many WAN connections, con-
sider buying probes to reduce the SNMP traffic across your WAN links. Once you 
have access to statistical summaries from the RMON probes, there’s usually no 
need to gather raw data remotely. Many switches and routers support RMON and 
store at least some network statistics.

21.11 THE NET-SNMP AGENT

When SNMP was first standardized, Carnegie Mellon University and MIT both 
produced implementations. CMU’s implementation was more complete and 
quickly became the de facto standard. When active development at CMU died 
down, researchers at UC Davis took over the software. After stabilizing the code, 
they rehomed it at the SourceForge repository. The package is now known as 
NET-SNMP, and it is the authoritative free SNMP implementation for UNIX and 
Linux. The latest version is available from net-snmp.sourceforge.net.

NET-SNMP includes an agent, some command-line tools, a server for receiving 
traps, and even a library for developing SNMP-aware applications. We discuss the 
agent in some detail here, and on page 885 we look at the command-line tools.

As in other implementations, the agent collects information about the local host 
and serves it to SNMP managers across the network. The default installation in-
cludes MIBs for network interfaces, memory, disk, processes, and CPU. The agent 
is easily extensible since it can execute an arbitrary command and return the 

  



ptg

884 Chapter 21 Network Management and Debugging 

command’s output as an SNMP response. You can use this feature to monitor al-
most anything on your system with SNMP.

By default, the agent is installed as /usr/sbin/snmpd. It is usually started at boot 
time and reads its configuration information from files in the /etc/snmp direc-
tory. The most important of these files is snmpd.conf, which contains most of the 
configuration information and ships with a bunch of sample data collection 
methods enabled. Although the intention of the authors seems to have been for 
users to edit only the snmpd.local.conf file, you must edit snmpd.conf at least 
once to disable any default data collection methods that you don’t plan to use.

The NET-SNMP configure script lets you specify a default log file and a couple of 
other local settings. You can use snmpd -l to specify an alternative log file or -s to 
direct log messages to syslog. Table 21.2 lists snmpd’s most important flags. We 
recommend that you always use the -a flag. For debugging, you should use the -V, 
-d, or -D flags, each of which gives progressively more information.

It’s worth mentioning that many useful SNMP-related Perl, Ruby, and Python 
modules are available from the respective module repositories.

21.12 NETWORK MANAGEMENT APPLICATIONS

We begin this section by exploring the simplest SNMP management tools: the 
commands provided with the NET-SNMP package. These commands can famil-
iarize you with SNMP, and they’re also great for one-off checks of specific OIDs. 
Next, we look at Cacti, a program that generates beautiful historical graphs of 
SNMP values, and Nagios, an event-based monitoring system. We conclude with 
some recommendations of what to look for when purchasing a commercial net-
work monitoring system.

Table 21.2 Useful flags for NET-SNMP snmpd

Flag Function 

-l logfile Logs information to logfile
-a Logs the addresses of all SNMP connections 
-d Logs the contents of every SNMP packet 
-V Enables verbose logging 
-D Logs debugging information (lots of it) 
-h Displays all arguments to snmpd 

-H Displays all configuration file directives 
-A Appends to the log file instead of overwriting it 
-s Logs to syslog (uses the daemon facility)

  



ptg

The NET-SNMP tools 885

N
et

 M
gm

t

The NET-SNMP tools

Even if your system comes with its own SNMP server, you may still want to com-
pile and install the client-side tools from the NET-SNMP package. Table 21.3 lists 
the most commonly used tools.

In addition to their value on the command line, these programs are tremendously 
handy in simple scripts. It is often helpful to have snmpget save interesting data 
values to a text file every few minutes. (Use cron to implement the scheduling; see 
Chapter 9, Periodic Processes.)

snmpwalk is another useful tool. Starting at a specified OID (or at the beginning 
of the MIB, by default), this command repeatedly makes “get next” calls to an 
agent. This behavior results in a complete list of available OIDs and their associ-
ated values. snmpwalk is particularly handy when you are trying to identify new 
OIDs to monitor from your fancy enterprise management tool.

Here’s a truncated sample snmpwalk of the host tuva. The community string is 
“secret813community”, and -v1 specifies simple authentication.

$ snmpwalk -c secret813community -v1 tuva 
SNMPv2-MIB::sysDescr.0 = STRING: Linux tuva.atrust.com 2.6.9-11.ELsmp #1 
SNMPv2-MIB::sysUpTime.0 = Timeticks: (1442) 0:00:14.42 
SNMPv2-MIB::sysName.0 = STRING: tuva.atrust.com 
IF-MIB::ifDescr.1 = STRING: lo 
IF-MIB::ifDescr.2 = STRING: eth0 
IF-MIB::ifDescr.3 = STRING: eth1 
IF-MIB::ifType.1 = INTEGER: softwareLoopback(24)
IF-MIB::ifType.2 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifType.3 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifPhysAddress.1 = STRING: 
IF-MIB::ifPhysAddress.2 = STRING: 0:11:43:d9:1e:f5 
IF-MIB::ifPhysAddress.3 = STRING: 0:11:43:d9:1e:f6

Table 21.3 Command-line tools in the NET-SNMP package

Command Function 

snmpdelta Monitors changes in SNMP variables over time 
snmpdf Monitors disk space on a remote host via SNMP 
snmpget Gets the value of an SNMP variable from an agent 
snmpgetnext Gets the next variable in sequence 
snmpset Sets an SNMP variable on an agent 
snmptable Gets a table of SNMP variables 
snmptranslate Searches for and describes OIDs in the MIB hierarchy 
snmptrap Generates a trap alert 
snmpwalk Traverses a MIB starting at a particular OID

  



ptg

886 Chapter 21 Network Management and Debugging

IF-MIB::ifInOctets.1 = Counter32: 2605613514 
IF-MIB::ifInOctets.2 = Counter32: 1543105654 
IF-MIB::ifInOctets.3 = Counter32: 46312345 
IF-MIB::ifInUcastPkts.1 = Counter32: 389536156 
IF-MIB::ifInUcastPkts.2 = Counter32: 892959265 
IF-MIB::ifInUcastPkts.3 = Counter32: 7712325 
…

In this example, we see some general information about the system, followed by 
statistics about the host’s network interfaces: lo0, eth0, and eth1. Depending on 
the MIBs supported by the agent you are managing, a complete dump can run to 
hundreds of lines.

SNMP data collection and graphing

Network-related data is best appreciated in visual and historical context. It’s im-
portant to have some way to track and graph performance metrics, but your exact 
choice of software for doing this is not critical. 

One of the most popular early SNMP polling and graphing packages was MRTG, 
written by Tobi Oetiker. MRTG is written mostly in Perl, runs regularly out of 
cron, and can collect data from any SNMP source. Each time the program runs, 
new data is stored and new graph images are created.

Another useful tool in this area is RRDtool, also by Tobi Oetiker. It is an applica-
tion tool kit for storing and graphing performance metrics. All the leading open 
source monitoring solutions are based on RRDtool, including our favorite, Cacti.

Cacti, available from cacti.net, offers several attractive features. Using RRDtool as 
its back end, it stores monitoring data in zero-maintenance, statically sized data-
bases. Cacti stores only enough data to create the graphs you want. For example, 
Cacti could store one sample every minute for a day, one sample every hour for a 
week, and one sample every week for a year. This consolidation scheme lets you 
maintain important historical information without having to store unimportant 
details or consume your time with database administration.

Second, Cacti can record and graph any SNMP variable, as well as many other 
performance metrics. You’re free to collect whatever data you want. When com-
bined with the NET-SNMP agent, Cacti generates a historical perspective on al-
most any system or network resource.

Exhibit D shows some examples of the graphs created by Cacti. These graphs 
show the load average on a server over a period of multiple weeks along with a 
day’s traffic on a network interface.

Cacti sports easy web-based configuration as well as all the other built-in benefits 
of RRDtool, such as low maintenance and beautiful graphing. See the RRDtool 
home page at rrdtool.org for links to the current versions of RRDtool and Cacti, as 
well as dozens of other monitoring tools.

  



ptg

Nagios: event-based service monitoring 887

N
et

 M
gm

t

Exhibit D Examples of Cacti graphs

Nagios: event-based service monitoring

Nagios specializes in real-time reporting of error conditions. It includes scores of 
scripts for monitoring services of all shapes and sizes, along with extensive SNMP 
monitoring capabilities. Perhaps its greatest strength is its modular, heavily cus-
tomizable configuration system that allows custom scripts to be written to moni-
tor any conceivable metric. Although Nagios does not help you determine how 
much your bandwidth utilization has increased over the last month, it can page 
you when your web server goes down. 

The Nagios distribution includes plug-ins that supervise a variety of common 
points of failure. You can whip up new monitors in Perl, or even in C if you are 
feeling ambitious. For notification methods, the distribution can send email, gen-
erate web reports, and use a dial-up modem to page you. As with the monitoring 
plug-ins, it’s easy to roll your own.

In addition to sending real-time notifications of service outages, Nagios keeps a 
historical archive of this data. It provides several powerful reporting interfaces 
that track availability and performance trends. Many organizations use Nagios to 
measure compliance with service level agreements; Exhibit E on the next page 
shows the availability of a DNS server.

  



ptg

888 Chapter 21 Network Management and Debugging

Exhibit E Server availability as shown by Nagios

Nagios works very well for networks of fewer than a thousand hosts and devices. 
It is easy to customize and extend, and it includes powerful features such as re-
dundancy, remote monitoring, and escalation of notifications. If you cannot af-
ford a commercial network management tool, you should strongly consider Na-
gios. You can read more at nagios.org.

The ultimate network monitoring package: still searching

As we reviewed the state of network management packages for this edition of the 
book, we found the software landscape bustling with activity, just as it has been 
for most of the last decade. However, most packages are still using RRDtool some-
where in their guts to do their logging and graphing. No high-level standard akin 
to vi or emacs has yet arrived on the scene.

Two well-funded companies based on the “open source plus” model (Ground-
Work Open Source and Zenoss) have debuted network management packages 
backed by serious advertising dollars and polished interfaces. In the traditional 
free software arena, the packages Munin (munin.projects.linpro.no) and collectd
(collectd.org) have gained quite a following. 

Munin is especially popular in the Scandinavian countries. It’s built on a clever 
architecture in which the data collection plug-ins not only provide data but also 
tell the system how the data should be presented. 

collectd is written in C for performance and portability. It runs even on tiny sys-
tems without hampering performance or requiring any additional dependencies. 
At the time of this writing, collectd comes with over 70 data collection plug-ins.

  



ptg

Commercial management platforms 889

N
et

 M
gm

t

Commercial management platforms

Hundreds of companies sell network management software, and new competitors 
enter the market every week. Instead of recommending the hottest products of the 
moment (which may no longer exist by the time this book is printed), we identify 
the features you should look for in a network management system.

Data-gathering flexibility: Management tools must be able to collect data from 
sources other than SNMP. Many packages include ways to gather data from al-
most any network service. For example, some packages can make SQL database 
queries, check DNS records, and connect to web servers. 

User interface quality: Expensive systems often offer a custom GUI or a web in-
terface. Most well-marketed packages today tout their ability to understand XML 
templates for data presentation. A UI is not just more marketing hype—you need 
an interface that relays information clearly, simply, and comprehensibly.

Value: Some management packages come at a stiff price. HP’s OpenView is both 
one of the most expensive and one of the most widely adopted network manage-
ment systems. Many corporations find definite value in being able to say that their 
site is managed by a high-end commercial system. If that isn’t so important to 
your organization, you should look at the other end of the spectrum for free tools 
like Cacti and Nagios.

Automated discovery: Many systems offer the ability to “discover” your network. 
Through a combination of broadcast pings, SNMP requests, ARP table lookups, 
and DNS queries, they identify all your local hosts and devices. All the discovery 
implementations we have seen work pretty well, but none are very accurate on a 
complex (or heavily firewalled) network. 

Reporting features: Many products can send alert email, activate pagers, and au-
tomatically generate tickets for popular trouble-tracking systems. Make sure that 
the platform you choose accommodates flexible reporting; who knows what elec-
tronic devices you will be dealing with in a few years?

Configuration management: Some solutions step far beyond monitoring and 
alerting. They enable you to manage actual host and device configurations. For 
example, a CiscoWorks interface lets you change a router’s configuration in addi-
tion to monitoring its state with SNMP. Because device configuration information 
deepens the analysis of network problems, we predict that many packages will 
develop along these lines in the future.

  



ptg

890 Chapter 21 Network Management and Debugging

21.13 NETFLOW: CONNECTION-ORIENTED MONITORING

SNMP is widely known for its ability to report the amount of network traffic flow-
ing through an interface. But if you want to know more about the exact type of 
traffic and its destinations, SNMP is not much help. On a UNIX box you could 
run a sniffer to unearth some additional details, but this option isn’t available on a 
dedicated router.

In response, router vendors have come up with their own solutions to this prob-
lem. The most popular of these solutions is Cisco’s NetFlow protocol. 

NetFlow tracks every connection with seven keys: source and destination IP ad-
dress, source and destination port number, protocol (TCP, UDP, etc.), type of ser-
vice (ToS), and logical interface. This metadata, combined with additional infor-
mation such as the number of packets and bytes involved, can be sent to any 
suitable collector.

The predominant NetFlow protocol versions are v5 and v7, which are usually 
lumped together because they’re the same except that v7 adds an additional field 
(source router). v7 is used on Cisco Catalyst switches. Version 9 is gaining popu-
larity. Its template-based nature makes it very flexible.

You can have your NetFlow router send a running account of its metadata to a 
suitable receiver such as CAIDA’s cflowd. On a busy network link, this configura-
tion generates a huge amount of data, so you may need to provision substantial 
disk space and look into analysis tools that are up to the task.

For the latter, one possibility is Dave Plonka’s FlowScan package. It has unfortu-
nately not been updated in some time, but it still works well. You can find it at 
net.doit.wisc.edu/~plonka/FlowScan.

Monitoring NetFlow data with nfdump and NfSen

Another pair of useful tools for collecting and analyzing NetFlow data are Peter 
Haag’s nfdump (nfdump.sourceforge.net) and NfSen (nfsen.sourceforge.net). The 
collector (nfcapd) stores NetFlow data on disk for later processing by nfdump.

nfcapd and nfdump handle NetFlow protocol versions v5/v7 and v9. For IPv6 
support, you’ll have to use v9; versions 5 and 7 do not support it.

nfdump works a bit like tcpdump (see page 875). It has a similar filter syntax that 
has been adapted for NetFlow data. Flexible output formats let you customize the 
display of records. Built-in summarizers show you the top N talkers7 on your net-
work and other useful information. 

The following (slightly condensed) nfdump output shows which IP addresses and 
networks exchange the most traffic, which ports are currently the most active, and 

7. A “talker” is the NetFlow term for a device that creates network traffic.

  



ptg

Monitoring NetFlow data with nfdump and NfSen 891

N
et

 M
gm

t

more. The -s ip/flows option asks for information about any source or destination 
IP address, sorted by flows. -n 10 limits the display to the top 10 items.

linux$ nfdump -M /data/nfsen/profiles-data/live/upstream 
-r 2009/07/28/12/nfcapd.200907281205 -n 10 -s ip/flows

Top 10     IP Addr ordered by flows: 
Date first seen Durat’n IP Addr Flows Pkts Bytes pps bps bpp
2009-07-28 12:02 467.596 192.168.96.92 27873 67420 3.8 M 144 67347 58 
2009-07-28 12:02 462.700 192.168.96.107 18928 43878 4.7 M 94 85522 112 
2009-07-28 12:02 464.443 192.168.96.198 17321 45454 3.5 M 97 63884 81 
2009-07-28 12:02 454.299 172.16.152.40 11554 29093 1.3 M 64 23996 46 
2009-07-28 12:02 362.586 192.168.97.203 6839 11104 1.2 M 30 28883 117 
2009-07-28 12:02 393.600 172.16.220.139 4802 12883 618384 32 12568 48 
2009-07-28 12:02 452.353 192.168.96.43 4477 5144 554709 11 9810 107 
2009-07-28 12:02 456.306 192.168.96.88 3416 6642 697776 14 12233 105 
2009-07-28 12:02 459.732 192.168.96.108 2544 25555 3.2 M 55 58478 131 
2009-07-28 12:02 466.782 192.168.96.197 2143 24103 5.3 M 51 94988 229

Summary: total flows: 98290, total bytes: 311.6 M, total packets: 759205, avg 
bps: 5.3 M, avg pps: 1623, avg bpp: 430

Time window: 2009-07-28 12:02:12 - 2009-07-28 12:09:59 
Total flows processed: 98290, skipped: 0, Bytes read: 5111164 
Sys: 0.310s flows/second: 317064.5   Wall: 0.327s flows/second: 300366.1

Since the NetFlow data is stored on disk, you can analyze it repeatedly with differ-
ent sets of filters. Another nice feature is nfdump’s ability to match incoming and 
outgoing flows into a single bidirectional flow.

NfSen is a web front end for NetFlow data that sits on top of nfdump and there-
fore combines graphing capabilities with all the features of nfdump. It displays the 
data in three different categories: flows, packets, and bytes. NfSen does more than 
just create static graphs, though—it lets you navigate through data, point to inter-
esting peaks in the graphs, and drill down to the individual flows. You can also 
apply arbitrary nfdump filters to refine the display. The combination of easy GUI 
browsing with the underlying power of nfdump makes NfSen a powerful tool.

NfSen lets you save your filter and display settings together as a profile so that you 
can easily return to a specific type of analysis in the future. For example, you 
might define profiles that monitor traffic for your DMZ, your web server, or a 
client’s network.

Profiles also make NfSen a valuable tool for security incident response teams be-
cause they make it easy to track specific types of incidents or network traffic. For 
example, Exhibit F on the next page shows a display that’s customized for investi-
gating “SYN flood” denial of service attacks.

  



ptg

892 Chapter 21 Network Management and Debugging

Exhibit F A “SYN flood” profile for NfSen

A security investigation usually happens hours or days after the incident that trig-
gered it, but if you save NetFlow data as a matter of course, you can easily create 
an NfSen profile that looks back to an earlier time period. This retrospective view 
lets you identify the IP addresses involved in an attack and track down other hosts 
that may have been affected. You can also set up NfSen to watch your flows out-
side of office hours and to trigger alarms when certain conditions are met.

Setting up NetFlow on a Cisco router

To get started with NetFlow, you must first configure your network device to send 
NetFlow data to nfcapd. This section outlines the configuration of NetFlow on a 
Cisco router.

Export of NetFlow data is enabled per interface:
ios# interface fastethernet 0/0 
ios# ip route-cache flow

To tell the router where to send the NetFlow data, enter the following command:
ios# ip flow-export nfcapd-hostname listen-port

The options below break up long-lived flows into 5-minute segments. You can 
choose any segment length between 1 and 60 minutes, but it should be equal to or 
less than nfdump’s file rotation period, which is 5 minutes by default.

ios# ip flow-export version 5 
ios# ip flow-cache timeout active 5

On the Catalyst 6500/7600, you must enable NDE (NetFlow Data Export) in addi-
tion to normal NetFlow export.

  



ptg

Recommended reading 893

N
et

 M
gm

t

Here’s how:
ios# mls flow ip interface-full 
ios# mls flow ipv6 interface-full 
ios# mls nde sender version 5

On a busy router, consider aggressively timing out small flows:
ios# mls aging fast time 4 threshold 2 
ios# mls aging normal 32 
ios# mls aging long 900

You still need the traditional NetFlow configuration, including ip flow ingress or 
ip route-cache flow on every interface, so that you see “software switched” flows 
such as those that go to the router itself.

For NetFlow v9, the configuration may be even longer. Depending on your IOS 
version, you can also define your own template. With the introduction of Flexible 
NetFlow (FNF), the NetFlow environment has become even more complex.

21.14 RECOMMENDED READING

Wikipedia includes a nice (though somewhat compressed) overview of SNMP 
with pointers to RFCs. It’s a good starting point.

MAURO, DOUGLAS R., AND KEVIN J. SCHMIDT. Essential SNMP (2nd Edition). Se-
bastopol, CA: O’Reilly Media, 2005.

SIMPLEWEB. SNMP and Internet Management Site. simpleweb.org.

You may find the following RFCs to be useful as well. We replaced the actual titles 
of the RFCs with a description of the RFC contents because some of the actual 
titles are an unhelpful jumble of buzzwords and SNMP jargon.

• RFC1155 – Characteristics of the SNMP data space (data types, etc.)
• RFC1156 – MIB-I definitions (description of the actual OIDs)
• RFC1157 – Simple Network Management Protocol
• RFC1213 – MIB-II definitions (OIDs)
• RFC3414 – User-based Security Model for SNMPv3
• RFC3415 – View-based Access Control Model for SNMPv3
• RFC3512 – Configuring devices with SNMP (best general overview)
• RFC3584 – Practical coexistence between different SNMP versions
• RFC3954 - Cisco Systems NetFlow Services Export Version 9

  



ptg

894 Chapter 21 Network Management and Debugging

21.15 EXERCISES

E21.1 You are troubleshooting a network problem, and netstat -rn gives you 
the following output. What is the problem and what command would 
you use to fix it?

Destination Gateway Genmask Flags MSS Window irtt Iface 
128.138.202.0 0.0.0.0 255.255.255.0 U 40 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 40 0 0 lo

E21.2 Write a script that monitors a given set of machines and notifies an 
administrator by email if a machine becomes unresponsive to pings 
for some set amount of time. Don’t hard-code the list of machines, the 
notification email address, or the amount of time to determine unre-
sponsive behavior.

E21.3 Experiment with changing the netmask on a machine on your local 
network. Does it still work? Can you reach everything at your site? 
Can other machines reach you? Do broadcasts work (e.g., ARP re-
quests or DHCP discover packets)? Explain your findings. (Requires 
root access.)

E21.4 Use the traceroute command to discover routing paths on your network. 

a) How many hops does it take to leave your facility?
b) Are there any routers between machines on which you have accounts?
c) Can you find any bottlenecks?
d) Is your site multihomed?

E21.5 Design a MIB that includes all the variables you as a Linux sysadmin 
might want to query or set. Leave ways for the MIB to be extended to 
include that important new sysadmin variable you forgot.

E21.6 Use wireshark or tshark to capture traffic that illustrates the follow-
ing protocols. For TCP sessions, include and indicate the initial and 
final packets. Submit clean, well-formatted output. (Requires root.)

a) ARP
b) ICMP echo request and reply
c) SMTP
d) HTTP
e) DNS
f) Samba
g) SSH

E21.7 Set up Cacti graphs that show the packets transmitted to and from a 
local router. This project requires an SNMP package to query the 
router, and you must know the router’s read-only community string.

  



ptg

Exercises 895

N
et

 M
gm

t

E21.8 Write a script that uses RRDtool to track network traffic as reported 
by netstat -i, and create a web page with rrdcgi that shows the results. 
This exercise will probably take you several hours if you have never 
worked with RRDtool before. Dig in! It is well worth the effort, both 
because knowing how to whip up such scripts will come in handy and 
because familiarity with RRDtool will help you tweak and tune it 
when it’s used as a component of network management packages.

  



ptg

896

22 Security

Despite Hollywood’s best efforts, the maintenance of a secure computing environ-
ment remains unglamorous and largely unappreciated. It is a system administra-
tion discipline born of necessity; if UNIX and Linux systems are going to house 
sensitive data and control critical processes, we must protect them.

Such protection requires resources, both in terms of sysadmin time and in the 
hard currency of security-related equipment. Unfortunately, many organizations 
don’t make the appropriate investments in this area until an incident has already 
occurred.

In November 1988, we experienced our first real taste of the security threat posed 
by a world-wide network as the Robert Morris, Jr., Internet worm was unleashed 
onto the Internet (see the Wikipedia article on “Morris worm”). Before that event, 
the Internet lived in an age of innocence. Security was a topic that administrators 
thought about mostly in the “what if ” sense. A big security incident usually con-
sisted of something like a user gaining administrative access to read another user’s 
mail, often just to prove that he could.

The Morris worm wasted thousands of administrator hours but greatly increased 
security awareness on the Internet. Once again, we were painfully reminded that 
good fences make good neighbors. A number of excellent tools for use by system 

Security

  



ptg

Is UNIX secure? 897

Se
cu

rit
y

administrators (as well as a formal organization for handling incidents of this na-
ture) came into being as a result. 

Today, security breaches are commonplace. According to the 2008 CSI/FBI Com-
puter Crime and Security Survey,1 responding organizations reported an average 
annual loss ascribable to security breaches of $234,000. Most large organizations 
report having at least one significant security breach each year.

Addressing this problem isn’t as easy as you might think. Security is not some-
thing that you can buy in a box or as a service from a third party. Commercial 
products and services can be part of a solution for your site, but they are not a 
panacea. Achieving an acceptable level of security requires an enormous amount 
of patience, vigilance, knowledge, and persistence—not just from you and other 
administrators, but from your entire user and management communities. 

As the system administrator, you must personally ensure that your systems are 
secure, that they are vigilantly monitored, and that you and your users are prop-
erly educated. You should familiarize yourself with current security technology, 
actively monitor security mailing lists, and hire professional security experts to 
help with problems that exceed your knowledge. 

22.1 IS UNIX SECURE?

Of course not. Neither UNIX nor Linux is secure, nor is any other operating sys-
tem that communicates on a network. If you must have absolute, total, unbreach-
able security, then you need a measurable air gap2 between your computer and 
any other device. Some people argue that you also need to enclose your computer 
in a special room that blocks electromagnetic radiation (Wikipedia: “Faraday 
cage”). How fun is that? 

You can work to make your system somewhat more resistant to attack. Even so, 
several fundamental flaws in the UNIX model ensure that you will never reach 
security nirvana:

• UNIX is optimized for convenience and doesn’t make security easy or 
natural. The system’s overall philosophy stresses easy manipulation of 
data in a networked, multiuser environment. 

• The software that runs on UNIX systems is developed by a large com-
munity of programmers. They range in experience level, attention to 
detail, and knowledge of the system and its interdependencies. As a 
result, even the most well-intended new features can introduce large 
security holes.

1. This survey is conducted yearly and can be found at gocsi.com. 
2. Of course, wireless networking technology introduces a whole new set of problems. Air gap in this 

context means “no networking whatsoever.”

  



ptg

898 Chapter 22 Security

• Most administrative functions are implemented outside the kernel, 
where they can be inspected and tampered with. Hackers have broad 
access to the system.

On the other hand, since some systems’ source code (e.g., Linux, OpenSolaris) is 
available to everyone, thousands of people can (and do) scrutinize each line of 
code for possible security threats. This arrangement is widely believed to result in 
better security than that of closed operating systems, in which a limited number 
of people have the opportunity to examine the code for holes.

Many sites are a release or two behind, either because localization is too trouble-
some or because they do not subscribe to a software maintenance service. In any 
case, when security holes are patched, the window of opportunity for hackers of-
ten does not disappear overnight.

It might seem that security should gradually improve over time as security prob-
lems are discovered and corrected, but unfortunately this does not seem to be the 
case. System software is growing ever more complicated, hackers are becoming 
better and better organized, and computers are connecting more and more inti-
mately on the Internet. Security is an ongoing battle that can never really be won. 

Remember, too, that

The more secure your system, the more constrained you and your users will be. 
Implement the security measures suggested in this chapter only after carefully 
considering the implications for your users.

22.2 HOW SECURITY IS COMPROMISED

This chapter discusses some common security problems and their standard coun-
termeasures. But before we leap into the details, we should take a more general 
look at how real-world security problems tend to occur. Most security lapses fit 
into the following taxonomy.

Social engineering

The human users (and administrators) of a computer system are the weakest links 
in the chain of security. Even in today’s world of heightened security awareness, 
unsuspecting users with good intentions are easily convinced to give away sensi-
tive information. No amount of technology can protect against the user element— 
you must ensure that your user community has a high awareness of security 
threats so that they can be part of the defense.

This problem manifests itself in many forms. Attackers cold-call their victims and 
pose as legitimately confused users in an attempt to get help accessing the system. 
Administrators unintentionally post sensitive information on public forums when 

Security   = 1
(1.072)(Convenience)

  



ptg

Software vulnerabilities 899

Se
cu

rit
y

troubleshooting problems. Physical compromises occur when seemingly legiti-
mate maintenance personnel rewire the phone closet.

The term “phishing” describes attempts to collect information from users through 
deceptive email, instant messages, or even SMS messages. Phishing can be espe-
cially hard to defend against because the communications often include victim-
specific information that lends them the appearance of authenticity.

Social engineering continues to be a powerful hacking technique and is one of the 
most difficult threats to neutralize. Your site security policy should include train-
ing for new employees. Regular organization-wide communications are an effec-
tive way to provide information about telephone dos and don’ts, physical security, 
email phishing, and password selection.

To gauge your organization’s resistance to social engineering, you might find it 
informative to attempt some social engineering attacks of your own. Be sure you 
have explicit permission to do this from your own managers, however. Such ex-
ploits look very suspicious if they are performed without a clear mandate. They’re 
also a form of internal spying, so they have the potential to generate resentment if 
they’re not handled in an aboveboard manner.

Many organizations find it useful to communicate to users that administrators 
will never request their passwords, whether by email, instant message, or tele-
phone. Tell users to report any such password requests to the IT department im-
mediately.

Software vulnerabilities

Over the years, countless security-sapping bugs have been discovered in com-
puter software (including software from third parties, both commercial and free). 
By exploiting subtle programming errors or context dependencies, hackers have 
been able to manipulate systems into doing whatever they want. 

Buffer overflows are a common programming error and one with complex impli-
cations. Developers often allocate a predetermined amount of temporary memory 
space, called a buffer, to store a particular piece of information. If the code isn’t 
careful about checking the size of the data against the size of the container that’s 
supposed to hold it, the memory adjacent to the allocated space is at risk of being 
overwritten. Crafty hackers can input carefully composed data that crashes the 
program or, in the worst case, executes arbitrary code. 

Fortunately, the sheer number of buffer overflow exploits in recent years has 
raised the programming community’s consciousness about this issue. Although 
buffer overflow problems are still occurring, they are often quickly discovered and 
corrected, especially in open source applications. Newer programming systems 
such as Java and .NET include mechanisms that automatically check data sizes 
and prevent buffer overflows. Sometimes.

  



ptg

900 Chapter 22 Security

Buffer overflows are a subcategory of a larger class of software security bugs 
known as input validation vulnerabilities. Nearly all programs accept some type of 
input from users (e.g., command-line arguments or HTML forms). If the code 
processes such data without rigorously checking it for appropriate format and 
content, bad things can happen. Consider the following simple example:

#!/usr/bin/perl 
# Example user input validation error

open(HTMLFILE, "/var/www/html/$ARGV[0]") or die "trying\n"; 
while(<HTMLFILE>) { print; } 
close HTMLFILE;

The intent of this code is probably to print the contents of some HTML file under 
/var/www/html, which is the default document root for the Apache web server on 
Red Hat servers. The code accepts a filename from the user and includes it as part 
of the argument to open. But if a malicious user entered ../../../etc/passwd as the 
argument, the contents of /etc/passwd would be echoed!

What can you as an administrator do to prevent this type of attack? Very little, at 
least until a bug has been identified and addressed in a patch. Keeping up with 
patches and security bulletins is an important part of most administrators’ jobs. 
Most Linux distributions include automated patching utilities, such as yum on 
Red Hat and apt-get on Ubuntu. OpenSolaris also has automated (and failsafe) 
updates implemented through pkg image-update. Take advantage of these utili-
ties to keep your site safe from software vulnerabilities.

Configuration errors

Many pieces of software can be configured securely or not-so-securely. Unfortu-
nately, because software is developed to be useful instead of annoying, not-so-
securely is often the default. Hackers frequently gain access by exploiting software 
features that would be considered helpful and convenient in less treacherous cir-
cumstances: accounts without passwords, disks shared with the world, and unpro-
tected databases, to name a few. 

A typical example of a host configuration vulnerability is the standard practice of 
allowing Linux systems to boot without requiring a boot loader password. GRUB 
can be configured at install time to require a password, but administrators almost 
always decline the option. This omission leaves the system open to physical at-
tack. However, it’s also a perfect example of the need to balance security against 
usability. Requiring a password means that if the system were unintentionally re-
booted (e.g., after a power outage), an administrator would have to be physically 
present to get the machine running again.

One of the most important steps in securing a system is simply making sure that 
you haven’t inadvertently put out a welcome mat for hackers. Problems in this 
category are the easiest to find and fix, although there are potentially a lot of them 
and it’s not always obvious what to check for. The port and vulnerability scanning 

  



ptg

Patches 901

Se
cu

rit
y

tools covered later in this chapter can help a motivated administrator identify 
problems before they’re exploited.

22.3 SECURITY TIPS AND PHILOSOPHY

This chapter discusses a wide variety of security concerns. Ideally, you should ad-
dress all of them within your environment. Most administrators should probably 
digest the contents of this entire chapter more than once.

Most systems do not come secured out of the box. In addition, customizations 
made both during and after installation change the security profile for new sys-
tems. Administrators should take steps to harden new systems, integrate them 
into the local environment, and plan for their long-term security maintenance.

When the auditors come knocking, it’s useful to be able to prove that you have 
followed a standard methodology, especially if that methodology conforms to ex-
ternal recommendations and best practices for your industry.

We use a localization checklist to secure new systems. A system administrator 
applies the standard hardening steps to the system, and a security administrator 
then confirms that the steps were followed correctly and keeps a log of newly 
secured systems. 

Patches 

Keeping the system updated with the latest patches is an administrator’s highest-
value security chore. Most systems are configured to point at the vendor’s reposi-
tory, which makes applying patches as simple as running a few commands. Larger 
environments can use a local repository that mirrors that of the vendor.

A reasonable approach to patching should include the following elements:

• A regular schedule for installing routine patches that is diligently fol-
lowed. Consider the impact on users when designing this schedule. 
Monthly updates are usually sufficient; regularity is more important 
than immediacy. It is not acceptable to fix high-profile zero-day vulner-
abilities but neglect other updates.

• A change plan that documents the impact of each set of patches, outlines 
appropriate postinstallation testing steps, and describes how to back out 
the changes in the event of problems. Communicate this change plan to 
all relevant parties.

• An understanding of what patches are relevant to the environment. 
Administrators should subscribe to vendor-specific security mailing lists 
and blogs, as well as to generalized security discussion forums such as 
Bugtraq. An accurate inventory of applications and operating systems 
used in your environment helps ensure complete coverage.

  



ptg

902 Chapter 22 Security

Unnecessary services

Most systems come with several services configured to run by default. Be sure to 
disable (and possibly remove) any that are unnecessary, especially if they are net-
work daemons. One way to see which services are running is to use the netstat
command. Here’s partial output from a Solaris system:

solaris$ netstat -an | grep LISTEN
*.111 *.* 0 0 49152 0 LISTEN
*.32771 *.* 0 0 49152 0 LISTEN
*.32772 *.* 0 0 49152 0 LISTEN
*.22 *.* 0 0 49152 0 LISTEN
*.4045 *.* 0 0 49152 0 LISTEN

A variety of techniques can identify the service that’s using an unknown port. On 
most systems, lsof or fuser may be of help. Under Linux, either command can 
identify the PID of the process that’s using a given port:

ubuntu$ sudo fuser 22/tcp 
22/tcp: 2454  8387

ubuntu$ sudo lsof -i:22 
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME 
sshd 2454 root 3u IPv4 5730 TCP *:ssh(LISTEN)
sshd 2454 root 4u IPv6 5732 TCP *:ssh(LISTEN)

Once you have the PIDs, you can then use ps to identify specific processes. If the 
service is unneeded, stop it and make sure that it won’t be restarted at boot time. 

Unfortunately, the availability of lsof and fuser varies by system, and implementa-
tions differ widely. Many versions of both tools lack support for network sockets. 

If lsof and fuser aren’t available (or aren’t useful), you can either look up “well 
known” service ports in the /etc/services file or run netstat without the -n option 
to let it do this lookup for you.

The security risks inherent in some network protocols render them unsafe in al-
most all circumstances. FTP, Telnet, and the BSD “r” programs (rcp, rlogin, and 
rsh) use insecure authentication and data transfer methods. They should be dis-
abled on all systems in favor of more secure alternatives such as SSH.

Remote event logging

See Chapter 11 for 
more information 
about syslog.

The syslog facility forwards log information to files, lists of users, or other hosts 
on your network. Consider setting up a secure host to act as a central logging 
machine that parses forwarded events and takes appropriate action. A single cen-
tralized log aggregator can capture logs from a variety of devices and alert admin-
istrators whenever meaningful events occur. Remote logging also prevents hack-
ers from covering their tracks by rewriting or erasing log files on systems that 
have been compromised.

  



ptg

Trojan horses 903

Se
cu

rit
y

Most systems come configured to use syslog by default, but you will need to cus-
tomize the configuration to set up remote logging. 

Backups

See Chapter 10 for 
more information 
about backups.

Regular system backups are an essential part of any site security plan. They fall 
into the “availability” bucket of the CIA triad discussed on page 944. Make sure 
that all partitions are regularly dumped and that you store some backups off-site. 
If a significant security incident occurs, you’ll then have an uncontaminated 
checkpoint from which to restore.

Backups can also be a security hazard. A stolen collection of tapes can circumvent 
the rest of the system’s security. When storing tapes off-site, use a fireproof safe to 
deter theft and consider using encryption. If you are thinking about using a con-
tract storage facility, ask for a physical tour.

Viruses and worms

UNIX and Linux have been mostly immune from viruses. Only a handful exist 
(most of which are academic in nature), and none have done the costly damage 
that has become commonplace in the Windows world. Nonetheless, this fact 
hasn’t stopped certain antivirus vendors from predicting the demise of the plat-
form from malware—unless you purchase their antivirus product at a special in-
troductory price, of course.

The exact reason for the lack of malicious software is unclear. Some claim that 
UNIX simply has less market share than its desktop competitors and is therefore 
not an interesting target for virus authors. Others insist that UNIX’s access-con-
trolled environment limits the damage from a self-propagating worm or virus. 

The latter argument has some validity. Because UNIX restricts write access to sys-
tem executables at the filesystem level, unprivileged user accounts cannot infect 
the rest of the environment. Unless the virus code is being run by root, the scope 
of infection is significantly limited. The moral, then, is not to use the root account 
for day-to-day activities.

See Chapter 20 for 
more information 
about email content 
scanning.

Perhaps counterintuitively, one valid reason to run antivirus software on UNIX 
servers is to protect your site’s Windows systems from Windows-specific viruses. 
A mail server can scan incoming email attachments for viruses, and a file server 
can scan shared files for infection. However, this solution should supplement 
desktop antivirus protection rather than replace it.

ClamAV by Tomasz Kojm is a popular, free antivirus product for UNIX and Li-
nux. This widely used GPL tool is a complete antivirus toolkit with signatures for 
thousands of viruses. You can download the latest version from clamav.net.

Trojan horses

Trojan horses are programs that aren’t what they seem to be. An example of a 
Trojan horse is a program called turkey that was distributed on Usenet a long 

  



ptg

904 Chapter 22 Security

time ago. The program said it would draw a picture of a turkey on your terminal 
screen, but it actually deleted files from your home directory.

Trojan fragments appear in major software packages now and then. sendmail, 
tcpdump, OpenSSH, and InterBase have all issued advisories regarding malicious 
software in their products. These Trojans typically embed malicious code that al-
lows attackers to access the victim’s systems at will. Fortunately, most vendors fix 
the software and issue an advisory in a week or two. Be sure to watch the security 
mailing lists for any network software packages you run on your hosts.

Even given the number of security-related escapades the UNIX community has 
seen over the last few years, it is remarkable how few Trojan horse incidents have 
occurred. Credit for this state of affairs is due largely to the speed of Internet com-
munication. Obvious security problems tend to be discovered quickly and widely 
discussed. Malicious packages don’t stay available for very long on well-known 
Internet servers.

You can be certain that any software that has been discovered to be malicious will 
cause a big stink on the Internet. Google the name of a software package before 
installing it and make sure the first page of results doesn’t look incriminating.

Rootkits

The craftiest hackers try to cover their tracks and avoid detection. Often, they 
hope to continue using your system to distribute software illegally, probe other 
networks, or launch attacks against other systems. They often use “rootkits” to 
help them remain undetected. Sony’s Trojan horse employed rootkit-like capabili-
ties to hide itself from the user.

Rootkits are programs and patches that hide important system information such 
as process, disk, or network activity. They come in many flavors and vary in so-
phistication from simple application replacements (such as hacked versions of ls
and ps) to kernel modules that are nearly impossible to detect. 

Host-based intrusion detection software such as OSSEC is an effective way to 
monitor systems for the presence of rootkits. There are also rootkit finder scripts 
(such as chkrootkit, chkrootkit.org) that scan the system for known rootkits.

Although programs are available to help administrators remove rootkits from a 
compromised system, the time it takes to perform a thorough cleaning would 
probably be better spent saving data, reformatting the disk, and starting from 
scratch. The most advanced rootkits are aware of common removal programs and 
try to subvert them.

Packet filtering

If you’re connecting a system to a network that has Internet access, you must in-
stall a packet-filtering router or firewall between the system and the outside 
world. As an alternative, some systems let you implement packet filtering with 
software on the system itself, an option we discuss starting on page 935. Whatever 

  



ptg

General philosophy 905

Se
cu

rit
y

the implementation, the packet filter should pass only traffic for services that you 
specifically want to provide or use from that system.

Passwords

We’re simple people with simple rules. Here’s one: every account must have a pass-
word, and it needs to be something that can’t easily be guessed. It’s never a good 
idea to send plaintext reusable passwords across the Internet. If you allow remote 
logins to your system, you must use SSH or some other secure remote access sys-
tem (discussed starting on page 926).

Vigilance

To ensure the security of your system, you must monitor its health, network con-
nections, process table, and overall status regularly (usually, daily). Perform regu-
lar self-assessments, using the power tools discussed later in this chapter. Security 
problems tend to start small and grow quickly, so the earlier you identify an 
anomaly, the better off you’ll be.

General philosophy

Effective system security has its roots in common sense. Some rules of thumb:

• Don’t put files on your system that are likely to be interesting to hackers 
or to nosy employees. Trade secrets, personnel files, payroll data, elec-
tion results, etc., must be handled carefully if they’re on-line. Securing 
such information cryptographically provides a far higher degree of secu-
rity than simply trying to prevent unauthorized users from accessing the 
files that contain the juicy tidbits.

• Your site’s security policy should specify how sensitive information is 
handled. See Chapter 32, Management, Policy, and Politics, and the secu-
rity standards section in this chapter (page 945) for some suggestions.

• Don’t provide places for hackers to build nests in your environment. 
Hackers often break into one system and then use it as a base of opera-
tions to get into other systems. Sometimes hackers may use your net-
work to cover their tracks while they attack their real target. Publicly 
exposed services with vulnerabilities, world-writable anonymous FTP 
directories, shared accounts, and neglected systems all encourage nest-
ing activity.

• Set traps to help detect intrusions and attempted intrusions. Tools such 
as OSSEC, Bro, Snort, and John the Ripper (described starting on page 
916) keep you abreast of potential problems.

• Religiously monitor the reports generated by these security tools. A 
minor problem you ignore in one report may grow into a catastrophe by 
the time the next report is sent.

  



ptg

906 Chapter 22 Security

• Teach yourself about system security. Traditional know-how, user edu-
cation, and common sense are the most important parts of a site security 
plan. Bring in outside experts to help fill in gaps, but only under your 
close supervision and approval.

• Prowl around looking for unusual activity. Investigate anything that 
seems unusual, such as odd log messages or changes in the activity of an 
account (more activity, activity at strange hours, or perhaps activity 
while the owner is on vacation).

22.4 PASSWORDS AND USER ACCOUNTS

See page 176 for more 
information about the 
passwd file.

Poor password management is a common security weakness. By default, the con-
tents of the /etc/passwd and /etc/shadow files determine who can log in, so these 
files are the system’s first line of defense against intruders. They must be scrupu-
lously maintained and free of errors, security hazards, and historical baggage.

UNIX allows users to choose their own passwords, and although this is a great 
convenience, it leads to many security problems. When you give users their log-
ins, you should also instruct them on how to choose a good password. Passwords 
should be at least eight characters long and should include numbers, punctuation, 
and changes in case. Nonsense words, combinations of simple words, or the first 
letters of words in a memorable phrase make the best passwords. (Of course, 
“memorable” is good but “traditional” is hacker bait; make up your own phrase.) 
The comments in the section Choosing a root password on page 111 are equally 
applicable to user passwords.

It is important to continually verify (preferably daily) that every login has a pass-
word. Entries in the /etc/shadow file that describe pseudo-users such as “daemon” 
who own files but never log in should have a star or an exclamation point in their 
encrypted password field. These do not match any password and thus prevent use 
of the account.

At sites that use a centralized authentication scheme such as LDAP or Active Di-
rectory, the same logic applies. Enforce password complexity requirements, and 
lock out accounts after a few failed login attempts. 

Password aging

Most systems that have shadow passwords also allow you to compel users to 
change their passwords periodically, a facility known as password aging. This fea-
ture may seem appealing at first glance, but it has several problems. Users often 
resent having to change their passwords, and since they don’t want to forget the 
new password, they choose something simple that is easy to type and remember. 
Many users switch between two passwords each time they are forced to change, or 
increment a digit in the password, defeating the purpose of password aging. PAM 
modules (see page 908) can help enforce strong passwords to avoid this pitfall.

  



ptg

Rootly entries 907

Se
cu

rit
y

On Linux systems, the chage program controls password aging. Using chage, ad-
ministrators can enforce minimum and maximum times between password 
changes, password expiration dates, the number of days to warn users before their 
passwords expire, the number of days of inactivity that are permissible before ac-
counts are automatically locked, and more. The following command sets the min-
imum number of days between password changes to 2, the maximum number to 
90, the expiration date to July 31, 2010, and warns the user for 14 days that the 
expiration date is approaching:

$ sudo chage -m 2 -M 90 -E 2010-07-31 -W 14 ben

For more information 
about user account set-
tings, see Chapter 7.

Other systems implement password aging differently, usually with less granular-
ity. Under Solaris, you set password aging preferences in /etc/default/password. 
Password aging on HP-UX systems is controlled through the smc console, and in 
AIX it’s configured in the file /etc/security/user. 

Group logins and shared logins

Any login that is used by more than one person is bad news. Group logins (e.g., 
“guest” or “demo”) are sure terrain for hackers to homestead and are prohibited in 
many contexts by federal regulations such as HIPAA. Don’t allow them at your 
site. However, technical controls can’t prevent users from sharing passwords, so 
education is the best enforcement tactic.

User shells

In theory, you can set the shell for a user account to be just about any program, 
including a custom script. In practice, the use of shells other than standards such 
as bash and tcsh is a dangerous practice, and the risk is even greater for password-
less logins that have a script as their shell. If you find yourself tempted to create 
such a login, you might consider a passphrase-less SSH key pair instead.

Rootly entries

The only distinguishing feature of the root login is its UID of zero. Since there can 
be more than one entry in the /etc/passwd file that uses this UID, there can be 
more than one way to log in as root.

A common way for a hacker to install a back door after having obtained a root 
shell is to edit new root logins into /etc/passwd. Programs such as who and w
refer to the name stored in utmp rather than the UID that owns the login shell, so 
they cannot expose hackers that appear to be innocent users but are really logged 
in as UID 0.

Don’t allow root to log in remotely, even through the standard root account. Un-
der OpenSSH, you can set the PermitRootLogin configuration option to No in the 
/etc/ssh/sshd_config file to enforce this restriction.

On Solaris, you can put CONSOLE=/dev/console in /etc/default/login to prohibit 
root logins from locations beside the console.

  



ptg

908 Chapter 22 Security

Because of sudo (see page 113), it’s rare that you’ll ever need to log in as root, even 
on the system console.

22.5 PAM: COOKING SPRAY OR AUTHENTICATION WONDER?

PAM stands for “pluggable authentication modules.” The PAM system relieves 
programmers of the chore of implementing authentication systems and gives sys-
admins flexible, modular control over the system’s authentication methods. Both 
the concept and the term come from Sun Microsystems (now part of Oracle) and 
from a 1996 paper by Samar and Lai of SunSoft.

In the distant past, commands like login included hardwired authentication code 
that prompted the user for a password, tested the password against the encrypted 
version obtained from /etc/shadow (/etc/passwd at that time, really), and ren-
dered a judgment as to whether the two passwords matched. Of course, other 
commands (e.g., passwd) contained similar code. It was impossible to change au-
thentication methods without source code, and administrators had little or no 
control over details such as whether the system should accept “password” as a 
valid password. PAM changed all of that.

PAM puts the system’s authentication routines into a shared library that login and 
other programs can call. By separating authentication functions into a discrete 
subsystem, PAM makes it easy to integrate new advances in authentication and 
encryption into the computing environment. For instance, multifactor authenti-
cation can be supported without changes to the source code of login and passwd.

For the sysadmin, setting the right level of security for authentication has become 
a simple configuration task. Programmers win, too: they no longer have to write 
tedious authentication code, and more importantly, their authentication systems 
are implemented correctly on the first try. PAM can authenticate all sorts of activ-
ities: user logins, other forms of system access, use of protected web sites—even 
the configuration of applications.

System support for PAM

All of our example systems support PAM. Configuration information goes in the 
/etc/pam.d directory (Linux) or in the /etc/pam.conf file (Solaris, HP-UX, and 
AIX). The formats of the configuration files are basically the same, but the UNIX 
systems put everything in one file and the Linux systems have a file for each ser-
vice or command that uses PAM.

PAM support is nearly universal at this point, but if you’re using some other vari-
ant of UNIX and want to check whether your system uses PAM, you can run ldd 
/bin/login to see if that binary links to PAM’s shared library, libpam.

PAM configuration

PAM configuration files are a series of one-liners, each of which names a particu-
lar PAM module to be used on the system.

  



ptg

PAM configuration 909

Se
cu

rit
y

The general format is
[service] module-type control-flag module-path [arguments]

Fields are separated by whitespace.

Linux systems don’t use a service field, or more accurately, they put each service in 
its own configuration file and let the filename assume the role of the UNIX service
parameter. The service can name an authentication context to which the configu-
ration line applies (e.g., login for vanilla user logins) or can contain the keyword 
other to set system defaults.

Here’s an illustrative snippet from a Solaris system; all module-path fields are rela-
tive to the /usr/lib/security directory.

# login service

login auth requisite pam_authtok_get.so.1 
login auth required pam_dhkeys.so.1 
login auth required pam_unix_cred.so.1 
login auth required pam_unix_auth.so.1 
login auth required pam_dial_auth.so.1
…

Individual PAM modules have finer granularity than just “authenticate the user,” 
so there may be several lines in a PAM configuration file for any given service and 
module type. A series of lines for a given service and module type form a “stack.” 

The order in which modules appear in the PAM configuration file is important. 
For example, the module that prompts the user for a password must come before 
the module that checks that password for validity. One module can pass its output 
to the next by setting either environment variables or PAM variables.

The module-type parameter—auth, account, session, or password—determines 
what the module is expected to do. auth modules identify the user and grant 
group memberships. Modules that do account chores enforce restrictions such as 
limiting logins to particular times of day, limiting the number of simultaneous 
users, or limiting the ports on which logins can occur. (For example, you would 
use an account-type module to restrict root logins to the console.) session chores 
include tasks that are done before or after a user is granted access; for example, 
mounting the user’s home directory. Finally, password modules change a user’s 
password or passphrase.

The control-flag specifies how the modules in the stack should interact to produce 
an ultimate result for the stack. Table 22.1 on page 910 shows the common values.

If PAM could simply return a failure code as soon as the first individual module in 
a stack failed, the control-flags system would be simpler. Unfortunately, the system 
is designed so that most modules get a chance to run regardless of their sibling 
modules’ success or failure, and this fact causes some subtleties in the flow of con-
trol. (The intent is to prevent an attacker from learning which module in the PAM 
stack caused the failure.)

  



ptg

910 Chapter 22 Security

required modules are required to succeed; a failure of any one of them guarantees 
that the stack as a whole will eventually fail. However, the failure of a module that 
is marked required doesn’t immediately stop execution of the stack. If you want 
that behavior, you need to use the requisite control flag instead of required. 

The success of a sufficient module aborts the stack immediately. However, the 
ultimate result of the stack isn’t guaranteed to be success because sufficient mod-
ules can’t override the failure of earlier required modules. If an earlier required
module has already failed, a successful sufficient module aborts the stack and
returns failure as the overall result. Solaris’s binding flag acts like sufficient, but 
failure of the binding module ensures eventual failure of the stack. By contrast, 
failure of a sufficient module is treated like the failure of an optional module: it 
makes no difference to the final result unless it is the only module in the stack. 

Clear as mud, hmm? To make things even more complicated, Linux has a parallel 
system of alternative control flags that you can theoretically use instead of these 
cross-system standards. Overall, the control-flag system would take another page 
or two to really explain in detail. We don’t do that here, however, because PAM 
configurations tend to be relatively stereotyped; you’re unlikely to be writing your 
own from scratch. We mention some of the details only to impress upon you that 
the control flags don’t have the straightforward meanings their names might sug-
gest. If you’re going to modify your systems’ security settings, make sure that you 
understand the system thoroughly and that you double-check the particulars. 
(You won’t configure PAM every day. How long will you remember which version 
is requisite and which is required?)

For easy reference, here’s another copy of that same Solaris pam.conf example:
# login service

login auth requisite pam_authtok_get.so.1 
login auth required pam_dhkeys.so.1 
login auth required pam_unix_cred.so.1 
login auth required pam_unix_auth.so.1 
login auth required pam_dial_auth.so.1
…

Table 22.1 PAM control flags

Flag
Stop on 
failure?

Stop on 
success? Comments

bindinga No Yes Like sufficient, but can’t fail without failing the stack
includea – – Includes another config file at this point in the stack
optional No No Significant only if this is the lone module
required No No Failure eventually causes the stack to fail
requisite Yes No Same as required, but fails stack immediately
sufficient No Yes The name is kind of a lie; see comments below

a. Linux and Solaris only for include, Solaris only for binding

  



ptg

A detailed Linux configuration example 911

Se
cu

rit
y

Let’s look at the specific modules.

The pam_authtok_get library routine prompts the user for a login name (if one 
has not already been set) and password and stores these values in the authentica-
tion token called PAM_AUTHTOK. The pam_dhkeys module is used for RPC (re-
mote procedure call) authentication for NIS or NIS+ and is looking for Diffie-
Hellman keys, hence the name.

The pam_unix_cred module sets the credentials for the authenticated user, and 
the pam_unix_auth module performs the actual authentication, checking that 
the value stored in PAM_AUTHTOK is the user’s correct password. Finally, the 
module pam_dial_auth authenticates the user for dialup access according to the 
contents of /etc/dialups and /etc/d_passwd.

You may see the same code module referred to more than once in a configuration 
file, with different module-type values. That’s fine; multiple type implementations 
are often collected into a single library if they share significant code.

A detailed Linux configuration example

Linux moves each set of PAM configuration lines that refer to the same service
into a separate file named after that service. The format is otherwise the same 
except that the service field is no longer needed. 

For example, the /etc/pam.d/login file from a SUSE system is reproduced below 
with the included files expanded to form a more coherent example. 

auth requisite pam_nologin.so 
auth [user_unknown=ignore success=ok ignore=ignore auth_err=die 

default=bad] pam_securetty.so
auth required pam_env.so
auth required pam_unix2.so 
account required pam_unix2.so 
password requisite pam_pwcheck.so nullok cracklib 
password required pam_unix2.so use_authtok nullok 
session required pam_loginuid.so
session required pam_limits.so
session required pam_unix2.so 
session optional pam_umask.so
session required pam_lastlog.so nowtmp 
session optional pam_mail.so standard
session optional pam_ck_connector.so

The auth stack includes several modules. On the first line, the pam_nologin
module checks for the existence of the /etc/nologin file. If it exists, the module 
aborts the login immediately unless the user is root. The pam_securetty module 
ensures that root can only log in on terminals listed in /etc/securetty. This line 
uses the alternative Linux syntax described in the pam.conf man page. In this 
case, the requested behavior is similar to that of the required control flag. 
pam_env sets environment variables from /etc/security/pam_env.conf, and 

  



ptg

912 Chapter 22 Security

finally, pam_unix2 checks the user’s credentials by performing standard UNIX 
authentication. If any of these modules fail, the auth stack returns an error.

The account stack includes only the pam_unix2 module, which in this context 
assesses the validity of the account itself. It returns an error if, for example, the 
account has expired or the password must be changed. In the latter case, the mod-
ule collects a new password from the user and passes it to the password modules.

The pam_pwcheck line checks the strength of proposed new passwords by call-
ing the cracklib library. It returns an error if the new password does not meet the 
requirements. However, it also allows empty passwords because of the nullok flag. 
The pam_unix2 line updates the actual password.

Finally, the session modules perform several housekeeping chores. pam_loginuid
sets the kernel’s loginuid process attribute to the user’s UID. pam_limits reads 
resource usage limits from /etc/security/limits.conf and sets the corresponding 
process parameters that enforce them. pam_unix2 logs the user’s access to the 
system, and pam_umask sets an initial file creation mode. The pam_lastlog
module displays the user’s last login time as a security check, and the pam_mail
module prints a note if the user has new mail. Finally, pam_ck_connector notifies 
the ConsoleKit daemon (a system-wide daemon that manages login sessions) of 
the new login.

At the end of the process, the user has been successfully authenticated and PAM 
returns control to login.

22.6 SETUID PROGRAMS

Setuid programs (executables on which the setuid bit has been set) run as the user 
that owns the executable file. For example, the passwd program must run as root 
in order to modify the /etc/shadow file when users change their passwords. See 
Setuid and setgid execution on page 106 for basic information about this feature.

Programs that run setuid, especially ones that run setuid to root, are prone to 
security problems. The setuid commands distributed with the system are theoret-
ically secure; however, security holes have been discovered in the past and will 
undoubtedly be discovered in the future.

The surest way to minimize the number of setuid problems is to minimize the 
number of setuid programs. Think twice before installing software that needs to 
run setuid, and avoid using the setuid facility in your own home-grown software. 
Never use setuid execution on programs that were not explicitly written with set-
uid execution in mind.

You can disable setuid and setgid execution on individual filesystems by specify-
ing the nosuid option to mount. It’s a good idea to use this option on filesystems 
that contain users’ home directories or that are mounted from less trustworthy 
administrative domains.

  



ptg

Effective use of chroot 913

Se
cu

rit
y

It’s useful to scan your disks periodically to look for new setuid programs. A 
hacker who has breached the security of your system sometimes creates a private 
setuid shell or utility to facilitate repeat visits. Some of the tools discussed starting 
on page 914 locate such files, but you can do just as well with find. For example, 
the one-liner script

/usr/bin/find / -user root -perm -4000 -print | 
/bin/mail -s "Setuid root files" netadmin 

mails a list of all files that are setuid to root to the “netadmin” user. (In practice, 
you may need to be more specific about which filesystems to search.)

22.7 EFFECTIVE USE OF CHROOT

The chroot system call confines a process to a specific directory. It disallows ac-
cess to files outside or above that directory and thereby limits the damage the 
process can cause if it should be compromised by a hacker.

The chroot command is a simple wrapper around this system call. In addition, 
some security-sensitive daemons have chroot support built in and need only have 
this mode turned on in their configuration files.

Security experts sometimes frown upon use of chroot for security purposes be-
cause they believe that when it is poorly used or misunderstood, it can give ad-
ministrators a false sense of security. They complain that some administrators use 
chroot to excuse themselves from other forms of security diligence such as regu-
lar software updates and close security monitoring.

These points are not inaccurate, but they’re not the last word on chroot, either. 
Similar claims could be made regarding network firewalls, but few experts would 
recommend removing the packet filter from your network. Used correctly and as 
a supplemental layer of protection, chroot is a worthy addition to your security 
arsenal (even if that was not the feature’s original design intent).

The following scenarios illustrate reasonable uses of chroot:

• You want to run a non-root daemon process such as Apache or BIND 
within a restricted filesystem subtree. If the daemon is compromised, the 
attacker will be restricted to the subtree as long as no privilege escalation 
vulnerabilities exist.

• You want to restrict remote users to a specific set of files and commands.

However, chroot can only protect you in these scenarios if all of the following 
conditions are met:

• All processes in the chroot jail run without root privileges. Processes 
that run as root always have the ability to break out of the chroot jail.

• You are not using setuid root execution within the jail. 

  



ptg

914 Chapter 22 Security

• The chroot environment is up to date and minimal, in the sense that it 
contains only the executables, libraries, and configuration files that are 
needed to support the intended task. 

In this era of shared libraries and interprocess dependencies, constructing a 
proper jail cell can be tricky. The JailKit (olivier.sessink.nl/jailkit) includes several 
scripts to help you create chrooted environments.

22.8 SECURITY POWER TOOLS

Some of the time-consuming chores mentioned in the previous sections can be 
automated with freely available tools. Here are a few of the tools you’ll want to 
look at.

Nmap: network port scanner

Nmap is a network port scanner. Its main function is to check a set of target hosts 
to see which TCP and UDP ports have servers listening on them.3 Since most 
network services are associated with “well known” port numbers, this informa-
tion tells you quite a lot about the software a machine is running. 

Running Nmap is a great way to find out what a system looks like to someone on 
the outside who is trying to break in. For example, here’s a report from a produc-
tion Ubuntu system:

ubuntu$ nmap -sT ubuntu.booklab.atrust.com

Starting Nmap 4.20 ( http://insecure.org ) at 2009-11-01 12:31 MST 
Interesting ports on ubuntu.booklab.atrust.com (192.168.20.25): 
Not shown: 1691 closed ports 
PORT STATE SERVICE 
25/tcp open smtp
80/tcp open http 
111/tcp open rpcbind 
139/tcp open netbios-ssn 
445/tcp open microsoft-ds 
3306/tcp open mysql

Nmap finished: 1 IP address (1 host up) scanned in 0.186 seconds

By default, nmap includes the -sT argument to try to connect to each TCP port 
on the target host in the normal way.4 Once a connection has been established, 
nmap immediately disconnects, which is impolite but not harmful to a properly 
written network server.

3. As described in Chapter 14, a port is a numbered communication channel. An IP address identifies an 
entire machine, and an IP address + port number identifies a specific server or network conversation 
on that machine.

4. Actually, only the privileged ports (those with port numbers under 1,024) and the well-known ports 
are checked by default. Use the -p option to explicitly specify the range of ports to scan.

  



ptg

Nmap: network port scanner 915

Se
cu

rit
y

From the example above, we can see that the host ubuntu is running two services 
that are likely to be unused and that have historically been associated with secu-
rity problems: portmap (rpcbind) and an email server (smtp). An attacker would 
most likely probe those ports for more information as a next step in the informa-
tion-gathering process.

The STATE column in nmap’s output shows open for ports that have servers lis-
tening, closed for ports with no server, unfiltered for ports in an unknown state, 
and filtered for ports that cannot be probed because of an intervening packet fil-
ter. nmap does not classify ports as unfiltered unless it is running an ACK scan. 
Here are results from a more secure server, secure.booklab.atrust.com: 

ubuntu$ nmap -sT secure.booklab.atrust.com

Starting Nmap 4.20 ( http://insecure.org ) at 2009-11-01 12:42 MST 
Interesting ports on secure.booklab.atrust.com (192.168.20.35): 
Not shown: 1691 closed ports 
PORT STATE SERVICE 
25/tcp open smtp
80/tcp open http

Nmap finished: 1 IP address (1 host up) scanned in 0.143 seconds

In this case, it’s clear that the host is set up to allow SMTP (email) and an HTTP 
server. A firewall blocks access to other ports. 

In addition to straightforward TCP and UDP probes, nmap also has a repertoire 
of sneaky ways to probe ports without initiating an actual connection. In most 
cases, nmap probes with packets that look like they come from the middle of a 
TCP conversation (rather than the beginning) and waits for diagnostic packets to 
be sent back. These stealth probes may be effective at getting past a firewall or at 
avoiding detection by a network security monitor on the lookout for port scan-
ners. If your site uses a firewall (see Firewalls on page 932), it’s a good idea to 
probe it with these alternative scanning modes to see what they turn up.

nmap has the magical and useful ability to guess what operating system a remote 
system is running by looking at the particulars of its implementation of TCP/IP. It 
can sometimes even identify the software that’s running on an open port. The -O
and -sV options, respectively, turn on this behavior. For example:

ubuntu$ sudo nmap -sV -O secure.booklab.atrust.com

Starting Nmap 4.20 ( http://insecure.org ) at 2009-11-01 12:44 MST 
Interesting ports on secure.booklab.atrust.com (192.168.20.35): 
Not shown: 1691 closed ports 
PORT STATE SERVICE VERSION 
25/tcp open smtp Postfix smtpd
80/tcp open http lighttpd 1.4.13 
Device type: general purpose 
Running: Linux 2.4.X|2.5.X|2.6.X 
OS details: Linux 2.6.16 - 2.6.24 
Nmap finished: 1 IP address (1 host up) scanned in 8.095 seconds

  



ptg

916 Chapter 22 Security

This feature can be very useful for taking an inventory of a local network. Unfor-
tunately, it is also very useful to hackers, who can base their attacks on known 
weaknesses of the target OSes and servers.

Keep in mind that most administrators don’t appreciate your efforts to scan their 
network and point out its vulnerabilities, however well intended your motive. Do 
not run nmap on someone else’s network without permission from one of that 
network’s administrators.

Nessus: next-generation network scanner

Nessus, originally released by Renaud Deraison in 1998, is a powerful and useful 
software vulnerability scanner. At this point, it uses more than 31,000 plug-ins to 
check for both local and remote security flaws. Although it is now a closed source, 
proprietary product, it is still freely available, and new plug-ins are released regu-
larly. It is the most widely accepted and complete vulnerability scanner available.

Nessus prides itself on being the security scanner that takes nothing for granted. 
Instead of assuming that all web servers run on port 80, for instance, it scans for 
web servers running on any port and checks them for vulnerabilities. Instead of 
relying on the version numbers reported by the service it has connected to, Nessus 
attempts to exploit known vulnerabilities to see if the service is susceptible.

Although a substantial amount of setup time is required to get Nessus running (it 
requires several packages that aren’t installed on a typical system), it’s well worth 
the effort. The Nessus system includes a client and a server. The server acts as a 
database and the client handles the GUI presentation. Nessus servers and clients 
exist for both Windows and UNIX platforms.

One of the great advantages of Nessus is the system’s modular design, which 
makes it easy for third parties to add new security checks. Thanks to an active 
user community, Nessus is likely to be a useful tool for years to come.

John the Ripper: finder of insecure passwords

One way to thwart poor password choices is to try to break the passwords yourself 
and to force users to change passwords that you have broken. John the Ripper is a 
sophisticated tool by Solar Designer that implements various password-cracking 
algorithms in a single tool. It replaces the tool crack, which was covered in previ-
ous editions of this book.

Even though most systems use a shadow password file to hide encrypted pass-
words from public view, it’s still wise to verify that your users’ passwords are crack 
resistant.5 Knowing a user’s password can be useful because people tend to use the 
same password over and over again. A single password might provide access to 
another system, decrypt files stored in a user’s home directory, and allow access to 

5. Especially the passwords of system administrators who have sudo privileges

  



ptg

hosts_access: host access control 917

Se
cu

rit
y

financial accounts on the web. (Needless to say, it’s not very security-smart to re-
use a password this way. But nobody wants to remember ten passwords.)

Considering its internal complexity, John the Ripper is an extremely simple pro-
gram to use. Direct john to the file to be cracked, most often /etc/shadow, and 
watch the magic happen:

$ sudo ./john /etc/shadow 
Loaded 25 password hashes with 25 different salts (FreeBSD MD5 [32/32]) 
password (jsmith) 
badpass (tjones)

In this example, 25 unique passwords were read from the shadow file. As pass-
words are cracked, John prints them to the screen and saves them to a file called 
john.pot. The output contains the password in the left column with the login in 
parentheses in the right column. To reprint passwords after john has completed, 
run the same command with the -show argument.

As of this writing, the most recent stable version of John the Ripper is 1.7.3.4. It’s 
available from openwall.com/john. Since John the Ripper’s output contains the 
passwords it has broken, you should carefully protect the output and delete it as 
soon as you are done checking to see which users’ passwords are insecure.

As with most security monitoring techniques, it’s important to obtain explicit 
management approval before cracking passwords with John the Ripper.

hosts_access: host access control

Network firewalls are a first line of defense against access by unauthorized hosts, 
but they shouldn’t be the only barrier in place. Two files, /etc/hosts.allow and 
/etc/hosts.deny, also referred to as TCP wrappers, can restrict access to services 
according to the origin of network requests. The hosts.allow file lists the hosts 
that are allowed to connect to a specific service, and the hosts.deny file restricts 
access. However, these files control access only for services that are hosts_access
aware, such as those managed by inetd, xinetd, sshd, and some configurations of 
sendmail. 

In most cases it is wise to be restrictive and permit access only to essential services 
from designated hosts. We suggest denying access by default in the hosts.deny file 
with the single line

ALL:ALL

You can then permit access on a case-by-case basis in hosts.allow. The following 
configuration allows access to SSH from hosts on the 192.168/16 networks and to 
sendmail from anywhere. 

sshd: 192.168.0.0/255.255.0.0 
sendmail: ALL

  



ptg

918 Chapter 22 Security

The format of an entry in either file is service: host or service: network. Failed con-
nection attempts are noted in syslog. Connections from hosts that are not permit-
ted to access the service are immediately closed. 

Most Linux distributions include hosts.allow and hosts.deny files by default, but 
they’re usually empty. Our other example systems all offer TCP wrappers as an 
option after installation.

Bro: the programmable network intrusion detection system

Bro is an open source network intrusion detection system (NIDS) that monitors 
network traffic and looks for suspicious activity. It was originally written by Vern 
Paxson and is available from bro-ids.org.

Bro inspects all traffic flowing into and out of a network. It can operate in passive 
mode, in which it generates alerts for suspicious activity, or in active mode, in 
which it injects traffic to disrupt malicious activity. Both modes likely require 
modification of your site’s network configuration.

Unlike other NIDSs, Bro monitors traffic flows rather than just matching patterns 
inside individual packets. This method of operation means that Bro can detect 
suspicious activity based on who talks to whom, even without matching any par-
ticular string or pattern. For example, Bro can

• Detect systems used as “stepping stones” by correlating inbound and 
outbound traffic

• Detect a server that has a back door installed by watching for unex-
pected outbound connections immediately after an inbound one

• Detect protocols running on nonstandard ports

• Report correctly guessed passwords (and ignore the incorrect guesses)

Some of these features require substantial system resources, but Bro includes clus-
tering support to help you manage a group of sensor machines.

The configuration language for Bro is complex and requires significant coding 
experience to use. Unfortunately, there is no simple default configuration for a 
novice to install. Most sites require a moderate level of customization.

Bro is supported to some extent by the Networking Research Group of the Inter-
national Computer Science Institute (ICSI), but mostly it’s maintained by the 
community of Bro users. If you are looking for a turnkey commercial NIDS, you 
will probably be disappointed by Bro. However, Bro can do things that no com-
mercial NIDS can do, and it can either supplement or replace a commercial solu-
tion in your network.

Snort: the popular network intrusion detection system

Snort (snort.org) is an open source network intrusion prevention and detection 
system originally written by Marty Roesch and now maintained by Sourcefire, a 

  



ptg

OSSEC: host-based intrusion detection 919

Se
cu

rit
y

commercial entity. It has become the de facto standard for home-grown NIDS 
deployments and is also the basis of many commercial and “managed services” 
NIDS implementations. 

Snort itself is distributed for free as an open source package. However, Sourcefire 
charges a subscription fee for access to the most recent set of detection rules. 

A number of third-party platforms incorporate or extend Snort, and some of 
those projects are open source. One excellent example is Aanval (aanval.com), 
which aggregates data from multiple Snort sensors in a web-based console.

Snort captures raw packets off the network wire and compares them with a set of 
rules, aka signatures. When Snort detects an event that’s been defined as interest-
ing, it can alert a system administrator or contact a network device to block the 
undesired traffic, among other actions.

Although Bro is a much more powerful system, Snort is a lot simpler and easier to 
configure, attributes that make it a good choice as a “starter” NIDS platform.

OSSEC: host-based intrusion detection

Do you lie awake at night wondering if the security of your systems has been 
breached? Do you think a disgruntled coworker might be installing malicious 
programs on your systems? If you answered yes to either of these questions, you 
may want to consider installing a host-based intrusion detection system (HIDS) 
such as OSSEC.

OSSEC is free software and is available as source code under the GNU General 
Public License. Commercial support is available from Third Brigade (recently ac-
quired by Trend Micro). OSSEC is available for Linux, Solaris, HP-UX, AIX, and 
Windows. It provides the following services:

• Rootkit detection
• Filesystem integrity checks
• Log file analysis
• Time-based alerting
• Active responses

OSSEC runs on the systems of interest and monitors their activity. It can send 
alerts or take action according to a set of rules that you configure. For example, 
OSSEC can monitor systems for the addition of unauthorized files and send email 
notifications like this one:

Subject: OSSEC Notification - courtesy - Alert level 7 
Date: Fri, 15 Jan 2010 14:53:04 -0700 
From: OSSEC HIDS <ossecm@courtesy.atrust.com> 
To: <courtesy-admin@atrust.com>

OSSEC HIDS Notification. 
2010 Jan 15 14:52:52

  



ptg

920 Chapter 22 Security

Received From: courtesy->syscheck 
Rule: 554 fired (level 7) -> "File added to the system." 
Portion of the log(s):

New file 
'/courtesy/httpd/barkingseal.com/html/wp-content/uploads/2010/01/hbird.jpg' 
added to the file system.

 --END OF NOTIFICATION

In this way, OSSEC acts as your 24/7 eyes and ears on the system. We recommend 
running OSSEC on every production system, in combination with a change man-
agement policy (discussed in Chapter 32, Management, Policy, and Politics, on 
page 1211).

OSSEC basic concepts
OSSEC has two primary components: the manager (server) and the agents (cli-
ents). You need one manager on your network, and you should install that com-
ponent first. The manager stores the file-integrity-checking databases, logs, 
events, rules, decoders, major configuration options, and system auditing entries 
for the entire network. A manager can connect to any OSSEC agent, regardless of 
its operating system. The manager can also monitor certain devices that do not 
have a dedicated OSSEC agent. 

Agents run on the systems you want to monitor and report back to the manager. 
By design, they have a small footprint and operate with a minimal set of privi-
leges. Most of the agent’s configuration is obtained from the manager. Communi-
cation between the server and the agent is encrypted and authenticated. You need 
to create an authentication key for each agent on the manager.

OSSEC classifies alerts by severity at levels 0 to 15; 15 is the highest severity.

OSSEC installation
OSSEC is not yet part of the major UNIX and Linux distributions, even as a fetch-
able package. Therefore, you will need to download the source code package with 
a web browser or a tool such as wget and then build the software:

$ wget http://ossec.net/files/ossec-hids-latest.tar.gz 
$ tar -zxvf ossec-hids-latest.tar.gz 
$ cd ossec-hids-* 
$ sudo ./install.sh

The install script asks what language you prefer (use “en” for English), and then 
what type of installation you want to perform: server, agent, or local. If you are 
only installing OSSEC on a single, personally managed system, you may want to 
choose local. Otherwise, first do the server install on the system you want to be 
your OSSEC manager, and then install the agent on that and all other systems you 
want to monitor. The install script asks some additional questions, too, such as to 
what email address alerts should be sent and which monitoring modules should 
be enabled. 

  



ptg

OSSEC configuration 921

Se
cu

rit
y

Once the installation has finished, start OSSEC with
server$ sudo /var/ossec/bin/ossec-control start

Next, register each agent with the manager. On the server, run
server$ sudo /var/ossec/bin/manage_agents

You’ll see a menu that looks something like this:
****************************************
* OSSEC HIDS v2.3 Agent manager.
* The following options are available:
****************************************

(A)dd an agent (A).
(E)xtract key for an agent (E).
(L)ist already added agents (L).
(R)emove an agent (R).
(Q)uit.

Choose your action: A,E,L,R or Q: 

Select option A to add an agent, and then type in the name and IP address of the 
agent. Next, select option E to extract the agent’s key. Here’s what that looks like:

Available agents: 
ID: 001, Name: linuxclient1, IP: 192.168.74.3 

Provide the ID of the agent to extract the key (or '\q' to quit): 001 
Agent key information for '001' is: 
MDAyIGxpbnV4Y2xpZW50MSAxOTIuMTY4Ljc0LjMgZjk4YjMyYzlkMjg5MWJlMT 
…

Finally, log in to the agent system and run manage_agents there:
agent$ sudo /var/ossec/bin/manage_agents

On the client, you will see that the menu has somewhat different options. 
****************************************
* OSSEC HIDS v2.3 Agent manager.
* The following options are available:
****************************************

(I)mport key from the server (I).
(Q)uit.

Choose your action: I or Q: 

Select option I and then cut and paste the key you extracted above. After you have 
added an agent, you must restart the OSSEC server. Repeat the process of key 
generation, extraction, and installation for each agent you want to connect.

OSSEC configuration
Once OSSEC is installed and running, you’ll want to tweak it so that it gives you 
just enough information, but not too much. The majority of the configuration is 
stored on the server in the /var/ossec/etc/ossec.conf file. This XML-style file is 
well commented and fairly intuitive, but it contains dozens of options.

  



ptg

922 Chapter 22 Security

A common item you may want to configure is the list of files to ignore when doing 
file integrity (change) checking. For example, if you have a custom application 
that writes its log file to /var/log/customapp.log, you can add the following line 
to the <syscheck> section of the file:

<syscheck> 
<ignore>/var/log/customapp.log</ignore> 
</syscheck>

After you’ve made this change and restarted the OSSEC server, OSSEC will stop 
alerting you every time the log file changes. The many OSSEC configuration op-
tions are documented at ossec.net/main/manual/configuration-options.

It takes time and effort to get any HIDS system running and tuned. But after a few 
weeks, you’ll have filtered out the noise and the system will start to provide valu-
able information about changing conditions in your environment. 

22.9 MANDATORY ACCESS CONTROL (MAC)

Mandatory Access Control is an alternative to the traditional UNIX access control 
system that vests control of all permissions in the hands of a security administra-
tor. In contrast to the standard model (described in Chapter 4, Access Control and 
Rootly Powers, and to some extent in Chapter 6, The Filesystem), MAC does not 
allow users to modify any permissions, even on their own objects.

MAC security policies control access according to the perceived sensitivity of the 
resource being controlled. Users are assigned a security classification from a 
structured hierarchy. Users can read and write items at the same classification 
level or lower but cannot access items at a higher classification. For example, a 
user with “secret” access can read and write “secret” objects but cannot read ob-
jects that are classified as “top secret.” 

A well-implemented MAC policy relies on the principle of least privilege (allow-
ing access only when necessary), much as a properly designed firewall allows only 
specifically recognized services and clients to pass. MAC can prevent software 
with code execution vulnerabilities (e.g., buffer overflows) from compromising 
the system by limiting the scope of the breach to the few specific resources re-
quired by that software.

Needless to say, kernel modifications are necessary to implement MAC on UNIX 
and Linux. Our example UNIX systems (Solaris, HP-UX, and AIX) all are avail-
able in MAC-enabled versions at additional cost. These versions are called Solaris 
Trusted Extensions (formerly Trusted Solaris), HP-UX Security Containment, 
and Trusted AIX, respectively.

Unless you’re handling sensitive data for a government entity, it is unlikely that 
you will ever need or encounter these security-enhanced editions.

  



ptg

Security-enhanced Linux (SELinux) 923

Se
cu

rit
y

Security-enhanced Linux (SELinux)

SELinux implements MAC for Linux systems. Although it has gained a foothold 
in a few distributions, it is notoriously difficult to administer and troubleshoot. 
This unattributed quote from a former version of the SELinux Wikipedia page 
vents the frustration felt by many sysadmins: 

“Intriguingly, although the stated raison d’être of SELinux is to facilitate the 
creation of individualized access control policies specifically attuned to 
organizational data custodianship practices and rules, the supportive soft-
ware tools are so sparse and unfriendly that the vendors survive chiefly on 
‘consulting,’ which typically takes the form of incremental modifications to 
boilerplate security policies.” 

Despite the administrative complexity of SELinux, its adoption has been slowly 
growing, particularly in environments, such as government agencies, with strict 
security requirements. Of our example Linux distributions, Red Hat Enterprise 
Linux has the most mature SELinux model. SELinux is available as an optional 
package for Ubuntu and SUSE.

Policy development is a complicated topic. To protect a new daemon, for example, 
a policy must carefully enumerate all the files, directories, and other objects to 
which the process needs access. For complicated software like sendmail or the 
Apache httpd, this task can be quite complex. At least one company offers a 3-day 
class on policy development.

Fortunately, many general policies are available on-line, and most distributions 
come with reasonable defaults. These can easily be installed and configured for 
your particular environment. A full-blown policy editor that aims to ease policy 
application can be found at seedit.sourceforge.net.

SELinux has been present in Red Hat Enterprise Linux since version 4. A default 
installation of RHEL enables SELinux protection out of the box.

/etc/selinux/config controls the SELinux configuration. The interesting lines are
SELINUX=enforcing 
SELINUXTYPE=targeted

The first line has three possible values: enforcing, permissive, or disabled. The 
enforcing setting ensures that the loaded policy is applied and prohibits viola-
tions. permissive allows violations to occur but logs them through syslog, which 
is valuable for debugging. disabled turns off SELinux entirely.

SELINUXTYPE refers to the type of policy to be applied. Red Hat has two policies: 
targeted, which defines additional security for daemons that Red Hat has pro-
tected,6 and strict, which protects the entire system. Although the strict policy is 
available, it is not supported by Red Hat; the restrictions are so tight that the 

6. The protected daemons are httpd, dhcpd, mailman, named, portmap, nscd, ntpd, mysqld, postgres, 
squid, winbindd, and ypbind.

  



ptg

924 Chapter 22 Security

system is difficult to use. The targeted policy offers protection for important net-
work daemons without affecting general system use, at least in theory. But even 
the targeted policy isn’t perfect. If you’re having problems with newly installed 
software, check /var/log/messages for SELinux errors.

SUSE uses Novell’s implementation of MAC, called AppArmor. However, as of 
version 11.1, SUSE also includes basic SELinux functionality.

Ubuntu ships with AppArmor by default. SELinux packages are maintained for 
Ubuntu by Russell Coker, the Red Hat bloke who generated the targeted and 
strict policies. 

22.10 CRYPTOGRAPHIC SECURITY TOOLS

Many of the UNIX protocols in common use date from a time before the wide 
deployment of the Internet and modern cryptography. Security was simply not a 
factor in the design of many protocols; in others, security concerns were waved 
away with the transmission of a plaintext password or with a vague check to see if 
packets originated from a trusted host or port.

These protocols now find themselves operating in the shark-infested waters of 
large corporate LANs and the Internet, where, it must be assumed, all traffic is 
open to inspection. Not only that, but there is little to prevent anyone from ac-
tively interfering in network conversations. How can you be sure who you’re really 
talking to?

Cryptography solves many of these problems. It has been possible for a long time 
to scramble messages so that an eavesdropper cannot decipher them, but this is 
just the beginning of the wonders of cryptography. Developments such as public 
key cryptography and secure hashing have promoted the design of cryptosystems 
that meet almost any conceivable need.

An excellent resource for those interested in cryptography is RSA Laboratories’
Frequently Asked Questions about Today’s Cryptography, available for free from 
rsa.com/rsalabs. Despite the name, it is a book-length treatise downloadable in 
PDF format. The document hasn’t been updated since 2000, but most of the infor-
mation remains valid. Additionally, Stephen Levy’s book Crypto is a comprehen-
sive guide to the history of cryptography.

Kerberos: a unified approach to network security 

The Kerberos system, designed at MIT, attempts to address some of the issues of 
network security in a consistent and extensible way. Kerberos is an authentication 
system, a facility that “guarantees” that users and services are in fact who they 
claim to be. It does not provide any additional security or encryption beyond that.

Kerberos uses DES to construct nested sets of credentials called “tickets.” Tickets 
are passed around the network to certify your identity and to give you access to 
network services. Each Kerberos site must maintain at least one physically secure 

  



ptg

PGP: Pretty Good Privacy 925

Se
cu

rit
y

machine (called the authentication server) to run the Kerberos daemon. This dae-
mon issues tickets to users or services that present credentials, such as passwords, 
when they request authentication.

In essence, Kerberos improves upon traditional password security in only two 
ways: it never transmits unencrypted passwords on the network, and it relieves 
users from having to type passwords repeatedly, making password protection of 
network services somewhat more palatable.

The Kerberos community boasts one of the most lucid and enjoyable documents 
ever written about a cryptosystem, Bill Bryant’s “Designing an Authentication 
System: a Dialogue in Four Scenes.” It’s required reading for anyone interested in 
cryptography and is available at

web.mit.edu/kerberos/www/dialogue.html

Kerberos offers a better network security model than the “ignoring network secu-
rity entirely” model, but it is neither perfectly secure nor painless to install and 
run. It does not supersede the other security measures described in this chapter.

Unfortunately (and perhaps predictably), the Kerberos system distributed as part 
of Windows’ Active Directory uses proprietary, undocumented extensions to the 
protocols. As a result, it does not interoperate well with distributions based on the 
MIT code. Fortunately, the winbind module lets UNIX and Linux systems inter-
act with Active Directory’s version of Kerberos. See Configuring Kerberos for Ac-
tive Directory integration on page 1156 for more information.

PGP: Pretty Good Privacy

See page 763 for 
more information 
about email privacy.

Phil Zimmermann’s PGP package provides a tool chest of bread-and-butter cryp-
tographic utilities focused primarily on email security. It can be used to encrypt 
data, to generate signatures, and to verify the origin of files and messages.

PGP has an interesting history that includes lawsuits, criminal prosecutions, and 
the privatization of portions of the original PGP suite. Currently, PGP’s file for-
mats and protocols are being standardized by the IETF under the name Open-
PGP, and multiple implementations of the proposed standard exist. The GNU 
project provides an excellent, free, and widely used implementation known as 
GnuPG at gnupg.org. For clarity, we refer to the system collectively as PGP even 
though individual implementations have their own names.

PGP is perhaps the most popular cryptographic software in common use. Unfor-
tunately, the UNIX/Linux version is nuts-and-bolts enough that you have to un-
derstand a fair amount of cryptographic background in order to use it. Although 
you may find PGP useful in your own work, we don’t recommend that you sup-
port it for users because it has been known to spark many puzzled questions. We 
have found the Windows version to be considerably easier to use than the gpg
command with its 52 different operating modes.

  



ptg

926 Chapter 22 Security

Software packages on the Internet are often distributed with a PGP signature file 
that purports to guarantee the origin and purity of the software. However, it is 
difficult for people who are not die-hard PGP users to validate these signatures— 
not because the process is complicated, but because true security can only come 
from having collected a personal library of public keys from people whose identi-
ties you have directly verified. Downloading a single public key along with a sig-
nature file and software distribution is approximately as secure as downloading 
the distribution alone.

Some email clients, such as Mozilla Thunderbird, have add-ons that provide a 
simple GUI for encrypted incoming and outgoing messages. Enigmail, the solu-
tion for Thunderbird, can even search on-line public key databases if the key for 
your recipient isn’t already in your key ring. See enigmail.mozdev.org for details.

SSH: the secure shell

The SSH system, written by Tatu Ylönen, is a secure replacement for rlogin, rcp, 
and telnet. It uses cryptographic authentication to confirm a user’s identity and 
encrypts all communications between the two hosts. The protocol used by SSH is 
designed to withstand a wide variety of potential attacks. The protocol is docu-
mented by RFCs 4250 through 4256 and is now a proposed IETF standard.

SSH has morphed from being a freely distributed open source project (SSH1) to 
being a commercial product that uses a slightly different (and more secure) proto-
col, SSH2. Fortunately, the open source community has responded by releasing 
the excellent OpenSSH package (maintained by OpenBSD), which now imple-
ments both protocols.

The main components of SSH are a server daemon, sshd, and a few user-level 
commands, notably ssh for remote logins and sftp/scp for copying files. Other 
components are an ssh-keygen command that generates public key pairs and a 
couple of utilities that help support secure X Windows.

sshd can authenticate user logins in several different ways. It’s up to you as the 
administrator to decide which of these methods are acceptable:

• Method A: If the name of the remote host from which the user is logging 
in is listed in ~/.rhosts, ~/.shosts, /etc/hosts.equiv, or /etc/shosts.equiv, 
then sshd logs in the user automatically without a password check. This 
scheme mirrors that of the old rlogin daemon and in our opinion is 
never acceptable for normal use.

• Method B: As a refinement of method A, sshd can also use public key 
cryptography to verify the identity of the remote host. For that to hap-
pen, the remote host’s public key (generated at install time) must be 
listed in the local host’s /etc/ssh_known_hosts file or the user’s 
~/.ssh/known_hosts file.

  



ptg

SSH: the secure shell 927

Se
cu

rit
y

If the remote host can prove that it knows the corresponding private key 
(normally stored in /etc/ssh_host_key, a world-unreadable file), then 
sshd logs in the user without asking for a password.

Method B is more restrictive than method A, but we think it’s still not 
quite secure enough. If the security of the originating host is compro-
mised, the local site will be compromised as well.

• Method C: sshd can use public key cryptography to establish the user’s 
identity. At login time, the user must have access to a copy of his or her 
private key file and must supply a password to decrypt it. The key can 
also be created without a password, which is a reasonable option for 
automating logins from remote systems.

This method is the most secure, but it’s annoying to set up. It also means 
that users cannot log in when traveling unless they bring along a copy of 
their private key file (perhaps on a USB key, hopefully encrypted).

If you decide to use key pairs, make extensive use of ssh -v during the 
troubleshooting process.

• Method D: Finally, sshd can simply allow the user to enter his or her 
normal login password. This makes ssh behave very much like telnet, 
except that the password and session are both encrypted. The main 
drawbacks of this method are that system login passwords can be rela-
tively weak if you have not beefed up their security, and that ready-made 
tools (such as John the Ripper) have been designed to break them. How-
ever, this method is probably the best choice for normal use.

Authentication policy is set in /etc/sshd_config. This file gets filled up with con-
figuration rubbish for you as part of the installation process, but you can safely 
ignore most of it. The options relevant to authentication are shown in Table 22.2.

Table 22.2 Authentication-related options in /etc/sshd_config

Option Metha Dflt Meaning when turned on

RhostsAuthentication A No Obeys ~/.shosts, /etc/shosts.equiv, etc. 
RhostsRSAAuthentication B Yes Allows ~/.shosts et al., but requires host key
IgnoreRhosts A,B No Ignores the ~/.rhosts and hosts.equiv filesb

IgnoreRootRhosts A,B Noc Prevents rhosts/shosts authentication for root 
RSAAuthentication C Yes Allows per-user public key authentication 
PasswordAuthentication D Yes Allows use of normal login password

a. The authentication methods to which this variable is relevant
b. But continues to honor ~/.shosts and shosts.equiv

c. Defaults to the value of IgnoreRhosts

  



ptg

928 Chapter 22 Security

Our suggested configuration, which allows methods C and D but not methods A 
or B, is as follows:

RhostsAuthentication no 
RhostsRSAAuthentication no 
RSAAuthentication yes 
PasswordAuthentication yes

It is never wise to allow root to log in remotely. Superuser access should be 
achieved through the use of sudo. To encourage this behavior, use the option

PermitRootLogin no

The first time you connect to a new system through SSH, you are prompted to 
accept the remote host’s public key (which is usually generated as part of the 
server’s installation of OpenSSH, or soon thereafter). A truly paranoid user might 
manually verify it, but most of us blindly accept the key, which is then stored in 
the ~/.ssh/known_hosts file for future use. SSH won’t mention the server’s key 
again unless it changes. Unfortunately, users’ rubber-stamping the keys of new 
systems leaves you vulnerable to a man-in-the-middle attack if the host key was 
actually being presented by an attacker’s system.

A DNS record known as SSHFP has been developed to address this vulnerability. 
The premise is that the server’s key is stored as a DNS record. When a client con-
nects to an unknown system, SSH looks up the SSHFP record to verify the server’s 
key rather than asking the user to verify it.

The sshfp utility, available from xelerance.com/software/sshfp, generates SSHFP 
DNS resource records either by scanning a remote server or by parsing a previ-
ously accepted key from the known_hosts file. (Of course, either choice assumes 
that the source of the key is known to be correct.) Usage is quite simple: use the -s
flag to generate a key from a network scan, or use -k to scan the known_hosts file 
(the default). For example, the following command generates a BIND-compatible 
SSHFP record for solaris.booklab.atrust.com:

solaris$ sshfp solaris.booklab.atrust.com 
solaris.booklab.atrust.com IN SSHFP 1 1 94a26278ee713a37f6a78110f1ad9bd… 
solaris.booklab.atrust.com IN SSHFP 2 1 7cf72d02e3d3fa947712bc56fd0e0a3i…

Add these records to the domain’s zone file (be careful of the names and the $OR-
IGIN), reload the domain, and use dig to verify the key:

solaris$ dig solaris.booklab.atrust.com. IN SSHFP | grep SSHFP 
; <<>> DiG 9.5.1-P2 <<>> solaris.booklab.atrust.com. IN SSHFP 
; solaris.booklab.atrust.com. IN SSHFP 
solaris.booklab.atrust.com. 38400 IN SSHFP 1 1 94a26278ee713a37f6a78110f… 
solaris.booklab.atrust.com. 38400 IN SSHFP 2 1 7cf72d02e3d3fa947712bc56f…

ssh does not consult SSHFP records by default. Add the VerifyHostKeyDNS op-
tion to /etc/ssh/ssh_config to enable it. As with most SSH client options, you can 

  



ptg

SSH: the secure shell 929

Se
cu

rit
y

also pass -o "VerifyHostKeyDNS yes" on the ssh command line when first ac-
cessing a new system.

SSH has a couple of ancillary functions that are useful for system administrators. 
One of these is the ability to tunnel TCP connections securely through an en-
crypted SSH channel, thereby allowing connectivity to insecure or firewalled ser-
vices at remote sites. This functionality is ubiquitous among SSH clients and is 
simple to configure. Exhibit A shows a typical use of an SSH tunnel and should 
help clarify how it works.

Exhibit A An SSH tunnel for RDP

In this scenario, a remote user wants to establish an RDP (remote desktop) con-
nection to a Windows system on the enterprise network. Access to that host or to 
port 3389 is blocked by the firewall, but since the user has SSH access, he can 
route his connection through the SSH server.

To set this up, the user logs in to the remote SSH server with ssh. On the ssh
command line, he specifies an arbitrary (but specific; in this case, 9989) local port 
that ssh should forward through the secure tunnel to the remote Windows ma-
chine’s port 3389. (For the standard OpenSSH implementation, the option to re-
quest this behavior is simply -L localport:remotehost:remoteport.) All source ports 
in this example are marked as random since programs choose an arbitrary port 
from which they initiate connections.

To access the Windows machine’s desktop, the user then opens the remote desk-
top client (here, rdesktop) and enters localhost:9989 as the address of the server 
to connect to. The local ssh receives the connection on port 9989 and tunnels the 
traffic over the existing connection to the remote sshd. In turn, sshd forwards the 
connection to the Windows host. 

Of course, tunnels such as these can be intentional or unintentional back doors as 
well. System administrators should use tunnels with caution and should also 
watch for unauthorized misuse of this facility by users.

FI
R
EW

AL
L

External system

ssh

rdesktop

random 
port

random 
port

port 
9989

port 22

port 
3389

random 
port

SSH server

sshd

Windows system

RDP server

Enterprise 
side

Internet 
side

  



ptg

930 Chapter 22 Security

In recent years, SSH has become the target of regular brute-force password 
attacks. Attackers perform repeated authentication attempts as common users, 
such as root, joe, or admin. Evidence of the attacks can be seen in the logs as 
hundreds or thousands of failed logins. Disabling password authentication is the 
best protection against these attacks. For now, attackers seem to be focusing only 
on port 22, so moving your SSH server to another port is an effective 
countermeasure. But history shows that this type of “security through obscurity” 
is rarely effective for long. Running password checks on your systems can reveal 
weak passwords that are likely to be broken by brute-force attacks.

Stunnel

Stunnel, created by Michal Trojnara, is an open source package that encrypts 
arbitrary TCP connections, much in the manner of SSH. It uses SSL, the Secure 
Sockets Layer, to create end-to-end tunnels through which it passes data to and 
from an unencrypted service. It is known to work well with insecure services 
such as Telnet, IMAP, and POP.

A stunnel daemon runs on both the client and server systems. The local stunnel
usually accepts connections on the service’s traditional port (e.g., port 25 for 
SMTP) and routes them through SSL to a stunnel on the remote host. The remote 
stunnel accepts the connection, decrypts the incoming data, and routes it to the 
remote port on which the server is listening. This system allows unencrypted 
services to take advantage of the confidentiality and integrity offered by en-
cryption without requiring any software changes. Client software need only be 
configured to look for services on the local system rather than on the server that 
will ultimately provide them.

The Telnet protocol makes a good example because it consists of a simple dae-
mon listening on a single port. To stunnelify a Telnet link, you first create an SSL 
certificate. Stunnel is SSL library independent, so any standards-based imple-
mentation will do; we like OpenSSL. To generate the certificate:

server$ sudo openssl req -new -x509 -days 365 -nodes -out stunnel.pem 
-keyout stunnel.pem

Generating a 1024 bit RSA private key 
.++++++ 
.................................++++++ 
writing new private key to 'stunnel.pem' 
-----
You are about to be asked to enter information that will be incorporated 
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN. 
There are quite a few fields but you can leave some blank 
For some fields there will be a default value, 
If you enter '.', the field will be left blank.
Country Name (2 letter code) [GB]:US 
State or Province Name (full name) [Berkshire]:Colorado 
Locality Name (eg, city) [Newbury]:Boulder

  



ptg

Stunnel 931

Se
cu

rit
y

Organization Name (eg, company) [My Company Ltd]:Booklab, Inc. 
Organizational Unit Name (eg, section) []: 
Common Name (eg, your name or server's hostname) []:server.example.com 
Email Address []:

This command creates a self-signed, passphrase-less certificate. Although not us-
ing a passphrase is a convenience (a real human doesn’t have to be present to type 
a passphrase each time stunnel restarts), it also introduces a security risk. Be care-
ful to protect the certificate file with strong permissions. 

Next, define the configuration for both the server and client stunnels. The stan-
dard configuration file is /etc/stunnel/stunnel.conf, but you can create several 
configurations if you want to run more than one tunnel. 

cert = /etc/stunnel/stunnel.pem 
chroot = /var/run/stunnel/ 
pid = /stunnel.pid 
setuid = nobody 
setgid = nobody 
debug = 7 
output = /var/log/stunnel.log 
client = no

[telnets] 
accept = 992 
connect = 23

There are a couple of important points to note about the server configuration. 
First, the chroot statement confines the stunnel process to the /var/run/stunnel
directory. Paths for accessory files may need to be expressed in either the regular 
system namespace or the chrooted namespace, depending on the point at which 
they are opened. Here, the stunnel.pid file is actually located in /var/run/stunnel. 

The [telnets] section has two statements: accept tells stunnel to accept connec-
tions on port 992, and connect passes those connections through to port 23, the 
actual Telnet service. 

The client configuration is similar:
cert = /etc/stunnel/stunnel.pem 
chroot = /var/run/stunnel/ 
pid = /stunnel.pid 
setuid = nobody 
setgid = nobody 
debug = 7 
output = /var/log/stunnel.log 
client = yes

[telnets] 
accept = 23 
connect = server.example.com:992

  



ptg

932 Chapter 22 Security

A couple of directives are reversed relative to the server configuration. The state-
ment client = yes tells the program to initiate stunnel connections rather than 
accept them. The local stunnel listens for connections on port 23 and connects to 
the server on port 992. The hostname in the connect directive should match the 
entry specified when the certificate was created. 

Both the client and the server stunnels can be started with no command-line ar-
guments. If you check with netstat -an, you should see the server stunnel waiting 
for connections on port 992 while the client stunnel waits on port 23.

To access the tunnel, a user simply telnets to the local host:
client$ telnet localhost 23 
Trying 127.0.0.1...
Connected to localhost (127.0.0.1).
Escape character is '^]'.
Red Hat Enterprise Linux WS release 4 (Nahant Update 2) 
Kernel 2.6.9-5.EL on an i686 
login:

The user can now safely log in without fear of password thievery. A vigilant ad-
ministrator would be careful to use TCP wrappers to restrict connections on the 
client to only the local interface—the intent is not to allow the world to telnet
securely to the server! stunnel is one of several programs that have built-in wrap-
per support and do not require the use of tcpd to restrict access. Visit stunnel.org 
for instructions.

22.11 FIREWALLS

In addition to protecting individual machines, you can also implement security 
precautions at the network level. The basic tool of network security is the firewall, 
a device or piece of software that prevents unwanted packets from accessing net-
works and systems. Firewalls are ubiquitous today and are found in devices rang-
ing from desktop systems and servers to consumer routers and enterprise-grade 
network appliances.

Packet-filtering firewalls

A packet-filtering firewall limits the types of traffic that can pass through your 
Internet gateway (or through an internal gateway that separates domains within 
your organization) on the basis of information in the packet header. It’s much like 
driving your car through a customs checkpoint at an international border cross-
ing. You specify which destination addresses, port numbers, and protocol types 
are acceptable, and the gateway simply discards (and in some cases, logs) packets 
that don’t meet the profile.

Packet-filtering software is included in Linux systems in the form of iptables, in 
Solaris and HP-UX as IPFilter, and in AIX as genfilt. See the details beginning on 
page 935 for more information.

  



ptg

How services are filtered 933

Se
cu

rit
y

Although these tools are capable of sophisticated filtering and bring a welcome 
extra dose of security, we generally discourage the use of UNIX and Linux systems 
as network routers and, most especially, as enterprise firewall routers. The com-
plexity of general-purpose operating systems makes them inherently less secure 
and less reliable than task-specific devices. Dedicated firewall appliances such as 
those made by Check Point and Cisco are a better option for site-wide network 
protection.

How services are filtered

Most well-known services are associated with a network port in the /etc/services
file or its vendor-specific equivalent. The daemons that provide these services 
bind to the appropriate ports and wait for connections from remote sites.7 Most of 
the well-known service ports are “privileged,” meaning that their port numbers 
are in the range 1 to 1023. These ports can only be used by a process running as 
root. Port numbers 1024 and higher are referred to as nonprivileged ports.

Service-specific filtering is based on the assumption that the client (the machine 
that initiates a TCP or UDP conversation) uses a nonprivileged port to contact a 
privileged port on the server. For example, if you wanted to allow only inbound 
SMTP connections to a machine with the address 192.108.21.200, you would in-
stall a filter that allowed TCP packets destined for port 25 at that address and that 
permitted outbound TCP packets from that address to anywhere.8 The exact way 
that such a filter is installed depends on the kind of router or filtering system you 
are using.

See page 977 for more 
information about set-
ting up an ftp server.

Some services, such as FTP, add a twist to the puzzle. The FTP protocol actually 
uses two TCP connections when transferring a file: one for commands and the 
other for data. The client initiates the command connection, and the server initi-
ates the data connection9. Ergo, if you want to use FTP to retrieve files from the 
Internet, you must permit inbound access to all nonprivileged TCP ports since 
you have no idea what port might be used to form an incoming data connection.

This tweak largely defeats the purpose of packet filtering because some notori-
ously insecure services (for example, X11 at port 6000) naturally bind to nonpriv-
ileged ports. This configuration also creates an opportunity for curious users 
within your organization to start their own services (such as a telnet server at a 
nonstandard and nonprivileged port) that they or their friends can access from 
the Internet.

One common solution to the FTP problem is to use the SSH file transfer protocol. 
The protocol is currently an Internet draft but is widely used and mature. It is 
commonly used as a subcomponent of SSH, which provides its authentication and 

7. In many cases, inetd or xinetd does the actual waiting on their behalf. See page 1188 for details.
8. Port 25 is the SMTP port as defined in /etc/services.
9. This summary describes traditional FTP, also known as “active FTP.” Some systems support “passive 

FTP,” in which the client initiates both connections.

  



ptg

934 Chapter 22 Security

encryption. Unlike FTP, SFTP uses only a single port for both commands and 
data, handily solving the packet-filtering paradox. A number of SFTP implemen-
tations exist. We’ve had great luck with the command-line SFTP client supplied by 
OpenSSH. 

If you must use FTP, a reasonable approach is to allow FTP to the outside world 
only from a single, isolated host. Users can log in to the FTP machine when they 
need to perform network operations that are forbidden from the inner net. Since 
replicating all user accounts on the FTP “server” would defeat the goal of admin-
istrative separation, you may want to create FTP accounts by request only. Natu-
rally, the FTP host should run a full complement of security-checking tools.

Modern security-conscious sites use a two-stage filtering scheme. In this scheme, 
one filter is a gateway to the Internet, and a second filter lies between the outer 
gateway and the rest of the local network. The idea is to terminate all inbound 
Internet connections on systems that lie in between these two filters. If these sys-
tems are administratively separate from the rest of the network, they can provide a 
variety of services to the Internet with reduced risk. The partially secured network 
is usually called the “demilitarized zone” or DMZ.

The most secure way to use a packet filter is to start with a configuration that 
allows no inbound connections. You can then liberalize the filter bit by bit as you 
discover useful things that don’t work and, hopefully, move any Internet-accessi-
ble services onto systems in the DMZ. 

Stateful inspection firewalls

The theory behind stateful inspection firewalls is that if you could carefully listen 
to and understand all the conversations (in all the languages) that were taking 
place in a crowded airport, you could make sure that someone wasn’t planning to 
bomb a plane later that day. Stateful inspection firewalls are designed to inspect 
the traffic that flows through them and compare the actual network activity to 
what “should” be happening.

For example, if the packets exchanged in an FTP command sequence name a port 
to be used later for a data connection, the firewall should expect a data connection 
to occur only on that port. Attempts by the remote site to connect to other ports 
are presumably bogus and should be dropped.

So what are vendors really selling when they claim to provide stateful inspection? 
Their products either monitor a very limited number of connections or protocols 
or they search for a particular set of “bad” situations. Not that there’s anything 
wrong with that; clearly, some benefit is derived from any technology that can 
detect traffic anomalies. In this particular case, however, it’s important to remem-
ber that the claims are mostly marketing hype.

  



ptg

Rules, chains, and tables 935

Se
cu

rit
y

Firewalls: how safe are they?

A firewall should not be your primary (or only!) means of defense against intrud-
ers. It’s only one component of what should be a carefully considered, multilay-
ered security strategy. The use of firewalls often confers a false sense of security. If 
a firewall lulls you into relaxing other safeguards, it will have had a negative effect 
on the security of your site.

Every host within your organization should be individually patched, hardened, 
and regularly monitored with one or more tools such as Bro, Snort, Nmap, Nes-
sus, and OSSEC. Likewise, your entire user community needs to be educated 
about basic security hygiene. Otherwise, you are simply building a structure that 
has a hard crunchy outside and a soft chewy center.

Ideally, local users should be able to connect to any Internet service they want, but 
machines on the Internet should only be able to connect to a limited set of local 
services hosted within your DMZ. For example, you may want to allow SFTP ac-
cess to a local archive server and allow SMTP connections to a server that receives 
incoming email.

To maximize the value of your Internet connection, we recommend that you em-
phasize convenience and accessibility when deciding how to set up your network. 
At the end of the day, it’s the system administrator’s vigilance that makes a net-
work secure, not a fancy piece of firewall hardware.

22.12 LINUX FIREWALL FEATURES

As stated earlier, we don’t really recommended the use of Linux (or UNIX, or 
Windows) systems as firewalls because of the insecurity of running a full-fledged, 
general-purpose operating system.10 However, a hardened Linux system is a 
workable substitute for organizations that don’t have the budget for a high-dollar 
firewall appliance. Likewise, it’s a fine option for a security-savvy home user with 
a penchant for tinkering. In any case, a local filter such as iptables can be an ex-
cellent supplemental security measure to consider when hardening a system.

If you are set on using a Linux machine as a firewall, make sure that it’s up to date 
with respect to security configuration and patches. A firewall machine is an excel-
lent place to put into practice all of this chapter’s recommendations. (The section 
that starts on page 932 discusses packet-filtering firewalls in general. If you are 
not familiar with the basic concept of a firewall, it would probably be wise to read 
that section before continuing.)

Rules, chains, and tables

Version 2.4 of the Linux kernel introduced an all-new packet-handling engine, 
called Netfilter, along with a command-line tool, iptables, to manage it. iptables 

10. That said, many consumer-oriented networking devices, such as Linksys’s router products, use Linux 
and iptables at their core. 

  



ptg

936 Chapter 22 Security

applies ordered “chains” of rules to network packets. Sets of chains make up “ta-
bles” and are used for handling specific kinds of traffic.

For example, the default iptables table is named “filter”. Chains of rules in this 
table are used for packet-filtering network traffic. The filter table contains three 
default chains: FORWARD, INPUT, and OUTPUT. Each packet handled by the 
kernel is passed through exactly one of these chains.

Rules in the FORWARD chain are applied to all packets that arrive on one net-
work interface and need to be forwarded to another. Rules in the INPUT and 
OUTPUT chains are applied to traffic addressed to or originating from the local 
host, respectively. These three standard chains are usually all you need for fire-
walling between two network interfaces. If necessary, you can define a custom 
configuration to support more complex accounting or routing scenarios.

In addition to the filter table, iptables includes the “nat” and “mangle” tables. The 
nat table contains chains of rules that control Network Address Translation (here, 
“nat” is the name of the iptables table and “NAT” is the name of the generic ad-
dress translation scheme). The section Private addresses and network address 
translation (NAT) on page 462 discusses NAT, and an example of the nat table in 
action is shown on page 493. Later in this section, we use the nat table’s 
PREROUTING chain for anti-spoofing packet filtering.

The mangle table contains chains that modify or alter the contents of network 
packets outside the context of NAT and packet filtering. Although the mangle 
table is handy for special packet handling, such as resetting IP time-to-live values, 
it is not typically used in most production environments. We discuss only the 
filter and nat tables in this section, leaving the mangle table to the adventurous.

Rule targets

Each rule that makes up a chain has a “target” clause that determines what to do 
with matching packets. When a packet matches a rule, its fate is in most cases 
sealed; no additional rules will be checked. Although many targets are defined 
internally to iptables, it is possible to specify another chain as a rule’s target.

The targets available to rules in the filter table are ACCEPT, DROP, REJECT, 
LOG, MIRROR, QUEUE, REDIRECT, RETURN, and ULOG. When a rule re-
sults in an ACCEPT, matching packets are allowed to proceed on their way. 
DROP and REJECT both drop their packets; DROP is silent, and REJECT returns 
an ICMP error message. LOG gives you a simple way to track packets as they 
match rules, and ULOG expands logging. 

See page 974 for 
more information 
about Squid.

REDIRECT shunts packets to a proxy instead of letting them go on their merry 
way. For example, you might use this feature to force all your site’s web traffic to 
go through a web cache such as Squid. RETURN terminates user-defined chains 
and is analogous to the return statement in a subroutine call. The MIRROR target 
swaps the IP source and destination address before sending the packet. Finally, 
QUEUE hands packets to local user programs through a kernel module.

  



ptg

A complete example 937

Se
cu

rit
y

iptables firewall setup

Before you can use iptables as a firewall, you must enable IP forwarding and 
make sure that various iptables modules have been loaded into the kernel. For 
more information on enabling IP forwarding, see Tuning Linux kernel parameters
on page 421 or Security-related kernel variables on page 492. Packages that install 
iptables generally include startup scripts to achieve this enabling and loading.

A Linux firewall is usually implemented as a series of iptables commands con-
tained in an rc startup script. Individual iptables commands usually take one of 
the following forms: 

iptables -F chain-name 
iptables -P chain-name target 
iptables -A chain-name -i interface -j target

The first form (-F) flushes all prior rules from the chain. The second form (-P) 
sets a default policy (aka target) for the chain. We recommend that you use DROP 
for the default chain target. The third form (-A) appends the current specification 
to the chain. Unless you specify a table with the -t argument, your commands 
apply to chains in the filter table. The -i parameter applies the rule to the named 
interface, and -j identifies the target. iptables accepts many other clauses, some of 
which are shown in Table 22.3.

A complete example

Below we break apart a complete example. We assume that the eth1 interface goes 
to the Internet and that the eth0 interface goes to an internal network. The eth1 IP 
address is 128.138.101.4, the eth0 IP address is 10.1.1.1, and both interfaces have a 
netmask of 255.255.255.0. This example uses stateless packet filtering to protect 
the web server with IP address 10.1.1.2, which is the standard method of protect-
ing Internet servers. Later in the example, we show how to use stateful filtering to 
protect desktop users.

Our first set of rules initializes the filter table. First, all chains in the table are 
flushed, then the INPUT and FORWARD chains’ default target is set to DROP. As 

Table 22.3 Command-line flags for iptables filters

Clause Meaning or possible values

-p proto Matches by protocol: tcp, udp, or icmp 

-s source-ip Matches host or network source IP address (CIDR notation is OK) 
-d dest-ip Matches host or network destination address 
--sport port# Matches by source port (note the double dashes) 
--dport port# Matches by destination port (note the double dashes) 
--icmp-type type Matches by ICMP type code (note the double dashes) 
! Negates a clause
-t table Specifies the table to which a command applies (default is filter)

  



ptg

938 Chapter 22 Security

with any other network firewall, the most secure strategy is to drop any packets 
you have not explicitly allowed.

iptables -F 
iptables -P INPUT DROP 
iptables -P FORWARD DROP

Since rules are evaluated in order, we put our busiest rules at the front.11 The first 
rule allows all connections through the firewall that originate from within the 
trusted net. The next three rules in the FORWARD chain allow connections 
through the firewall to network services on 10.1.1.2. Specifically, we allow SSH 
(port 22), HTTP (port 80), and HTTPS (port 443) through to our web server.

iptables -A FORWARD -i eth0 -p ANY -j ACCEPT 
iptables -A FORWARD -d 10.1.1.2 -p tcp --dport 22 -j ACCEPT 
iptables -A FORWARD -d 10.1.1.2 -p tcp --dport 80 -j ACCEPT 
iptables -A FORWARD -d 10.1.1.2 -p tcp --dport 443 -j ACCEPT

The only TCP traffic we allow to our firewall host (10.1.1.1) is SSH, which is use-
ful for managing the firewall itself. The second rule listed below allows loopback 
traffic, which stays local to the host. Administrators get nervous when they can’t 
ping their default route, so the third rule here allows ICMP ECHO_REQUEST 
packets from internal IP addresses.

iptables -A INPUT -i eth0 -d 10.1.1.1 -p tcp --dport 22 -j ACCEPT 
iptables -A INPUT -i lo -d 127.0.0.1 -p ANY -j ACCEPT 
iptables -A INPUT -i eth0 -d 10.1.1.1 -p icmp --icmp-type 8 -j ACCEPT

For any IP host to work properly on the Internet, certain types of ICMP packets 
must be allowed through the firewall. The following eight rules allow a minimal 
set of ICMP packets to the firewall host, as well as to the network behind it.

iptables -A INPUT -p icmp --icmp-type 0 -j ACCEPT 
iptables -A INPUT -p icmp --icmp-type 3 -j ACCEPT 
iptables -A INPUT -p icmp --icmp-type 5 -j ACCEPT 
iptables -A INPUT -p icmp --icmp-type 11 -j ACCEPT 
iptables -A FORWARD -d 10.1.1.2 -p icmp --icmp-type 0 -j ACCEPT 
iptables -A FORWARD -d 10.1.1.2 -p icmp --icmp-type 3 -j ACCEPT 
iptables -A FORWARD -d 10.1.1.2 -p icmp --icmp-type 5 -j ACCEPT 
iptables -A FORWARD -d 10.1.1.2 -p icmp --icmp-type 11 -j ACCEPT

See page 473 for 
more information 
about IP spoofing.

We next add rules to the PREROUTING chain in the nat table. Although the nat 
table is not intended for packet filtering, its PREROUTING chain is particularly 
useful for anti-spoofing filtering. If we put DROP entries in the PREROUTING 
chain, they need not be present in the INPUT and FORWARD chains, since the 
PREROUTING chain is applied to all packets that enter the firewall host. It’s 
cleaner to put the entries in a single place rather than to duplicate them.

11. However, you must be careful that reordering the rules for performance doesn’t modify functionality.

  



ptg

IPFilter for UNIX systems 939

Se
cu

rit
y

iptables -t nat -A PREROUTING -i eth1 -s 10.0.0.0/8 -j DROP 
iptables -t nat -A PREROUTING -i eth1 -s 172.16.0.0/12 -j DROP 
iptables -t nat -A PREROUTING -i eth1 -s 192.168.0.0/16 -j DROP 
iptables -t nat -A PREROUTING -i eth1 -s 127.0.0.0/8 -j DROP 
iptables -t nat -A PREROUTING -i eth1 -s 224.0.0.0/4 -j DROP

Finally, we end both the INPUT and FORWARD chains with a rule that forbids all 
packets not explicitly permitted. Although we already enforced this behavior with 
the iptables -P commands, the LOG target lets us see who is knocking on our 
door from the Internet.

iptables -A INPUT -i eth1 -j LOG 
iptables -A FORWARD -i eth1 -j LOG

Optionally, we could set up IP NAT to disguise the private address space used on 
the internal network. See page 492 for more information about NAT.

One of the most powerful features that Netfilter brings to Linux firewalling is 
stateful packet filtering. Instead of allowing specific incoming services, a firewall 
for clients connecting to the Internet needs to allow incoming responses to the 
client’s requests. The simple stateful FORWARD chain below allows all traffic to 
leave our network but only allows incoming traffic that’s related to connections 
initiated by our hosts.

iptables -A FORWARD -i eth0 -p ANY -j ACCEPT 
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

Certain kernel modules must be loaded to enable iptables to track complex net-
work sessions such as those of FTP and IRC. If these modules are not loaded, 
iptables simply disallows those connections. Although stateful packet filters can 
increase the security of your site, they also add to the complexity of the network. 
Be sure you need stateful functionality before implementing it in your firewall.

Perhaps the best way to debug your iptables rulesets is to use iptables -L -v. These 
options tell you how many times each rule in your chains has matched a packet. 
We often add temporary iptables rules with the LOG target when we want more 
information about the packets that get matched. You can often solve trickier prob-
lems by using a packet sniffer such as tcpdump. 

22.13 IPFILTER FOR UNIX SYSTEMS

Most UNIX vendors don’t have their own firewall software.12 But it’s easy enough 
to add: IPFilter, an open source package developed by Darren Reed, supplies NAT 
and stateful firewall services for UNIX systems. Solaris includes it by default, and 
it’s also available as an add-on for HP-UX, AIX, and many other systems, includ-
ing Linux. You can use IPFilter as a loadable kernel module (which is recom-
mended by the developers) or include it statically in the kernel. 

12. IBM is an exception. AIX does include a separate packet-filtering suite in its IP Security implementa-
tion, although the suite does not do stateful filtering. See the man pages for genfilt to get started. 

  



ptg

940 Chapter 22 Security

IPFilter is mature and feature-complete. The package has an active user commu-
nity and a history of continuous development. It is capable of stateful tracking 
even for stateless protocols such as UDP and ICMP.

IPFilter reads filtering rules from a configuration file (usually /etc/ipf.conf or 
/etc/ipf/ipf.conf) rather than making you run a series of commands as does 
iptables. An example of a simple rule that could appear in ipf.conf is

block in all

This rule blocks all inbound traffic (that is, network activity received by the sys-
tem) on all network interfaces. Certainly secure, but not particularly useful!

Table 22.4 shows some of the possible conditions that can appear in an ipf rule. 

IPFilter evaluates rules in the sequence in which they are presented in the config-
uration file. The last match is binding. For example, inbound packets traversing 
the following filter will always pass:

block in all 
pass in all

The block rule matches all packets, but so does the pass rule, and pass is the last 
match. To force a matching rule to apply immediately and make IPFilter skip sub-
sequent rules, use the quick keyword:

block in quick all 
pass in all

An industrial-strength firewall typically contains many rules, so liberal use of 
quick is important to maintain the performance of the firewall. Without it, every 
packet is evaluated against every rule, and this wastefulness is costly.

Perhaps the most common use of a firewall is to control access to and from a 
specific network or host, often with respect to a specific port. IPFilter has power-
ful syntax to control traffic at this level of granularity. In the following rules, 

Table 22.4 Commonly used ipf conditions

Condition Meaning or possible values

on interface Applies the rule to the specified interface 
proto protocol Selects packet according to protocol: tcp, udp, or icmp 
from source-ip Filters by source: host, network, or any
to dest-ip Filters by destination: host, network, or any 
port = port# Filters by port name (from /etc/services) or numbera

flags flag-spec Filters according to TCP header flags bits 
icmp-type number Filters by ICMP type and code 
keep state Retains details about the flow of a session; see comments below

a. You can use any comparison operator: =, <, >, <=, >=, etc.

  



ptg

IPFilter for UNIX systems 941

Se
cu

rit
y

inbound traffic is permitted to the 10.0.0.0/24 network on TCP ports 80 and 443 
and on UDP port 53. 

block out quick all 
pass in quick proto tcp from any to 10.0.0.0/24 port = 80 keep state 
pass in quick proto tcp from any to 10.0.0.0/24 port = 443 keep state 
pass in quick proto udp from any to 10.0.0.0/24 port = 53 keep state 
block in all

The keep state keywords deserve special attention. IPFilter can keep track of con-
nections by noting the first packet of new sessions. For example, when a new 
packet arrives addressed to port 80 on 10.0.0.10, IPFilter makes an entry in the 
state table and allows the packet through. It also allows the reply from the web 
server even though the first rule explicitly blocks all outbound traffic. 

keep state is also useful for devices that offer no services but that must initiate 
connections. The following ruleset permits all conversations that are initiated by 
192.168.10.10. It blocks all inbound packets except those related to connections 
that have already been initiated.

block in quick all 
pass out quick from 192.168.10.10/32 to any keep state

The keep state keywords work for UDP and ICMP packets, too, but since these 
protocols are stateless, the mechanics are slightly more ad hoc: IPFilter permits 
responses to a UDP or an ICMP packet for 60 seconds after the inbound packet is 
seen by the filter. For example, if a UDP packet from 10.0.0.10, port 32,000, is 
addressed to 192.168.10.10, port 53, a UDP reply from 192.168.10.10 will be per-
mitted until 60 seconds have passed. Similarly, an ICMP echo reply (ping re-
sponse) is permitted after an echo request has been entered in the state table.

See page 462 for 
more information 
about private ad-
dresses and NAT.

Network address translation (NAT) is another feature offered by IPFilter. NAT lets 
a large network that uses RFC1918 private IP addresses connect to the Internet 
through a small set of Internet-routable IP addresses. The NAT device maps traf-
fic from the private network to one or more public addresses, sends requests 
across the Internet, and then intercepts the responses and rewrites them in terms 
of the local IP addresses. 

IPFilter uses the map keyword (in place of pass and block) to provide NAT ser-
vices. In the following rule, traffic from the 10.0.0.0/24 network is mapped to the 
current routable address on the e1000g0 interface.

map e1000g0 10.0.0.0/24 -> 0/32

The filter must be reloaded if the address of e1000g0 changes, as might happen if 
e1000g0 leases a dynamic IP address through DHCP. For this reason, IPFilter’s 
NAT features are best used at sites that have a static IP address on the Internet-
facing interface.

  



ptg

942 Chapter 22 Security

IPFilter rules are flexible and configurable. Advanced features such as macros can 
considerably simplify the rules files. For details on these advanced features, see 
the official IPFilter site at coombs.anu.edu.au/~avalon.

The IPFilter package includes several commands, listed in Table 22.5. 

Of the commands in Table 22.5, ipf is the most commonly used. ipf accepts a rule 
file as input and adds correctly parsed rules to the kernel’s filter list. ipf adds rules 
to the end of the filter unless you use the -Fa argument, which flushes all existing 
rules. For example, to flush the kernel’s existing set of filters and load the rules 
from ipf.conf, use the following syntax:

solaris$ sudo ipf -Fa -f /etc/ipf/ipf.conf

IPFilter relies on pseudo-device files in /dev for access control, and by default 
only root can edit the filter list. We recommend leaving the default permissions in 
place and using sudo to maintain the filter. 

Use ipf ’s -v flag when loading the rules file to debug syntax errors and other prob-
lems in the configuration.

IPFilter is preinstalled in the Solaris kernel, but you must enable it with
solaris$ sudo svcadm enable network/ipfilter

before you can use it.

22.14 VIRTUAL PRIVATE NETWORKS (VPNS)

In its simplest form, a VPN is a connection that makes a remote network appear 
as if it is directly connected, even if it is physically thousands of miles and many 
router hops away. For increased security, the connection is not only authenticated 
in some way (usually with a “shared secret” such as a password), but the end-to-
end traffic is also encrypted. Such an arrangement is usually referred to as a “se-
cure tunnel.”

Here’s a good example of the kind of situation in which a VPN is handy: Suppose 
that a company has offices in Chicago, Boulder, and Miami. If each office has a 
connection to a local ISP, the company can use VPNs to transparently (and, for 
the most part, securely) connect the offices across the untrusted Internet. The 

Table 22.5 IPFilter commands

Cmd Function 

ipf Manages rules and filter lists 
ipfstat Obtains statistics about packet filtering 
ipmon Monitors logged filter information 
ipnat Manages NAT rules

  



ptg

All I need is a VPN, right? 943

Se
cu

rit
y

company could achieve a similar result by leasing dedicated lines to connect the 
three offices, but that would be considerably more expensive.

Another good example is a company whose employees telecommute from their 
homes. VPNs would allow those users to reap the benefits of their high-speed and 
inexpensive cable modem service while still making it appear that they are di-
rectly connected to the corporate network.

Because of the convenience and popularity of this functionality, everyone and his 
brother is offering some type of VPN solution. You can buy it from your router 
vendor as a plug-in for your operating system or even as a dedicated VPN device 
for your network. Depending on your budget and scalability needs, you may want 
to consider one of the many commercial VPN solutions.

If you’re without a budget and looking for a quick fix, SSH can do secure tunnel-
ing for you. See the end of the SSH section on page 926.

IPsec tunnels

If you’re a fan of IETF standards (or of saving money) and need a real VPN solu-
tion, take a look at IPsec (Internet Protocol security). IPsec was originally devel-
oped for IPv6, but it has also been widely implemented for IPv4. IPsec is an IETF-
approved, end-to-end authentication and encryption system. Almost all serious 
VPN vendors ship a product that has at least an IPsec compatibility mode. Linux, 
Solaris, HP-UX, and AIX all include native kernel support for IPsec.

IPsec uses strong cryptography to provide both authentication and encryption 
services. Authentication ensures that packets are from the right sender and have 
not been altered in transit, and encryption prevents the unauthorized examina-
tion of packet contents.

In tunnel mode, IPsec encrypts the transport layer header, which includes the 
source and destination port numbers. Unfortunately, this scheme conflicts with 
the way in which most firewalls work. For this reason, most modern implementa-
tions default to using transport mode, in which only the payloads of packets (the 
data being transported) are encrypted.

There’s a gotcha involving IPsec tunnels and MTU size. It’s important to ensure 
that once a packet has been encrypted by IPsec, nothing fragments it along the 
path the tunnel traverses. To achieve this feat, you may have to lower the MTU on 
the devices in front of the tunnel (in the real world, 1,400 bytes usually works). 
See page 453 in the TCP chapter for more information about MTU size.

All I need is a VPN, right?

Sadly, there’s a downside to VPNs. Although they do build a (mostly) secure tun-
nel across the untrusted network between the two endpoints, they don’t usually 
address the security of the endpoints themselves. For example, if you set up a 
VPN between your corporate backbone and your CEO’s home, you may be 

  



ptg

944 Chapter 22 Security

inadvertently creating a path for your CEO’s 15-year-old daughter to have direct 
access to everything on your network.

Bottom line: you need to treat connections from VPN tunnels as external connec-
tions and grant them additional privileges only as necessary and after careful con-
sideration. Consider adding a special section to your site security policy that cov-
ers the rules that apply to VPN connections.

22.15 CERTIFICATIONS AND STANDARDS

If the subject matter of this chapter seems daunting to you, don’t fret. Computer 
security is a complicated and vast topic, as countless books, web sites, and maga-
zines can attest. Fortunately, much has been done to help quantify and organize 
the available information. Dozens of standards and certifications exist, and mind-
ful system administrators should consider their guidance. 

One of the most basic philosophical principles in information security is infor-
mally referred to as the “CIA triad.”

The acronym stands for

• Confidentiality
• Integrity
• Availability

Confidentiality concerns the privacy of data. Access to information should be 
limited to those who are authorized to have it. Authentication, access control, and 
encryption are a few of the subcomponents of confidentiality. If a hacker breaks 
into a system and steals a database containing customer contact information, a 
compromise of confidentiality has occurred.

Integrity relates to the authenticity of information. Data integrity technology en-
sures that information is valid and has not been altered in any unauthorized way. 
It also addresses the trustworthiness of information sources. When a secure web 
site presents a signed SSL certificate, it is proving to the user not only that the 
information it is sending is encrypted but also that a trusted certificate authority 
(such as VeriSign or Equifax) has verified the identity of the source. Technologies 
such as PGP and Kerberos also guarantee data integrity.

Availability expresses the idea that information must be accessible to authorized 
users when they need it or there is no purpose in having it. Outages not caused by 
intruders, such as those caused by administrative errors or power outages, also fall 
into the category of availability problems. Unfortunately, availability is often ig-
nored until something goes wrong. 

Consider the CIA principles as you design, implement, and maintain systems. As 
the old security adage goes, “security is a process.” 

  



ptg

Security standards 945

Se
cu

rit
y

Certifications

This crash course in CIA is just a brief introduction to the larger information 
security field. Large corporations often employ many full-time employees whose 
job is guarding information. To gain credibility in the field and keep their knowl-
edge current, these professionals attend training courses and obtain certifications. 
Prepare yourself for acronym-fu as we work through a few of the most popular 
certifications.

One of the most widely recognized security certifications is the CISSP, or Certi-
fied Information Systems Security Professional. It is administered by (ISC)2, the 
International Information Systems Security Certification Consortium (say that
ten times fast!). One of the primary draws of the CISSP is (ISC)2’s notion of a 
“common body of knowledge” (CBK), essentially an industry-wide best practices 
guide for information security. The CBK covers law, cryptography, authentication, 
physical security, and much more. It’s an incredible reference for security folks. 

One criticism of the CISSP has been its concentration on breadth and consequent 
lack of depth. So many topics in the CBK, and so little time! To address this, 
(ISC)2 has issued CISSP concentration programs that focus on architecture, engi-
neering, and management. These specialized certifications add depth to the more 
general CISSP certification.

The System Administration, Networking, and Security (SANS) Institute created 
the Global Information Assurance Certification (GIAC) suite of certifications in 
1999. Three dozen separate exams cover the realm of information security with 
tests divided into five categories. The certifications range in difficulty from the 
moderate two-exam GISF to the 23-hour, expert-level GSE. The GSE is notorious 
as one of the most difficult certifications in the industry. Many of the exams focus 
on technical specifics and require quite a bit of experience.

Finally, the Certified Information Systems Auditor (CISA) credential is an audit 
and process certification. It focuses on business continuity, procedures, monitor-
ing, and other management content. Some consider the CISA an intermediate 
certification that is appropriate for an organization’s security officer role. One of 
its most attractive aspects is that it involves only a single exam.

Although certifications are a personal endeavor, their application to business is 
undeniable. More and more companies now recognize certifications as the mark 
of an expert. Many businesses offer higher pay and promotions to certified em-
ployees. If you decide to pursue a certification, work closely with your organiza-
tion to have it help pay for the associated costs.

Security standards

Because of the ever-increasing reliance on data systems, laws and regulations have 
been created to govern the management of sensitive, business-critical informa-
tion. Major pieces of U.S. legislation such as HIPAA, FISMA, NERC CIP, and the 

  



ptg

946 Chapter 22 Security

Sarbanes-Oxley Act (SOX) have all included sections on IT security. Although the 
requirements are sometimes expensive to implement, they have helped give the 
appropriate level of focus to a once-ignored aspect of technology. 

For a broader discus-
sions of industry and 
legal standards that 
affect IT environments, 
see page 1222.

Unfortunately, the regulations are filled with legalese and can be difficult to inter-
pret. Most do not contain specifics on how to achieve their requirements. As a 
result, standards have been developed to help administrators reach the lofty legis-
lative requirements. These standards are not regulation specific, but following 
them usually ensures compliance. It can be intimidating to confront the require-
ments of all the various standards at once, so it’s usually best to first work through 
one standard in its entirety.

ISO 27002
The ISO/IEC 27002 (formerly ISO 17799) standard is probably the most widely 
accepted in the world. First introduced in 1995 as a British standard, it is 34 pages 
long and is divided into 11 sections that run the gamut from policy to physical 
security to access control. Objectives within each section define specific require-
ments, and controls under each objective describe the suggested “best practice” 
solutions. The document costs about $200.

The requirements are nontechnical and can be fulfilled by any organization in a 
way that best fits its needs. On the downside, the general wording of the standard 
leaves the reader with a sense of broad flexibility. Critics complain that the lack of 
specifics leaves organizations open to attack. 

Nonetheless, this standard is one of the most valuable documents available to the 
information-security industry. It bridges an often tangible gap between manage-
ment and engineering and helps focus both parties on minimizing risk.

PCI DSS
The Payment Card Industry Data Security Standard (PCI DSS) is a different beast 
entirely. It arose out of the perceived need to improve security in the credit card 
processing industry following a series of dramatic exposures. For example, in June 
2005, CardSystems Services International revealed the “loss” of 40 million credit 
card numbers.

The U.S. Department of Homeland Security has estimated that $49.3 billion was 
lost to identity theft in 2009 alone. Not all of this can be linked directly to credit 
card exposure, of course, but increased vigilance by vendors would certainly have 
had a positive impact. The FBI has even connected credit card fraud to the fund-
ing of terrorist groups. Specific incidents include the bombings in Bali and the 
Madrid subway system.

The PCI DSS standard is the result of a joint effort between Visa and MasterCard, 
though it is currently maintained by Visa. Unlike ISO 27002, it is freely available 
for anyone to download. It focuses entirely on protecting cardholder data systems 
and has 12 sections that define requirements for protection.

  



ptg

Sources of security information 947

Se
cu

rit
y

Because PCI DSS is focused on card processors, it is not generally appropriate for 
businesses that don’t deal with credit card data. However, for those that do, strict 
compliance is necessary to avoid hefty fines and possible criminal prosecution. 
You can find the document at pcisecuritystandards.org.

NIST 800 series
The fine folks at the National Institute of Standards and Technology (NIST) have 
created the Special Publication (SP) 800 series of documents to report on their 
research, guidelines, and outreach efforts in computer security. These documents 
are most often used in connection with measuring FISMA compliance for those 
organizations that handle data for the U.S. federal government. More generally, 
they are publicly available standards with excellent content and have been widely 
adopted by industry. 

The SP 800 series includes more than 100 documents. All of them are available 
from csrc.nist.gov/publications/PubsSPs.html. Here are a few that you might want 
to consider starting with: NIST 800-12, An Introduction to Computer Security: The 
NIST Handbook; NIST 800-14, Generally Accepted Principles and Practices for Se-
curing Information Technology Systems; NIST 800-34 R1, Contingency Planning 
Guide for Information Technology Systems; NIST 800-39, Managing Risk from In-
formation Systems: An Organizational Perspective; NIST 800-53 R3, Recommended 
Security Controls for Federal Information Systems and Organizations; NIST 800-
123, Guide to General Server Security.

Common Criteria
The Common Criteria for Information Technology Security Evaluation (com-
monly known as the “Common Criteria”) is a standard against which to evaluate 
the security level of IT products. These guidelines have been established by an 
international committee of members from a variety of manufacturers and indus-
tries. See commoncriteriaportal.org to learn more about the standard and certi-
fied products.

OWASP
The Open Web Application Security Project (OWASP) is a not-for-profit world-
wide organization focused on improving the security of application software. 
They are best known for their “top 10” list of web application security risks, which 
serves to remind all of us where to focus our energies when securing applications. 
Find the current list and a bunch of other great material at owasp.org.

22.16 SOURCES OF SECURITY INFORMATION

Half the battle of keeping your system secure consists of staying abreast of secu-
rity-related developments in the world at large. If your site is broken into, the 
break-in probably won’t be through the use of a novel technique. More likely, the 

  



ptg

948 Chapter 22 Security

chink in your armor is a known vulnerability that has been widely discussed in 
vendor knowledge bases, on security-related newsgroups, and on mailing lists. 

CERT: a registered service mark of Carnegie Mellon University

In response to the uproar over the 1988 Robert Morris, Jr., Internet worm, the 
Defense Advanced Research Projects Agency (DARPA) formed an organization 
called CERT, the Computer Emergency Response Team, to act as a clearing house 
for computer security information. CERT is still the best-known point of contact 
for security information, although it seems to have grown rather sluggish and bu-
reaucratic of late. CERT also now insists that the name CERT does not stand for 
anything and is merely “a registered service mark of Carnegie Mellon University.”

In mid-2003, CERT partnered with the Department of Homeland Security’s Na-
tional Cyber Security Division, NCSD. For better or worse, the merger has altered 
the previous mailing list structure.

The combined organization, known as US-CERT, offers four announcement lists, 
the most useful of which is the “Technical Cyber Security Alerts.” Subscribe to any 
of the four lists at forms.us-cert.gov/maillists.

SecurityFocus.com and the BugTraq mailing list

SecurityFocus.com specializes in security-related news and information. The 
news includes current articles on general issues and on specific problems; there’s 
also an extensive technical library of useful papers, nicely sorted by topic.

SecurityFocus’s archive of security tools includes software for a variety of operat-
ing systems, along with blurbs and user ratings. It is the most comprehensive and 
detailed source of tools that we are aware of.

The BugTraq list is a moderated forum for the discussion of security vulnerabili-
ties and their fixes. To subscribe, visit securityfocus.com/archive. Traffic on this 
list can be fairly heavy, however, and the signal-to-noise ratio is poor. A database 
of BugTraq vulnerability reports is also available from the web site.

Schneier on Security

Bruce Schneier’s blog is a valuable and sometimes entertaining source of informa-
tion about computer security and cryptography. Schneier is the author of the well-
respected books Applied Cryptography and Secrets and Lies, among others. Infor-
mation from the blog is also captured in the form of a monthly newsletter known 
as the Crypto-Gram. Learn more at schneier.com/crypto-gram.html.

SANS: the System Administration, Networking, and Security Institute 

SANS is a professional organization that sponsors security-related conferences 
and training programs, as well as publishing a variety of security information. 
Their web site, sans.org, is a useful resource that occupies something of a middle 

  



ptg

Vendor-specific security resources 949

Se
cu

rit
y

ground between SecurityFocus and CERT: neither as frenetic as the former nor as 
stodgy as the latter. 

SANS offers several weekly and monthly email bulletins that you can sign up for 
on their web site. The weekly NewsBites are nourishing, but the monthly summa-
ries seem to contain a lot of boilerplate. Neither is a great source of late-breaking 
security news.

Vendor-specific security resources

Because security problems have the potential to generate a lot of bad publicity, 
vendors are often eager to help customers keep their systems secure. Most large 
vendors have an official mailing list to which security-related bulletins are posted, 
and many maintain a web site about security issues as well. It’s common for secu-
rity-related software patches to be distributed for free, even by vendors that nor-
mally charge for software support.

Security portals on the web, such as SecurityFocus.com, contain vendor-specific 
information and links to the latest official vendor dogma.

Ubuntu maintains a security mailing list at

https://lists.ubuntu.com/mailman/listinfo/ubuntu-security-announce

You can find SUSE security advisories at 

novell.com/linux/security/securitysupport.html

You can join the official SUSE security announcement mailing list by visiting 

suse.com/en/private/support/online_help/mailinglists/index.html

Subscribe to the “Enterprise watch” list to get announcements about the security 
of Red Hat’s product line at redhat.com/mailman/listinfo/enterprise-watch-list.

Despite Oracle’s acquisition of Sun Microsystems, Sun’s original security blog at 
blogs.sun.com/security/category/alerts continues to be updated. When the brand-
ing and location are updated, you can probably still find a pointer there.

You can access HP’s various offerings through us-support.external.hp.com for the 
Americas and Asia, and europe-support.external.hp.com for Europe.

The security-related goodies have been carefully hidden. To find them, enter the 
maintenance/support area and select the option to search the technical knowledge 
base. A link in the filter options on that page takes you to the archive of security 
bulletins. (You will need to register if you have not already done so.) You can ac-
cess security patches from that area as well.

To have security bulletins sent to you, return to the maintenance/support main 
page and choose the “Subscribe to proactive notifications and security bulletins” 
option. Unfortunately, there does not appear to be any way to subscribe directly 
by email.

  

https://lists.ubuntu.com/mailman/listinfo/ubuntu-security-announce


ptg

950 Chapter 22 Security

Sign up for AIX security notifications through the “My notifications” link at 
ibm.com/systems/support.

Security information about Cisco products is distributed in the form of field no-
tices, a list of which can be found at cisco.com/public/support/tac/fn_index.html 
along with a news aggregation feed. To subscribe to Cisco’s security mailing list, 
email majordomo@cisco.com with the line “subscribe cust-security-announce” in 
the message body.

Other mailing lists and web sites

The contacts listed above are just a few of the many security resources available on 
the net. Given the volume of info that’s now available and the rapidity with which 
resources come and go, we thought it would be most helpful to point you toward 
some meta-resources.

One good starting point is the linuxsecurity.com, which logs several posts every 
day on pertinent Linux security issues. It also keeps a running collection of Linux 
security advisories, upcoming events, and user groups.

(IN)SECURE magazine is a free bimonthly magazine containing current security 
trends, product announcements, and interviews with notable security profession-
als. Read some of the articles with a vial of salt nearby, and be sure to check the 
author at the end—he may be pimping his own products.

Linux Security (linuxsecurity.com) covers the latest news in Linux and open 
source security. Subscribe to the RSS feed for best results.

The Linux Weekly News is a tasty treat that includes regular updates on the ker-
nel, security, distributions, and other topics. LWN’s security section can be found 
at lwn.net/security.

22.17 WHAT TO DO WHEN YOUR SITE HAS BEEN ATTACKED

The key to handling an attack is simple: don’t panic. It’s very likely that by the time 
you discover the intrusion, most of the damage has already been done. In fact, it 
has probably been going on for weeks or months. The chance that you’ve discov-
ered a break-in that just happened an hour ago is slim to none.

In that light, the wise owl says to take a deep breath and begin developing a care-
fully thought out strategy for dealing with the break-in. You need to avoid tipping 
off the intruder by announcing the break-in or performing any other activity that 
would seem abnormal to someone who may have been watching your site’s opera-
tions for many weeks. Hint: performing a system backup is usually a good idea at 
this point and (hopefully!) will appear to be a normal activity to the intruder.13

13. If system backups are not a “normal” activity at your site, you have much bigger problems than the 
security intrusion.

  



ptg

What to do when your site has been attacked 951

Se
cu

rit
y

This is also a good time to remind yourself that some studies have shown that 60% 
of security incidents involve an insider. Be very careful with whom you discuss 
the incident until you’re sure you have all the facts.

Here’s a quick 9-step plan that may assist you in your time of crisis:

Step 1: Don’t panic. In many cases, a problem isn’t noticed until hours or days 
after it took place. Another few hours or days won’t affect the outcome. The differ-
ence between a panicky response and a rational response will. Many recovery sit-
uations are exacerbated by the destruction of important log, state, and tracking 
information during an initial panic.

Step 2: Decide on an appropriate level of response. No one benefits from an 
over-hyped security incident. Proceed calmly. Identify the staff and resources that 
must participate and leave others to assist with the post-mortem after it’s all over.

Step 3: Hoard all available tracking information. Check accounting files and 
logs. Try to determine where the original breach occurred. Back up all your sys-
tems. Make sure that you physically write-protect backup tapes if you put them in 
a drive to read them.

Step 4: Assess your degree of exposure. Determine what crucial information (if 
any) has “left” the company, and devise an appropriate mitigation strategy. Deter-
mine the level of future risk.

Step 5: Pull the plug. If necessary and appropriate, disconnect compromised ma-
chines from the network. Close known holes and stop the bleeding. CERT pro-
vides steps for analyzing an intrusion. The document can be found at

cert.org/tech_tips/win-UNIX-system_compromise.html

Step 6: Devise a recovery plan. With a creative colleague, draw up a recovery 
plan on nearby whiteboard. This procedure is most effective when performed 
away from a keyboard. Focus on putting out the fire and minimizing the damage. 
Avoid assessing blame or creating excitement. In your plan, don’t forget to address 
the psychological fallout your user community may experience. Users inherently 
trust others, and blatant violations of trust make many folks uneasy.

Step 7: Communicate the recovery plan. Educate users and management about 
the effects of the break-in, the potential for future problems, and your preliminary 
recovery strategy. Be open and honest. Security incidents are part of life in a mod-
ern networked environment. They are not a reflection on your ability as a system 
administrator or on anything else worth being embarrassed about. Openly admit-
ting that you have a problem is 90% of the battle, as long as you can demonstrate 
that you have a plan to remedy the situation.

Step 8: Implement the recovery plan. You know your systems and networks bet-
ter than anyone. Follow your plan and your instincts. Speak with a colleague at a 
similar institution (preferably one who knows you well) to keep yourself on the 
right track.

  



ptg

952 Chapter 22 Security

Step 9: Report the incident to authorities. If the incident involved outside par-
ties, report the matter to CERT. They have a hotline at (412) 268-7090 and can be 
reached by email at cert@cert.org. Provide as much information as you can. 

A standard form is available from cert.org to help jog your memory. Here are 
some of the more useful pieces of information you might provide:

• The names, hardware, and OS versions of the compromised machines
• The list of patches that had been applied at the time of the incident
• A list of accounts that are known to have been compromised
• The names and IP addresses of any remote hosts that were involved
• Contact information (if known) for the administrators of remote sites
• Relevant log entries or audit information

If you believe that a previously undocumented software problem may have been 
involved, you should report the incident to the software vendor as well. 

22.18 RECOMMENDED READING

BARRETT, DANIEL J., RICHARD E. SILVERMAN, AND ROBERT G. BYRNES. Linux Se-
curity Cookbook. Sebastopol, CA: O’Reilly Media, 2003.

BAUER, MICHAEL D. Linux Server Security (2nd Edition). Sebastopol, CA: O’Reilly 
Media, 2005.

BRYANT, WILLIAM. “Designing an Authentication System: a Dialogue in Four 
Scenes.” 1988. web.mit.edu/kerberos/www/dialogue.html

CHESWICK, WILLIAM R., STEVEN M. BELLOVIN, AND AVIEL D RUBIN. Firewalls and 
Internet Security: Repelling the Wily Hacker (2nd Edition). Reading, MA: Addison-
Wesley, 2003.

CURTIN, MATT, MARCUS RANUM, AND PAUL D. ROBINSON. “Internet Firewalls: 
Frequently Asked Questions.” 2004. interhack.net/pubs/fwfaq

FARROW, RIK, AND RICHARD POWER. Network Defense article series. 1998-2004. 
spirit.com/Network

FRASER, B., EDITOR. RFC2196: Site Security Handbook. 1997. rfc-editor.org 

GARFINKEL, SIMSON, GENE SPAFFORD, AND ALAN SCHWARTZ. Practical UNIX and 
Internet Security (3rd Edition). Sebastopol, CA: O’Reilly Media, 2003.

KERBY, FRED, ET AL. “SANS Intrusion Detection and Response FAQ.” SANS. 2009.
sans.org/resources/idfaq 

LYON, GORDON FYODOR. Nmap Network Scanning: The Official Nmap Project 
Guide to Network Discovery and Security Scanning. Nmap Project, 2009.

  



ptg

Recommended reading 953

Se
cu

rit
y

MANN, SCOTT, AND ELLEN L. MITCHELL. Linux System Security: The Administra-
tor’s Guide to Open Source Security Tools (2nd Edition). Upper Saddle River, NJ: 
Prentice Hall PTR, 2002.

MORRIS, ROBERT, AND KEN THOMPSON. “Password Security: A Case History.” 
Communications of the ACM, 22 (11): 594-597, November 1979. Reprinted in 
UNIX System Manager’s Manual, 4.3 Berkeley Software Distribution. University of 
California, Berkeley, April 1986.

RITCHIE, DENNIS M. “On the Security of UNIX.” May 1975. Reprinted in UNIX 
System Manager’s Manual, 4.3 Berkeley Software Distribution. University of Cali-
fornia, Berkeley, April 1986.

SCHNEIER, BRUCE. Applied Cryptography: Protocols, Algorithms, and Source Code 
in C. New York, NY: Wiley, 1995.

STEVES, KEVIN. “Building a Bastion Host Using HP-UX 11.” HP Consulting. 2002. 
tinyurl.com/5sffy2

THOMPSON, KEN. “Reflections on Trusting Trust.” in ACM Turing Award Lectures: 
The First Twenty Years 1966-1985. Reading, MA: ACM Press (Addison-Wesley), 
1987.

Exercises begin on the next page.

  



ptg

954 Chapter 22 Security

22.19 EXERCISES

E22.1 Discuss the strength of SSH authentication when passwords are used 
versus when a passphrase and key pair are used. If one is clearly more 
secure than the other, should you automatically require the more se-
cure authentication method?

E22.2 SSH tunneling is often the only way to tunnel traffic to a remote ma-
chine on which you don’t have administrator access. Read the ssh man 
page and write a command line that tunnels traffic from localhost 
port 113 to mail.remotenetwork.org port 113. The forwarding point 
of your tunnel should also be the host mail.remotenetwork.org.

E22.3 Pick a recent security incident and research it. Find the best sources of 
information about the incident and find patches or workarounds that 
are appropriate for the systems in your lab. List your sources and the 
actions you propose for protecting your lab.

E22.4 With permission from your local sysadmin group, install John the 
Ripper, the program that searches for logins with weak passwords.

a) Modify the source code so that it outputs only the login names 
with which weak passwords are associated, not the passwords 
themselves.

b) Run John the Ripper on your local lab’s password file (you need 
access to /etc/shadow) and see how many breakable passwords you 
can find. 

c) Set your password to a dictionary word and give john just your 
own entry in /etc/shadow. How long does john take to find it?

d) Try other patterns (capital letter, number after dictionary word, 
single-letter password, etc.) to see exactly how smart john is.

E22.5 In the computer lab, set up two machines: a target and a prober.

a) Install nmap and Nessus on the prober. Attack the target with 
these tools. How could you detect the attack on the target?

b) Set up a firewall on the target; use iptables to defend against the 
probes. Can you detect the attack now? If so, how? If not, why not?

c) What other defenses can be set up against the attacks?

(Requires root access.)

E22.6 Using a common security mailing list or web site, identify an applica-
tion that has recently encountered a vulnerability. Find a good source 
of information on the hole and discuss the issues and the best way to 
address them. 

  



ptg

Exercises 955

Se
cu

rit
y

E22.7 Setuid programs are sometimes a necessary evil. However, setuid shell 
scripts should be avoided. Why?

E22.8 Use tcpdump to capture FTP traffic for both active and passive FTP 
sessions. How does the need to support an anonymous FTP server 
affect the site’s firewall policy? What would the firewall rules need to 
allow? (Requires root access.) 

E22.9 What do the rules in the following iptables output allow and disal-
low? What would be some easy additions that would enhance security 
and privacy? (Hint: the OUTPUT and FORWARD chains could use 
some more rules.)

Chain INPUT (policy ACCEPT) 
target prot opt source destination         
block all -- anywhere anywhere        

Chain FORWARD (policy ACCEPT) 
target prot opt source destination         

all -- anywhere anywhere           

Chain OUTPUT (policy ACCEPT) 
target prot opt source destination         

Chain block (1 references) 
target prot opt source destination         
ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED 
ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:www 
ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:ssh 
ACCEPT tcp -- 128.138.0.0/16 anywhere state NEW tcp dpt:kerberos 
ACCEPT icmp -- anywhere anywhere           
DROP all -- anywhere anywhere     

E22.10 Inspect a local firewall’s rulesets. Discuss what you find in terms of 
policies. Are there any glaring security holes? (This exercise is likely to 
require the cooperation of the administrators responsible for your lo-
cal site’s security.)

E22.11 Write a tool that determines whether any network interfaces at your 
site are in promiscuous mode. Run it periodically on your networks to 
try to quickly spot such an intrusion. How much load does the tool 
generate? Do you have to run it on each machine, or can you run it 
from afar? Can you design a sneaky packet that would tell you if an 
interface was in promiscuous mode, and if so, what does it look like? 
(Requires root access.)

  



ptg

956

23 Web Hosting

Today, UNIX and Linux systems are the predominant platform for serving web 
content and web applications. They are ideal systems for this task because they 
were designed from the ground up as preemptive, multitasking systems. They can 
handle a high volume of web requests, and they can do it efficiently, securely, and 
reliably.

In some respects, web-based applications have actually simplified sysadmins’ jobs. 
“Web 2.0” features like AJAX (Asynchronous JavaScript and XML) and dynamic 
HTML bring users the functionality and responsiveness of locally installed appli-
cations but relieve sysadmins of a multitude of deployment headaches: the only 
software required on the client side is a web browser.

On the server side, the LAMP (Linux, Apache, MySQL, and PHP/Perl/Python)1 
stack is a common configuration that is also highly functional. For database-
driven applications, Ruby on Rails is a popular open source web application 
framework built on the Ruby language. Both of these stacks are reasonable choices 
and are easy to support.

1. Non-Linux UNIX distributions refer to this collection simply as “AMP.” Solaris folks call it “SAMP,” 
and the Windows folks call it “WAMP.” Go figure.

Web Hosting

  



ptg

Uniform resource locators 957

W
eb

 H
os

tin
g

23.1 WEB HOSTING BASICS

Hosting a web site isn’t substantially different from providing any other network 
service. A daemon listens for connections on TCP port 80 (the HTTP standard), 
accepts requests for documents, and transmits them to the requesting user’s 
browser. Many of these documents are generated on the fly in conjunction with 
databases and application frameworks, but that’s incidental to the underlying 
HTTP protocol.

Resource locations on the web

See page 448 for more 
information about the 
Internet Society.

Information on the Internet is organized into an architecture defined by the Inter-
net Society (ISOC). This well-intended (albeit committee-minded) organization 
helps ensure consistency and interoperability throughout the Internet.

ISOC defines three primary ways to identify a resource: Uniform Resource Iden-
tifiers (URIs), Uniform Resource Locators (URLs), and Uniform Resource Names 
(URNs). URLs and URNs are really specialized types of URIs, as illustrated in 
Exhibit A.

Exhibit A Uniform resource taxonomy

So what’s the difference? 

• URLs tell you how to locate a resource by describing its primary access 
mechanism (e.g., http://admin.com).

• URNs identify (“name”) a resource without implying its location or tell-
ing you how to access it (e.g., urn:isbn:0-13-020601-6).

When do you call something a URI? If a resource is only accessible through the 
Internet, refer to it as a URL. If it could be accessed through the Internet or 
through other means, then you’re using a URI.

Uniform resource locators

Most of the time, you’ll be dealing with URLs, which describe how to access an 
object through five basic components:

• Protocol or application 
• Hostname 
• TCP/IP port (optional) 
• Directory (optional) 
• Filename (optional)

URI

URL URN

is-kind-of is-kind-of

  

http://admin.com


ptg

958 Chapter 23 Web Hosting

Table 23.1 shows some of the protocols that can be used in URLs.

How HTTP works

HTTP is a stateless client/server protocol. A client asks the server for the “con-
tents” of a specific URL. The server responds either with a spurt of data or with 
some type of error message. The client can then go on to request another object.

Because HTTP is so simple, you can turn yourself into a crude web browser by 
running telnet. Just telnet to port 80 on your web server of choice. Once you’re 
connected, you can issue HTTP commands.

The most common command is GET, which requests the contents of a document. 
Usually, GET / is what you want, since it requests the root document (usually, the 
home page) of whatever server you’ve connected to. HTTP is case sensitive, so 
make sure you type commands in capital letters.

$ telnet localhost 80 
Trying 127.0.0.1…
Connected to localhost.atrust.com. 
Escape character is '^]'.
GET / 
<contents of your default file appear here>
Connection closed by foreign host.

A more “complete” HTTP request would include the HTTP protocol version, the 
host that the request is for (required to retrieve a file from a name-based virtual 
host), and other information. The response would then include informational 
headers as well as response data. For example:

$ telnet localhost 80 
Trying 127.0.0.1…
Connected to localhost.atrust.com. 
Escape character is '^]'.
GET / HTTP/1.1 
Host: www.atrust.com 

HTTP/1.1 200 OK 
Date: Sat, 01 Aug 2009 17:43:10 GMT 
Server: Apache/2.2.3 (CentOS)

Table 23.1 URL protocols

Proto What it does Example

file Accesses a local file file:///etc/syslog.conf
ftp Accesses a remote file via FTP ftp://ftp.admin.com/adduser.tar.gz
http Accesses a remote file via HTTP http://admin.com/index.html
https Accesses a remote file via HTTP/SSL https://admin.com/order.shtml 
ldap Accesses LDAP directory services ldap://ldap.bigfoot.com:389/cn=Herb 
mailto Sends email to a designated address mailto:linux@book.admin.com

  

www.atrust.com


ptg

FastCGI 959

W
eb

 H
os

tin
g

Last-Modified: Sat, 01 Aug 2009 16:20:22 GMT 
Content-Length: 7044 
Content-Type: text/html

<contents of your default file appear here>
Connection closed by foreign host.

In this case, we told the server we were going to speak HTTP protocol version 1.1 
and named the virtual host from which we were requesting information. The 
server returned a status code (HTTP/1.1 200 OK), its idea of the current date and 
time, the name and version of the server software it was running, the date that the 
requested file was last modified, the length of the requested file, and the requested 
file’s content type. The header information is separated from the content by a sin-
gle blank line.

Content generation on the fly

In addition to serving up static documents, an HTTP server can provide the user 
with content that has been created on the fly. For example, if you wanted to pro-
vide the current time and temperature to users visiting your web site, you might 
have the HTTP server execute a script to obtain this information. This amaze-the-
natives trick is often accomplished with the Common Gateway Interface, or CGI.

CGI is not a programming language but rather a specification by which an HTTP 
server exchanges information with other programs. CGI scripts are most often 
written in Perl, Python, or PHP. But really, any programming language that can 
perform real-time I/O is acceptable. 

Embedded interpreters
The CGI model provides complete flexibility in that the web developer is free to 
use any interpreter or scripting language. Unfortunately, starting a separate pro-
cess for every script call can be a performance nightmare on busy web servers that 
serve a significant amount of dynamic content. 

In addition to supporting external CGI scripts, many web servers define a plug-in 
architecture that allows script interpreters such as Perl and PHP to be embedded 
within the web server itself. This bundling significantly increases performance 
because the web server no longer needs to fork a separate process to deal with 
each script request. The architecture is largely invisible to script developers. 
Whenever the server sees a file ending in a specified extension (such as .pl or 
.php), it sends the contents of the file to the embedded interpreter to be executed. 
Table 23.2 on the next page lists some common embedded interpreters that run 
inside Apache.

FastCGI
Another trick you can use in some situations is FastCGI (fastcgi.com). This mod-
ule improves the performance of scripts by starting them once and then leaving 
them running to service multiple requests. This arrangement amortizes the cost 

  



ptg

960 Chapter 23 Web Hosting

of starting the interpreter and parsing the script across multiple requests. It can be 
faster than running the interpreter inside Apache itself.

Unfortunately, scripts must be modified to understand and conform to this new 
way of interacting with the web server. The basic protocol is easy to implement, 
but FastCGI scripts cannot afford to be sloppy about memory management. 
Loose ends cause the script’s memory footprint to grow over time. Another po-
tential hazard is the persistence of data across requests; programmers must ensure 
that requests cannot interact. Web developers will need to weigh whether the per-
formance improvement from FastCGI is worth the extra effort and risk.

Some administrators prefer FastCGI to embedded interpreters because individual 
scripts can be restarted without affecting the rest of the system when they go awry. 
With embedded interpreters, you may need to restart the entire web server if one 
interpreter starts acting up.

Script security
For the most part, CGI scripts and server plug-ins are the concern of web devel-
opers and programmers. Unfortunately, they collide with the job of the system 
administrator in one important area: security. Because CGI scripts and plug-ins 
have access to files, network connections, and other ways of moving data from 
one place to another, their execution can potentially affect the security of the ma-
chine on which the HTTP server is running. Ultimately, a CGI script or plug-in 
gives anyone in the world the ability to run a program (the script) on your server. 
Therefore, CGI scripts and the files processed by plug-ins must be just as secure as 
any other network-accessible program. 

OWASP, the Open Web Application Security Project (owasp.org), publishes a va-
riety of excellent materials about web security. For general information about sys-
tem security, see Chapter 22.

Application servers

Complex enterprise applications may need more functionality than a basic HTTP 
server can provide. For example, modern-day Web 2.0 pages often contain a sub-
component that is tied to a dynamic data feed (e.g., a stock ticker). Although it’s 
possible to implement this functionality with Apache through technologies such 
as AJAX and JavaScript Object Notation (JSON), some developers prefer a more 

Table 23.2 Embedded scripting modules for the Apache web server

Language Name of embedded interpreter Learn more

Perl mod_perl perl.apache.org
Python mod_python modpython.org
PHP mod_php (traditional)

Zend server (commercial accelerator)
apache.org 
zend.com

Ruby on Rails Phusion Passenger (aka mod_rails or mod_rack) modrails.com

  



ptg

Load balancing 961

W
eb

 H
os

tin
g

fully featured language such as Java. The common way to interface Java applica-
tions to an enterprise’s other data sources is with a “servlet.” 

Servlets are Java programs that run on the server on top of an application server 
platform. Application servers can work independently or in concert with Apache. 
Most application servers were designed by programmers for programmers and 
lack the concise debugging mechanisms expected by system administrators. Table 
23.3 highlights some common UNIX/Linux application servers.

If you are faced with supporting one of these application servers, seek product-
specific documentation and training. Trust us; this is not a technology you can 
pick up “on the fly” like most UNIX and Linux applications. You’ve been warned.

Load balancing

It’s difficult to predict how many hits (requests for objects, including images) or 
page views (requests for HTML pages) a server can handle per unit of time. A 
server’s capacity depends on the system’s hardware architecture (including subsys-
tems), the operating system it is running, the extent and emphasis of any system 
tuning that has been performed, and perhaps most importantly, the construction 
of the sites being served. (Do they contain only static HTML pages, or must they 
make database calls and numeric calculations?)

Only direct benchmarking and measurement of your actual site running on your 
actual hardware can answer the “how many hits?” question. Sometimes, people 
who have built similar sites on similar hardware can give you information that is 
useful for planning. In no case should you believe the numbers quoted by system 
suppliers. Also remember that your bandwidth is a key consideration. A single 
machine serving static HTML files and images can easily serve enough data to 
saturate an OC3 (155 Mb/s) link.

That said, instead of single-server hit counts, a better parameter to focus on is 
scalability; a web server typically becomes CPU- or IO-bound before saturating 
its Ethernet interface. Make sure that you and your web design team plan to 
spread the load of a heavily trafficked site across multiple servers.

Table 23.3 Application servers

Server Type Web site

Tomcat Open source tomcat.apache.org 
GlassFish Open source glassfish.dev.java.net 
JBoss Open source jboss.org
OC4J Commercial oracle.com/technology/tech/java/oc4j 
WebSphere Commercial ibm.com/websphere 
WebLogic Commercial oracle.com/appserver/weblogic/weblogic-suite.html 
Jetty Open source eclipse.org/jetty

  



ptg

962 Chapter 23 Web Hosting

Load balancing adds both performance and redundancy. Several different load 
balancing approaches are available: round robin DNS, load balancing hardware, 
and software-based load balancers.

See Chapter 17 for 
more information 
about DNS and its 
behavior.

Round robin DNS is the simplest and most primitive form of load balancing. In 
this system, multiple IP addresses are assigned to a single hostname. When a re-
quest for the web site’s IP address arrives at the name server, the client receives 
one of the IP addresses in response. Addresses are handed out one after another, 
in a repeating “round robin” sequence.

Round robin load balancing is extremely common. It is even used by Google. For 
example, if you query the DNS infrastructure for www.google.com, you might get 
something like the following records:

$ dig www.google.com a 
… 
;; QUESTION SECTION: 
;www.google.com. IN A

;; ANSWER SECTION: 
www.google.com. 0 IN CNAME www.l.google.com.
www.l.google.com. 65 IN A 74.125.95.104
www.l.google.com. 65 IN A 74.125.95.105
www.l.google.com. 65 IN A 74.125.95.106
www.l.google.com. 65 IN A 74.125.95.147
www.l.google.com. 65 IN A 74.125.95.99
www.l.google.com. 65 IN A 74.125.95.103

In this example, the name www.google.com is mapped to the canonical name 
www.l.google.com. Google adds this layer of indirection so that it can delegate 
responsibility for content delivery to a downstream provider such as Akamai (see 
Content distribution networks on page 978 for more context) without giving the 
CDN control of its root domain.

A DNS client can pick any one of the A records returned for www.l.google.com; it 
is supposed to do so randomly. Contrary to popular belief, the order in which the 
A records are returned has no significance. In particular, the first one is not “pri-
mary.” Because clients select addresses randomly, the load for this site is distrib-
uted roughly evenly across these six servers.

The problem with round robin DNS is that if a server goes down, DNS data must 
be updated to reroute traffic away from it. Long timeouts on the A records can 
make this operation tricky and unreliable. On the other hand, short timeouts 
thwart caching and so make DNS lookups of your site slower and more resource 
intensive. See Caching and efficiency on page 556 for a discussion of this tradeoff. 

In the example above, the A records can be cached for 65 seconds before they 
expire. That’s a relatively short timeout. If you have a backup server available, you 
might prefer to use a longer timeout for the A records and to simply reassign a 
disabled server’s IP address to the backup server.

  

www.google.com
www.google.com
www.google.com
www.google.com


ptg

Choosing a server 963

W
eb

 H
os

tin
g

Load balancing hardware is an easy alternative to round robin DNS, but one that 
requires some spare cash. Commercial third-party load balancing hardware in-
cludes the Big-IP Controller from F5 Networks, Nortel’s Alteon web switching 
products, and Cisco’s Content Services Switches. These products distribute in-
coming work according to a variety of configurable parameters and can take the 
current response times of individual servers into account. 

Software-based load balancers don’t require specialized hardware; they can run 
on a UNIX server. Both open source and commercial solutions are available. The 
open source category includes the Linux Virtual Server (linuxvirtualserver.org) 
and the proxy load balancing functionality (mod_proxy_balancer) introduced in 
Apache 2.2. An example of commercial offerings in this space are those sold by 
Zeus, zeus.com.

Google actually uses a combination of custom load-balancing DNS servers (with 
round robin records) and load balancing hardware. See the Wikipedia article for 
“Google platform” for more details.

Keep in mind that most sites these days are dynamically generated. This architec-
ture puts a heavy load on database servers. If necessary, consult your database 
administrator to determine the best way to distribute load across multiple data-
base servers.

23.2 HTTP SERVER INSTALLATION

Installing and maintaining a web server is easy. Web services rank far below email 
and DNS in complexity and difficulty of administration. 

Choosing a server

Several HTTP servers are available, but you’ll most likely want to start with the 
Apache server, which is well known in the industry for its flexibility and perfor-
mance. As of January 2010, 54% of web servers on the Internet were running 
Apache (currently serving up content for over 111 million sites). Microsoft ac-
counts for most of the remainder at 24% of servers. This market share split be-
tween Apache and Microsoft has been relatively stable for the last five years. More 
detailed market share statistics over time are available here:

news.netcraft.com/archives/web_server_survey.html

You can find a useful comparison of currently available HTTP servers at the site 
serverwatch.com/stypes (select “web” in the Server Type menu). Here are some of 
the factors you may want to consider in making your selection: 

• Robustness 
• Performance 
• Timeliness of updates and bug fixes 
• Availability of source code

  



ptg

964 Chapter 23 Web Hosting

• Level of commercial or community support
• Cost 
• Access control and security 
• Ability to act as a proxy 
• Ability to handle encryption 

The Apache HTTP server is “free to a good home,” and full source code is avail-
able from the Apache Group site at apache.org. The less adventurous may want to 
install a prebuilt binary package; see the hints provided in the table below. Some 
vendors avoid the name “Apache,” but that’s the server you get nonetheless. 

Installing Apache

If you do decide to download the Apache source code and compile it yourself, 
start by executing the configure script included with the distribution. This script 
automatically detects the system type and sets up the appropriate makefiles. Use 
the --prefix option to specify where in your directory tree the Apache server 
should live. For example: 

$ ./configure --prefix=/etc/httpd/ 

If you don’t specify a prefix, the default is /usr/local/apache2.

You can use configure --help to see the entire list of possible arguments, most of 
which consist of --enable-module and --disable-module options that include or 
exclude various functional components that live within the web server. 

You can also compile modules into dynamically shared object files by specifying 
the option --enable-module=shared (or use --enabled-mods-shared=all to make 
all modules shared). That way, you can decide later which modules to include or 
exclude; only modules specified in your httpd configuration are loaded at run 
time. This is actually the default configuration for the binary-only Apache pack-
age—all the modules are compiled into shared objects and are dynamically loaded 
when Apache starts.

The only disadvantages to using shared libraries are a slightly longer startup time 
and a very slight degradation in performance (typically less than 5%). For most 
sites, the benefit of being able to add new modules on the fly and to turn existing 
modules off without having to recompile outweighs the slight performance hit.

Table 23.4 Locations of Apache binaries

System Directory Recommended source of binaries

Linux /usr/sbin Installed as part of standard distribution
Solaris /usr/apache2 Installed as part of standard distribution 
HP-UX /opt/apache Install HP-UX 11i “Web Server Suite”
AIX /usr/IBMIHS Install IBM HTTPServer product

  



ptg

Configuring Apache 965

W
eb

 H
os

tin
g

For a complete list of standard modules, see httpd.apache.org/docs-2.2/mod.

Although the default set of modules is reasonable, you may also want to enable 
the modules shown in Table 23.5.

Likewise, you may want to disable the modules listed in Table 23.6. For security 
and performance, it’s a good idea to disable modules that you know you will not 
be using.

When configure has finished executing, run make and then make install to actu-
ally compile and install the appropriate files.

Compiling Apache on AIX is unfortunately not so straightforward. See the tips 
and tricks at people.apache.org/~trawick/apache-2-on-aix.html.

Configuring Apache

Once you’ve installed the server, configure it for your environment. The config 
files are kept in the conf subdirectory of the installation directory. Examine and 
customize the httpd.conf file, which is divided into three sections.

The first section deals with global settings such as the server pool, the TCP port 
on which the HTTP server listens for queries (usually port 80, although you can 
choose another—and yes, you can run multiple HTTP servers on different ports 
on a single machine), and the settings for dynamic module loading.

Table 23.5 Useful Apache modules that are not enabled by default

Module Function

authn_dbm Uses a DBM database to manage user/group access (recommended if 
you need per-user, password-based access to areas of your web site)

rewrite Rewrites URLs with regular expressions 
expires Lets you attach expiration dates to documents 
proxy Uses Apache as a proxy server 
mod_ssl Enables support for the Secure Sockets Layera for HTTPS

a. Also known as Transport Layer Security or TLS; see page 971.

Table 23.6 Apache modules we suggest removing

Module Function

asis Allows designated file types to be sent without HTTP headers 
autoindex Displays the contents of directories that don’t have a default HTML file 
env Lets you set special environment variables for CGI scripts 
userdir Allows users to have their own HTML directories 

  



ptg

966 Chapter 23 Web Hosting

The second section configures the “default” server, the server that handles any 
requests that aren’t answered by VirtualHost definitions (see page 971). Configu-
ration parameters in this section include the user and group as whom the server 
will run (something other than root!) and the all-important DocumentRoot state-
ment, which defines the root of the directory tree from which documents are 
served. This section also addresses issues such as the handling of “special” URLs 
like those that include the ~user syntax to access a user’s home directory.

You manage global security concerns in the second section of the configuration 
file as well. Directives control access on a per-file basis (the <File> directive) or on 
a per-directory basis (the <Directory> directive). These permission settings pre-
vent access to sensitive files through httpd. You should specify at least two access 
controls: one that covers the entire filesystem and one that applies to the main 
document folder. The defaults that come with Apache are sufficient, although we 
recommend that you remove the AllowSymLinks option to prevent httpd from 
following symbolic links in your document tree. (We wouldn’t want someone to 
accidentally create a symbolic link to /etc, now would we?) For more Apache se-
curity tips, see 

httpd.apache.org/docs-2.2/misc/security_tips.html

The third and final section of the config file sets up virtual hosts. We discuss this 
topic in more detail on page 971.

Once you have made your configuration changes, check the syntax of the configu-
ration file by running httpd -t. If Apache reports “Syntax OK,” then you’re good to 
go. If not, check the httpd.conf file for typos.

Running Apache

You can start httpd by hand or from your system’s startup scripts. The latter is 
preferable, since this configuration ensures that the web server restarts whenever 
the machine reboots. To start the server by hand, type something like:

$ apachectl start

See Chapter 3 for more information about startup scripts.

Analyzing log files

With your web site in production, you’re likely to want to gather statistics about 
the use of the site, such as the number of requests per page, the average number of 
requests per day, the percentage of failed requests, and the amount of data trans-
ferred. Make sure you’re using the “combined” log format (your CustomLog di-
rectives should have the word combined at the end instead of common). The 
combined log format includes each request’s referrer (the page from which the 
URL was linked) and user agent (the client’s browser and operating system). 

Your access and error logs appear in Apache’s logs directory. The files are human 
readable, but they contain so much information that you really need a separate 

  



ptg

Virtual interfaces 967

W
eb

 H
os

tin
g

analysis program to extract useful data from them. There are literally hundreds of 
different log analyzers, both free and commercial.

Two free analyzers worth taking a look at are Analog (analog.cx) and AWStats 
(awstats.sourceforge.net). These both provide fairly basic information. 

If you’re looking for information about traffic and usage patterns for a web site, 
check out Google Analytics at analytics.google.com. This service requires that you 
put a small stub on each web page you want to track, but it then provides all the 
data gathering and analysis infrastructure for free.2

Optimizing for high-performance hosting of static content

The hosting community has learned over the last few years that one of the easiest 
ways to create a high-performance hosting platform is to optimize some servers 
for hosting static content. 

One way to address this need is through the use of an in-kernel web server or in-
kernel web page cache. Because these systems do not copy data to or from user 
space before returning it to a requestor, they achieve some incremental perfor-
mance gains. However, because the solutions operate in kernel space, they entail 
some additional security risk. We recommend using them with extreme caution.

A kernel-based web server called TUX that runs in conjunction with a traditional 
web server such as Apache is available for some Linux distributions. When possi-
ble, TUX serves up static pages without leaving kernel space, much as rpc.nfsd
serves files. Although TUX was developed by Red Hat (Red Hat now calls it the 
Red Hat Content Accelerator), it’s been released under the GPL and can be used 
with other Linux distributions. Unfortunately, configuring TUX can be some-
thing of a challenge. The system was popular in the early 2000s, but its popularity 
has since dwindled. For details, see redhat.com/docs/manuals/tux.

On the Solaris platform, Sun has released the Solaris Network Cache and Acceler-
ator (NCA) to provide in-kernel content caching. NCA intercepts the traffic going 
to and from httpd and caches static pages. When subsequent requests arrive for 
the same content, they’re served from cache without involving httpd.

23.3 VIRTUAL INTERFACES

In the early days, a UNIX machine typically acted as the server for a single web 
site (e.g., acme.com). As the web’s popularity grew, everybody wanted to have a 
web site, and overnight, thousands of companies became web hosting providers. 

See Chapter 14 for 
more information 
on basic interface 
configuration.

Providers quickly realized that they could achieve significant economies of scale if 
they were able to host more than one site on a single server. This trick would allow 
acme.com, ajax.com, toadranch.com, and many other sites to be transparently 

2. Of course, this arrangement also gives Google access to your traffic data, which may or may not be a 
good thing.

  



ptg

968 Chapter 23 Web Hosting

served by the same hardware. In response to this business need, virtual interfaces 
were born.

The idea is simple: a single machine responds on the network to more IP ad-
dresses than it has physical network interfaces. Each of the resulting “virtual” net-
work interfaces can be associated with a corresponding domain name that users 
on the Internet might want to connect to. Thus, a single machine can serve liter-
ally hundreds of web sites.

Virtual interfaces allow a daemon to identify connections based not only on the 
destination port number (e.g., port 80 for HTTP) but also on the connection’s 
destination IP address. Today, virtual interfaces are in widespread use and have 
proved to be useful for applications other than web hosting.

Using name-based virtual hosts

The HTTP 1.1 protocol also defines a form of virtual-interface-like functionality 
(officially called “name-based virtual hosts”) that eliminates the need to assign 
unique IP addresses to web servers or to configure a special interface at the OS 
level. This approach conserves IP addresses and is useful for some sites, especially 
those (such as universities) at which a single server is home to hundreds or thou-
sands of home pages.

Unfortunately, the scheme isn’t very practical for commercial sites. It reduces scal-
ability (you must change the IP address of the site to move it to a different server) 
and may also have a negative impact on security (if you filter access to a site at 
your firewall according to IP addresses). Additionally, name-based virtual hosts 
require browser support to use SSL.3 Given these limitations of name-based vir-
tual hosts, it appears that true virtual interfaces will be around for a while.

Configuring virtual interfaces 

Setting up a virtual interface involves two steps. First, you must create the virtual 
interface at the TCP/IP level. The exact way you do this depends on your version 
of UNIX; the next few sections provide instructions for each of our example sys-
tems. Second, you must tell the Apache server about the virtual interfaces you 
have installed. We cover this second step starting on page 971.

Linux virtual interfaces
Linux virtual interfaces are named with the notation interface:instance. For exam-
ple, if your Ethernet interface is eth0, then the virtual interfaces associated with it 
could be eth0:0, eth0:1, and so on. All interfaces are configured with the ifconfig
command. For example, the command

$ sudo ifconfig eth0:0 128.138.243.150 netmask 255.255.255.192 up

configures eth0:0 and assigns it an address on the 128.138.243.128/26 network. 

3. A relatively new feature called Server Name Indication (SNI) enables the use of SSL with virtual hosts, 
but older browsers do not support it.

  



ptg

Solaris virtual interfaces 969

W
eb

 H
os

tin
g

To make virtual address assignments permanent on Red Hat, you create a separate 
file for each virtual interface in /etc/sysconfig/network-scripts. For example, the 
file ifcfg-eth0:0 that corresponds to the ifconfig command shown above contains 
the following lines:

DEVICE=eth0:0 
IPADDR=128.138.243.150 
NETMASK=255.255.255.192 
NETWORK=128.138.243.128 
BROADCAST=128.138.243.191 
ONBOOT=yes

Ubuntu’s approach is similar to Red Hat’s, but the interface definitions must ap-
pear in the file /etc/network/interfaces. The entries corresponding to the eth0:0 
interface in our example above are

iface eth0:0 inet static 
address 128.138.243.150 
netmask 255.255.255.192 
broadcast 128.138.243.191

On SUSE systems, you can either create virtual interfaces (“aliases”) with YaST or 
create the interface files manually. To do it with YaST, first select “Traditional 
method with ifup” on the Global Options tab of Network Settings.

Under SUSE, an interface’s IP addresses are all configured within a single file. To 
configure these files manually, look in /etc/sysconfig/network for files whose 
names start with ifcfg-ifname.

For example, add these lines to the config file to define two virtual interfaces:
IPADDR_1=128.138.243.149 
NETMASK_1=255.255.255.192 
STARTMODE_1="auto" 
LABEL_1=0 
IPADDR_2=128.138.243.150 
NETMASK_2=255.255.255.192 
STARTMODE_2="auto" 
LABEL_2=1

The suffixes that follow IPADDR and NETMASK (here, _1 and _2) don’t have to be 
numeric, but for consistency, this is a reasonable convention. Note that you’ll also 
need to edit /etc/sysconfig/network/config and set NETWORKMANAGER="no"
so that the virtual interfaces will be recognized.

Solaris virtual interfaces
Solaris supports virtual interfaces (aka “secondary interfaces”) through the con-
cept of a physical interface and a logical unit. For example, if hme0 were the name 
of a physical interface, then hme0:1, hme0:2, and so on would be the names of the 
corresponding virtual interfaces. By default, each physical interface can have up to 

  



ptg

970 Chapter 23 Web Hosting

256 virtual identities attached to it. If you need to change this limit, use ndd to 
change the parameter ip_addrs_per_if (see page 498 for details on using ndd).

To configure a virtual interface, just run ifconfig on one of the virtual names. 
(The underlying physical interface must already have been “plumbed.”) In most 
cases, you’ll want to set up the system so that the ifconfigs for virtual interfaces 
happen automatically at boot time. 

Here is an example in which a Solaris machine has an address in private address 
space on an internal virtual private network (VPN) and an external address for 
the Internet, both associated with the same physical interface, hme0. To have 
these interfaces configured automatically at boot time, the administrator has set 
up two hostname files: /etc/hostname.hme0 and /etc/hostname.hme0:1.

$ ls -l /etc/host* 
-rw-r--r-- 1 root 10 Nov  4 10:19 /etc/hostname.hme0 
-rw-r--r-- 1 root 16 Dec 21 19:34 /etc/hostname.hme0:1

Hostname files can contain either hostnames from the /etc/hosts file or IP ad-
dresses. In this case, the administrator has used one of each:

$ cat /etc/hostname.hme0 
overkill 
$ cat /etc/hostname.hme0:1 
206.0.1.133 
$ grep overkill /etc/hosts
10.1.2.9   overkill overkill.domain

At boot time, both addresses are automatically configured (along with the loop-
back address, which we omitted from the output shown below):

$ ifconfig -a 
hme0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 

1500 inet 10.1.2.9 netmask ffffff00 broadcast 10.1.2.255 
hme0:1: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 

1500 inet 206.0.1.133 netmask ffffff80 broadcast 206.0.1.255

HP-UX virtual interfaces
On HP-UX, you add virtual interfaces with the ifconfig command. The syntax is 
very similar to that of Solaris. For example, to add the first interface, you would 
execute the command

$ sudo ifconfig lan0:1 192.168.69.1 up

AIX virtual interfaces
On AIX, you create an “alias” to add additional IP addresses to an interface. For 
example, to add 192.168.1.3 as a virtual IP address for the en0 interface, you can 
use ifconfig:

$ sudo ifconfig en0 192.168.1.3 netmask 255.255.255.0 alias

  



ptg

The Secure Sockets Layer (SSL) 971

W
eb

 H
os

tin
g

However, this alias is only temporary. To create a permanent virtual IP, use the 
chdev command:

$ sudo chdev -l en0 -a alias4=192.168.1.3,255.255.255.0

Telling Apache about virtual interfaces

In addition to creating the virtual interfaces, you need to tell Apache what docu-
ments to serve when a client tries to connect to each interface (IP address). You do 
this with a VirtualHost clause in the httpd.conf file. There is one VirtualHost
clause for each virtual interface that you’ve configured. Here’s an example:

<VirtualHost 128.138.243.150> 
ServerName www.company.com 
ServerAdmin webmaster@www.company.com 
DocumentRoot /var/www/htdocs/company 
ErrorLog logs/www.company.com-error_log 
CustomLog logs/www.company.com-access_log combined 
ScriptAlias /cgi-bin/ /var/www/cgi-bin/company

</VirtualHost>

In this example, any client that connects to the virtual host 128.138.243.150 is 
served documents from /var/www/htdocs/company. Nearly any Apache directive 
can go into a VirtualHost clause to define settings specific to that virtual host. 
Relative directory paths, including those for the DocumentRoot, ErrorLog, and 
CustomLog directives, are interpreted in the context of the ServerRoot.

With name-based virtual hosts, multiple DNS names all point to the same IP ad-
dress. The Apache configuration is similar, but you specify the primary IP address 
on which Apache should listen for incoming named virtual host requests and you 
omit the IP address in the VirtualHost clause:

NameVirtualHost 128.138.243.150

<VirtualHost *> 
ServerName www.company.com 
ServerAdmin webmaster@www.company.com 
DocumentRoot /var/www/htdocs/company 
ErrorLog logs/www.company.com-error_log 
CustomLog logs/www.company.com-access_log combined 
ScriptAlias /cgi-bin/ /var/www/cgi-bin/company

</VirtualHost>

In this configuration, Apache looks in the HTTP headers to determine the re-
quested site. The server listens for requests for www.company.com on its main IP 
address, 128.138.243.150. 

23.4 THE SECURE SOCKETS LAYER (SSL)

The SSL protocol secures communications between a web site and a client 
browser. URLs that start with https:// use this technology. SSL uses cryptography 
to prevent eavesdropping, tampering, and message forgery.

  

www.company.com
https:// use this technology


ptg

972 Chapter 23 Web Hosting

The browser and server use a certificate-based authentication scheme to establish 
communications, after which they switch to a faster cipher-based encryption 
scheme to protect their actual conversation.

SSL runs as a separate layer underneath the HTTP application protocol. SSL sim-
ply supplies the security for the connection and does not involve itself in the 
HTTP transaction. Because of this hygienic architecture, SSL can secure not only 
HTTP but also protocols such as SMTP and FTP. For more details, see the Wiki-
pedia entry for “Secure Sockets Layer.” 4

In the “early days” of SSL use, most symmetric encryption keys were a relatively 
weak 40 bits because of U.S. government restrictions on the export of crypto-
graphic technology. After years of controversy and lawsuits, the government re-
laxed some aspects of the export restrictions, allowing SSL implementations to 
use 128-bit keys for symmetric key ciphers.

Generating a Certificate Signing Request

The owner of a web site that is to use SSL must generate a Certificate Signing 
Request (CSR), a digital file that contains a public key and a company name. The 
“certificate” must then be “signed” by a trusted source known as a Certificate Au-
thority (CA). The signed certificate returned by the CA contains the site’s public 
key and company name along with the CA’s endorsement.

Web browsers have built-in lists of CAs whose signed certificates they will accept. 
A browser that knows of your site’s CA can verify the signature on your certificate 
and obtain your public key, thus enabling it to send messages that only your site 
can decrypt. Although you can actually sign your own certificate, a certificate that 
does not come from a recognized CA prompts most browsers to notify the user 
that the certificate is potentially suspect. In a commercial setting, such behavior is 
obviously a problem. But if you want to set up your own certificate authority for 
internal use and testing, see

httpd.apache.org/docs/2.2/ssl/ssl_faq.html#aboutcerts.

You can obtain a certificate signature from any one of a number of certificate au-
thorities. Enter “SSL certificate” into Google and take your pick. The only real 
differences among CAs are the amount of work they do to verify your identity, the 
warranties they offer, and the number of browsers that support them out of the 
box (most CAs are supported by the vast majority of browsers).

Creating a certificate to send to a CA is relatively straightforward. OpenSSL must 
be installed, which it is by default on most systems. Here is the procedure.

First, create a 1024-bit RSA private key for your Apache server:
$ openssl genrsa -des3 -out server.key 1024

4. Transport Layer Security (TLS) is the protocol that succeeds SSL and is implemented in all modern 
browsers. However, the web community still refers to the overall protocol and concept as SSL.

  

httpd.apache.org/docs/2.2/ssl/ssl_faq.html#aboutcerts


ptg

Configuring Apache to use SSL 973

W
eb

 H
os

tin
g

You are prompted to enter and confirm a passphrase to encrypt the server key. 
Back up the server.key file to a secure location (readable only by root), and be 
sure to remember the passphrase you entered. The curious can view the numeric 
details of the key with this command:

$ openssl rsa -noout -text -in server.key

Next, create a Certificate Signing Request (CSR) that incorporates the server key 
you just generated:

$ openssl req -new -key server.key -out server.csr

Enter the fully qualified domain name of the server when you are prompted to 
enter a “common name.” For example, if your site’s URL is https://company.com, 
enter “company.com” as your common name. Note that you need a separate cer-
tificate for each hostname—even to the point that “www.company.com” is differ-
ent from “company.com.” Companies typically register only one common name; 
they make sure any SSL-based links point to that hostname.

You can view the details of a generated CSR with the following command:
$ openssl req -noout -text -in server.csr

You can now send the server.csr file to the CA of your choice to be signed. It is not 
necessary to preserve your local copy. The signed CSR returned by the CA should 
have the extension .crt. Put the signed certificate in a directory with your httpd
conf files, for example,  /usr/local/apache2/conf/ssl.crt.

Configuring Apache to use SSL

HTTP requests come in on port 80, and HTTPS requests use port 443. Both 
HTTPS and HTTP traffic can be served by the same Apache process. However, 
SSL does not work with name-based virtual hosts; each virtual host must have a 
specific IP address. (This limitation is a consequence of SSL’s design.)

To set up Apache for use with SSL, first make sure that the SSL module is enabled 
within httpd.conf by locating or adding the line

LoadModule ssl_module      libexec/mod_ssl.so

Then add a VirtualHost directive for the SSL port:
<VirtualHost 128.138.243.150:443> 

ServerName www.company.com 
ServerAdmin webmaster@www.company.com 
DocumentRoot /var/www/htdocs/company 
ErrorLog logs/www.company.com-ssl-error_log 
CustomLog logs/www.company.com-ssl-access_log combined 
ScriptAlias /cgi-bin/ /var/www/cgi-bin/company 
SSLEngine on 
SSLCertificateFile /usr/local/apache2/conf/ssl.crt/server.crt 
SSLCertificateKeyFile /usr/local/apache2/conf/ssl.key/server.key

</VirtualHost>

  

www.company.com
https://company.com


ptg

974 Chapter 23 Web Hosting

Note the :443 after the IP address and also the SSL directives that tell Apache 
where to find your private key and signed certificate. 

When you restart Apache, you will be asked to enter the passphrase for your 
server.key file. Because of this interaction, httpd can no longer start up automati-
cally when the machine is booted. If you want, you can remove the encryption 
from your private key to circumvent the need to enter a password:

$ cp server.key server.key.orig 
$ openssl rsa -in server.key.orig -out server.key 
$ chmod 400 server.key server.key.orig

Of course, anyone who obtains a copy of your unencrypted key can then imper-
sonate your site.

For more information about SSL, see the following resources:

httpd.apache.org/docs-2.2/ssl/ssl_faq.html 
httpd.apache.org/docs/2.2/mod/mod_ssl.html

23.5 CACHING AND PROXY SERVERS

The Internet and the information on it are still growing rapidly. Ergo, the band-
width and computing resources required to support it are growing rapidly as well. 
How can this state of affairs continue?

The only way to deal with this growth is to use replication. Whether it’s on a na-
tional, regional, or site level, Internet content needs to be more readily available 
from a closer source as the Internet grows. It just doesn’t make sense to transmit 
the same popular web page from Australia across a very expensive link to North 
America millions of times each day. There should be a way to store this informa-
tion once it’s been sent across the link once. 

Fortunately, there is—at least at the site level. A web proxy lets you cache and 
manage your site’s outbound requests for web content.

Here’s how it works. Client web browsers contact the proxy server to request an 
object from the Internet. The proxy server then makes a request on the client’s 
behalf (or provides the object from its cache) and returns the result to the client. 
Proxy servers of this type are often used to enhance security or to filter content.

In a proxy-based system, only one machine needs direct access to the Internet 
through the organization’s firewall. At organizations such as K–12 schools, a 
proxy server can also filter content so that inappropriate material doesn’t fall into 
the wrong hands. Many commercial and freely available proxy servers are avail-
able today. Some of these systems are purely software based, and others are em-
bodied in a hardware appliance. An extensive list of proxy server technologies can 
be found at web-caching.com/proxy-caches.html.

  

httpd.apache.org/docs-2.2/ssl/ssl_faq.html
httpd.apache.org/docs/2.2/mod/mod_ssl.html


ptg

Setting up Squid 975

W
eb

 H
os

tin
g

The next couple of sections describe the Squid Internet Object Cache,5 a popular 
stand-alone cache. We also delve briefly into the proxy features of the mod_cache 
module for the Apache web server.

Using the Squid cache and proxy server

Squid is a caching and proxy server that supports several protocols, including 
HTTP, FTP, and SSL. 

Proxy service is nice, but it’s Squid’s caching features that are really worth getting 
excited about. Squid not only caches information from local user requests but also 
allows construction of a hierarchy of Squid servers.6 Groups of Squid servers use 
the Internet Cache Protocol (ICP) to communicate information about what’s in 
their caches.

With this feature, administrators can build a system in which local users contact 
an on-site caching server to obtain content from the Internet. If another user at 
that site has already requested the same content, a copy can be returned at LAN 
speed (usually 100 Mb/s or greater). If the local Squid server doesn’t have the 
object, perhaps the server contacts the regional caching server. As in the local 
case, if anyone in the region has requested the object, it is served immediately. If 
not, perhaps the caching server for the country or continent can be contacted, and 
so on. Users perceive a performance improvement, so they are happy. 

For many, Squid offers economic benefits. Because users tend to share web dis-
coveries, significant duplication of external web requests can occur at a reason-
ably sized site. One study has shown that running a caching server can reduce 
external bandwidth requirements by up to 40%.

To make effective use of Squid, you’ll likely want to force your users to use the 
cache. Either configure a default proxy through Active Directory (in a Windows-
based environment) or configure your router to redirect all web-based traffic to 
the Squid cache by using the Web Cache Communication Protocol, WCCP. 

Setting up Squid

Squid is easy to install and configure. Since Squid needs space to store its cache, 
you should run it on a dedicated machine that has plenty of free memory and disk 
space. A configuration for a large cache would be a machine with 32GiB of RAM 
and 8TB of disk.

You may be able to find precompiled Squid binaries for your system, or you can 
download a fresh copy of Squid from squid-cache.org. If you choose to compile it 
yourself, run the configure script at the top of the source tree after you unpack 
the distribution. This script assumes that you want to install the package in 

5. Why “Squid”? According to the FAQ, “all the good names were taken.”
6. Unfortunately, some sites mark all their pages as being uncacheable, which prevents Squid from work-

ing its magic. In a similar vein, Squid isn’t able to cache dynamically generated pages.

  



ptg

976 Chapter 23 Web Hosting

/usr/local/squid. If you prefer some other location, use the --prefix=dir option to 
configure. After configure has completed, run make all and then make install. 

Once you’ve installed Squid, you must localize the squid.conf configuration file. 
See the QUICKSTART file in the distribution directory for a list of the changes 
you need to make to the sample squid.conf file.

You must also run squid -z by hand to build and zero out the directory structure 
in which cached web pages will be stored. Finally, you can start the server by hand 
with the RunCache script; it will normally be started by a script when the ma-
chine boots. 

To test Squid, configure your desktop web browser to use the Squid server as a 
proxy. This option is usually found in the browser’s preferences panel.

Reverse-proxying with Apache

For security or load balancing reasons, it’s sometimes useful for web hosting sites 
to proxy inbound requests (that is, requests to your web servers that are coming in 
from browsers on the Internet). Since this is backward from the typical use of a 
web proxy (handling outbound requests from browsers at your site), such an in-
stallation is called a reverse proxy.

See Chapter 22 for 
more information 
about DMZ networks.

One popular configuration puts a reverse proxy on your site’s DMZ network to 
accept Internet users’ requests for services such as web-based email. The proxy 
then passes these requests along to the appropriate internal servers. This approach 
has several advantages:

• It eliminates the temptation to allow direct inbound connections to serv-
ers that are not in the DMZ.

• You need to configure only a single DMZ server, rather than one server 
for each externally accessible service.

• You can control the accessible URLs at a central choke point, providing 
some security benefit.

• You can log inbound requests for monitoring and analysis.

Configuring Apache to provide reverse proxy service is relatively straightforward. 
Inside a VirtualHost clause in Apache’s httpd.conf file, you use the ProxyPass and 
ProxyPassReverse directives.

• ProxyPass maps a remote URL into the URL space of the local server, 
making that part of the local address space appear to be a mirror of the 
remote server. (In this scenario, the “local” server is the DMZ machine 
and the “remote” server is the server on your interior network.)

• ProxyPassReverse hides the real server by “touching up” outbound 
HTTP headers that transit the proxy.

  



ptg

Scaling beyond your limits 977

W
eb

 H
os

tin
g

Below is a snippet of the reverse proxy configuration needed to insert a UNIX 
DMZ system in front of a Microsoft Outlook Web Access (OWA) server that pro-
vides web-based email. 

<Location /rpc> 
ProxyPass https://wm.monkeypaw.com/rpc 
ProxyPassReverse https://wm.monkeypaw.com/rpc 
SSLRequireSSL

</Location>

<Location /exchange> 
ProxyPass https://wm.monkeypaw.com/exchange 
ProxyPassReverse https://wm.monkeypaw.com/exchange 
SSLRequireSSL

</Location>

<Location /exchweb> 
ProxyPass https://wm.monkeypaw.com/exchweb 
ProxyPassReverse https://wm.monkeypaw.com/exchweb 
SSLRequireSSL

</Location>

<Location /public> 
ProxyPass https://wm.monkeypaw.com/public 
ProxyPassReverse https://wm.monkeypaw.com/public 
SSLRequireSSL

</Location>

<Location /oma> 
ProxyPass https://wm.monkeypaw.com/oma 
ProxyPassReverse https://wm.monkeypaw.com/oma 
SSLRequireSSL

</Location>

<Location /Microsoft-Server-ActiveSync> 
ProxyPass https://wm.monkeypaw.com/Microsoft-Server-ActiveSync 
ProxyPassReverse https://wm.monkeypaw.com/Microsoft-Server-ActiveSync 
SSLRequireSSL

</Location>

In this example, proxy services are provided for only a few top-level URLs: /rpc, 
/exchange, /exchweb, /public, /oma, and /Microsoft-Server-ActiveSync. For secu-
rity reasons, it’s a good idea to limit the requests allowed through the proxy.

23.6 SCALING BEYOND YOUR LIMITS

On the web, “overnight success” can be a system administrator’s nightmare. Being 
mentioned on a popular blog or showing up on digg.com can increase your web 
traffic by several orders of magnitude. Even “real” popularity growth can rapidly 
outstrip your local servers’ capacity or the bandwidth of your network connec-
tion. But fear not; these are good problems to have, and many possible solutions 
are available.

  



ptg

978 Chapter 23 Web Hosting

Cloud computing

See Chapter 24, Virtu-
alization, for more 
information about 
cloud computing.

Cloud hosting gives you access to a virtualized instance of the operating system of 
your choice without the need to house the hardware at your site. In fact, the hard-
ware and its maintenance are completely abstracted—you have only the most gen-
eral idea of where your virtualized instance is actually running.

Many cloud hosting providers exist, but Amazon remains the trailblazer and mar-
ket leader with their Amazon Web Services (AWS) offering (aws.amazon.com). In 
less than 5 minutes, you can start a new Linux or UNIX instance. You log in with 
ssh to administer it, just as you would with a system in your own data center. Best 
of all, the service is incredibly inexpensive (currently around 10 cents per in-
stance-hour in the U.S. region for the lowest service tier).

Several services can be layered on top of the cloud to automatically bring servers 
on-line and off-line according to load or other conditions. Amazon’s native facil-
ity is called Auto Scaling. RightScale (rightscale.com) is a third-party provider 
that sells a well-integrated scaling service.

Co-lo hosting

Co-location is another way of hosting your systems in a remote data center, but in 
the co-location scenario you typically own or rent the server hardware. This ar-
rangement may be preferable to a cloud-based solution in cases where standards 
or regulatory requirements prohibit the use of a cloud data center (e.g., some cases 
involving PCI DSS) or where custom hardware is necessary. Some I/O intensive 
applications also perform better on dedicated hardware, although the virtualized 
world is quickly catching up. 

See Chapter 27, for 
more information 
about data center tiers.

There are hundreds of co-location providers. Select one at a tier appropriate to 
your needs as defined by the Uptime Institute (uptimeinstitute.org). Commercial 
applications are usually housed in Tier 3 or Tier 4 data centers.

Content distribution networks

Most of the content on the Internet is static: images, documents, software down-
loads. By putting copies of these static components close to users (in network 
terms), you can reduce or eliminate the need to serve that data from the original 
source and haul it across the network backbone.

A system of computers that provides this service is called a content distribution 
network, or CDN. Intercontinental network links are often congested, so CDNs 
are particularly important when quick access to popular content on other conti-
nents is desired.

Most CDNs operate as for-profit endeavors funded by content providers that want 
to ensure the availability and responsiveness of their sites without scaling up their 
own infrastructure. Akamai Technologies (akamai.com) operates the most suc-
cessful and well known CDN platform. Limelight (limelightnetworks.com) and 
Disney-owned EdgeCast (edgecast.com) are the biggest upstart contenders.

  



ptg

Exercises 979

W
eb

 H
os

tin
g

When implemented correctly, the use of a CDN is completely transparent to the 
end user. Some objects may come from a relatively local server or cache, while 
other objects may originate directly from the source. However, all this speed and 
transparency comes with a high price tag. You’ll need a fat wallet to include CDN 
service in your hosting plans.

23.7 EXERCISES

E23.1 Configure a virtual interface on your workstation. Run ifconfig before 
and after to see what changed. Can you ping the virtual interface from 
another machine on the same subnet? From a different network? Why 
or why not? (Requires root access.)

E23.2 In your browser, visit a popular content-rich site such as abcnews.com 
and view the page source (View->Page Source in Firefox, Page->View 
source in IE). Use dig to look up the DNS entries for the hosts of indi-
vidual object URLs. Can you determine which objects are hosted by a 
content delivery network?

E23.3 With a packet sniffer (tcpdump), capture a two-way HTTP conversa-
tion that uploads information (e.g., filling out a form or a search field). 
Annotate the session to show how your browser conveyed information 
to the web server. (Requires root access.)

E23.4 Use a packet sniffer to capture the traffic when you open a busy web 
page such as the home page for amazon.com or cnn.com. How many 
separate TCP connections are opened? Who initiates them? Could the 
system be made more efficient? (Requires root access.)

E23.5 Locate log files from an Internet-accessible web server, perhaps the 
main server for your site. Examine the log files. What can you say about 
the access patterns over a period of a few hours? What errors showed 
up during that period? What privacy concerns are illustrated by the 
contents of the log files? (May require root access.)

E23.6 Install Apache on your system and create a couple of content pages. 
From other machines, verify that your web server is operating. Find the 
Apache log files that let you see what browsers are hitting your server. 
Configure Apache to serve some of its content pages to the virtual in-
terface created in E23.1. (Requires root access.)

  



ptg

This page intentionally left blank 

  



ptg

SECTION THREE 

BUNCH O’ STUFF

  



ptg

This page intentionally left blank 

  



ptg

983

Vi
rt

ua
liz

at
io

n

24 Virtualization

As enterprise data centers continue to rack up servers to slake the insatiable infor-
mation appetite of the modern business, system administrators struggle with a 
technical conundrum: how can existing systems be managed more efficiently to 
save power, space, and cooling costs while continuing to meet the needs of users?

Software vendors have historically discouraged administrators from running their 
applications with other software, citing potential incompatibilities and in some 
cases even threatening to discontinue support in cases of noncompliance. The re-
sult has been a flood of single-purpose servers. Recent estimates have pegged the 
utilization of an average sever at somewhere between 5% and 15%, and this num-
ber continues to drop as server performance rises.

One answer to this predicament is virtualization: allowing multiple, independent 
operating systems to run concurrently on the same physical hardware. Adminis-
trators can treat each virtual machine as a unique server, satisfying picky vendors 
(in most cases) while simultaneously reducing data center costs. A wide variety of 
hardware platforms support virtualization, and the development of virtualization-
specific CPU instructions and the increasing prevalence of multicore processors 
have vastly improved performance. Virtual servers are easy to install and require 
less maintenance (per server) than physical machines.

Virtualization

  



ptg

984 Chapter 24 Virtualization

Implementations of virtualization have changed dramatically over the years, but 
the core concepts are not new to the industry. Big Blue used virtual machines in 
early mainframes while researching time-sharing concepts in the 1960s, allowing 
users to share processing and storage resources through an abstraction layer. The 
same techniques developed by IBM were used throughout the mainframe heyday 
of the 1970s until the client-server boom of the 1980s. The technology lay dor-
mant during the 1980s and 1990s until the cost and manageability problems of 
enormous server farms rekindled interest in virtualization for modern systems. 
VMware is widely credited with having started the current virtualization craze by 
creating a virtualization platform for the Intel x86 architecture in 1999.

Today, virtualization technology is a flourishing business, with many vendors 
twisting knobs and pushing buttons to create unique entries into the market. VM-
ware remains a clear leader and offers products targeted at business of all sizes, 
along with management software to support highly virtualized organizations. The 
open source community has responded with a project known as Xen, which is 
supported commercially by a company called XenSource, now owned by Citrix. 
With the release of Solaris 10, Sun introduced some powerful technology known 
collectively as zones and containers that can run more than 8,000 virtual systems 
on a single Solaris deployment. These are just a few of the players in the market. 
There are dozens of competing products, each with a slightly different niche.

See page 206 for more 
information about 
storage area networks.

Although server virtualization is our primary focus in this chapter, the same con-
cepts apply to many other areas of the IT infrastructure, including networks, stor-
age, applications, and even desktops. For example, when storage area networks or 
network-attached storage are used, pools of disk space can be provisioned as a 
service, creating additional space on demand. Applying virtualization to the desk-
top can be useful for system administrators and users alike, allowing for custom-
tailored application environments for each user. 

The many virtualization options have created a struggle for hapless UNIX and 
Linux administrators. With dozens of platforms and configurations to choose 
from, identifying the right long-term approach can be a daunting prospect. In this 
chapter, we start by defining the terms used for virtualization technologies, con-
tinue with a discussion of the benefits of virtualization, proceed with tips for se-
lecting the best solution for your needs, and finally, work through some hands-on 
implementation activities for some of the most commonly used virtualization 
software on our example operating systems.

24.1 VIRTUAL VERNACULAR

The virtualization market has its own set of confusing terms and concepts. Mas-
tering the lingo is the first step toward sorting out the various options.

Operating systems assume they are in control of the system’s hardware, so run-
ning two systems simultaneously causes resource conflicts. Server virtualization is 

  



ptg

Full virtualization 985

Vi
rt

ua
liz

at
io

n

an abstraction of computing resources that lets operating systems run without 
direct knowledge of the underlying physical hardware. The virtualization software 
parcels out the physical resources such as storage, memory, and CPU, dynamically 
allocating their use among several virtual machines. 

UNIX administrators should understand three distinct paradigms: full virtualiza-
tion, paravirtualization, and OS-level virtualization. Each model resolves the re-
source contention and hardware access issues in a slightly different manner, and 
each model has distinct benefits and drawbacks. 

Full virtualization

Full virtualization is currently the most accepted paradigm in production use to-
day. Under this model, the operating system is unaware that it is running on a 
virtualized platform. A “hypervisor,” also known as a virtual machine monitor, is 
installed between the virtual machines (“guests”) and the hardware.

Such hypervisors are also known as bare-metal hypervisors since they control the 
physical hardware. The hypervisor provides an emulation layer for all of the host’s 
hardware devices. The guest operating system is not modified. Guests make direct 
requests to the virtualized hardware, and any privileged instructions that guest 
kernels attempt to run are intercepted by the hypervisor for appropriate handling.

Bare-metal virtualization is the most secure type of virtualization because guest 
operating systems are isolated from the underlying hardware. In addition, no ker-
nel modifications are required, and guests are portable among differing underly-
ing architectures. As long as the virtualization software is present, the guest can 
run on any processor architecture. (Translation of CPU instructions does, how-
ever, incur a modest performance penalty.)

VMware ESX is an example of a popular full virtualization technology. The gen-
eral structure of these systems is depicted in Exhibit A.

Exhibit A Full virtualization architecture

Gu
es

t O
S 

0

Gu
es

t O
S 

1

Gu
es

t O
S 

N

Fully virtualized hypervisor 
(e.g., VMWare ESX)

System Hardware

Disk CPU Memory

…

  



ptg

986 Chapter 24 Virtualization

Paravirtualization

Paravirtualization is the technology used by Xen, the leading open source virtual 
platform. Like full virtualization, paravirtualization allows multiple operating sys-
tems to run in concert on one machine. However, each OS kernel must be modi-
fied to support “hypercalls,” or translations of certain sensitive CPU instructions. 
User-space applications do not require modification and run natively on Xen ma-
chines. A hypervisor is used in paravirtualization just as in full virtualization.

The translation layer of a paravirtualized system has less overhead than that of a 
fully virtualized system, so paravirtualization does lead to nominal performance 
gains. However, the need to modify the guest operating system is a dramatic 
downside and is the primary reason why Xen paravirtualization has scant support 
outside of Linux and other open source kernels.

Exhibit B shows a paravirtualized environment. It looks similar to the fully virtu-
alized system in Exhibit A, but the guest operating systems interface with the hy-
pervisor through a defined interface, and the first guest is privileged.

Exhibit B Paravirtualization architecture

Operating system virtualization

OS-level virtualization systems are very different from the previous two models. 
Instead of creating multiple virtual machine environments within a physical sys-
tem, OS-level virtualization lets an operating system create multiple, isolated ap-
plication environments that reference the same kernel. OS-level virtualization is 
properly thought of as a feature of the kernel rather than as a separate layer of 
software abstraction.

Because no true translation or virtualization layer exists, the overhead of OS-level 
virtualization is very low. Most implementations offer near-native performance. 
Unfortunately, this type of virtualization precludes the use of multiple operating 
systems since a single kernel is shared by all guests (or “containers” as they are 

Gu
es

t O
S 

0
(m

od
ifi

ed
)

Gu
es

t O
S 

N

Paravirtualized hypervisor
(e.g., Xen, LDoms)

System Hardware

Disk CPU Memory

…

Gu
es

t O
S 

1
(m

od
ifi

ed
)

Gu
es

t O
S 

N
(m

od
ifi

ed
)

Privileged 
guest (host)

  



ptg

Cloud computing 987

Vi
rt

ua
liz

at
io

n

commonly known in this context).1 AIX workload partitions and Solaris contain-
ers and zones are examples of OS-level virtualization.

OS-level virtualization is illustrated in Exhibit C.

Exhibit C OS-level virtualization architecture

Native virtualization

In an attempt to distinguish their hardware offerings, the silicon heavyweights 
AMD and Intel are competing head to head to best support virtualization through 
hardware-assisted (“native”) virtualization. Both companies offer CPUs that in-
clude virtualization instructions, eliminating the need for the translation layer 
used in full and paravirtualization. Today, all major virtualization players can take 
advantage of these processors’ features.

Cloud computing

In addition to traditional virtualization, a relatively recent offering in the industry 
known informally (and, to some, begrudgingly) as cloud computing is an alterna-
tive to locally run server farms. Cloud computing offers computing power as a 
service, typically attractively priced on an hourly basis. The most obvious benefit 
is the conversion of server resources into a form of infrastructure analogous to 
power or plumbing. Administrators and developers never see the actual hardware 
they are using and need have no knowledge of its structure. The name comes from 
the traditional use of a cloud outline to denote the Internet in network diagrams.

As a system administration book, this one focuses on cloud computing at the 
server level, but applications are also being moved to the cloud (commonly 
known as software-as-a-service, or SAAS). Everything from email to business 
productivity suites to entire desktop environments can be outsourced and man-
aged independently.

1. This is not entirely true. Solaris containers have a feature called “branded zones” that allows Linux 
binaries to run on a Solaris kernel.

D
isk

C
P

U

M
emory

 Virtual machine 1

 Virtual machine 3

Host Kernel OS Virtualization 
(e.g., Solaris containers,

HP Integrity VM,
IBM workload partitions)

 Virtual machine 2

  



ptg

988 Chapter 24 Virtualization

Cloud services are commonly bundled with a control interface that adjusts capac-
ity on demand and allows one-click provisioning of new systems. Amazon’s Elas-
tic Compute Cloud (EC2) is the most mature of the first-generation services of 
this type. It has been widely adopted by companies that offer next-generation web 
platforms. Love it or hate it, utility computing is gaining traction with bean coun-
ters as a cheaper alternative to data centers and localized server infrastructure. 
Talking heads in the IT industry believe that cloud technologies in their myriad 
forms are the future of computing.

Cloud computing relies on some of the same ideas as virtualization, but it should 
be considered a distinct set of technologies in its own right. 

Live migration

A final concept to consider is the possibility of migrating virtual machines from 
one physical machine to another. Most virtualization software lets you move vir-
tual machines in real time between running systems, in some cases without inter-
ruptions in service or loss of connectivity. This feature is called live migration. It’s 
helpful for load balancing, disaster recovery, server maintenance, and general sys-
tem flexibility.

Comparison of virtualization technologies

Although the various virtualization options are conceptually different, each tech-
nique offers similar results in the end. Administrators access virtual systems in 
the same way as they access any normal node on the network. The primary differ-
ences are that hardware problems may affect multiple systems at once (since they 
share hardware) and that resource contention issues must be debugged at the 
same level at which virtualization is implemented (e.g., in the hypervisor).

24.2 BENEFITS OF VIRTUALIZATION

Given the many blessings of virtual computing, it’s surprising that it took so many 
years to be developed and commercially accepted. Cost savings, reduced energy 
use, simplified business continuity, and greater technical agility are some of the 
main drivers of the adoption of virtual technologies. 

Cost is a major factor in all new IT projects, and with virtualization, businesses 
realize immediate short-term cost savings because they purchase fewer servers. 
Instead of acquiring new servers for a new production application, administrators 
can spin up new virtual machines and save in up-front purchasing costs as well as 
ongoing support and maintenance fees. Cooling requirements are cut dramati-
cally since virtual servers do not generate heat, resulting in additional savings. 
Data centers also become easier to support and less expensive to maintain. With 
some organizations consolidating up to 30 physical servers onto a single virtual 
host, a quick glance at the savings in rack space alone is sure to set data center 
managers blushing with pride. 

  



ptg

A practical approach 989

Vi
rt

ua
liz

at
io

n

A reduced ecological impact is an easy marketing win for businesses as well. Some 
estimates suggest that nearly one percent of the world’s electricity is consumed by 
power-hungry data centers.2 Modern multicore CPUs are used more efficiently 
when several virtual machines are running simultaneously.

Business continuity—that is, the ability of a company to survive physical and log-
ical crises with minimal impact on business operations—is a vexing and expen-
sive problem for system administrators. Complex approaches to disaster recovery 
are simplified when virtual servers can be migrated from one physical location to 
another with a single command. The migration technologies supported by most 
virtualization platforms allow applications to be location independent. 

Because hypervisors can be accessed independently of the virtual servers they 
support, server management ceases to be grounded in physical reality and be-
comes fully scriptable. System administrators can respond quickly to customer 
requests for new systems and applications by making use of template-driven 
server provisioning. Scripts can automate and simplify common virtual system 
administration tasks. A virtual server’s boot, shutdown, and migration chores can 
be automated by shell scripts and even scheduled through cron. Discontinued op-
erating systems and applications can be moved off unsupported legacy hardware 
onto modern architectures.

Virtualization increases availability. Live migration allows physical servers to be 
taken down for maintenance without downtime or interruptions in service. Hard-
ware upgrades do not impact the business, either. When it’s time to replace an 
aging machine, the virtual system is immediately portable without a painful up-
grade, installation, test, and cutover cycle.

Virtualization makes the rigorous separation of development, test, staging, and 
production environments a realistic prospect, even for smaller businesses. Histor-
ically, maintaining these separate environments has been too expensive for many 
businesses to bear, even though regulations and standards may have demanded it. 
The individual environments may also benefit; for example, quality assurance tes-
ters can easily restore a test environment to its baseline configuration.

In terms of immediate gratification, few technologies seem to offer as many possi-
bilities as server virtualization. As we’ll see in the next section, however, virtual-
ization is not a panacea.

24.3 A PRACTICAL APPROACH

The transition to a virtualized environment must be carefully planned, managed, 
and implemented. An uncoordinated approach will lead to a motley assortment of 
unstable, unmanageable implementations that do more harm than good. Further-
more, the confidence of stakeholders is easily lost: early missteps can complicate 

2. Estimated by Jonathan Koomey in his excellent study “Estimating total power consumption by servers 
in the U.S. and the world.”

  



ptg

990 Chapter 24 Virtualization

future attempts to move reluctant users to new platforms. Slow and steady wins 
the race.

It’s important to choose the right systems to migrate since some applications are 
better suited to virtualization than others. Services that already have high utiliza-
tion might be better left on a physical system, at least at the outset. Other services 
that are best left alone include these:

• Resource intensive backup servers or log hosts
• High-bandwidth applications, such as intrusion detection systems
• Busy I/O-bound database servers
• Proprietary applications with hardware-based copy protection
• Applications with specialized hardware needs, such as medical systems 

or certain scientific data gathering applications

Good candidates for virtualization include these:

• Internet-facing web servers that query middleware systems or databases
• Underused stand-alone application servers
• Developer systems, such as build or version control servers
• Quality assurance test hosts and staging environments
• Core infrastructure systems, such as LDAP directories, DHCP and DNS 

servers, time servers, and SSH gateways

Starting with a small number of less critical systems will help establish the organi-
zation’s confidence and develop the expertise of administrators. New applications 
are obvious targets since they can be built for virtualization from the ground up. 
As the environment stabilizes, you can continue to migrate systems at regular in-
tervals. Large organizations might find that 25 to 50 servers per year is a sustain-
able pace.

Plan for appropriate infrastructure support in the new environment. Storage and 
network resources should support the migrations plans. If several systems on the 
same physical host will reside on separate physical networks, plan to trunk the 
network interfaces. Include appropriate attachments for systems that will use 
space on a SAN. Make smart decisions about locating similar systems on the same 
physical hardware to simplify the infrastructure. Finally, make sure that every vir-
tual machine has a secondary home to which it can migrate in the event of main-
tenance or hardware problems on the primary system. 

Don’t run all your mission-critical services on the same physical hardware, and 
don’t overload systems with too many virtual machines. 

Thanks to rapid improvements in server hardware, administrators have lots of 
good options for virtualization. Multicore, multiprocessor architectures are an ob-
vious choice for virtual machines since they reduce the need for context switches 
and facilitate the allocation of CPU resources. New blade server products from 
major manufacturers are designed for virtual environments and offer high I/O 

  



ptg

Introduction to Xen 991

Vi
rt

ua
liz

at
io

n

and memory capacity. Solid state disk drives have inherent synergy with virtual-
ization because of their fast access times and low power consumption.

24.4 VIRTUALIZATION WITH LINUX

Two major projects are vying for the title of Linux virtualization champion: Xen 
and KVM. In one corner, Xen is an established, well-documented platform with 
wide support from the distribution heavyweights. In the other corner, KVM has 
been accepted by Linus Torvalds into the mainstream Linux kernel. It enjoys a 
growing fan base, and both Ubuntu and Red Hat are supporting it. 

In this section we’ll stay out of the ring and stay focused on the pertinent system 
administration details for each technology.

Introduction to Xen

Initially developed by Ian Pratt as a research project at the University of Cam-
bridge, the Linux-friendly Xen has grown to become a formidable virtualization 
platform, challenging even the commercial giants in terms of performance, secu-
rity, and especially cost. As a paravirtual hypervisor, the Xen virtual machine 
monitor claims a mere 0.1%–3.5% overhead, far less than fully virtualized solu-
tions. Because the Xen hypervisor is open source, a number of management tools 
exist with varying levels of feature support. The Xen source is available from 
xen.org, but many distributions already include native support.

Xen is a bare-metal hypervisor that runs directly on the physical hardware. A run-
ning virtual machine is called a domain. There is always at least one domain, re-
ferred to as domain zero (or dom0). Domain zero has full hardware access, man-
ages the other domains, and runs all device drivers. Unprivileged domains are 
referred to as domU. All domains, including dom0, are controlled by the Xen hy-
pervisor, which is responsible for CPU scheduling and memory management. A 
suite of daemons, tools, and libraries completes the Xen architecture and enables 
communication between domU, dom0, and the hypervisor.

Several management tools simplify common Xen administration tasks such as 
booting and shutting down, configuring, and creating guests. Xen Tools is a col-
lection of Perl scripts that simplify domU creation. MLN, or Manage Large Net-
works, is another Perl script that creates complex virtual networks out of clean, 
easily understood configuration files. ConVirt is a shockingly advanced GUI tool 
for managing guests. It includes drag-and-drop live migration, agentless multi-
server support, availability and configuration dashboards, and template-driven 
provisioning for new virtual machines. For hardened command-line junkies, the 
unapologetic built-in tool xm fits the bill.

Linux distributions vary in their support of Xen. Red Hat originally expended 
significant resources on including Xen in its distributions before ditching it for 
the competing KVM software. Xen is well supported in SUSE Linux, particularly 
in the Enterprise 11 release. Canonical, the company behind Ubuntu Linux, has 

  



ptg

992 Chapter 24 Virtualization

taken an odd approach with Xen, wavering on support in most releases before 
finally dropping it in version 8.10 in favor of KVM (although Xen is still men-
tioned in documentation). Once installed, basic Xen usage differs little among 
distributions. In general, we recommend Red Hat or SUSE for a large Xen-based 
virtualization deployment.

Xen essentials

A Linux Xen server requires a number of daemons, scripts, configuration files, 
and tools. Table 24.1 lists the most interesting puzzle pieces.

Each Xen guest domain configuration file in /etc/xen specifies the virtual re-
sources available to a domU, such as disk devices, CPU, memory, and network 
interfaces. There is one configuration file per domU. The format is extremely flex-
ible and gives administrators granular control over the constraints that will be 
applied to each guest. If a symbolic link to a domU configuration file is added to 
the auto subdirectory, that guest OS will be automatically started at boot time.

The xend daemon handles domU creation, migration, and other management 
tasks. It must always remain running and typically starts at boot time. Its configu-
ration file, /etc/xen/xend-config.sxp, specifies the communication settings for 
the hypervisor and the resource constraints for dom0. It also configures facilities 
for live migration.

See the footnote on 
page 308 for more info 
about sparse files.

Guest domains’ disks are normally stored in virtual block devices (VBDs) in 
dom0. The VBD can be connected to a dedicated resource such as a physical disk 
drive or logical volume. Or it can be a loopback file, also known as a file-backed 
VBD, created with dd. Performance is better with a dedicated disk or volume, but 
files are more flexible and can be managed with normal Linux commands (such as 
mv and cp) in domain zero. Backing files are sparse files that grow as needed. 
Unless the system is experiencing performance bottlenecks, a file-backed VBD is 
usually the better choice. It’s a simple process to transfer a VBD onto a dedicated 
disk if you change your mind.

Table 24.1 Xen components

Path Purpose 

/etc/xen Primary configuration directory
xend-config.sxp Top-level xend configuration file 
auto Guest OS config files to autostart at boot time 
scripts Utility scripts that create network interfaces, etc. 

/var/log/xen Xen log files 
/usr/sbin/xend Master Xen controller daemon 
/usr/sbin/xm Xen guest domain management tool

  



ptg

Xen guest installation with virt-install 993

Vi
rt

ua
liz

at
io

n

Similarly, virtual network interfaces (aka VIFs) can be set up in multiple ways. 
The default is to use bridged mode, in which each guest domain is a node on the 
same network as the host. Routed and NAT modes configure guest domains to be 
on a private network, accessible to each other and domain 0 but hidden from the 
rest of the network. Advanced configurations include bonded network interfaces 
and VLANs for guests on different networks. If none of these options fit the bill, 
Xen network scripts are customizable to meet almost any unique need.

Xen guest installation with virt-install

One tool for simple guest installation is virt-install, bundled as part of Red Hat’s 
virt-manager application.3 virt-install is a command-line OS provisioning tool. 
It accepts installation media from a variety of sources, such as an NFS mount, a 
physical CD or DVD, or an HTTP location. 

For example, the installation of a guest domain might look like this:
redhat$ sudo virt-install -n chef -f /vm/chef.img -l http://example.com/myos 

-r 512 --nographics

This is a typical Xen guest domain with the name “chef,” a disk VBD location of 
/vm/chef.img, and installation media obtained through HTTP. The instance has 
512MiB of RAM and uses no X Windows-based graphics support during installa-
tion. virt-install downloads the files needed to start the installation and then 
kicks off the installer process.

You’ll see the screen clear, and you’ll go through a standard text-based Linux in-
stallation, including network configuration and package selection. After the in-
stallation completes, the guest domain reboots and is ready for use. To disconnect 
from the guest console and return to dom0, type <Control-]>.

See page 1138 for more 
details on VNC. 

It’s worth noting that although this incantation of virt-install provides a text-
based installation, graphical support through Virtual Network Computing (VNC) 
is also available.

The domain’s configuration is stored in /etc/xen/chef. Here’s what it looks like:
name = "chef" 
uuid = "a85e20f4-d11b-d4f7-1429-7339b1d0d051" 
maxmem = 512 
memory = 512 
vcpus = 1 
bootloader = "/usr/bin/pygrub" 
on_poweroff = "destroy" 
on_reboot = "restart" 
on_crash = "restart" 
vfb = [  ] 
disk = [ "tap:aio:/vm/chef.dsk,xvda,w" ] 
vif = [ "mac=00:16:3e:1e:57:79,bridge=xenbr0" ]

3. Install the python-virtinst package for virt-install support on Ubuntu.

  

http://example.com/myos


ptg

994 Chapter 24 Virtualization

You can see that the NIC defaults to bridged mode. In this case, the VBD is a 
“block tap” file that provides better performance than does a standard loopback 
file. The writable disk image file is presented to the guest as /dev/xvda. This par-
ticular disk device definition, tap:aio, is recommended by the Xen team for per-
formance reasons.

The xm tool is convenient for day-to-day management of virtual machines, such 
as starting and stopping VMs, connecting to their consoles, and investigating cur-
rent state. Below, we show the running guest domains, then connect to the con-
sole for chef. IDs are assigned in increasing order as guest domains are created, 
and they are reset when the host reboots.

redhat$ sudo xm list 
Name ID Mem(MiB) VCPUs State Time(s) 
Domain-0 0 2502 2 r----- 397.2 
chef 19 512 1 -b---- 12.8 
redhat$ sudo xm console 19

To effect any customization of a guest domain, such as attaching another disk or 
changing the network to NAT mode instead of bridged, you should edit the guest’s 
configuration file in /etc/xen and reboot the guest. The xmdomain.cfg man page 
contains excellent detail on additional options for guest domains.

Xen live migration

A domain migration is the process of moving a domU from one physical host to 
another, and a live migration does so without any loss of service. Practically 
speaking, this is one of the handiest and most magical of virtualization tricks for 
system administrators. Open network connections are maintained, so any SSH 
sessions or active HTTP connections will not be lost. Hardware maintenance, op-
erating system upgrades, and physical server reboots are all good opportunities to 
use migration magic. 

One important requirement for implementing migrations is that storage must be 
shared. Any storage needed by the domU, such as the disk image files on which 
the virtual machine is kept, must be accessible to both host servers. File-backed 
virtual machines are simplest for live migration since they’re usually contained in 
a single portable file. But a SAN, NAS, NFS share, or iSCSI unit are all acceptable 
methods of sharing files among systems. However the VBD is shared, be sure to 
run the domU on only one physical server at a time. Linux filesystems do not 
support direct, concurrent access by multiple hosts.

Additionally, because the IP and MAC addresses of a virtual machine follow it 
from one host to another, each server must be on the same layer 2 and IP subnets. 
Network hardware learns the new location of the MAC address once the virtual 
machine begins sending traffic over the network.

Once these basic requirements are met, all you need are a few configuration 
changes to the hypervisor configuration file, /etc/xen/xend-config.sxp, to enable 

  



ptg

KVM 995

Vi
rt

ua
liz

at
io

n

migrations. Table 24.2 describes the pertinent options; they are all commented 
out in a default Xen installation. After making changes, restart xend by running 
/etc/init.d/xend restart. 

In the process of migrating a virtual machine between hosts, the domU’s memory 
image traverses the network in an unencrypted format. Administrators should 
keep security in mind if the guest has sensitive data in memory.

Before attempting a migration, the guest’s configuration file must be in place on 
both the source and destination servers. If the location of the disk image files dif-
fers between hosts (e.g., if one server mounts the shared storage in /xen and the 
other in /vm), this difference should be reflected in the disk = parameter of the 
domain’s configuration file.

The migration itself is simple:
redhat$ sudo xm migrate --live chef server2.example.com

Assuming that our guest domain chef is running, the command migrates it to 
another Xen host, server2.example.com. Omitting the --live flag pauses the do-
main prior to migration. We find it entertaining to run a ping against chef ’s IP 
address during the migration to watch for dropped packets.

KVM

KVM, the Kernel-based Virtual Machine, is a full virtualization tool that has been 
included in the mainline Linux kernel since version 2.6.20. It depends on the Intel 
VT and AMD-V virtualization extensions found on current CPUs.4 It is the de-
fault virtualization technology in Ubuntu, and Red Hat has also changed gears 
from Xen to KVM after acquiring KVM’s parent company, Qumranet.

Since KVM virtualization is supported by the CPU hardware, many guest operat-
ing systems are supported, including Windows. The software also depends on a 
modified version of the QEMU processor emulator. 

Table 24.2 Live migration options in the xend configuration file

Option Description

xend-relocation-server Enables migration; set to yes 
xend-relocation-port Network port used for migration activities 
xend-relocation-address Interface to listen on for migration connections. If 

unspecified, Xen listens on all interfaces in dom0.
xend-relocation-hosts-allow Hosts from which to allow connectionsa

a. This should never be blank; otherwise, connections will be allowed from all hosts.

4. Does your CPU have them? Try egrep '(vmx|svm)' /proc/cpuinfo to find out. If the command dis-
plays no output, the extensions are not present. On some systems, the extensions must be enabled in 
the system BIOS before they become visible.

  



ptg

996 Chapter 24 Virtualization

Under KVM, the Linux kernel itself serves as the hypervisor; memory manage-
ment and scheduling are handled through the host’s kernel, and guest machines 
are normal Linux processes. Enormous benefits accompany this unique approach 
to virtualization. For example, the complexity introduced by multicore processors 
is handled by the kernel, and no hypervisor changes are required to support them. 
Linux commands such as top, ps, and kill show and control virtual machines, just 
as they would for other processes. The integration with Linux is seamless.

Administrators should be cautioned that KVM is a relatively young technology, 
and it should be heavily tested before being promoted to production use. The 
KVM site itself documents numerous incompatibilities when running guests of 
differing operating system flavors. Reports of live migrations breaking between 
different versions of KVM are common. Consider yourself forewarned.

KVM installation and usage

Although the technologies behind Xen and KVM are fundamentally different, the 
tools that install and manage guests operating systems are similar. As under Xen, 
you can use virt-install to create new KVM guests. Use the virsh command to 
manage them.5 These utilities depend on Red Hat’s libvirt library.

Before the installation is started, the host must be configured to support network-
ing in the guests.6 In most configurations, one physical interface is used to bridge 
network connectivity to each of the guests. Under Red Hat, the network device 
configuration files are in /etc/sysconfig/network-scripts. Two device files are re-
quired: one each for the bridge and the physical device.

In the examples below, peth0 is the physical device and eth0 is the bridge:
/etc/sysconfig/network-scripts/peth0

DEVICE=peth0
ONBOOT=yes 
BRIDGE=eth0 
HWADDR=XX:XX:XX:XX:XX:XX

/etc/sysconfig/network-scripts/eth0

DEVICE=eth0
BOOTPROTO=dhcp 
ONBOOT=yes 
TYPE=Bridge

Here, the eth0 device receives an IP address through DHCP.

The flags passed to virt-install vary slightly from those used for a Xen installa-
tion. To begin with, the --hvm flag indicates that the guest should be hardware 
virtualized, as opposed to paravirtualized. In addition, the --connect argument 
guarantees that the correct default hypervisor is chosen, since virt-install sup-

5. You can use virsh to manage Xen domUs as well, if you wish.
6. This is equally true with Xen, but xend does the heavy lifting, creating interfaces in the background.

  



ptg

Solaris zones and containers 997

Vi
rt

ua
liz

at
io

n

ports more than one hypervisor. Finally, the use of --accelerate is recommended, 
to take advantage of the acceleration capabilities in KVM. Ergo, an example of a 
full command for installing an Ubuntu server guest from CD-ROM is

ubuntu$ sudo virt-install --connect qemu:///system -n UbuntuHardy 
-r 512 -f ~/ubuntu-hardy.img -s 12 -c /dev/dvd --os-type linux 
--accelerate --hvm --vnc

Would you like to enable graphics support? (yes or no)

Assuming that the Ubuntu installation DVD has been inserted, this command 
launches the installation and stores the guest in the file ~/ubuntu-hardy.img, al-
lowing it to grow to 12GB. Since we specified neither --nographics nor --vnc, 
virt-install asks whether to enable graphics.

The virsh utility spawns its own shell from which commands are run. To open the 
shell, type virsh --connect qemu:///system. The following series of commands 
demonstrates some of the core functionality of virsh. Type help in the shell to see 
a complete list, or see the man page for the nitty-gritty details.

ubuntu$ sudo virsh --connect qemu:///system
virsh # list --all
Id Name State 

---------------------------------------------
3 UbuntuHardy running
7 Fedora running
- Windows2003Server shut off

virsh # start Windows2003Server 
Domain WindowsServer started

virsh # shutdown FedoraExample 
Domain FedoraExample is being shutdown

virsh # quit

Live migrations with KVM appear to be a work in progress; the implementation 
has changed dramatically between versions. Migrations between systems with dif-
fering CPU architectures may require special patches. We do not recommend de-
pending on KVM live migrations in a production environment until some level of 
stability has been reached.

24.5 SOLARIS ZONES AND CONTAINERS

Sun brought OS-level virtualization to the system administration game earlier 
than most with the inclusion of zones and containers in Solaris 10 (circa 2005). 
Extensive on-line documentation and a community of active supporters have led 
to wide acceptance and adoption of this technology in the business community. 
Flexibility and a rich suite of management tools also help make Solaris virtualiza-
tion an easy sell. 

  



ptg

998 Chapter 24 Virtualization

Zones and containers are not Solaris’s only virtualization tools. The xVM project 
includes a Xen-based hypervisor called LDOM for virtual machines along with a 
powerful management tool for deploying and managing large numbers of guest 
systems. Sun’s hardware technology (along with the systems from many other 
vendors) can physically partition hardware at the electrical layer, permitting more 
than one operating system to run concurrently on the same chassis. We don’t dis-
cuss these additional technologies in this book, but they’re worth looking into for 
sites with a lot of Sun hardware.

Zones and containers are distinct from other virtualization tools, so let’s begin 
with a quick overview to help wrap some structure around the commands we 
examine later.

The terms “zone” and “container” are largely interchangeable. In the strictest 
sense, a zone is a protected execution environment and a container is a zone plus 
resource management. In practice, the terms are equivalent, and that’s how we use 
them in this chapter.

All Solaris systems have a “global zone,” which runs the kernel and all processes 
on the system, including those in other zones. A nonglobal zone is a virtual Solaris 
system that runs alongside the global zone. Network traffic and processes running 
in a nonglobal zone are not visible from other nonglobal zones, but all process 
activity is visible from the global zone. For security, it’s important to limit access 
to the global zone to system administrators. 

Two types of zones, whole-root and sparse, are available. A whole-root zone con-
tains its own copy of the operating system files and independent filesystems but 
requires much more storage space. A sparse zone shares many of its filesystems 
with the global zone, mounting them read-only.

Resource pools are collections of system resources, such as processors, that can be 
allocated among zones. At least one resource pool, the default pool, exists on all 
systems, and it contains all the system’s resources. All zones, including the global 
zone, must have at least one resource pool. You can create multiple resource pools 
to allocate the available system resources among running zones.

A resource pool consists of at least one resource set (which is currently limited to 
a division of CPU resources) and a scheduling algorithm. Multiple zones can 
share a single resource pool, in which case the scheduler will determine how the 
CPU usage is shared among the zones that use the resource pool. 

Zones support a variety of different scheduling algorithms for use in different cir-
cumstances, but we focus on the most popular, “fair share scheduling,” here.

Let’s ground all this detail with a concrete example. Imagine a system running two 
physical CPUs. This particular system is going to run two virtual Solaris systems: 
one with a proprietary application that requires at least one full CPU, plus a light-
weight web server that has no particular resource requirements. Exhibit D shows 
the Solaris implementation of this architecture.

  



ptg

Solaris zones and containers 999

Vi
rt

ua
liz

at
io

n

Exhibit D Solaris containers example

Exhibit D shows three containers, one each for the proprietary software, the web 
server, and the original (global) Solaris instance. In addition, there are three 
zones, one each for the proprietary application, the web server, and global. There 
are two resource pools, each with one CPU.

The web server and the global zone share the default resource pool, which con-
tains one CPU and uses the fair share scheduling algorithm. Each of the zones has 
one share (not depicted), meaning that CPU resources will be divided evenly be-
tween the global and web server zones. The proprietary application uses a sepa-
rate resource pool with a dedicated CPU.

Solaris provides several command-line tools for managing containers, zones, and 
resources. Most importantly, zones and resource pools each have a configuration 
tool and an administration tool: zonecfg, zoneadm, poolcfg, pooladm.

You must construct resource pools with pooladm before you can assign them to a 
zone. Enable pools with the -e flag, then run pooladm with no arguments to see 
the current status:

solaris$ sudo pooladm -e 
solaris$ sudo pooladm

system default 
string system.comment 
int system.version 1 
boolean system.bind-default true 
string system.poold.objectives wt-load

…

We’ve truncated the lengthy output; the command continues to print the current 
resource pool information and available CPU status. The default pool is called 
pool_default, and it includes all available CPU resources.

Proprietary 
application 

zone

Global 
zone

Web server 
zone

Proprietary 
resource pool 

1 CPU

Default resource pool 
1 CPU 

Fair share scheduling

Container 3Container 1 Container 2

  



ptg

1000 Chapter 24 Virtualization

The poolcfg command creates a new pool. In the series of commands below, we 
allocate a single CPU to the proprietary resource set, assign the resource set to a 
new resource pool, and activate the pool.

solaris$ sudo poolcfg -c 'create pset proprietary-pset (uint pset.min=1; uint 
pset.max=1)'

solaris$ sudo poolcfg -c 'create pool proprietary-pool' 
solaris$ sudo pooladm -c

We can now create a zone with the zoneadm and zonecfg commands. Running 
zonecfg opens a new configuration shell for the zone. Conveniently, the tool sup-
ports shell-like features such as <Tab> completion and cursor movement hot keys.

At a minimum, the zone must be

• Created;
• Given a storage path for the zone files and filesystems;
• Given an independent IP address;
• Assigned to one of the system’s active NICs;
• Assigned the resource pool we created above.

Here’s how:
solaris$ sudo zonecfg -z proprietary-zone 
zonecfg:proprietary-zone> create 
zonecfg:proprietary-zone> set zonepath=/zones/proprietary-zone 
zonecfg:proprietary-zone> set autoboot=true 
zonecfg:proprietary-zone> add net 
zonecfg:proprietary-zone:net> set address=192.168.10.123 
zonecfg:proprietary-zone:net> set physical=e1000g0 
zonecfg:proprietary-zone:net> end 
zonecfg:proprietary-zone> set pool=proprietary-pool 
zonecfg:proprietary-zone> verify 
zonecfg:proprietary-zone> commit 
zonecfg:proprietary-zone> exit

Note that the zonecfg prompt shows you the object you’re currently working on.

At this point the zone has been configured, but it is not actually installed or ready 
to run. This is a full Solaris system, and it needs to have packages installed, just as 
a normal system would. The zoneadm utility installs, boots, and performs other 
operations on the zone.

solaris$ sudo zoneadm -z proprietary-zone install 
Preparing to install zone <proprietary-zone>. 
Creating list of files to copy from the global zone. 
… 
solaris$ sudo zoneadm -z proprietary-zone boot 
solaris$ sudo zoneadm list 
global 
proprietary-zone

  



ptg

AIX workload partitions 1001

Vi
rt

ua
liz

at
io

n

Now the zone is running, and an invocation of zlogin -C proprietary-zone will 
connect to its console. The boot process for a zone is much like that of a physical 
system, so connecting with zlogin before bootstrapping is complete displays out-
put from the boot process. We must perform all the normal configuration for a 
new system, such as choosing language options and an authentication method.

The remaining task is to create a zone for our web server. Since the web server 
zone will share the default resource pool with the global zone, it isn’t necessary to 
create a new pool. Instead, we would just create the zone with zonecfg as shown 
above, but with set pool=pool_default.

There is considerably more depth to zones and containers than we’ve shown here. 
Advanced features that administrators should be aware of include migration of 
zones between physical systems (although live migrations are not supported), ZFS 
resources for smaller whole-root zones, and “branded zones” that support run-
ning binaries from other platforms (e.g., Linux) on a Solaris kernel.

24.6 AIX WORKLOAD PARTITIONS

IBM has been in the virtualization game a long time. They pioneered the concept 
in the 1960s, but it wasn’t until the release of AIX 6.1 in late 2007 that software 
virtualization was included in AIX. Any system capable of running AIX 6 sup-
ports workload partitions (WPARs). (This technology is distinct from IBM’s vari-
ous logical partition implementations found in versions as early as 4.3.)

WPARs run in an isolated execution environment. Processes can only communi-
cate with peers in the same partition. Signals and events in the global environ-
ment do not affect the partition, and vice versa. WPARs can have their own dedi-
cated network addresses.

WPARs are served in two delicious flavors: system and application.

• A system WPAR shares only the AIX kernel with the global environment 
(the host, essentially). An application running in a system WPAR 
believes it is running in an independent AIX installation with its own 
inetd daemon for networking autonomy.

• An application WPAR runs a single application in an isolated environ-
ment. It shares all filesystems with the global environment and cannot 
provide remote access capabilities. The application WPAR exits when 
the application completes.

IBM provides several tools for managing WPARs, continuing the AIX tradition of 
convenient administration. We discuss the command-line interface here, but ad-
ministrators should be aware that in typical AIX fashion, there is a full SMIT in-
terface as well as WPAR Manager, a web-based management interface for central-
ized management of multiple servers and their workload partitions.

  



ptg

1002 Chapter 24 Virtualization

You create a system WPAR with the mkwpar command. The only required argu-
ment is -n to name it. Thus, the command mkwpar -n mario creates a partition 
named “mario.” mkwpar creates the relevant filesystems, installs the appropriate 
filesets, and prepares subsystems and services. This process takes only a short 
time; when it’s finished, run startwpar mario to start the WPAR. 

The /wpars directory in the global environment will contain the filesystems for 
mario. You can list the WPARs from the global environment with lswpar:

aix$ sudo lswpar    
Name State Type Hostname Directory  
------------------------------------------------------------
mario A S mario /wpars/mario

To attach as root to the console, use clogin mario. Could it be any easier?

This simple example leaves out a number of important considerations and cus-
tomization opportunities. For one, new software cannot be installed in the mario 
WPAR because the /usr and /opt filesystems are by default mounted read-only to 
save space. No network interfaces are available. The simplified procedure above 
also ignores IBM’s excellent resource management features, which facilitate ad-
ministrative control over the WPAR’s use of CPU, memory, virtual memory, and 
other resources.

To create a more usable instance, you can beef up your mkwpar command with 
some additional arguments. The version below creates a WPAR with the follow-
ing attributes:

• The name of the WPAR is mario (-n).
• Name resolution settings are inherited from the global instance (-r).
• Private, writable /opt and /usr filesystems are created (-l).
• The WPAR uses the IP address 192.168.10.15 on the en0 interface from 

the global WPAR (-N).
• The CPU allocated to this WPAR will be a minimum of 5%, a soft maxi-

mum of 15%, and an absolute limit of 25% (-R).
aix$ sudo mkwpar -n mario -r -l -N interface=en3 address=192.168.10.15 

netmask=255.255.255.0 broadcast=192.168.10.255 -R active=yes 
CPU=5%-15%,25%

This invocation is a little chewier than a basic mkwpar and it takes longer to exe-
cute because of the duplication of /usr and /opt. 

To modify a partition after it has been created, use the chwpar command. You can 
stop a partition with stopwpar and remove it for good with rmwpar.

Application WPARS are handled very similarly. Instead of mkwpar, application 
WPARs are created with wparexec. Parameters are generally identical to those of 
mkwpar, but rather than providing a name, you provide the application to exe-
cute as an argument. For example, to run Apache in its own application WPAR, 
simply use wparexec /usr/local/sbin/httpd. 

  



ptg

Creating and installing virtual machines 1003

Vi
rt

ua
liz

at
io

n

24.7 INTEGRITY VIRTUAL MACHINES IN HP-UX

If HP’s goal is to confuse administrators with the most disorganized possible ap-
proach to virtualization, they have succeeded admirably. On a stand-alone, low-
end server, the Integrity Virtual Machines software shares hardware resources 
among multiple guest operating systems. For larger systems with multiple cores, 
HP has a more powerful software partitioning technology called Virtual Parti-
tions, aka vPars. Additionally, the hardware partitioning service known as nParti-
tions provides a true electrical-level separation between running servers. These 
technologies, along with HP’s clustering software, are collectively referred to as 
the Virtual Server Environment.

In this section we cover only Integrity Virtual Machines. IVM is a full virtualiza-
tion technology, and unmodified versions of Windows and Linux can run on an 
HP-UX host. Each guest is given a preconfigured proportion of CPU time. Mem-
ory and storage allocation is also tunable. An unlimited number of guests may be 
configured, but the number of running virtual machines is capped at 256.

Network connectivity for guest machines consists of three components:

• A physical network adapter in the host, also known as a pNIC
• A guest network adapter, referred to as a virtual NIC or vNIC
• A virtual switch, or vswitch, that creates a network between the host and 

one or more guests

The intricacies of the various network configurations offered in an Integrity in-
stallation are daunting, but we appreciate the flexibility the system offers. For pur-
poses of this discussion, we’ll create a single vswitch that maps to the same net-
work the host lives on. This is the simplest configuration and is equivalent to the 
bridged networks discussed elsewhere in this chapter.

Much as in Xen, the host can supply storage to guests from physical disks, DVDs, 
tape changers, or files in the host operating system. Also eerily reminiscent of 
Xen, milking the best performance out of a storage device is something of an art. 

Consult HP’s Installation, Configuration, and Administration Guide for a thorough 
guide to complex network configurations and techniques for optimizing storage 
performance.

Creating and installing virtual machines

The commands that create, install, and manage virtual machines are powerful yet 
simple. Each command name starts with an hpvm prefix, with the rest of the 
command corresponding to the desired action. For example, to create a new vir-
tual machine, the command is hpvmcreate.

Various arguments to each command control the configuration of the guest oper-
ating systems, and there are no static files for the administrator to manage. 
Changes to a guest are made with the hpvmmodify command.

  



ptg

1004 Chapter 24 Virtualization

Before you create a virtual machine, its storage and network resources must be 
available. In the example below, we first create a filesystem on one of the host’s 
physical disks to store the guest, then create a vswitch to provide the guest’s net-
work connectivity. To summarize the virtual machine creation process:

• Create a storage resource for the guest’s files.
• Create a virtual switch for network connectivity.
• Create the virtual machine.
• Start and install the virtual machine.

In the series of commands below, we use the mkfs command to create a filesystem 
on the physical device disk3, an arbitrary disk that happened to be available on 
our lab system. It will eventually store the guest’s operating system, applications, 
and data. The file is mounted under /vdev, and finally the hpvmdevmgmt com-
mand (not to be confused with the hpwndkwlvyfm command) creates a usable 
storage entity called disk1.

hp-ux$ sudo mkfs -F vxfs -o largefiles /dev/disk/disk3
hp-ux$ sudo mount /dev/disk/disk3 /vdev/vm0disk/
hp-ux$ sudo hpvmdevmgmt -S 8G /vdev/vm0disk/disk1

The next step is to create a virtual switch for use by the guest. A single vswitch can 
be used by multiple guests.

hp-ux$ lanscan 
Hardware Station Crd Hdw Net-Interface NM MAC HP-DLPI DLPI
Path Address In# State NamePPA ID Type Support Mjr#
0/0/3/0 0x00306EEA9237 0 UP lan0 snap0 1 ETHER Yes 119
0/1/2/0 0x00306EEA720D 1 UP lan1 snap1 2 ETHER Yes 119
hp-ux$ sudo hpvmnet -c -S vm0switch -n 0 
hp-ux$ sudo hpvmnet -b -S vm0switch

Here, the handy lanscan command finds all the system’s network interfaces. We 
need the identifier for the network interface on the correct network; in this case 
it’s the 0 in lan0. Using the hpvmnet command, we create the switch by using 
lan0, then start it in the next command with the -b argument.

Now that the necessary resources have been created, it’s finally time to create the 
virtual machine itself.

hp-ux$ sudo hpvmcreate -P vm0 -O hpux -r 2G 
-a network:lan:vswitch:vm0switch -a disk:scsi::file:/vdev/vm0disk/disk1

hp-ux$ sudo hpvmstart -P vm0

This command creates a virtual machine called vm0, allocates 2GiB of memory to 
it, uses the virtual switch vm0switch, and selects the storage device we created 
above. The new virtual machine is then started with the hpvmstart command.

Installation of the virtual machine is identical to installing a physical machine 
from the console. Attach to the console with hpvmconsole -P vm0 and discon-
nect with <Control-B>. To check the status of a guest, use hpvmstatus -P vm0.

  



ptg

Amazon Web Services 1005

Vi
rt

ua
liz

at
io

n

24.8 VMWARE: AN OPERATING SYSTEM IN ITS OWN RIGHT

VMware is the biggest player in the bleeding edge virtualization industry and was 
the first vendor to develop techniques to virtualize the fractious x86 platform. 
VMware developed techniques for handling seventeen problematic instructions 
that previously prevented virtualization from becoming ubiquitous. The release of 
the VMware Workstation product in 1999 sparked a call to arms for more effi-
cient computing—a call that is still reverberating today.

VMware is a third-party commercial product that is worthy of consideration 
when you are choosing a site-wide virtualization technology. The primary prod-
ucts of interest to UNIX and Linux administrators are ESX and ESXi, both of 
which are bare-metal hypervisors for the Intel x86 architecture. ESXi is free, but 
some useful functionality, such as console access, has been removed. ESX targets 
the enterprise with scriptable installations, features for monitoring through 
SNMP, and support for booting from a storage area network (SAN) device.

In addition to the ESX products, VMware offers some powerful, advanced prod-
ucts that facilitate centralized deployment and management of virtual machines. 
They also have the most mature live migration technology we’ve seen. Unfortu-
nately, their client management interface runs only on Windows at this time. Col-
lectively, VMware’s products create a next generation IT environment, in-depth 
coverage of which is unfortunately beyond the scope of this chapter.

HP-UX and AIX cannot run as VMware virtual machines because those operat-
ing systems run on proprietary processor architectures that VMware does not em-
ulate. Linux is of course well supported. Solaris can also run under VMware since 
its code base covers both the SPARC and x86 platforms.

24.9 AMAZON WEB SERVICES

All the cool kids are getting into cloud computing, and Amazon Web Services 
(AWS) is leading the pack. Starting in early 2006, Amazon began to productize 
the infrastructure behind its amazon.com site by selling access to a suite of APIs 
and web services. These services have become an immensely powerful, scalable, 
and highly available computing and service platform for anyone that needs cheap, 
instantaneous computing power or storage.

The core suite of AWS offerings of interest to a UNIX administrator include

• EC2, the Elastic Compute Cloud – a platform for scalable computing. 
An EC2 “instance” is a server located on the Internet that runs an oper-
ating system of your choice and is under your complete control. You can 
add and remove instances at will. EC2 is based on Xen, and many differ-
ent operating systems are supported.

  



ptg

1006 Chapter 24 Virtualization

• EBS, the Elastic Block Store – persistent, disk-like storage for EC2 
instances. EBS is similar in concept to SAN storage. It lets EC2 instances 
preserve and share state across invocations.

• S3, Simple Storage Services – a highly available, long-term storage infra-
structure. S3 differs from EBS in that it is not intended to be mounted as 
a filesystem but instead stores and retrieves objects through an API.

These services give administrators unprecedented flexibility and scalability, at the 
cost of losing some control over hardware and network configuration. 

Administrators and developers alike must also consider the security implications 
of moving services to the cloud. Sensitive data should be left in a physical data 
center, especially when subject to regulations such as Sarbanes-Oxley or HIPAA 
(in the United States). Regulatory requirements may or may not preclude the use 
cloud computing, but until the courts work out the kinks, it’s better to play it safe.

Where, then, does the AWS become useful? In terms of cost, availability, and dy-
namic scalability, it’s difficult to compete with AWS as a web-hosting platform. 
The cost for on-demand EC2 instances currently ranges from $0.09 to $0.68 per 
hour, depending on the computing power of the instance. S3 storage is priced at 
$0.15 per GB per month. These pennies add up (the cheapest possible EC2 in-
stance works out to about $379/year on a three-year plan), but with power, cool-
ing, and maintenance included, the bottom line is generally more attractive than 
self-hosted servers when all costs are considered.

With limitless processing capacity, the cloud is also attractive as a distributed 
computing platform. In fact, AWS could be useful for hosting email, DNS, or 
other services that are normally provided in the data center.

AWS is at heart a set of SOAP APIs, but Amazon provides some simple com-
mand-line wrappers written in Java as well as a web-based GUI and a Firefox 
plug-in. AWS can run both Linux and Windows as guest operating systems. 

The steps to get an instance up and running with persistent storage include

• Installing and configuring a Java run-time environment (make sure the 
JAVA_HOME environment variable points to the right place);

• Creating S3 and EC2 accounts with Amazon Web Services;

• Downloading and installing the EC2 tools;

• Creating an EC2 instance from an Amazon Machine Image (AMI), 
which is the disk image of a configured operating system, possibly with 
some extra software installed. There are many to choose from, or you 
can roll your own.

• Creating an EBS volume and attaching it to your instance.

  



ptg

Amazon Web Services 1007

Vi
rt

ua
liz

at
io

n

The AWS web site contains the account signup pages and all the necessary down-
loads. To start using AWS, download the command-line tools and the access iden-
tifiers, which consist of a certificate and a private key.

Make a directory called ~/.ec2 and move the downloaded certificate file, key file, 
and extracted tools to that directory. All EC2 commands will reside in ~/.ec2/bin, 
with library dependencies in ~/.ec2/lib. To set up the environment for easy use, 
add the following to the shell’s login script. (For bash, the file is ~/.bash_login or 
~/.bash_profile.)

export EC2_HOME=~/.ec2 
export PATH=$PATH:$EC2_HOME/bin 
export EC2_PRIVATE_KEY=$EC2_HOME/pk-<long string value>.pem 
export EC2_CERT=$EC2_HOME/cert-<long string value>.pem 
export JAVA_HOME=/path/to/java

Finally, before choosing an image and starting it, create a key pair that you’ll use 
to gain access to the image. The ec2-add-keypair command creates a new key 
pair. Any new images that are created will automatically be configured to use the 
new public key for SSH authentication on the root account.

ubuntu$ ec2-add-keypair my-keypair 
KEYPAIR my-keypair b0:65:11:df:05:43:3b:f7:42:93:fb:0e:7f:63:22:13:ff:88:e5:ae 
-----BEGIN RSA PRIVATE KEY-----
MIIEowIBAAKCAQEAoiJxHIHjuXOqeEoKae1uj8ny55INuWS5hOQVBxfuhEwG7kttz

kiuF8B7U4C4 
… 
82827HZO/9cCok6FP8loOAR8GIJvDzvWozZ7hdRhc/i6isWBiMTDQQUItk79fI9atk7P 
-----END RSA PRIVATE KEY-----

This key will be needed in the future, so save everything but the line beginning 
with KEYPAIR to a file in the ~/.ec2 directory and make sure the permissions are 
600. Never share the private key file—it contains the keys to the cloud kingdom!

Now it’s time to choose an AMI. There are an enormous number of AMIs to 
choose from, many created by Amazon and many contributed (or sold) by the 
community. It’s also possible to build a custom AMI for private use, possibly con-
figured with the particulars of your environment or preinstalled with all your 
needed applications.

After choosing an image, note its identifier. The command below lists the AMIs 
created by Amazon. Having added the tools directory to the PATH variable, you 
can execute EC2 commands anywhere.

ubuntu$ ec2-describe-images -o amazon 
IMAGE    ami-ba4eaad3    /aws-quickstart/phpquickstart.manifest.xml    

amazon available public i386 machine 
IMAGE    ami-b44bafdd    /aws-quickstart/rubyquickstart.manifest.xml    

amazon available public i386 machine aki-a71cf9ce ari-a51cf9cc 
IMAGE    ami-1c54b075    /aws-quickstart/tomcatquickstart.manifest.xml    

amazon available public i386 machine aki-a71cf9ce ari-a51cf9cc 
…

  



ptg

1008 Chapter 24 Virtualization

The image name typically has a brief description to help you understand its pur-
pose and configuration, but details are available in an on-line directory. To spin 
up the PHP quick start AMI from the list above, use the following command:

ubuntu$ ec2-run-instances  ami-ba4eaad3 -k my-keypair 
ubuntu$ ec2-describe-instances 
RESERVATION    r-56aa053f        default 
INSTANCE    i-1343fb7a    ami-ba4eaad3            pending    my-keypair    0        

m1.small    2008-12-22T01:43:27+0000    us-east-1c

The ec2-describe-instances output reflects that the instance is still booting (sta-
tus “pending”) and that it’s using the key pair set with the name my-keypair. 

Importantly, the output shows that the instance is running in the us-east-1c avail-
ability zone. Amazon has segmented its systems into separate availability zones, so 
that a user who wants to guarantee that several instances will run in physically 
separate data centers can request this on the command line. This value will also be 
needed to attach an EBS volume.

Finally, the command shows that the instance type is m1.small. This code tells you 
the amount of resources available to the system. Amazon has defined several stan-
dard profiles; m1.small is the default and includes a single 32-bit EC2 CPU, 1.7GB 
memory, and 160GB of (nonpersistent) disk. Of course, the actual hardware your 
server runs on probably looks nothing like this; it’s just a way of describing your 
allocation.

Once the instance is running, any network ports you need to access must be au-
thorized through another EC2 command, ec2-authorize:

ubuntu$ ec2-authorize default -p 22

In this case, port 22 (for SSH) is authorized for all hosts in the default group. 
(Groups are a mechanism for managing collections of instances. New instances 
are provisioned in the default group unless otherwise specified.) After you’ve been 
authorized on port 22, you can finally connect to your new instance. To do so, 
first find the hostname, then SSH to it just as if it were another node on the Inter-
net (because it is!).

ubuntu$ ec2-describe-instances 
RESERVATION    r-56aa053f       default 
INSTANCE    i-1343fb7a    ami-ba4eaad3    ec2-67-202-24-235.compute-

1.amazonaws.com    domU-12-31-39-02-5E-55.compute-1.internal    
runninmy-keypair    0        m1.small    2008-12-22T01:43:27+0000    
us-east-1c

ubuntu$ ssh -i ~/.ec2/id_rsa-my-keypair 
root@ec2-67-202-24-235.compute-1.amazonaws.com

This command uses the key pair saved above to connect to the new instance’s root 
account. For security reasons, we recommend disabling root SSH access.

  



ptg

Amazon Web Services 1009

Vi
rt

ua
liz

at
io

n

The only remaining problem is that instances are not persistent. That is, when this 
instance terminates, any changes to its disk or memory state are not captured. EBS 
provisions storage volumes just as new instances are provisioned. Here, we create 
a volume and attach it to the running host.

ubuntu$ ec2-create-volume -s 1 -z us-east-1c 
VOLUME    vol-5de80c34    1        us-east-1c    creating    2008-12-22T02:02:

53+0000 
ubuntu$ ec2-attach-volume vol-5de80c34 -i i-1343fb7a -d /dev/sdf 
ATTACHMENT    vol-5de80c34    i-1343fb7a    /dev/sdf    attaching    2008-

12-22T02:04:01+0000 
ubuntu$ ec2-describe-volumes 
VOLUME    vol-5de80c34    1        us-east-1c    in-use    2008-12-22T02:02:

53+0000
ATTACHMENT    vol-5de80c34    i-1343fb7a    /dev/sdf    attached    2008-12-

22T02:04:01+0000

See the Adding a Disk 
chapter for more infor-
mation about creating 
filesystems.

These commands create a new EBS storage volume in the us-east-1c availability 
zone and attach it as the device /dev/sdf to the instance created above. To create a 
filesystem and begin using the volume, log in to the instance and proceed as if you 
were creating a filesystem on a physical disk.

Remember that AWS charges by the hour for instances, so unused instances and 
volumes should be cleaned up. Before terminating an unneeded instance, be sure 
to detach any EBS volumes and gracefully shut down the system, just as you 
would a physical host.

ubuntu$ ec2-detach-volume vol-5de80c34 
ATTACHMENT    vol-5de80c34    i-1343fb7a    /dev/sdf    detaching    2008-

12-22T02:04:01+0000 
ubuntu$ ec2-terminate-instances  i-1343fb7a 
INSTANCE    i-1343fb7a    running    shutting-down 
ubuntu$ ec2-delete-volume vol-5de80c34 
VOLUME    vol-5de80c34

In addition to the command-line interface, Amazon offers a web management 
interface that can initiate the same operations as the command-line tools, such as 
starting and stopping instances, attaching storage volumes, and allocating IP ad-
dresses. A Firefox web browser plug-in called ElasticFox provides similar func-
tionality from within the browser itself. 

Amazon regularly introduces new features and products to its web services prod-
uct line. Auto-scaling of EC2 instances automatically spins up new servers to pre-
vent outages when the load is high. The CloudWatch feature monitors metrics 
such as CPU usage and disk I/O for quick response to changing conditions. Keep 
an eye on the AWS blog at aws.typepad.com for feature enhancements and prod-
uct announcements.

  



ptg

1010 Chapter 24 Virtualization

24.10 RECOMMENDED READING 

The web site virtualization.info is an excellent source of current news, trends, and 
gossip in the virtualization and cloud computing sectors. 

TROY, RYAN. VMware Cookbook: A Real-World Guide to Effective VMware Use. 
Sebastopol, CA: O’Reilly Media, 2009.

CRAWFORD, LUKE. The Book of Xen: A Practical Guide for the System Administra-
tor. San Francisco, CA: No Starch Press, 2009.

HESS, KENNETH. Practical Virtualization Solutions: Virtualization from the 
Trenches. Upper Saddle River, NJ: Prentice Hall PTR, 2009.

24.11 EXERCISES 

E24.1 Briefly compare and contrast the different approaches to virtualiza-
tion. In what category is KVM? Why is cloud computing a distinct 
technology from virtualization?

E24.2 Modern Intel and AMD processors include special instructions that 
improve virtualization support. What are these instructions, and what 
special functions do they accomplish? Given a running system and a 
knowledge of the processor model, describe at least two ways of deter-
mining whether the virtualization instructions are supported.

E24.3 What new features has Amazon Web Services started to support since 
this chapter was written? Are they enhancements to the existing infra-
structure or entirely new services?

E24.4 Create an Amazon Web Services account and a public key pair. Set up 
a Java environment and create an EC2 instance. Can you access the 
console directly? What does this imply? Assuming that the instance 
was intended to contain sensitive data, what steps could you take to 
reassure a client that the data would be protected in the cloud?

E24.5 A large enterprise is planning the deployment of a new customer rela-
tionship management (CRM) solution that consists of redundant 
front end web servers, middleware servers, and a database server. 
Which of these CRM components should be virtualized? Explain.

  



ptg

1011

X 
W

in
do

w
s

25 The X Window System

The X Window System, also called X11 or simply X, is the foundation for most 
graphical user environments for UNIX and Linux. X is the natural successor to a 
window system called (believe it or not) W, which was developed as part of MIT’s 
Project Athena in the early 1980s. Version 10 of the X Window System, released in 
1985, was the first to achieve widespread deployment, and version 11 (X11) fol-
lowed shortly thereafter. Thanks to the system’s relatively liberal licensing terms, 
X spread quickly to other platforms, and multiple implementations emerged. 
Much as in the case of TCP/IP, X’s elegant architecture and flexibility have posi-
tioned it as the world’s predominant non-Windows GUI.

In 1988, the MIT X Consortium was founded to set the overall direction for the X 
protocol. Over the next decade, this group and its successors issued a stream of 
protocol updates. X11R7.5 is today’s latest and greatest, with the trend apparently 
heading toward adding new numbers to the version designation instead of incre-
menting the existing ones.

XFree86 became the de facto X server implementation for most platforms until a 
licensing change in 2004 motivated many systems to switch to a fork of XFree86 
that was unencumbered by the new licensing clause. That fork is maintained by 
the nonprofit X.Org Foundation and is the predominant implementation in use 

X Windows

  



ptg

1012 Chapter 25 The X Window System

today. In addition, the X.Org server has been ported to Windows for use in the 
Cygwin Linux compatibility environment. (Several commercial X servers for 
Windows are also available; see page 1136 for more information.)

This chapter describes the X.Org version of X, which is used by all of our example 
systems except HP-UX. The implementations of X.Org and XFree86 have di-
verged architecturally, but most of the administrative details remain the same. It is 
often possible to substitute xf86 for xorg in commands and filenames to guess at 
the appropriate XFree86 version. 

Solaris systems through version 10 included both the X.Org server and Xsun, yet 
another implementation of X.1 Xsun remains common on SPARC systems run-
ning Solaris 10, but x86 systems typically run X.Org. However, X.Org now sup-
ports SPARC, and the OpenSolaris project has stated that X.Org will be the only 
supported X platform in the future. Therefore, we do not discuss Xsun here.

By default, AIX does not include an X Window System environment. To install 
one, run smitty easy-install, select the lpp library source, and then choose either 
CDE (for the traditional IBM-blessed Motif platform) or KDE (for the more mod-
ern option).2 What you get is a highly customized version of the X.Org environ-
ment that has been stripped down to look more like the older X systems of the 
Motif era. However, it supports X11R7.5 under the hood.

The X Window System can be broken down into a few key components. First, it 
provides a display manager whose main job is to authenticate users, log them in, 
and start up an initial environment from startup scripts. The display manager also 
starts the X server, which defines an abstract interface to the system’s bitmapped 
displays and input devices (e.g., keyboard and mouse). The startup scripts also 
run a window manager, which allows the user to move, resize, minimize, and 
maximize windows, as well as to manage separate virtual desktops. Finally, at the 
lowest level, applications are linked to a widget library that implements high-level 
user interface mechanisms such as buttons and menus. Exhibit A illustrates the 
relationship between the display manager, the X server, and client applications.

The X server understands only a very basic set of drawing primitives over a net-
work API; it does not define a programming interface to high-level entities such 
as buttons, text boxes, menus, and sliders. This design achieves two important 
goals. First, it allows the X server to run on a computer that is completely separate 
from that of the client application. Second, it allows the server to support a variety 
of different window managers and widget sets.

1. Xsun included support for Display PostScript, which once upon a time was thought to be the display 
language of the future.

2. It is possible, but not recommended, to have both environments installed simultaneously. See page 
1028 for more information about desktop environments.

  



ptg

The display manager 1013

X 
W

in
do

w
s

Exhibit A The X client/server model

Application developers have their choice of several common widget libraries and 
user interface standards. Unfortunately, the choice often depends more on reli-
gious affiliation than on any real design considerations. Although freedom of 
choice is good, X’s UI agnosticism and lack of design leadership did result in 
many years of poor user interfaces. Fortunately, the fit and finish of the main-
stream X environments has improved markedly. Both the KDE and GNOME 
desktop environments sport modern web browsers, user-friendly file managers, 
and modern multimedia capabilities.

In this chapter, we explain how to run programs on a remote display and how to 
enable authentication. We then discuss how to configure the X.Org server and 
how to troubleshoot configuration errors. Finally, we touch briefly on some of the 
available window managers and desktop environments.

25.1 THE DISPLAY MANAGER

The display manager presents the user with a (graphical) login screen and is usu-
ally the first thing a user sees when sitting down at the computer. It is not re-
quired; many users disable the display manager and start X from the text console 
or from their .login script by running startx (which itself is a wrapper for the 
xinit program, which starts the X server).

xdm (for X display manager) is the original display manager, but modern replace-
ments such as gdm (the GNOME display manager) and kdm (the KDE display 
manager) deliver additional features and are more aesthetically pleasing. The dis-
play manager can manage remote logins to other X servers through the XDMCP 
protocol, and it can also handle display authentication (see Client authentication
on page 1016). 

Configuration files in the xdm, gdm, or kdm subdirectory of /etc/X11 specify 
how the display manager will run. For example, you can edit the Xservers file to 
change the display number used for this server if multiple servers will be running 

X client

X client

X server

Display manager

X 
ne

tw
or

k 
pr

ot
oc

ol

Window manager

Display environment

=  Widget library

  



ptg

1014 Chapter 25 The X Window System

on other virtual terminals. Or, you might alter the server layout with the -layout
option if you have defined layouts to suit multiple systems.

See page 908 for 
more information 
about PAM.

In the typical scenario, the display manager prompts for a username and pass-
word. The user’s password is then authenticated according to the PAM configura-
tion specified in /etc/pam.d/xdm (or gdm/kdm if you are using the GNOME or 
KDE display managers). The login screen can also offer several alternative desk-
top environments, including the important failsafe option discussed below.

The display manager’s final duty is to execute the Xsession shell script, which sets 
up the user’s desktop environment. The Xsession script, also most often found in 
/etc/X11/{xdm,gdm,kdm}, is a system-wide startup script. It sets application de-
faults, installs standard key bindings, and selects language settings. The Xsession
script then executes the user’s own personal startup script, usually ~/.xsession, to 
start up the window manager, task bar, helper applets, and possibly other pro-
grams. GNOME and KDE also have their own startup scripts that configure the 
user’s desktop in accordance with GNOME’s and KDE’s configuration tools; this 
scheme is less error-prone than users’ editing of their own startup scripts.

When the execution of ~/.xsession completes, the user is logged out of the system 
and the display manager goes back to prompting for a username and password. 
Therefore, ~/.xsession must start all programs in the background (by appending 
an & to the end of each command) except for the last one, which is normally the 
window manager. (If all commands in ~/.xsession are run in the background, the 
script terminates right away and the user is logged out immediately after logging 
in.) With the window manager as the final, foreground process, the user is logged 
out only after the window manager exits.

The failsafe login option lets users log in to fix their broken startup scripts. This 
option can usually be selected from the display manager’s login screen. It opens 
only a simple terminal window; once the window closes, the system logs the user 
out. Every system should allow the failsafe login option; it helps users fix their 
own messes rather than having to page you in the middle of the night.

Forgetting to leave a process in the foreground is the most common startup prob-
lem, but it’s hardly the only possibility. If the cause of problems is not obvious, you 
may have to refer to the ~/.xsession-errors file, which contains the output of the 
commands run from ~/.xsession. Look for errors or other unexpected behavior. 
In a pinch, move the ~/.xsession script aside and make sure you can log in with-
out it. Then restore one or two lines at a time until you find the offending line.

25.2 PROCESS FOR RUNNING AN X APPLICATION

The process required to run an X application may at first seem overly complex. 
However, you will soon discover the flexibility afforded by the client/server dis-
play model. Because display updates are transmitted over the network, an applica-
tion (the client) can run on a completely separate computer from the one that 

  



ptg

The DISPLAY environment variable 1015

X 
W

in
do

w
s

displays its graphical user interface (the server). An X server can have connec-
tions from many different applications, all of which run on separate computers.

To make this model work, clients must be told what display to connect to and 
what screen to inhabit on that display. Once connected, clients must authenticate 
themselves to the X server to ensure that the person sitting in front of the display 
has authorized the connection.

See page 926 for 
more information 
about SSH.

Even with authentication, X’s intrinsic security is weak. You can manage connec-
tions somewhat more securely by routing them through SSH (see X connection 
forwarding with SSH on page 1017). We strongly recommend the use of SSH for X 
connections over the Internet. It’s not unreasonable for local traffic, either. 

The DISPLAY environment variable

X applications consult the DISPLAY environment variable to find out where to 
display themselves. The variable contains the hostname or IP address of the 
server, the display number (identifying the particular instance of an X server to 
connect to), and an optional screen number (for displays with multiple monitors). 
When applications run on the same computer that displays their interfaces, you 
can omit most of these parameters.

The following example shows both the format of the display information and the 
bash syntax used to set the environment variable:

client$ DISPLAY=servername.domain.com:10.2; export DISPLAY

This setting points X applications at the machine servername.domain.com, dis-
play 10, screen 2. Applications establish a TCP connection to the server on port 
number 6000 plus the display number (in this example, port 6010), where the X 
server handling that display should be listening.

Keep in mind that every process has its own environment variables. When you set 
the DISPLAY variable for a shell, its value is inherited only by programs that you 
run from that shell. If you execute the commands above in one xterm and then try 
to run your favorite X application from another, the application won’t have access 
to your carefully constructed DISPLAY variable.

Another point worth mentioning is that although X applications send their 
graphical displays to the designated X server, they still have local stdout and 
stderr channels. Some error output may still come to the terminal window from 
which an X application was run.

See page 561 for 
more information 
about DNS resolver 
configuration.

If the client and server are both part of your local organization, you can usually 
omit the server’s full domain name from the DISPLAY variable, depending on 
how your name server’s resolver has been configured. Also, since most systems 
run only a single X server, the display is usually 0. The screen number can be 
omitted, in which case screen 0 is assumed. Ergo, most of the time it’s fine to set 
the value of DISPLAY to servername:0.

  



ptg

1016 Chapter 25 The X Window System

If the client application happens to be running on the same machine as the X 
server, you can simplify the DISPLAY variable even further by omitting the host-
name. This feature is more than just cosmetic: with a null hostname, the client 
libraries use a UNIX domain socket instead of a network socket to contact the X 
server. In addition to being faster and more efficient, this connection method by-
passes any firewall restrictions on the local system that are trying to keep out ex-
ternal X connections. The simplest possible value for the DISPLAY environment 
variable, then, is simply “:0”.

Client authentication

Although the X environment is generally thought to be relatively insecure, every 
precaution helps prevent unauthorized access. In the days before security was 
such a pressing concern, it was common for X servers to welcome connections 
from any client running on a host that had been marked as safe with the xhost
command. But since any user on that host could then connect to your display and 
wreak havoc (either intentionally or out of confusion), the xhost method of grant-
ing access to clients was eventually deprecated. We do not discuss it further.

The most prevalent alternative to host-based security is called magic cookie au-
thentication. While the thought of magic cookies might inspire flashbacks in 
some of our readers, in this context they are used to authenticate X connections. 
The basic idea is that the X display manager generates a large random number, 
called a cookie, early in the login procedure. The cookie for the server is written to 
the ~/.Xauthority file in the user’s home directory. Any clients that know the 
cookie are allowed to connect. Users can run the xauth command to view existing 
cookies and to add new ones to this file.

The simplest way to show how this works is with an example. Suppose you have 
set your DISPLAY variable on the client system to display X applications on the 
machine at which you are sitting. However, when you run a program, you get an 
error that looks something like this:

client$ xprogram -display server:0 
Xlib: connection to "server:0.0" refused by server 
xprogram:  unable to open display 'server:0'

This message tells you that the client does not have the right cookie, so the remote 
server refused the connection. To get the right cookie, log in to the server (which 
you have probably already done if you are trying to display on it) and list the 
server’s cookies by running xauth list:

server$ xauth list 
server:0  MIT-MAGIC-COOKIE-1  f9d888df6077819ef4d788fab778dc9f 
server/unix:0  MIT-MAGIC-COOKIE-1  f9d888df6077819ef4d788fab778dc9f 
localhost:0  MIT-MAGIC-COOKIE-1  cb6cbf9e5c24128749feddd47f0e0779

  



ptg

X connection forwarding with SSH 1017

X 
W

in
do

w
s

Each network interface on the server has an entry. This example shows a cookie 
for the Ethernet, a cookie for the UNIX domain socket used for local connections, 
and a cookie for the localhost loopback network interface.

The easiest way to get the cookie onto the client (when not using SSH, which 
negotiates the cookie for you) is with good old cut-and-paste. Most terminal em-
ulators (e.g., xterm3) let you select text with the mouse and paste it into another 
window, usually by pressing the middle mouse button. Conveniently, the xauth 
add command accepts as input the same format that xauth list displays. You can 
add the cookie to the client like this:

client$ xauth add server:0  MIT-MAGIC-COOKIE-1  
9d888df6077819ef4d788fab778dc9f

You should verify that the cookie was added properly by running xauth list on the 
client. With the DISPLAY environment variable set and the correct magic cookie 
added to the client, applications should now display correctly on the server.

If you are having trouble getting cookies to work, you can drop back temporarily 
to xhost authentication just to verify that there are no other problems (for exam-
ple, firewalls or local network restrictions that are preventing the client from ac-
cessing the server). Always run xhost - (that is, xhost with a dash as its only argu-
ment) to disable xhost authentication once your test is complete.

X connection forwarding with SSH

Magic cookies increase security, but they’re hardly foolproof. Any user who can 
obtain your display’s cookie can connect to the display and run programs that 
monitor your activities. Even without your cookie, the X protocol transfers data 
over the network without encryption, allowing it to be sniffed by virtually anyone.

See page 926 for 
more information 
about SSH.

You can boost security with SSH, the secure shell protocol. SSH provides an au-
thenticated and encrypted terminal service. However, SSH can also forward arbi-
trary network data, including X protocol data, over a secure channel. X forward-
ing is similar to generic SSH port forwarding, but because SSH is X-aware, you 
gain some additional features, including a pseudo-display on the remote machine 
and the negotiated transfer of magic cookies.

You typically ssh from the machine running the X server to the machine on which 
you want to run X programs. This arrangement can be confusing to read about 
because the SSH client is run on the same machine as the X server, and it connects 
to an SSH server that is on the same machine as the X client applications. To make 
it worse, the virtual display that SSH creates for your X server is local to the re-
mote system. Exhibit B on the next page shows how X traffic flows through the 
SSH connection.

3. Or aixterm on AIX. Clever, hmm?

  



ptg

1018 Chapter 25 The X Window System

Exhibit B Using SSH with X

Your DISPLAY variable and authentication information are set up automatically 
by ssh. The display number starts at :10.0 and increments for each SSH connec-
tion that is forwarding X traffic.

An example might help show the sequence.
x-server$ ssh -v -X x-client.mydomain.com 
SSH-2.0-OpenSSH_5.1 
debug1: Reading configuration data /home/boggs/.ssh/config 
debug1: Reading configuration data /etc/ssh/ssh_config 
debug1: Applying options for * 
debug1: Connecting to x-client.mydomain.com [192.168.15.9] port 22. 
debug1: Connection established.
Enter passphrase for key '/home/boggs/.ssh/id_rsa': 
debug1: read PEM private key done: type RSA 
debug1: Authentication succeeded (publickey). 
debug1: Entering interactive session. 
debug1: Requesting X11 forwarding with authentication spoofing. 
debug1: Requesting authentication agent forwarding. 
x-client$ 

You can see from the last two lines that the client is requesting forwarding for X11 
applications. X forwarding must be enabled on both the SSH server and the SSH 
client, and the client must still have the correct cookie for the X server. If things 
do not seem to be working right, try the -X and -v flags as shown above (for 
OpenSSH) to explicitly enable X forwarding and to request verbose output.4 Also 
check the global SSH configuration files in /etc/ssh to make sure that X11 for-
warding has not been administratively disabled. Once logged in, you can check 
your display and magic cookies:

x-client$ echo $DISPLAY 
localhost:12.0 
x-client$ xauth list 
x-client/unix:12  MIT-MAGIC-COOKIE-1  a54b67121eb94c8a807f3ab0a67a51f2

SSH server

X client virtual 
DISPLAY= :12.0

X client machine

Secure SSH connection
SSH client

X server 
DISPLAY=:0.0

X server machine

4. Note that ssh also has a -Y flag that trusts all client connections. This feature may solve some forward-
ing problems, but use it only with extreme caution.

  



ptg

X server configuration 1019

X 
W

in
do

w
s

Notice that the DISPLAY points to a virtual display on the SSH server. Other SSH 
connections (both from you and from other users) are assigned different virtual 
display numbers. With the DISPLAY and cookie properly set, the client applica-
tion can now be run.

x-client$ xeyes 
debug1: client_input_channel_open: ctype x11 rchan 4 win 65536 max 16384 
debug1: client_request_x11: request from 127.0.0.1 35411 
debug1: channel 1: new [x11] 
debug1: confirm x11 
debug1: channel 1: FORCE input drain

With the debugging information enabled with ssh -v, you can see that ssh has 
received the X connection request and dutifully forwarded it to the X server. The 
forwarding can be a little slow on a distant link, but the application should eventu-
ally appear on your screen.

25.3 X SERVER CONFIGURATION

The X.Org server, Xorg, was once notorious for being difficult to configure for a 
given hardware environment. However, a tremendous amount of effort has been 
put into making Xorg ready to eat right out of the box, and many modern systems 
run it successfully without any configuration file. However, it is still possible to 
manually adapt the Xorg server to a wide array of graphics hardware, input de-
vices, video modes, resolutions, and color depths. 

If your system is running fine without an Xorg configuration file, great! It may be 
using the KMS module, which is described later in this chapter. Otherwise, you 
have two options. Option one is to manually configure the xorg.conf file. The 
sections below describe manual configuration. Truth be told, this may be your 
only real option in some situations. Option two is to use the xrandr tool to con-
figure your server; it’s covered starting on page 1025.

The Xorg configuration file is normally located in /etc/X11/xorg.conf, but the X 
server searches a slew of directories to find it. The man page presents a complete 
list, but one point to note is that some of the paths Xorg searches contain the 
hostname and a global variable, making it easy for you to store configuration files 
for multiple systems in a central location.

AIX operates without an xorg.conf configuration file and instead tries to auto-
matically recognize all AIX hardware display types. You can pass configuration 
hints as arguments to the X server.

Several programs can help you configure X (e.g., xorgconfig), but it’s a good idea 
to understand how the configuration file is structured in case you need to view or 
edit the configuration directly. You can gather some useful starting information 
directly from the X server by running Xorg -probeonly and looking through the 
output to identify your video chipset and any other probed values. You can also 

  



ptg

1020 Chapter 25 The X Window System

run Xorg -configure to have the X server create an initial configuration file that is 
based on the probed values. It’s a good place to start if you have nothing else.

The xorg.conf file has several sections, each of which starts with the Section key-
word and ends with EndSection. Table 25.1 lists the most common section types.

It is often simplest to build a configuration file from the bottom up by first defin-
ing sections for the input and output devices and then combining them into vari-
ous layouts. With this hierarchical approach, a single configuration file can be 
used for many X servers, each with different hardware. It’s also a reasonable ap-
proach for a single system that has multiple video cards and monitors.

Exhibit C shows how some of these sections fit together into the X.Org configura-
tion hierarchy. A physical display Monitor plus a video card Device combine to 
form a Screen. A set of Screens plus InputDevices form a ServerLayout. Multiple 
server layouts can be defined in a configuration file, though only one is active for 
a given instance of the Xorg process.

Exhibit C Relationship of xorg.conf configuration sections

Table 25.1 Sections of the xorg.conf file

Section Description

ServerFlags Lists general X server configuration parameters 
Module Specifies dynamically loadable extensions for accelerated 

graphics, font renderers, and the like
Device Configures the video card, driver, and hardware information 
Monitor Describes physical monitor parameters, including timing and 

display resolutions
Screen Associates a monitor with a video card (Device) and defines 

the resolutions and color depths available in that configuration
InputDevice Specifies input devices such as keyboards and mice 
ServerLayout Bundles input devices with a set of screens and positions the 

screens relative to each other

Monitor Device

DISPLAY = :0.0

Mouse

Screen

Monitor Device

DISPLAY = :0.1

Screen InputDevice

Keyboard

InputDevice

ServerLayout

Graphics tablet

InputDevice

  



ptg

Monitor sections 1021

X 
W

in
do

w
s

Some of the sections that make up the xorg.conf file are relatively fixed. The de-
faults can often be used straight from an existing or example configuration file. 
Others, such as the Device, Monitor, Screen, InputDevice, and ServerLayout sec-
tions, depend on the host’s hardware setup. We discuss the most interesting of 
these sections in more detail in the following subsections.

Device sections

A Device section describes a particular video card. You must provide a string to 
identify the card and a driver appropriate for the device. The driver is loaded only 
if the device is referenced by a corresponding Screen section. A typical device 
section might look like this:

Section “Device“ 
Identifier "Videocard0"
Driver "radeon"
option value
…

EndSection

The manual page for the driver, radeon in this example, describes the hardware 
that’s driven as well as the options the driver supports. If you are experiencing 
strange video artifacts, you might try setting options to turn off hardware acceler-
ation (if supported), slowing down video memory access, or modifying interface 
parameters. It is generally a good idea to check the web to see if other people have 
experienced similar problems before you start randomly changing values.

Monitor sections

The Monitor section describes the displays attached to your computer. It can 
specify detailed timing values. The timing information is necessary for older 
hardware, but most modern monitors can be probed for it. Display specifications 
can usually be obtained from the manufacturer’s web site, but nothing beats hav-
ing the original manual that came with the monitor. Either way, you will want to 
know at least the horizontal sync and vertical refresh frequencies for your model.

A typical Monitor section looks like this:
Section "Monitor"

Identifier "ViewSonic"
Option "DPMS"
HorizSync 30-65 
VertRefresh 50-120

EndSection

As with all of the sections, the Identifier line assigns a name by which you later 
refer to this monitor. Here we have turned on DPMS (Display Power Management 
Signaling) so that the X server can power down the monitor when we sneak away 
for a donut and some coffee.

  



ptg

1022 Chapter 25 The X Window System

The HorizSync and VertRefresh lines, which apply only to CRT monitors, should 
be filled in with values appropriate for your monitor. They may be specified as a 
frequency range (as above) or as discrete values separated by commas. The driver 
can theoretically probe for supported modes, but specifying the parameters keeps 
the driver from attempting to use unsupported frequencies.

Screen sections

A Screen section ties a device (video card) to a monitor at a specific color depth 
and set of display resolutions. Here’s an example that uses the video card and 
monitor specified above.

Section "Screen" 
Identifier "Screen0"
Device "Videocard0"
Monitor "ViewSonic"
DefaultDepth 24 
Subsection "Display"

Depth 8
Modes "640x400"

EndSubsection 
Subsection "Display"

Depth 16
Modes "640x400" "640x480" "800x600" "1024x768"

EndSubsection 
Subsection "Display"

Depth 24
Modes "1280x1024" "1024x768" "800x600" "640x400" "640x480"

EndSubsection 
EndSection

As you might expect, the screen is named with an Identifier, and the identifiers 
for the previously defined video device and monitor are mentioned. This is the 
first section we have introduced that has subsections. One subsection is defined 
for each color depth, with the default being specified by the DefaultDepth field.

A given instance of the X server can run at only one color depth. At startup, the 
server determines what resolutions are supported for that depth. The possible res-
olutions generally depend on the video card. Special keyboard combinations for X
on page 1026 describes how to cycle through the resolutions that are defined here.

Any modern video card should be able to drive your monitor at its full resolution 
in 24-bit or 32-bit color. If you want to run old programs that require a server 
running in 8-bit color, run a second X server on a separate virtual console. Use the 
-depth 8 flag on the Xorg command line to override the DefaultDepth option.

InputDevice sections

An InputDevice section describes a source of input events such as a keyboard or 
mouse. Each device gets its own InputDevice section, and as with other sections, 
each is named with an Identifier field. If you are sharing a single configuration file 

  



ptg

InputDevice sections 1023

X 
W

in
do

w
s

among machines with different hardware, you can define all the input devices; 
only those referenced in the ServerLayout section are used. Here is a typical key-
board definition:

Section "InputDevice" 
Identifier "Generic Keyboard" 
Driver "Keyboard"
Option "AutoRepeat" "500 30" 
Option "XkbModel" "pc104" 
Option "XkbLayout" "us" 

EndSection

You can set options in the keyboard definition to express your particular religion’s 
stance on the proper position of the Control and Caps Lock keys, among other 
things. In this example, the AutoRepeat option specifies how long a key needs to 
be held down before it starts repeating and how fast it repeats.

The mouse is configured in a separate InputDevice section:
Section "InputDevice" 

Identifier "Generic Mouse" 
Driver "mouse"
Option "CorePointer"
Option "Device" "/dev/input/mice" 
Option "Protocol" "IMPS/2" 
Option "Emulate3Buttons" "off" 
Option "ZAxisMapping" "4 5" 

EndSection

The CorePointer option designates this mouse as the system’s primary pointing 
device. The device file associated with the mouse is specified as an Option; Table 
25.2 lists the mouse device multiplexer files for our example systems.

The communication protocol depends on the particular brand of mouse, its fea-
tures, and its interface. You can set it to auto to make the server try to figure out 
the protocol for you. If your mouse wheel doesn’t work, try setting the protocol to 
IMPS/2. If you have more than a few buttons, try using the ExplorerPS/2 protocol. 
Some Solaris users report success with the VUID protocol.

The Emulate3Buttons option lets a two-button mouse emulate a three-button 
mouse by defining a click on both buttons to stand in for a middle-button click. 

Table 25.2 Common mouse device files

OS Device file

Linux /dev/input/mice

Solaris /dev/mouse 

HP-UX /dev/deviceFileSystem/mouseMux 

AIX /dev/mouse0

  



ptg

1024 Chapter 25 The X Window System

The ZAxisMapping option is sometimes needed to support a scroll wheel or joy-
stick device. Most mice these days have at least three buttons, a scroll wheel, a 
built-in MP3 player, a foot massager, and a beer chiller.5

ServerLayout sections

The ServerLayout section is the top-level node of the configuration hierarchy. 
Each hardware configuration on which the server will be run should have its own 
instance of the ServerLayout section. The layout used by a particular X server is 
usually specified on the server’s command line.

This section ties together all the other sections to represent an X display. It starts 
with the requisite Identifier, which names this particular layout. It then associates 
a set of screens with the layout.6 If multiple monitors are attached to separate 
video cards, each screen is specified along with optional directions to indicate 
how they are physically arranged. In this example, screen one is on the left and 
screen two is on the right.

Here is an example of a complete ServerLayout section:

Section "ServerLayout" 
Identifier "Simple Layout"
Screen "Screen 1" LeftOf "Screen 2" 
Screen "Screen 2" RightOf "Screen 1" 
InputDevice "Generic Mouse" "CorePointer" 
InputDevice "Generic Keyboard" "CoreKeyboard" 
Option "BlankTime" "10" # Blank the screen in 10 minutes 
Option "StandbyTime" "20" # Turn off screen in 20 minutes (DPMS) 
Option "SuspendTime" "60" # Full hibernation in 60 minutes (DPMS) 
Option "OffTime" "120"# Turn off DPMS monitor in 2 hours

EndSection

Some video cards can drive multiple monitors at once. In this case, only a single 
Screen is specified in the ServerLayout section. Following the screen list is the set 
of input devices to associate with the layout. The CorePointer and CoreKeyboard
options are passed to the InputDevice section to indicate that the devices are to be 
active for the configuration. Those options can also be set directly in the corre-
sponding InputDevice sections, but it’s cleaner to set them in the ServerLayout.

The last few lines configure several layout-specific options. In the example above, 
these all relate to DPMS, which is the interface that tells Energy Star-compliant 
monitors when to power themselves down. The monitors must also have their 
DPMS options enabled in the corresponding Monitor sections.

5. Not all options are supported by Xorg. Some options sold separately.
6. Recall that screens identify a monitor/video card combination at a particular color depth.

  



ptg

Kernel mode setting 1025

X 
W

in
do

w
s

xrandr: not your father’s X server configurator 

The X Resize and Rotate Extension (RandR) lets clients dynamically change the 
size, orientation, and reflection of their X server screens. xrandr is the command-
line interface to this extension.

Of course, we would all love to spend a few days tediously crafting each line of the 
xorg.conf file to support that brand-new SUPERINATOR 3000 system with its 
four deluxe displays. But in many cases, you can have xrandr do the configuration 
for you and be done in time to grab a few beers. Run with no arguments, xrandr
shows the available displays and their possible resolutions.

$ xrandr
VGA-0 connected 1024x768+0+0 (normal left inverted right x a…) 0mm x 0mm 

1024x768 61.0 60.0 59.9 59.9
800x600 60.3 61.0 59.9 56.2 59.8
640x480 59.9 61.0 59.4 59.5

DVI-0 connected 1024x768+0+0 (normal left inverted right x a…) 0mm x 0mm
1024x768 60.0 60.0
800x600 60.3 59.9
640x480 59.9 59.4

You can specify the resolution to use for each display along with the display’s 
placement relative to other displays.7 For example:

$ xrandr --auto --output VGA-0 --mode 800x600 --right-of DVI-0

The --auto argument turns on all available monitors. The --output and --mode
arguments set the VGA display to a resolution of 800  600, and the --right-of
argument specifies that the VGA display is physically located to the right of the 
DVI display. (The latter option is needed to properly implement desktop continu-
ity.) Run xrandr --help to see the many available options.

If you want xrandr to run automatically when you start the X server, you can put 
it in your ~/.xprofile file, which is executed at server startup.

Kernel mode setting

To make the system’s presentation more seamless and flicker free, responsibility 
for setting the initial mode of the graphics display is now being pushed into the 
Linux kernel through the “kernel mode setting” (KMS) module. As of kernel ver-
sion 2.6.30-10.12, KMS defaults to initializing the video card very early in the 
kernel’s boot sequence. 

You enable or disable KMS through settings in the video driver configuration files 
in /etc/modprobe.d. For example, if you have an ATI Radeon video card, you can 
turn off KMS by adding the following line to /etc/modprobe.d/radeon.conf:

options radeon modeset=0

7. Before using xrandr for the first time, run Xorg -configure to reset the xorg.conf file to a known, 
clean state.

  



ptg

1026 Chapter 25 The X Window System

The KMS module is still young and it does not currently support all video cards. If 
you’re lucky enough to have a supported card, your best bet is to rename the 
xorg.conf file so that the X server tries to start without it and defaults to the KMS 
configuration.

25.4 X SERVER TROUBLESHOOTING AND DEBUGGING

X server configuration has come a long way over the last decade, but it can still be 
difficult to get things working just the way you would like. You may need to ex-
periment with monitor frequencies, driver options, proprietary drivers, or exten-
sions for 3D rendering. Ironically, it is the times when the display is not working 
correctly that you are most interested in seeing the debugging output on your 
screen. Fortunately, the X.Org server gives you all the information you need (and 
a lot that you don’t) to track down the problem.

Special keyboard combinations for X

Because the X server takes over your keyboard, display, mouse, and social life, you 
can imagine that it might leave you with little recourse but to power the system 
down if things are not working. However, there are a few things to try before it 
comes to that.

If you hold down the Control and Alt keys and press a function key (F1–F6), the X 
server takes you to one of the text-based virtual terminals. From there you can log 
in and debug the problem. To get back to the X server running on, say, virtual 
terminal 7, press <Alt-F7>.8 If you are on a network, you can also try logging in 
from another computer to kill the X server before resorting to the reset button.

For virtual console support on Solaris, enable the svc:/system/vtdaemon:default 
SMF service and the console-login:vt[2-6] services.

If the monitor is not in sync with the card’s video signal, try changing the screen 
resolution. The available resolutions are specified on a Modes line from the 
Screen section of the configuration file. The exact Modes line that is active de-
pends on the color depth; see Screen sections on page 1022 for details. The X 
server defaults to the first resolution shown on the active Modes line, but you can 
cycle through the different resolutions by holding down Control and Alt and 
pressing the plus (+) or minus (-) key on the numeric keypad.

Pressing <Control-Alt-Backspace> kills the X server immediately. If you ran the 
server from a console, you will find yourself back there when the server exits. If a 
display manager started the server, it usually respawns a new server and prompts 
again for a login and password. You have to kill the display manager (xdm, gdm, 
etc.) from a text console to stop it from respawning new X servers.

8. The X server requires the <Control> key to be held down along with the <Alt-Fn> key combination to 
switch virtual terminals, but the text console does not.

  



ptg

When X servers attack 1027

X 
W

in
do

w
s

When X servers attack

Once you have regained control of the machine, you can begin to track down the 
problem. The simplest place to start is the output of the X server. This output is 
occasionally visible on virtual terminal 1 (<Control-Alt-F1>), which is where 
startup program output goes. Most often, the X server output goes to a log file 
such as /var/log/Xorg.0.log (/var/X11/Xserver/logs/Xf86.0.log on HP-UX).

As seen below, each line is preceded by a symbol that categorizes it. You can use 
these symbols to spot errors (EE) and warnings (WW), as well as to determine 
how the server found out each piece of information: through default settings (==), 
in a config file (**), detected automatically (--), or specified on the X server com-
mand line (++).

Let’s examine the following snippet from an Ubuntu system:
X.Org X Server 1.6.0 
Release Date: 2009-2-25 
X Protocol Version 11, Revision 0 
Build Operating System: Linux 2.6.24-23-server i686 Ubuntu 
Current Operating System: Linux nutrient 2.6.28-11-generic #42-Ubuntu SMP 

Fri Apr 17 01:57:59 UTC 2009 i686 
Build Date: 09 April 2009  02:10:02AM 
xorg-server 2:1.6.0-0ubuntu14 (buildd@rothera.buildd)

Before reporting problems, check http://wiki.x.org 
to make sure that you have the latest version.

Markers: (--) probed, (**) from config file, (==) default setting, 
(++) from command line, (!!) notice, (II) informational, 
(WW) warning, (EE) error, (NI) not implemented, (??) unknown.

(==) Log file: "/var/log/Xorg.0.log", Time: Sun May 10 22:11:47 2009 
(==) Using config file: "/etc/X11/xorg.conf" 
(==) ServerLayout "MainLayout"
(**) |-->Screen "Screen 0" (0)
(**) |   |-->Monitor "Monitor 0"
(**) |   |-->Device "Console"
(**) |-->Input Device "Mouse0"
(**) |-->Input Device "Keyboard0" 
…

The first lines tell you the version number of the X server and the X11 protocol 
version it implements. Subsequent lines tell you that the server is using default 
values for the log file location, the configuration file location, and the active 
server layout. The display and input devices from the config file are echoed in 
schematic form.

One common problem that shows up in the logs is difficulty with certain screen 
resolutions, usually evidenced by those resolutions not working or the X server 
bailing out with an error such as “Unable to validate any modes; falling back to the 
default mode.” If you have not specified a list of frequencies for your monitor, the 
X server probes for them by using Extended Display Identification Data (EDID). 
If your monitor does not support EDID or if your monitor is turned off when X is 

  



ptg

1028 Chapter 25 The X Window System

started, you need to put the frequency ranges for X to use in the Monitor section 
of the configuration file.

Rounding error in the results obtained from an EDID probe can cause some reso-
lutions to be unavailable even though they should be supported by both your 
video card and monitor. Log entries such as “No valid modes for 1280x1024; re-
moving” are evidence of this. The solution is to tell the X server to ignore EDID 
information and use the frequencies you have specified; the following lines in the 
Device section are what you need: 

Option "IgnoreEDID" "true" 
Option "UseEdidFreqs" "false"

As another example, suppose you forgot to define the mouse section properly. 
The error would show up like this in the output:

(==) Using config file: "/etc/X11/xorg.conf" 
Data incomplete in file /etc/X11/xorg.conf

Undefined InputDevice "Mouse0" referenced by ServerLayout "MainLayout". 
(EE) Problem parsing the config file 
(EE) Error parsing the config file 
Fatal server error: 
no screens found

Once X is up and running and you have logged in, you can run the xdpyinfo
command to get more information about the X server’s configuration.9 xdpyinfo’s 
output again tells you the name of the display and the X server version informa-
tion. It also tells you the color depths that are available, the extensions that have 
been loaded, and the screens that have been defined, along with their dimensions 
and color configurations.

xdpyinfo’s output can be parsed by a script (such as your ~/.xsession file) to de-
termine the size of the active screen and to set up the desktop parameters appro-
priately. For debugging, xdpyinfo is most useful for determining that the X server 
is up and listening to network queries, that it has configured the correct screen 
and resolution, and that it is operating at the desired color bit depth. If this step 
works, you are ready to start running X applications.

25.5 A BRIEF NOTE ON DESKTOP ENVIRONMENTS

The flexibility of the X Window System client/server model has, over the years, 
led to an explosion of widget sets, window managers, file browsers, tool bar utili-
ties, and utility programs. The first comprehensive environments, OpenLook and 
Motif, were elegant for their time but proprietary. Licensing fees for the develop-
ment libraries and window manager made them inaccessible to the general public.

9. We don’t recommend logging into X as root because this operation may create a bunch of default 
startup files in root’s home directory, which is usually / or /root. It’s also notably insecure. Instead, log 
in as a regular user and use sudo. Ubuntu enforces this discipline by default.

  



ptg

GNOME 1029

X 
W

in
do

w
s

As applications became more advanced and demanded progressively more sup-
port from the underlying window system, it became clear that a comprehensive 
approach to advancing the platform was required. From this need were born the 
two big players in modern desktop environments: GNOME and KDE. Although 
some users have strong feelings regarding which is the One True Way, both are 
relatively complete desktop managers. In fact, just because you are running in one 
realm does not mean you cannot use applications from the other; just expect a 
different look and feel and a brief sense of discontinuity in the universe.

The freedesktop.org project is dedicated to creating an environment that will al-
low applications to be compatible with any desktop environment.

KDE

KDE, which stands for the K Desktop Environment, is written in C++ and built 
on the Qt tool kit library. It is often preferred by users who enjoy eye candy, such 
as transparent windows, shadows, and animated cursors. It looks nice, but it can 
be slow on anything but a high-end workstation. For users who spend a lot of time 
clicking around in the desktop rather than running applications, the tradeoff be-
tween efficiency and aesthetics may ultimately decide whether KDE is the appro-
priate choice.

KDE is often preferred by people transitioning from a Windows or Mac environ-
ment because of its pretty graphics. It’s also a favorite of technophiles who love to 
be able to fully customize their environment. For others, KDE is simply too much 
to deal with and GNOME is the simpler choice.

Applications written for KDE almost always contain a K somewhere in the name, 
for example, Konqueror (the web/file browser), Konsole (the terminal emulator), 
or KWord (a word processor). The default window manager, KWin, supports the 
freedesktop.org Window Manager Specification standard, configurable skins for 
changing the overall look and feel, and many other features. The KOffice applica-
tion suite contains word processing, spreadsheet, and presentation utilities. KDE 
sports a comprehensive set of development tools, including an integrated devel-
opment environment (IDE).

GNOME

GNOME is written in C and is based on the GTK+ widget set. The name GNOME 
was originally an acronym for GNU Network Object Model Environment, but 
that derivation no longer really applies; these days, GNOME is just a name.

With the recent addition of support for Compiz (compiz.org), GNOME has ac-
quired many of the eye candy features that it previously lacked. Overall, GNOME 
is still less glitzy than KDE, is not as configurable, and is slightly less consistent. 
However, it is noticeably cleaner, faster, simpler, and more elegant. Most Linux 
distributions use GNOME as the default desktop environment.

  



ptg

1030 Chapter 25 The X Window System

Like KDE, GNOME has a rich application set. GNOME applications are usually 
identifiable by the presence of a G in their names. One of the exceptions is the 
standard GNOME window manager, called Metacity (pronounced like “opacity”), 
which supplies basic windowing functions and skinning of the GNOME UI. Fol-
lowing the GNOME model, Metacity is designed to be lean and mean.

If you want some of the extra features you may be used to, such as smart window 
placement, you need the support of external applications such as brightside or 
devilspie. Unfortunately, bling is one area in which KDE still has a leg up.

Office applications include AbiWord for word processing, Gnumeric as a spread-
sheet, and one of the more impressive projects to come out of GNOME, The 
GIMP for image processing. A file manager called Nautilus is also included. Like 
KDE, GNOME provides an extensive infrastructure for application developers. 
Altogether, GNOME offers a powerful architecture for application development 
in an easy-to-use desktop environment.

Which is better, GNOME or KDE?

Ask this question on any public forum and you will see the definition of “flame 
war.” Because of the tendency for people to turn desktop preference into a per-
sonal crusade, the following paragraphs may be some of the least opinionated in 
this book.

The best answer is to try both desktops and decide for yourself which best meets 
your needs. Keep in mind that your friends, your users, and your manager may all 
have different preferences for a desktop environment, and that is OK.

Remember that your choice of desktop environment does not dictate which appli-
cations you can run. No matter which desktop you choose, you can select applica-
tions from the full complement of excellent software made available by both of 
these (and other) open source projects.

25.6 RECOMMENDED READING

The X.Org home page, x.org, includes information on upcoming releases as well 
as links to the X.Org wiki, mailing lists, and downloads.

The man pages for Xserver and Xorg (or just X on AIX) cover generic X server 
options and Xorg-specific command-line options. They also include a general 
overview of X server operation.

The xorg.conf man page covers the config file and describes its various sections 
in detail. This man page also lists video card drivers in its REFERENCES section. 
Look up your video card here to learn the name of the driver, then read the 
driver’s own man page to learn about driver-specific options.

  



ptg

Exercises 1031

X 
W

in
do

w
s

25.7 EXERCISES

E25.1 Use SSH to run an X program over the network. Use ssh -v to verify 
that X forwarding is set up correctly. What is the DISPLAY variable 
set to after you log in? List the cookies by running xauth and verify 
that magic cookie authentication is active for that display.

E25.2 Write a shell command line or script to parse the output of xdpyinfo
and print the current screen resolution in the format XxY, e.g., 
1024 768.

E25.3 Examine the Xorg log file (/var/log/Xorg.0.log) and determine as 
many of the following items as possible:

a) What type of video card is present and which driver does it use?
b) How much video memory does the card have?
c) Was EDID used to probe monitor settings? How do you know?
d) What modes (resolutions) are supported?
e) Is DPMS enabled?
f) What does the server think the physical screen dimensions are?
g) What device file is used for the mouse?

E25.4 What flag disables nonlocal TCP connections to the X server? Explain 
why this option is useful.

  



ptg

1032

26 Printing

UNIX printing is a mess. Let us elaborate.

Linux printing is quite nice. So is Mac OS X printing. Both are built on the Com-
mon UNIX Printing System (CUPS), an up-to-date, sophisticated, network- and 
security-aware printing system. CUPS provides a modern, browser-based GUI as 
well as shell-level commands that allow printing and control of the printing sys-
tem from scripts.

Just as newer mail transport systems supply a command called sendmail that lets 
older scripts (and older system administrators!) work as they always did back in 
sendmail’s glory days, CUPS supplies commands such as lp and lpr that are back-
ward-compatible with traditional UNIX printing systems. So everyone is happy.

Given its name, you might guess that CUPS could be found on UNIX systems as 
well. Alas, you’d be wrong. None of our example UNIX platforms—Solaris, HP-
UX, and AIX—use it. Even worse, a quick Google search reveals that attempts to 
install CUPS on these systems typically fail. 

Instead, these systems offer variants of the creaky, decades-old System V and BSD 
printing systems. If it was good enough for a PDP-11, it should be good enough 
for you! The unfortunate fact is that Microsoft Windows and Mac OS dominate 

Printing

  



ptg

Major printing systems 1033

Pr
in

tin
g

the document processing world, so UNIX vendors are not under much pressure 
to improve printing support. Until UNIX vendors adopt CUPS (or you adopt Li-
nux or Mac OS), you’ll have to learn the older printing systems, too.

We start this chapter with a general discussion of printing systems and printing 
terminology. We go on to describe the various UNIX and Linux printing systems 
and their architectures. We move on to the specifics of printer configuration and 
administration, then conclude with a brief guide to print-system debugging, a 
tour of optional printing-related software, and some general administration hints.

Before we start, though, here’s a point worth making: system administrators often 
consider printing a lower priority than users do. Administrators are used to read-
ing documents on-line, but users typically want hard copy, and they want the 
printing system to work 100% of the time.

26.1 PRINTING-SYSTEM ARCHITECTURE

Printing relies on a handful of pieces:

• A print “spooler” that collects and schedules jobs. The word “spool” 
originated as an acronym for Simultaneous Peripheral Operation On-
Line. Now it’s just a generic term.

• User-level utilities (a command-line interface and/or GUI) that talk to 
the spooler. These utilities send jobs to the spooler, query the system 
about jobs (both pending and complete), remove or reschedule jobs, and 
configure the other parts of the system.

• Back ends that talk to the printing devices themselves. (These are nor-
mally unseen and hidden under the floorboards.)

• A network protocol that lets spoolers communicate and transfer jobs.

A good way to approach printer administration is to figure out what parts of the 
system fulfill each of these roles. Unfortunately, it varies a lot.

Major printing systems

Each of the target systems covered in this book supplies a printing system from 
one of three families: System V, BSD, or CUPS. We’ll talk about where these 
names came from by-and-by: they’re historical, but useful. A system’s printing 
software doesn’t necessarily come from the same lineage as the OS itself. For ex-
ample, AIX, which was originally built on System V.0 with some V.2 extensions, 
uses a BSD print system.

There are add-on printing systems you can install yourself (such as the ill-fated 
LPRng), but printing is often so enmeshed with other parts of the operating sys-
tem that it’s a long and uphill battle to make this work. Installing your own print-
ing system is like installing your own shell: UNIX gives you the freedom to do it, 

  



ptg

1034 Chapter 26 Printing

and you might have good reason to, but you’re on your own. In this book, we only 
cover the printing software that comes by default.

You can tell what kind of printing software your system has by looking for the 
spooler. CUPS has cupsd, BSD has lpd, and System V has lpsched, so the com-
mand which cupsd lpd lpsched tells you which one you have.

Print spoolers

Each system has a spooler: a piece of software that receives print jobs, stores them, 
prioritizes them, and sends them out sequentially to one or more printers. You’ll 
sometimes see the spooler referred to as a print daemon or print server.

Some printers (usually high-end models) have their own internal spoolers. If tell-
ing your print daemon to discard all the jobs in its queue does not fix a problem 
right away, consider that there may still be jobs stored inside the printer. To dis-
card those as well, you may need to shut off the printer and restart it.

The lpd (BSD) and lpsched (SysV) spoolers are stand-alone daemons that are 
specifically designed for printing. Applications on the system either talk to these 
servers or read and write spool or configuration files in “well known” locations 
such as /var/spool or /etc.

26.2 CUPS PRINTING

CUPS servers are also web servers, and CUPS clients are web clients. The clients 
can be commands such as the CUPS versions of lpr and lpq, or they can be appli-
cations with their own GUIs such as kprinter. Under the covers they’re all web 
apps, even if they’re only talking to the CUPS daemon on the local system. CUPS 
servers can also act as clients of other CUPS servers.

A CUPS server provides a web interface to its full functionality on port 631. For 
administrators, a web browser is usually the most convenient way to manage the 
system; just navigate to http://printhost:631. If you need secure communication 
with the daemon (and your system offers it) use https://printhost:433 instead. 
Scripts can use discrete commands to control the system, and users will probably 
access it through a GNOME or KDE interface. These routes are all equivalent.

HTTP is the underlying protocol for all interactions among CUPS servers and 
their clients. Actually, it’s the Internet Printing Protocol, a souped-up version of 
HTTP. Clients submit jobs with the HTTP/IPP POST operation and request sta-
tus with HTTP/IPP GET. The CUPS configuration files also look suspiciously 
similar to Apache configuration files.

Interfaces to the printing system

CUPS is modern enough that most CUPS printing is done from a GUI, and ad-
ministration is often done through a web browser. As a sysadmin, though, you 
(and perhaps some of your hard-core terminal users) may want to use shell-level 

  

http://printhost:631
https://printhost:433


ptg

The print queue 1035

Pr
in

tin
g

commands as well. CUPS provides work-alike commands for many of the basic, 
shell-level printing commands of both the classic BSD and System V printing sys-
tems. Unfortunately, CUPS doesn’t necessarily emulate all the bells and whistles. 
Sometimes, it emulates the old interfaces entirely too well; instead of giving you a 
quick usage summary, lpr --help and lp --help just print error messages.

Still, many legacy scripts that use these commands work just fine with CUPS. 
Think of what’s missing as an opportunity: if you want to contribute to world 
peace and Pareto optimality, there’s still code left for you to write (or if you’re 
using an older system, code left for you to port).

Here’s how you might print the files foo.pdf and /tmp/testprint.ps to your default 
printer under CUPS:

$ lpr foo.pdf /tmp/testprint.ps

The lpr command transmits copies of the files to the CUPS server, cupsd, which 
stores them in the print queue. CUPS processes each file in turn as the printer 
becomes available.

When printing, CUPS examines both the document and the printer’s PostScript 
Printer Description (PPD) file to see what needs to be done to get the document 
to print properly. (As we discuss in more detail on page 1072, PPD files are used 
even for non-PostScript printers.)

To prepare a job for printing on a specific printer, CUPS passes it through a series 
of filters. For example, one filter might reformat the job so that two reduced-size 
page images print on each physical page (aka “2-up printing”), and another might 
transform the job from PostScript to PCL. Filters can also perform printer-spe-
cific processing such as printer initialization. Some filters perform rasterization, 
turning abstract instructions such as “draw a line across the page” into a bitmap 
image. Such rasterizers are useful for printers that do not include their own raster-
izers or that don’t speak the language in which a job was originally submitted.

The final stage of the print pipeline is a back end that transmits the job from the 
host to the printer through an appropriate protocol such as Ethernet. The back 
end also communicates status information in the other direction, back to the 
CUPS server. To see your available back ends, try the command

$ locate backend | grep -i cups

After transmitting the print job, the CUPS daemon returns to processing its 
queues and handling requests from clients, and the printer goes off to print the 
job it was shipped.

The print queue

cupsd’s centralized control of the printing system makes it easy to understand 
what the user-level commands are doing. For example, the lpq command requests 
job status information from the server and reformats it for display. Other CUPS 

  



ptg

1036 Chapter 26 Printing

clients ask the server to suspend, cancel, or reprioritize jobs. They can also move 
jobs from one queue to another. 

Most changes require jobs be identified by their job number, which you can get 
from lpq. For example, to remove a print job, just run lprm jobid.

lpstat -t summarizes the print server’s overall status.

Multiple printers and queues

The CUPS server maintains a separate queue for each printer. Command-line cli-
ents accept an option (typically -P printer or -p printer) to specify which queue 
you want to address. You can also set a default printer for yourself by setting the 
PRINTER environment variable

$ export PRINTER=printer_name

or by telling CUPS to use a particular default for your account.
$ lpoptions -dprinter_name

When run as root, lpoptions sets system-wide defaults in /etc/cups/lpoptions, 
but it’s more typically used by individual, nonroot users. lpoptions lets each user 
define personal printer instances and defaults, which it stores in ~/.lpoptions. 
lpoptions -l lists the current settings.

Printer instances

If you have only one printer but want to use it in several ways—say, both for quick 
drafts and for final production work—CUPS lets you set up different “printer in-
stances” for these different uses.

For example, if you already have a printer named Phaser_6120, the command
$ lpoptions -p Phaser_6120/2up -o number-up=2 -o job-sheets=standard

creates an instance named Phaser_6120/2up that performs 2-up printing and 
adds banner pages. Once the instance has been created, the command 

$ lpr -P Phaser_6120/2up biglisting.ps

prints the PostScript file biglisting.ps as a 2-up job with a banner page.

Network printing

From CUPS’ perspective, a network of machines isn’t very different from an iso-
lated machine. Every computer runs a cupsd, and all the CUPS daemons talk to 
one another.

If you’re working on the command line, you configure a CUPS daemon to accept 
print jobs from remote systems by editing the /etc/cups/cupsd.conf file (see Net-
work print server setup on page 1039). By default, servers that are set up this way 
broadcast information every 30 seconds about the printers they serve. As a result, 
computers on the local network automatically learn about the printers that are 

  



ptg

Filters 1037

Pr
in

tin
g

available to them. You can effect the same configuration by clicking a check box in 
the CUPS GUI in your browser.

If someone has plugged in a new printer, if you’ve brought your laptop into work, 
or if you’ve just installed a new workstation, you can tell cupsd to look and see 
what’s out there by clicking on the Find New Printers button in the Administra-
tion tab of the CUPS GUI.

Because broadcast packets do not cross subnet boundaries, it’s a bit tricker to 
make printers available to multiple subnets. One solution is to designate a slave 
server on each subnet that polls the other subnets’ servers for information and 
then relays that information to machines on the local subnet.

For example, suppose the print servers allie (192.168.1.5) and jj (192.168.2.14) live 
on different subnets and we want both of them to be accessible to users on a third 
subnet, 192.168.3. We designate a slave server (say, copeland, 192.168.3.10) and 
add these lines to its cupsd.conf file:

BrowsePoll allie 
BrowsePoll jj 
BrowseRelay 127.0.0.1 192.168.3.255

The first two lines tell the slave’s cupsd to poll the cupsds on allie and jj for infor-
mation about the printers they serve. The third line tells copeland to relay the 
information it learns to its own subnet. Simple!

Need a more sophisticated setup? Multiple queues for one printer, each with dif-
ferent defaults? A single server that load-balances by parceling out jobs to several 
printers? Multiple servers that each handle interchangeable instances of the same 
kind of printer? lpd or Windows clients? There’s too much variation to go through 
here, but CUPS handles all these situations, and the documentation can walk you 
through the details. (See the section on documentation, starting on page 1083.)

Filters

Rather than using a specialized printing tool for every printer, CUPS uses a chain 
of filters to convert each printed file into something the printer can understand.

The CUPS filter scheme is elegant. Given a document and a target printer, CUPS 
uses its .types files to figure out the document’s MIME type. It consults the 
printer’s PPD file to figure out what MIME types the printer can handle. It then 
uses the .convs files to deduce what filter chains could convert one format to the 
other, and what each prospective chain would cost. Finally, it picks a chain and 
passes the document through those filters. The final filter in the chain passes the 
printable format to a back end, which transmits the data to the printer through 
whatever hardware or protocol the printer understands.

Let’s flesh out that process a bit. CUPS uses rules in /etc/cups/mime.types to suss 
out the incoming data type. For example, the rule

application/pdf pdf string (0,%PDF)

  



ptg

1038 Chapter 26 Printing

means “If the file has a .pdf extension or starts with the string %PDF, then its 
MIME type is application/pdf.”

CUPS figures out how to convert one data type to another by looking up rules in 
the file mime.convs (usually in /etc/cups or /usr/share/cups). For example,

application/pdf application/postscript 33 pdftops

means “To convert an application/pdf file to an application/postscript file, run the 
filter pdftops.” The number 33 is the cost of the conversion. When CUPS finds 
that several filter chains can convert a file from one type to another, it picks the 
chain with the lowest total cost. (Costs are chosen by whoever created the file— 
the distribution maintainers, perhaps. We have no idea how. If you want to spend 
time tuning them because you think you can do a better job, you may have too 
much free time.)

The last component in a CUPS pipeline is a filter that talks directly to the printer. 
In the PPD of a non-PostScript printer, you may see lines such as

*cupsFilter: "application/vnd.cups-postscript 0 foomatic-rip"

or even
*cupsFilter: "application/vnd.cups-postscript foomatic-rip"

The quoted string has the same format as a line in mime.convs, but there’s only 
one MIME type instead of two. This line advertises that the foomatic-rip filter 
converts data of type application/vnd.cups-postscript to the printer’s native data 
format. The cost is zero (or omitted) because there’s only one way to do this step, 
so why pretend there’s a cost? (Some PPDs for non-PostScript printers, like those 
from the Gutenprint project, are slightly different.)

To find the filters available on your system, try running locate pstops. pstops is a 
popular filter that massages PostScript jobs in various ways, such as adding a 
PostScript command to set the number of copies. Wherever you find pstops, the 
other filters won’t be far away.

You can ask CUPS for a list of the available back ends by running lpinfo -v. If your 
system lacks a back end for the network protocol you need, it may be available 
from the web or from your Linux distributor.

CUPS server administration

cupsd starts at boot time and runs continuously. All of our example Linux distri-
butions are set up this way by default.

The CUPS configuration file is called cupsd.conf; it’s usually found in /etc/cups. 
The file format is similar to that of the Apache configuration file. If you’re com-
fortable with one of these files, you’ll be comfortable with the other. You can view 
and edit cupsd.conf with a text editor or, once again, from the CUPS web GUI.

  



ptg

Network print server setup 1039

Pr
in

tin
g

The default config file is well commented. The comments and the cupsd.conf
man page are good enough that we won’t belabor the same information here. 

CUPS reads its configuration file only at startup time. If you change the contents 
of cupsd.conf, you have to restart cupsd for changes to take effect. If you make 
changes through cupsd’s web GUI, it restarts automatically. To restart cupsd from 
the command line, just run /etc/init.d/cups restart or /etc/initd.cupsys restart, 
whichever is present.

You can also configure the system through desktop-specific GUI tools. For exam-
ple, under KDE, you can use the KDE Print Manager, accessible through the KDE 
control center. We found some problems with the KDE Print Manager during our 
testing, however. For example, it complained about not understanding certain op-
tions found in some distributions’ default cupsd.conf files. The browser GUI is 
safer and is certainly authoritative.

Network print server setup

If you’re having trouble printing from the network, go into the browser-based 
CUPS GUI and make sure you’ve checked all the right boxes. Possible problem 
areas include an unpublished printer, a CUPS server that isn’t broadcasting its 
printers to the network, or a CUPS server that won’t accept network print jobs. 

If you’re editing the cupsd.conf file directly, you’ll need to make a couple of 
changes. First, change

<Location />
Order Deny,Allow 
Deny From All 
Allow From 127.0.0.1 
</Location>

to
<Location />
Order Deny,Allow 
Deny From All 
Allow From 127.0.0.1 
Allow From netaddress 
</Location>

Replace netaddress with the IP address of the network from which you want to 
accept jobs (e.g., 192.168.0.0). Then look for the BrowseAddress keyword and set 
it to the broadcast address on that network plus the CUPS port; for example,

BrowseAddress 192.168.0.255:631

These steps tell the server to accept requests from any machine on the designated 
subnet and to broadcast what it knows about the printers it’s serving to every 
CUPS daemon on that network. That’s it! Once you restart cupsd, it comes back 
as a server.

  



ptg

1040 Chapter 26 Printing

Printer autoconfiguration

You can use CUPS without a printer (for example, to convert files to PDF or fax 
format), but its typical role is to manage real printers. In this section we review the 
ways in which you can deal with the printers themselves.

In some cases, adding a printer is trivial. CUPS tries to autodetect USB printers 
when they’re plugged into the system and figure out what to do with them. 

Printer manufacturers typically supply installation software that does most of the 
setup work for you on Windows and even Mac OS X (which also uses CUPS). 
However, few vendors explicitly support Linux.

Even if you have to do some configuration work yourself, adding a printer is often 
no more painful than plugging in the hardware, connecting to the CUPS web in-
terface at localhost:631/admin, and answering a few questions. KDE and GNOME 
come with their own printer configuration widgets, which you may prefer to the 
CUPS interface. (We like the CUPS GUI.)

If someone else adds a printer and one or more CUPS servers running on the 
network know about it, your CUPS server will learn of its existence. You don’t 
have to explicitly add the printer to the local inventory or copy PPDs to your ma-
chine. It’s magic.

Network printer configuration

Network printers—that is, printers whose primary hardware interface is an Ether-
net jack—need some configuration of their own just to be proper citizens of the 
TCP/IP network. In particular, they need to know their own IP addresses and 
netmasks. That information is usually conveyed to them in one of two ways.

Modern printers can get this information across the network from a BOOTP or 
DHCP server, and this method works well in environments that have many such 
printers. See DHCP: the Dynamic Host Configuration Protocol on page 469 for 
more information about DHCP.

Alternatively, you can assign the printer a static IP address from its console, which 
usually consists of a set of buttons on the printer’s front panel and a one-line dis-
play. Fumble around with the menus until you discover where to set the IP ad-
dress. (If there is a menu option to print the menus, use it and put the printed 
version underneath the printer for future reference.)

A few printers give you access to a virtual console through a serial port. It’s a nice 
idea, but the total amount of work is probably more than suffering through the 
front-panel interface. The principles are the same.

Once configured, network printers usually have a web console accessible from a 
browser. However, printers need to have an IP address and be up and running on 
the network before you can get to them this way, so this interface is unavailable 
just when you might want it most.

  



ptg

Service shutoff 1041

Pr
in

tin
g

After your printer is on the network and you can ping it, make sure to secure it as 
described in the section Secure your printers on page 1081.

Printer configuration examples

Let’s add the parallel printer groucho and the network printer fezmo from the 
command line.

$ sudo lpadmin -p groucho -E -v parallel:/dev/lp0 -m pxlcolor.ppd 
$ sudo lpadmin -p fezmo -E -v socket://192.168.0.12 -m laserjet.ppd

Groucho is attached to port /dev/lp0 and fezmo is at IP address 192.168.0.12. We 
specify each device in the form of a universal resource indicator (URI) and choose 
an appropriate PPD from the ones in /usr/share/cups/model.

As long as cupsd has been configured as a network server, it immediately makes 
the new printers available to other clients on the network. No restart is required.

CUPS accepts a wide variety of URIs for printers. Here are a few more examples:

• ipp://zoe.canary.com/ipp
• lpd://riley.canary.com/ps
• serial://dev/ttyS0?baud=9600+parity=even+bits=7
• socket://gillian.canary.com:9100
• usb://XEROX/Phaser%206120?serial=YGG210547

Some types take options (e.g., serial) and others don’t. lpinfo -v lists the devices 
your system can see and the types of URIs that CUPS understands.

Printer class setup

A “class” is a set of printers that share a queue. Jobs in the queue print on which-
ever printer becomes available first. The commands below create the class haemer 
and adds three printers to it: riley, gilly, and zoe.

$ sudo lpadmin -p riley -c haemer 
$ sudo lpadmin -p gilly -c haemer 
$ sudo lpadmin -p zoe -c haemer

Note that there is no explicit step to create the class; the class exists as long as 
printers are assigned to it. In fact, CUPS is even smarter than that: if multiple 
printers on a network are all given the same name, CUPS treats them as an im-
plicit class and load-shares jobs among them. Unless all the printers are located in 
the same room, this may not be the behavior you want.

Service shutoff

If you want to remove a printer or class, that’s easily done with lpadmin -x.
$ sudo lpadmin -x fezmo 
$ sudo lpadmin -x haemer

  



ptg

1042 Chapter 26 Printing

OK Mr. Smarty Pants, but what if you just want to disable a printer temporarily 
for service instead of removing it? You can block the print queue at either end. If 
you disable the tail (the exit or printer side) of the queue, users can still submit 
jobs, but the jobs will never print. If you disable the head (the entrance) of the 
queue, jobs that are already in the queue can still print, but the queue rejects at-
tempts to submit new jobs. 

The cupsdisable and cupsenable commands control the exit side of the queue, 
and the reject and accept commands control the submission side.1 For example,

$ sudo cupsdisable groucho 
$ sudo reject corbet

Which to use? It’s a bad idea to accept print jobs that have no hope of being 
printed in the foreseeable future, so use reject for extended downtime. For brief 
interruptions that should be invisible to users (e.g., changing a toner cartridge), 
use cupsdisable.

Administrators occasionally ask for a mnemonic to help them remember which 
commands control which end of the queue. Consider: if CUPS “rejects” a job, that 
means you can’t “inject” it. Another way to keep the commands straight is to re-
member that accepting and rejecting are things you can do to print jobs, whereas 
disabling and enabling are things you can do to printers. It doesn’t make any sense 
to “accept” a printer or queue.

CUPS itself sometimes temporarily disables a printer that it’s having trouble with 
(e.g., if someone has dislodged a cable). Once you fix the problem, remember to 
re-cupsenable the queue. If you forget, lpstat will tell you. (For a complete discus-
sion of this issue and an alternative approach, see linuxprinting.org/beh.html.)

Other configuration tasks

Today’s printers are infinitely configurable, and CUPS lets you tweak a wide vari-
ety of features through its web interface and through the lpadmin and lpoptions
commands. As a rule of thumb, lpadmin is for system-wide tasks and lpoptions is 
for per-user tasks.

lpadmin can restrict access to printers and queues. For example, you can set up 
printing quotas and specify which users can print to which printers.

Table 26.1 lists the commands that come with CUPS and classifies them according 
to their origin.

1. Older versions of CUPS use enable and disable instead of cupsenable and cupsdisable. Unfortu-
nately, enable is also a bash built-in command, so bash assumes you mean its own enable unless you 
specify the full pathname of the command. As it happens, bash’s version of enable enables and dis-
ables bash built-ins, so you can use it to disable itself with enable -n enable.

  



ptg

Printing from desktop environments 1043

Pr
in

tin
g

26.3 PRINTING FROM DESKTOP ENVIRONMENTS

We’ve mentioned already that we encourage the use of the native CUPS GUI for 
administration rather than the use of add-ons such as those designed for KDE. 
The native GUI is authoritative and also happens to be pretty good.

Another point to consider is portability. You may already be struggling with three 
different families of printing systems—why add to the confusion by struggling 
with several different administrative GUIs, too? If your CEO wants to print from 
his brand-new Macintosh, you may not know where to click to get to the latest 
Apple-designed GUI configuration widgets. But if you browse to localhost:631, 
you’ll find yourself in familiar territory.

Still, if all your users are on a particular desktop environment, you may decide to 
use that desktop’s GUI to support them. As an example, consider KDEPrint, the 
overarching framework for printing under KDE.

KDEPrint provides its own tools for adding printers, administering print jobs, 
restarting print servers, and so on. Like other KDE tools, it has a KDE look and 
feel, affording consistency for KDE users. (You’ve probably noticed that even KDE 
utility names have a distinctive look and feel. Someone once asked us if ksh was a 
KDE application.)

Table 26.1 CUPS’s command-line utilities and their origins

Command Function

CU
PS

cups-configa Prints API, compiler, directory, and link information 
cupsdconf a Configures CUPS through a KDE interface 
cupsdisableb Stops printing on a printer or class 
cupsenableb Restarts printing on a printer or class 
lpinfo Shows available devices or drivers 
lpoptions Displays or sets printer options and defaults 
lppasswd Adds, changes, or deletes digest passwords

Sy
st

em
 V

accept, reject Accepts or rejects queue submissions 
cancel Cancels print jobs
lp Enqueues jobs for printing 
lpadmin Configures printers and classes 
lpmove Moves an existing print job to a new destination 
lpstat Prints status information

BS
D

lpc Acts as a general printer-control program
lpq Displays print queues
lpr Enqueues jobs for printing
lprm Cancels print jobs

a. Don’t confuse these tools. cups-config is a command-line tool that’s included with 
CUPS, and cupsdconf is a GUI tool in KDEPrint.

b. These are actually just the disable and enable commands from System V, renamed.

  



ptg

1044 Chapter 26 Printing

KDEPrint is not tied to CUPS. Although it can handle all of CUPS’s features, it 
can be configured to work with everything from LPRng to a generic external pro-
gram. If for some reason you can’t run CUPS (or worse, you have to switch back 
and forth between print systems), you can still use KDEPrint to manage printing. 
Be forewarned that CUPS is more capable than other printing systems, so if you 
have to downshift to an alternative printing system, some of KDEPrint’s function-
ality may disappear.

Here are the major components of KDEPrint that you should know about:

• kprinter, a GUI tool that submits print jobs

• The Add Printer wizard, which autodetects network printers (JetDirect, 
IPP, and SMB) and some locally connected printers. The Add Printer 
wizard also lets you add and configure printers that it doesn’t autodetect.

• The Print Job Viewer, which moves and cancels print jobs and shows 
print job status information

• The KDEPrint Handbook, which documents the system. It’s available 
through the KDE Help Center but can be annoyingly hard to find. An 
easier route is to invoke something like kprinter and click on Help. 
Another alternative is to use the KDE browser, konqueror, by running 
konqueror help:/kdeprint. KDEPrint documentation can also be found 
at printing.kde.org.

• The Print Manager, which is the main GUI management tool for the 
printing system. It, too, can be a bit hard to find. You can poke around in 
your main desktop menu, although the location in the menu tree varies 
from distribution to distribution. Another option is to run kcmshell 
printmgr or konqueror print:/manager.

The Add Printer wizard and the Print Job Manager are accessible through either 
kprinter or the KDE Print Manager, not to mention the URLs print:/manager and 
print:/printers in Konqueror.

Per-user information for KDEPrint is stored under ~/.kde. The files are human 
readable but designed to be changed through the Print Manager. Tinker with 
them at your peril.

kprinter: print documents

kprinter is a GUI replacement for lpr. It can be used from the command line 
without a GUI. For example, the command

$ kprinter --nodialog -5 -P lj4600 riley.ps gillian.pdf zoe.prn

is equivalent to
$ lpr -5 -P lj4600 riley.ps gillian.pdf zoe.prn

  



ptg

Overview 1045

Pr
in

tin
g

Your users probably don’t care; they want a GUI. Show them how to drag files 
from the file manager or desktop into the kprinter dialog, then print the entire 
batch. Replace lpr with kprinter in their browser’s Print dialog, and they’ll have a 
GUI print dialog. Teach them to click on their “Keep this dialog open after print-
ing” check box, and they won’t experience a restart delay every time they print.

Take note of the “Print system currently in use” menu, evidence of KDEPrint’s 
system neutrality. Note also that kprinter offers print-to-PDF and print-to-fax 
functions even if your network has no actual printers. The advanced options are 
also worth a look; you can queue your résumé for printing and specify that it be 
printed after your boss goes home.

Konqueror and printing

Many web browsers recognize a set of special-purpose URIs that act as gateways 
to idiosyncratic functionality. You’ve probably at least tried about:config and 
about:mozilla in Firefox. Similarly, the print: family of URIs is Konqueror’s secret 
gateway to the world of KDEPrint.

The print:/ URL shows you all the possibilities. print:/jobs monitors print jobs, 
and print:/manager starts the Print Manager inside of Konqueror.

Even though you’re not dealing directly with CUPS here, what makes all this rela-
tively easy is the underlying fact that CUPS is a web server. Browsers know how to 
talk to web servers, so it’s relatively easy to tweak them to add CUPS-specific 
printing features.

26.4 SYSTEM V PRINTING

System V’s printing software is the oldest and most primitive of the printing sys-
tems we cover—so old that it wasn’t designed with network printing in mind. 
Most vendors that use it have made numerous changes. As usual with vendor-
specific software maintenance, some modifications have added useful functional-
ity while others seem gratuitous. 

Among our example systems, Solaris and HP-UX use the System V software. Both 
have modified it significantly. Below, we discuss the standard system, but with 
many vendor-specific notes.

Overview

A user who wants to print something must either use the lp command or a com-
mand that invokes lp indirectly. lp puts data into the spool directory associated 
with its destination. The lpsched daemon determines when and where the data 
should be printed, then executes an interface program that formats the data and 
sends it to the correct printer. Table 26.2 on the next page lists the commands in 
the System V printing system.

  



ptg

1046 Chapter 26 Printing

Destinations and classes

Each printing “destination” has a name that consists of up to 14 alphanumeric 
characters and underscores. A destination is usually a printer, but it doesn’t have 
to be. For example, a destination could be a file to which many users may need to 
append text. Because printing systems are queuing systems, you could use lp to 
avoid a situation in which two people attempt to add to the file at the same time.

Every destination belongs to zero or more classes. A class is a group of destina-
tions that all serve the same purpose in some way, For example, if a site has two 
printers in the same room, they might be combined into a class. Likewise, two 
printers with similar features (such as color, resolution, duplex, or speed) might 
be grouped into a class. lpsched would direct output submitted to that class to 
whichever printer became available first. Class names have the same restrictions 
as destination names. 

For better or worse, you’ll see “destination” used to mean “printer or class,” and 
“printer” and “destination” used interchangeably. You should be able to tell from 
context which meaning is intended.

Table 26.2 System V printing commands

Cmd Location Function

Ge
ne

ra
l

accept /usr/sbin Turns on acceptance of jobs into a queue 
cancel /bin Removes print jobs from a queue
disable /bin Disables printing of jobs from a queue
enable /bin Enables printing of jobs from a queue
lp /bin Queues jobs for printing 
lpadmin /usr/sbin Configures the printing system 
lpmove /usr/sbin Moves jobs between queues 
lpsched /usr/lib Schedules and prints jobs
lpshut /usr/sbin Stops printing services 
lpstat /bin Reports the status of printing services
reject /usr/sbin Stops acceptance of jobs into a queue

So
la

ris

lpfilter /usr/sbin Controls print filters 
lpforms /usr/sbin Controls the use of preprinted forms 
lpget /bin Reads configuration settings
lpset /bin Modifies configuration settings
lpusers /usr/sbin Controls queue priorities

HP
-U

X

lpalt /bin Modifies jobs in a queue
lpana /usr/sbin Analyzes performance logs 
lpfence /usr/sbin Sets the minimum job priority for a printer 
lpr /bin Supports BSD printing

  



ptg

lpsched and lpshut: start and stop printing 1047

Pr
in

tin
g

A brief description of lp

lp is a user-level command that enqueues data for printing. lp copies the submit-
ted data (which can come either from named files or from lp’s standard input) 
into a file or set of files in the spool directory. Under HP-UX, the spool directory 
for a destination is /var/spool/lp/request/dest where dest is the name by which lp
knows the printer or class of printers. Solaris uses the gratuitously different, plu-
ralized version, /var/spool/lp/requests/dest.

Spool files are named xxxn, where n is a job identification number assigned by lp
and xxx varies from system to system. This filename identifies the job both to the 
user and internally to the printing system. We refer to this name as the job identi-
fication, or jobid for short.

lp -d queues the input for output to a specific destination (either a printer or a 
class). Without the -d option, lp uses the contents of the LPDEST environment 
variable as the name of the output destination. If this environment variable is not 
set, lp queues the data for output to the default destination, which the system 
administrator can set with lpadmin -d.

In Solaris, if no default device has been specified with lpadmin -d, then lp
searches the ~/.printers file, the /etc/printers.conf file, and finally, the Federated 
Naming Service for a default destination.

lpsched and lpshut: start and stop printing

The lpsched daemon sends files placed in the spool directory by lp to an appro-
priate device as soon as one is available. lpsched keeps a log of each file it pro-
cesses and of any errors that occur. 

In Solaris, the default log file is /var/lp/logs/lpsched. HP-UX keeps the log file in 
/var/adm/lp/log; when lpsched starts (normally at boot time), it moves the old 
log aside to oldlog and starts a new one.

A log file looks something like this:
***** LP LOG: Jul 6 12:05 ***** 
pr1-107 garth pr1 Jul 6 12:10
pr-112 scott pr1 Jul 6 12:22
pr-117 evi pr2 Jul 6 12:22
pr1-118 garth pr1 Jul 6 12:25
pr1-119 garth pr1 Jul 6 13:38
pr-132 evi pr1 Jul 6 13:42

The first column is the jobid of each job. The second column is the user who 
requested the job. The third column is the actual printer the job was sent to, and 
the last column is the time at which the job was queued. 

The HP-UX system in this example lists two printers: pr1 and pr2, both of which 
are in the class pr. The user garth always specified the specific printer pr1, so that’s 

  



ptg

1048 Chapter 26 Printing

where his jobs were always sent. The users scott and evi, on the other hand, speci-
fied the class pr, so their jobs were sent to the first available printer in that class. 

To stop lpsched for any reason, run lpshut as root or as the user lp. When lpsched
is not running, no jobs will actually be printed, although lp can still queue jobs for 
printing. Jobs that are being printed when the daemon is stopped will be reprinted 
in their entirety when the daemon is restarted.

lpsched creates the file /var/spool/lp/SCHEDLOCK to indicate that it is run-
ning. If you try to start another copy of lpsched, it notices that this file exists and 
refuses to run. If you stop lpsched by any means other than lpshut, you must 
remove the SCHEDLOCK file by hand before you can restart lpsched.

lpadmin: configure the printing environment

The lpadmin command tells the printing system about your printer configura-
tion. It names printers, creates classes, and specifies the default printer. All the 
lpadmin command really does is create and modify a collection of text files that 
are found in the /var/spool/lp directory.

Despite the fact that you can read these configuration files, they are a good place 
to practice the old adage “look but don’t touch”; the files are format-sensitive and 
break easily. 

Solaris’s lpadmin tries to use a BSD-like printer description file to make the sys-
tem easier to configure. But in fact, it ends up just spreading the configuration 
information out into two additional locations: /etc/printers.conf and /etc/lp.

Solaris wants lpsched to be running during most administrative commands. On 
the other hand, most HP-UX lpadmin commands do not work when lpsched is 
running, so lpsched must be stopped with lpshut before you try to use lpadmin. 
(Perhaps these vendors are reluctant to move to CUPS because it would be the 
same on all systems and would deprive the world of richness and diversity?)

Before the printing system can send jobs to a particular printer, you must tell it 
that the printer exists. To add a new printer, execute

$ sudo lpadmin -pprinter -vdevice { -eprinter | -mmodel | -iinterface } 
[ -cclass - ] [ -l | -h ]

where printer is the name of the new printer (both internally in the queuing sys-
tem and at the level of user commands) and device is the device file with which the 
printer is associated. The device is usually a special file underneath the /dev direc-
tory, but it can be any file.

The flags -e, -m, or -i tell the queuing system which printer interface program to 
use. The interface program is responsible for actually formatting jobs before they 
are sent to the printer. System V interface programs are analogous to CUPS filters. 
See the section Filters on page 1037 for more details.

  



ptg

lpadmin: configure the printing environment 1049

Pr
in

tin
g

A printer’s interface program can be specified in three ways:

• -eprinter – in this case, printer is the name of an existing printer. This 
method of specifying the interface program is useful if you’re adding a 
printer that is exactly like an existing one. lpadmin makes a copy of the 
interface program under the new destination’s name. 

• -mmodel – with this option, model is a type of device for which your 
system has a standard interface program. To determine which models 
your system supports, look in /var/spool/lp/model. When you use this 
form, lpadmin makes a copy of the file /var/spool/lp/model/model to 
be used exclusively by the new destination. 

• -iinterface – with the -i option, interface is the full pathname of a pro-
gram to be used as the interface script. Most versions of lpadmin make a 
copy of the interface program, so if you want to change the program 
after you have run lpadmin, you must change the destination-specific 
copy and not your original. 

HP-UX lets you specify programs that return status information and cancel 
printer jobs. These programs are specified like interface scripts, but different op-
tion prefixes are used (-ocm and -osm for cancel and status scripts, respectively).

lpadmin also accepts the following additional options:

• -pprinter tells lpadmin which printer or printers you are referring to. 
Combine this flag with other options to modify a printer.

• -cclass specifies the name of a class in which the printer should be 
included. Any number of classes can be specified for a given printer. If 
you specify a nonexistent class, it is created. The class name is limited to 
14 characters.

• -xprinter removes printer from the print system. If printer is the only 
member of a class, then that class is also removed. Neither a printer nor 
a class can be removed if it has jobs queued for output. If queued jobs are 
keeping you from removing a printer, use the reject command to stop 
new jobs from being spooled and use the lpmove or cancel command to 
clear the existing jobs. If lpadmin -x still won’t remove the printer, fol-
low the advice on page 1053.

• -rclass removes a printer from class. The -r flag does not remove the 
printer; it just removes it from the class. If the specified printer is the 
only member of the class, the class itself is removed.

lp does not accept requests for a new printer until told to do so by accept.

System V printing commands often accept a quoted, comma-separated list of des-
tinations in place of a single destination. For example, the command

$ sudo /usr/sbin/lpadmin -p"howler-lw,ralphie-lw" -ceng-printers

  



ptg

1050 Chapter 26 Printing

adds the printers howler-lw and ralphie-lw to the eng-printers class. Table 26.3 
summarizes the flags understood by lpadmin.

lpadmin examples

The following examples show various uses of lpadmin.
$ sudo lpadmin -phowler-lw -v/dev/tty06 -mPostScript -cpr

This command tells the printing system that a printer to be called howler-lw is 
connected to /dev/tty06, that the printer should be in the class pr, and that the 
interface program for PostScript printers should be used. lpadmin takes care of 
creating the spool directory for you.

The command
$ sudo lpadmin -dpr

sets the system’s default destination to class (or printer) pr, and the command
$ sudo lpadmin -phowler-lw -L"Conference room"

sets the description string for howler-lw.
$ sudo lpadmin -phowler-lw -rpr -cfast

removes howler-lw from class pr and adds it to class fast;
$ sudo lpadmin -xhowler-lw

removes howler-lw completely. 

Table 26.3 lpadmin flags

Flag Function 

-p printer Specifies the printer to which other options apply 
-ddest Makes dest the system’s default printing destination 
-xdest Removes dest from the printing system 
-cclass Adds the printer to class 
-rclass Removes the printer from class 
-edest Copies another printer’s interface program 
-i interface Makes interface the interface program for the printer 
-mmodel Makes the printer use the interface program for model
-h Signifies that the printer is hardwired 
-vfile Specifies the full path of the printer device file 
-D"desc" Sets the printer description string to desc 
-L"location" Sets a textual description of where a printer lives

  



ptg

accept and reject: control spooling 1051

Pr
in

tin
g

lpstat: get status information

lpstat shows the status of the printing system. If executed without any arguments, 
it gives the status of all jobs that belong to the user who executed it. With a -p flag, 
lpstat gives information about the status of a particular printer. For example,

$ lpstat -phowler-lw 
howler-lw is now printing pr-125. enabled since Jul 4 12:25

shows the status of printer howler-lw. To determine the status of the lpsched dae-
mon, run lpstat -r. For example,

$ lpstat -r 
scheduler is running

shows that everything is OK. Table 26.4 lists the flags understood by lpstat.

cancel: remove print jobs

cancel removes from the queue jobs that are queued or being printed. You can 
invoke cancel with either a job number (determined with lpstat) or with a printer 
name. If you specify a printer, then the job currently being printed is canceled. 

See page 153 for more 
information about set-
uid execution.

The cancel command is usually owned by the pseudo-user lp with group bin and 
mode 6775 so that anyone can use it to cancel jobs that are obviously bogus. If 
someone who did not send a job cancels it, mail is sent to the job’s owner. If users 
abuse this privilege, set the mode of the command so that it does not run setuid.

accept and reject: control spooling

If a printer will be unavailable for a long time (for example, because of a hardware 
failure), spooling to that device should be disabled so that users who are unaware 
of the situation do not fill the queue. Disable spooling with the reject command. 
For example, the following command makes lp reject requests on howler-lw:

$ sudo reject -r"howler-lw will be down until Tuesday" howler-lw

Table 26.4 lpstat flags

Flag Function 

-r Shows the status of the lpsched daemon 
-d Shows the default destination 
-cclass Lists the members of class 
-oarg Shows the status of output requests for arg 
-uuser Shows the status of jobs submitted by user 
-p printer Shows the status of printer 
-vprinter Lists the output device associated with printer 
-adest Shows the acceptance status of dest 
-s Shows a summary of status information 
-t Shows all status information

  



ptg

1052 Chapter 26 Printing

The -r flag is optional, but it is a nice way to tell users why the printer is rejecting 
requests. When someone tries to print a file, lp displays your message:

$ lp -dhowler-lw myfile 
lp: cannot accept requests for destination "howler-lw"
  -- howler-lw will be down until Tuesday

accept printer tells lp to begin accepting requests for printer. You must run accept
once for each new printer added with lpadmin because new printers are config-
ured to reject requests by default. You can give accept and reject a class name 
instead of a printer name to enable or disable spooling for an entire class.

enable and disable: control printing

The disable command tells lpsched to stop sending jobs to a particular printer. 
Unlike reject, disable does not stop lp from queuing jobs for the printer. How-
ever, queued jobs will not be output until the printer is reenabled with enable. 
disable does not normally abort printing of the current job, but the -c option 
requests this behavior. Like reject, disable supports a -r flag that allows you to 
explain why a printer is disabled. For example, the command

$ sudo disable -r"Being cleaned, back in 5 minutes" howler-lw

disables printing on howler-lw. To restart printing, type:
$ sudo enable howler-lw

lpmove: transfer jobs

It’s sometimes necessary to move jobs queued for one printer or class to another 
printer. You accomplish this feat with lpmove, which you run with a list of jobids 
and the name of a new printer. For example, the command

$ sudo lpmove howler-lw-324 howler-lw-325 anchor-lj

would move the jobs numbered 324 and 325 from the queue for howler-lw to the 
queue for anchor-lj. You can also give lpmove a printer or class as a source. For 
example, the command 

$ sudo lpmove howler-lw anchor-lj

moves all jobs queued for howler-lw to the queue for anchor-lj. When lpmove is 
used in this way, it has the side effect of executing a reject on the printer of origin. 
In the preceding example, lp would no longer accept requests for howler-lw. 

By design, the HP-UX version of lpmove cannot be used when lpsched is run-
ning. Run lpshut first.

Interface programs

An interface program takes information from a file that lpsched specifies, formats 
it, and sends the formatted data to its stdout. The interface program is also re-
sponsible for setting the correct modes on its output device and for generating 

  



ptg

What to do when the printing system is completely hosed 1053

Pr
in

tin
g

headers and trailers if they are desired. Interface programs are usually shell 
scripts, but they can be executable binaries, too.

lpsched calls interface programs with the following arguments:
jobid user title copies options file …

where

• jobid is the job identification that is assigned by lp
• user is the user to whom the job belongs
• title is an optional title supplied by the user
• copies is the number of copies to print
• options are user-supplied options
• The files are full pathnames of files to be printed

All of the arguments are supplied each time the interface program is executed, but 
some of them may be null strings. The interface program gets its standard input 
from /dev/null, and both standard output and standard error are directed to the 
destination device as specified by lpadmin -v.

Unlike CUPS or the BSD printing system, which use different filters for different 
file formats, System V requires that interface programs handle all the kinds of 
data that the printer can accept. (They are also required to fail nicely if they re-
ceive unrecognizable input.) For this reason, interface programs are usually just 
shell scripts that process their arguments and call other programs to do the real 
work of formatting. 

In essence, the interface script for a printer is responsible for the entire output 
stage of the printing system. Although the use of interface scripts makes customi-
zation easy, it also leads to different printers behaving in very different ways. 

Interfaces are almost essential if you are planning on printing to anything other 
than a generic text or PostScript printer. Today, almost all printers use them. Ink-
jet printers absolutely require an interface to translate the print job to their format 
of choice.

An interface program should exit with a 0 on successful completion and with an 
integer in the range 1 to 127 if an error is encountered. If a job fails, the interface 
script should attempt to reprint it. If a serious error occurs, the interface program 
should disable (see page 1052) the printer. If you are having erratic printing prob-
lems, you can probably find the cause somewhere in the interface script.

What to do when the printing system is completely hosed

Sometimes, attempts to configure and unconfigure printers leave the system con-
fused. The config files that hold printer information are complicated and neu-
rotic—one stray character can leave a printer in an unusable state.

  



ptg

1054 Chapter 26 Printing

If you somehow create a printer that is confusing the system, the best solution is 
to remove the destination completely and start over. Sometimes, the system can 
be so confused that even removing the printer is hard.

The following brute-force technique will often rescue you from this sort of situa-
tion. Here, we try to remove the printer hoser. (Don’t use this exact sequence un-
less your equivalent of hoser is a single printer and not a class.)

$ sudo lpshut 
$ sudo lpadmin -xhoser 
$ sudo find /usr/spool/lp -name hoser | xargs rm -rf # remove queued jobs 
$ sudo lpsched 
$ sudo lpstat -t

The first two commands turn off the spooler and attempt to remove the printer 
according to the USDA-approved method. If the system is confused, lpadmin -x
may fail. The find command removes all interface programs and spool directories 
for the printer. lpsched restarts the spooler, and lpstat should show you that there 
are no more references to hoser within the printing system.

26.5 BSD AND AIX PRINTING

We could have just called this section “AIX printing” because AIX is the only one 
of our example systems that still uses the BSD system. But we call the system by its 
traditional name because you may encounter it on other systems as well.

The BSD printing system was designed for use with old-fashioned line printers, 
but good design has let it scale to support many more modern printers and 
printer languages. The network portion of the BSD printing system also extends 
to large, heterogeneous networks and permits many computers to share printers. 
At one point, the BSD print spooler, lpd, became so widely accepted that it found 
its way into the firmware of some network printers.

An overview of the BSD printing architecture

Access to printers is controlled by the lpd daemon. lpd accepts print jobs from 
users or from other (remote) lpds, processes them, and sends them on to an ac-
tual printer. To accomplish these steps, lpd reads printer configuration informa-
tion from /etc/printcap, the system’s printer information database.

Users invoke the lpr program to submit their print jobs to lpd. These two pro-
cesses communicate through the UNIX domain socket /dev/printer.

To determine what printer to send a job to, lpr first looks at the command line. If 
you’ve supplied a -Pprinter argument, printer becomes the destination. Otherwise, 
lpr checks the environment to see if the PRINTER variable is defined, and if so, 
lpr uses the variable’s value. If all else fails, lpr submits the job to the system-wide 
default printer, which is the printer named “lp”, or if there is no lp, to the first 
printer described in the /etc/printcap file. Almost all printing-related commands, 

  



ptg

Printing environment control 1055

Pr
in

tin
g

including lpq and lprm, understand the PRINTER environment variable and the 
-P argument.

As soon as lpr knows where the current job is headed, it looks up the printer in 
/etc/printcap. The printcap file tells lpr where to put print jobs bound for that 
printer. This spool directory is often /var/spool/lpd/printername.

lpr creates two files in the spool directory for each job. The first file’s name con-
sists of the letters cf (control file) followed by a number that identifies the job. 
This file contains reference and handling information for the job, such as the 
identity of the user who submitted it. The numeric portion of the filename allows 
space for only three digits, so the printing system becomes confused if more than 
999 jobs are queued. The second file’s name begins with df (data file) followed by 
the same number. This file contains the actual data to be printed. After the file has 
been spooled, lpr notifies the lpd daemon of the job’s existence.

When lpd receives this notification, it consults the printcap file to determine 
whether the destination is local or remote. If the printer is connected locally, lpd
checks to be sure a printing daemon is running on the appropriate printer’s queue 
and creates one (by forking a copy of itself) if necessary.

If the requested printer is connected to a different machine, lpd opens a connec-
tion to the remote machine’s lpd and transfers both the data and the control file. 
lpd then deletes the local copies of these files.

Scheduling for print jobs is done on a first-in, first-out basis, but the system ad-
ministrator can modify the printing agenda by using lpc on individual jobs. Un-
fortunately, there is no way to permanently instruct the printing system to give 
preferential treatment to jobs spooled by a particular user or machine.

When the job is ready to print, lpd creates a series of UNIX pipes between the 
spool file and the printing hardware through which the data to be printed is trans-
ported. In the middle of this channel, lpd installs a filter process that can review 
and edit the contents of the data stream before it reaches the printer. 

Filter processes can perform various transformations on the data or do nothing at 
all. Their chief purposes are to provide formatting and to support any device-
specific protocols that may be required for dealing with a particular printer. A 
printer’s default filter is specified in /etc/printcap, but the default filter can be 
overridden on the lpr command line.

Printing environment control

For day-to-day maintenance of the printing system, you need only three com-
mands: lpq, lprm, and lpc. lpq shows you the queue of jobs waiting to be printed 
on a particular printer. lprm deletes jobs. Both of these commands are available to 
users, and both work across a network (if you’re lucky), though only the superuser 
can remove someone else’s job.

  



ptg

1056 Chapter 26 Printing 

lpc lets you make a number of changes to the printing environment, such as dis-
abling printers and reordering print queues. Although some of its functions are 
available to users, lpc is primarily an administrative tool. Table 26.5 summarizes 
the commands and daemons associated with the BSD printing system.

lpd: spool print jobs 

If you start lpd with the -l flag, it logs print requests through syslog under the 
“lpr” facility. Without the -l flag, lpd logs only errors.

Access control is at the granularity of hosts; the BSD printing system does not 
support access control for specific remote users. Only hosts whose names appear 
in the files /etc/hosts.equiv or /etc/hosts.lpd are allowed to spool print jobs. Be-
cause of security issues, the use of hosts.equiv is deprecated; use hosts.lpd.

lpr: submit print jobs

lpr is the only program on a BSD-style system that can queue files for printing. 
Other programs that cause files to be printed (for example, enscript or a browser) 
must do so by calling lpr.

The -#num flag prints num copies, and the -h flag suppresses the header page. For 
example, to print two copies of a file named thesis to a printer called howler-lw, 
just run 

$ lpr -Phowler-lw -#2 thesis

lpq: view the printing queue

lpq is normally used with just a -P option to select a printer, although the -l flag is 
available to produce more detailed output. Output from lpq looks like this:

$ lpq 
anchor-lj is ready and printing 
Rank Owner Job Files Total Size
active garth 314 domain.2x1.ps 298778 bytes
1st kingery 286 standard input 17691 bytes 
2nd evi 12 appendices 828 bytes
…

Table 26.5 BSD printing commands

Cmd Location Function

lpc /usr/sbin Controls a printer or queue 
lpd /usr/sbin Schedules and prints jobs 
lpq /usr/bin Shows print queue contents and status
lpr /usr/bin Queues jobs for printing
lprm /usr/bin Cancels a queued or printing job 
lptest /usr/bin Generates an ASCII test pattern

  



ptg

lpc: make administrative changes 1057

Pr
in

tin
g

The output lines are always in order, with the active job on top and the last job to 
be printed on the bottom. If the first job is listed as 1st rather than active, no 
printing daemon is running on the printer, and you’ll need to restart it.

The second column names the user who spooled each job, and the third column 
gives the job’s identification number; this number is important to know if you 
intend to manipulate the job later with lprm or lpc. The fourth column shows the 
filenames that were listed on the lpr command line that spooled the job. If the 
data came in through a pipe, the entry in this column is standard input. The job 
size unfortunately gives no information about how many pages a job will produce 
or how long it will take to print.

lprm: remove print jobs

The most common form of lprm is lprm jobid, where jobid is the job identifica-
tion number reported by lpq. lprm user removes all jobs belonging to user. lprm
without arguments removes the active job. lprm - (that’s a hyphen) removes all 
the jobs you submitted; if you are root, it removes every job in the queue. Ordi-
nary users can’t remove each other’s jobs, but the superuser can remove any job. 

Perversely, lprm fails silently but produces output on success. If you don’t see out-
put that looks like this

dfA621xinet dequeued 
cfA621xinet dequeued

after running lprm, it means the command failed. Either lprm couldn’t remove 
the job, or you invoked the command incorrectly. 

The printing system records the host on which a job originated as well as the user 
who spooled it, and lprm’s matching process takes both pieces of data into ac-
count. Thus garth@sigi is not equivalent to garth@boulder, and neither can re-
move the other’s jobs.

Trying to lprm the active job can cause problems on some printers. The filter 
process for the job may not be properly notified of the termination, with the result 
that the whole system comes to a grinding halt with the filter process holding an 
exclusive lock on the port and preventing other processes from using the printer.

The only way to fix this situation is to use ps to identify the filter processes and to 
kill them off by hand. lpc is useless in this situation. Rebooting the system always 
cures a hung printer, but this is a drastic measure. Before you resort to a reboot, 
kill and restart the master copy of lpd and manually remove jobs from the spool 
directory with the rm command.

lpc: make administrative changes

The lpc command can perform the following functions:

• Enable or disable queuing for a particular printer
• Enable or disable printing on a particular printer

  



ptg

1058 Chapter 26 Printing

• Remove all jobs from a printer’s queue
• Move a job to the top of a printer’s queue
• Start, stop, or restart the lpd daemon
• Get printer status information

When the printing system is running smoothly, lpc works just fine. But as soon as 
a filter gets stuck or some other minor problem appears, lpc tends to wig out com-
pletely. And it lies: it sometimes claims to have fixed everything when in reality, it 
has done nothing at all. You may have to fix things up by hand or even power-
cycle your equipment when BSD printing gets badly snarled.

lpc cannot be used across a network, so you must log in to the machine that owns 
the printer you want to manipulate. lpc is normally used interactively, although 
you can also invoke it in a one-shot mode by putting one of the interactive com-
mands on lpc’s command line. Once you have activated lpc, the various com-
mands described below are available:

help [command]

help without arguments shows you a short list of all available lpc commands. 
With an argument, it shows a one-line description of a particular command.

enable printer 
disable printer

These commands enable or disable spooling of jobs to the named printer. Users 
who attempt to queue files are politely informed that spooling has been disabled. 
Jobs that are already in the queue are not affected. 

start printer 
stop printer

start enables and stop disables printing on the named printer. Print jobs can still 
be spooled when a printer has been stopped, but they will not be printed until 
printing is restarted. start and stop operate by setting or clearing owner execute 
permission on /var/spool/lpd/printer/lock. They also start and kill the appropri-
ate daemons for the printer. stop allows the active job to complete before dis-
abling printing.

abort printer

abort is just like stop, but it doesn’t allow the active job to complete. When print-
ing is reenabled, the job will be reprinted.

down printer message 
up printer

These commands affect both spooling and printing. Use them when a printer is 
really broken or has to be taken off-line for an extended period. The message pa-
rameter supplied to down can be as long as you like (on one line) and need not be 
quoted; it will be put in the printer’s /var/spool/lpd/printer/status file and shown 
to users who run lpq. You’ll normally want to use this feature to register a short 

  



ptg

The /etc/printcap file 1059

Pr
in

tin
g

explanation of why the printer is unavailable and when it will be back in service. 
The up command reverses the effect of a down.

clean printer

The clean command removes all queued jobs from the printer’s queue but allows 
the current job to complete.

topq printer jobid 
topq printer username

The first form of topq moves the specified job to the top of the printer’s queue. 
The second form promotes all jobs belonging to username.

restart printer

The restart command restarts a printing daemon that has mysteriously died. 
You’ll know that the daemon is dead when lpq tells you “no daemon present.” 
Although you might think restart would have the same effect as a stop followed 
by a start, it does not; restart will not restart a printer that still has a filter running.

status printer

The status command shows you four things about a printer: whether spooling is 
enabled, whether printing is enabled, the number of entries in the queue, and the 
status of the daemon for that printer. If no entries are in the queue, you’ll see 
something like this:

lpc> status cer 
cer:

queuing is enabled 
printing is enabled 
no entries 
no daemon present

The fact that no daemon is present is not a cause for concern; printer-specific 
daemons go away after the queue is empty and aren’t restarted by the master copy 
of lpd until another job is spooled.

The /etc/printcap file

/etc/printcap is the BSD printing system’s master database. It contains informa-
tion necessary for printing to local and remote printers. A printer must be de-
scribed in the printcap file before jobs can be submitted to it.

/etc/printcap uses the same format as /etc/termcap and /etc/remote. The first 
item in each entry is a list of names for the printer, separated by vertical bars. The 
names are followed by a number of configuration settings separated by colons. 
Configuration options are of the form xx, xx=string, or xx#number, where xx is 
the two-character name of a parameter and string and number are values to be 
assigned to it. When no value is assigned, the variable is Boolean and its presence 
indicates “true.”

  



ptg

1060 Chapter 26 Printing

The null statement is acceptable, so you can place two colons side by side. It is 
helpful to begin and end each line with a colon to make subsequent modifications 
easier. Comments in /etc/printcap start with a pound sign (#). Entries can span 
several lines if intermediate lines are terminated with a backslash. Continuation 
lines are, by convention, indented.

The syntax of the printcap file is illustrated in the following example, which de-
fines a remote printer attached to the machine anchor:

anchor-lj|cer|1-56|LaserJet 5M in lab:\ 
:lp=/var/spool/lpd/anchor-lj/.null:\ 
:sd=/var/spool/lpd/anchor-lj:\ 
:lf=/var/adm/lpd-errs:\ 
:rw:mx#0:rm=anchor:rp=anchor-lj:

From the first line, we can see that “anchor-lj”, “cer”, “1-56”, and “LaserJet 5M in 
lab” are all equivalent names for the same printer. These names are the printer’s 
given name, a well-known abbreviation, the room number of the printer’s loca-
tion, and a full description. 

You can give your printers as many names as you like, but you should include at 
least three forms of the primary name:

• Full name – hostname and type of printer (e.g., “anchor-lj”)
• Short name – three or four characters, easy to type (e.g., “cer”)
• Descriptive name – other information (e.g., “LaserJet 5M in lab”)

The next two lines in our example contain configuration settings for device name 
(lp), spool directory (sd), and error log file (lf). The last line specifies a read-write 
connection with the printer (rw), the maximum file size (mx, unlimited in this 
case), the remote machine name (rm), and the remote printer name (rp).

Jobs submitted to the printing system without a specific destination are routed to 
the first printer that has “lp” as one of its aliases. Don’t use lp as a printer’s primary 
name since that makes it difficult to change the default printer. If no printer has 
the name lp, the first printer in the printcap file is the system-wide default printer.

printcap variables

The flexibility of the printcap file is largely responsible for the BSD printing sys-
tem’s adaptability. The details are documented in the printcap man page, so we 
discuss only the most common variables here. They’re shown in Table 26.6.

All printcap entries should include at least a specification of the spool directory 
(sd), the error log file (lf), and the printing device (lp). Modern printers should 
generally be opened for reading and writing (rw) so that the printer can send 
error and status messages back to the host.

  



ptg

lf: error log file 1061

Pr
in

tin
g

sd: spool directory
Each printer should have its own spool directory. All spool directories should be 
in the same parent directory (usually /var/spool/lpd) and should have the same 
name as the full name of the printer they serve (anchor-lj in the preceding exam-
ple). A spool directory is needed, even if the printer being described lives on a 
different machine, because spooled files are stored locally until they can be trans-
mitted to the remote system for printing. 

When you install a new printer, you must create its spool directory by hand. Per-
missions should be 775, with both owner and group daemon.

The spool directory for a printer also contains two status files: status and lock. 
The status file contains a one-line description of the printer’s state. This informa-
tion is maintained by lpd and viewed with the lpq command. The lock file pre-
vents multiple invocations of lpd from becoming active on a single queue and 
holds information about the active job. The permissions on the lock file are ma-
nipulated by lpc to control spooling and printing on the printer.

lf: error log file
See Chapter 11 for 
more information 
about log files.

Errors generated by print filters are logged to the file named in this variable. One 
error log can be shared by all printers, and it can be placed anywhere you like. 
When a log entry is made, the name of the offending printer is included. Even 
remote printers should have log files, just in case of a communication problem 
with the remote machine.

Keep in mind that lpd sends error messages to syslog with facility lpr. Some filters 
send their error messages to syslog as well, leaving nothing in their printcap-
specified log files. Check both of these locations when problems arise.

Table 26.6 Commonly used printcap variables

Name Type Meaning Example

sd string Spool directory sd=/var/spool/lpd/howler-lw
lf string Error log file lf=/var/log/lpr
lp string Device name lp=/dev/lp0
rw bool Open device read/write rw
af string Accounting file af=/usr/adm/lpr.acct 

mx number Maximum file size mx#0
rm string Remote machine name rm=beast.xor.com 
rp string Remote printer name rp=howler-lw
of string Output filter of=/usr/libexec/lpr/lpf
if string Input filter if=/usr/sbin/stylascii
sh bool Suppress headers sh

  



ptg

1062 Chapter 26 Printing 

lp: device name
The device name for a printer must be specified if the printer is local. This name is 
usually the file in the /dev directory that represents the port to which the printer 
is attached.

lpd uses an advisory lock on the lp file to determine if the printer is in use. Even if 
the printer is really accessed through a network connection, you should provide a 
value for the lp variable. Specify a unique dummy file that was created for that 
purpose and that exists on a local disk.

rw: device open mode
If a printer can send status information back to the host through its device file, the 
Boolean variable rw should be specified to request that the device be opened for 
both reading and writing. Read-write mode is useful for accounting and status 
reporting, and some filters require it.

af: accounting file
You can enable accounting by simply specifying an accounting file on the ma-
chine to which the printer is physically connected. Accounting records are not 
written until a job is actually printed, so there is no point in specifying an ac-
counting file in printcap entries for remote printers.

For a summary of accounting information, use the pac command. By convention, 
printer accounting data files are usually called /var/adm/printer-acct. They list 
the number of pages printed for each job (usually a lie), the hostnames on which 
the jobs originated, and the usernames of the jobs’ owners.

It is the responsibility of the printer’s input filter to generate accounting records. 
Unless the filter actually queries the printer for its page count before and after the 
job, the page counts are extremely suspect.

mx: file size limits
The mx variable limits the amount of data that can be spooled at one time. (If fed 
to the wrong language interpreter, PostScript or PCL files can print hundreds of 
pages of garbage.)

On some systems, mx defaults to some value other than 0 (no limit), and an ex-
plicit mx#0 entry is necessary to allow large jobs. Note that mx is a numeric field, 
so you need to say mx#0, not mx=0.

rm and rp: remote access information
In most situations, you will want to access a printer from more than one machine 
on the network. Even if the printer is a network device, you should pick a single 
machine to be responsible for communicating with it. All other machines should 
forward jobs to the designated handler. With this setup, you have lpd take care of 
queuing the jobs in order rather than having several machines constantly fighting 

  



ptg

of, if: printing filters 1063

Pr
in

tin
g

over control of the printer. It also gives you a single place to look when printing is 
not working. 

Remote machines (machines that are not directly connected to the printer) have a 
simple printcap entry that tells where to send the job, as in the example on page 
1060. The rm variable specifies the machine to which jobs should be sent, and the 
rp variable gives the name of the printer on that machine.

The fact that printcap entries are different for local and remote printers necessi-
tates a bit of subterfuge on the part of the system administrator if one printcap file 
is to be shared among several machines. The fix is to make the local and remote 
names for a printer distinct; for example, howler-lw-local and howler-lw. This 
configuration makes howler-lw a “remote” printer even on the machine where it 
actually lives, but that’s perfectly OK. You must refer to howler-lw-local if you 
want to use the lpc command, however.

of, if: printing filters
Filters serve several purposes. The default printing filter (usually /usr/lib/lpf) 
fixes up various nonprinting sequences and writes out an accounting record if 
appropriate. Unfortunately, filters are not standardized. Any of several filter pack-
ages could do the same job, but each vendor tends to have unique filters.

If you have a laser or inkjet printer, or even an ancient typesetter or plotter, the 
necessary filters will usually have been provided with the printer’s software. If you 
need to configure a printer for which you have no software, read through the de-
tails in the rest of this section. Otherwise, skip ahead; ignorance is bliss.

Filters are usually just shell scripts that call a series of translation programs. The 
filter program must accept the print job on standard input, translate the job to a 
format appropriate for the device, and send the result to standard output.

If the user does not specify a filter when executing lpr, either the if (input filter) or 
the of (output filter) is used. The names are deceptive—both actually send data to 
a printer.

If the printcap entry lists an input filter but does not specify an output filter, the 
device is opened once for each job. The filter is expected to send one job to the 
printer and then exit.

Conversely, if an output filter is specified without an input filter, lpd opens the 
device once and calls the filter program once, sending all the jobs in the queue in 
a big clump. This convention is OK for devices that take a long time to connect to; 
however, such devices are extremely rare.

If both an input filter and an output filter are specified, the banner page is sent to 
the output filter, and the output filter is called even if banners are turned off. The 
input filter is called to process the rest of the job. This combination of options is 
really too confusing for mere mortals. Avoid it.

  



ptg

1064 Chapter 26 Printing

If you have to write new filters, stick to using input filters, as they are easier to 
debug. Input filters are called with numerous arguments, which vary among im-
plementations. The most interesting are the username, host of origin, and ac-
counting file name. If you want to do accounting for the printer, the input filter 
must generate the accounting records and append them to the accounting file. If 
you want to restrict access to a printer (for example, to deny printing to the user 
“guest”), the input filter must also take care of that since lpd has no built-in way to 
prevent individual users from printing.

To clarify the uses of filters, let’s look at a simple example of an input filter script. 
This example is for a PostScript printer connected to a local serial line.

#!/bin/bash 
/usr/local/bin/textps $* | /usr/local/bin/psreverse

Because the printer is serially connected, lpd takes care of opening the device with 
the correct modes, as specified in the printcap file. The first program called is 
textps, which looks at the input and decides if it is PostScript (which our printer 
expects), and if not, converts it to PostScript. textps gets all the filter arguments 
that were passed (the $*) and is expected to generate accounting records from that 
information. The second program, psreverse, reverses the order of the pages so 
that they come out in a proper stack.

printcap variables for serial devices
Many printcap variables and features are involved in the handling of old-style 
serial printers. If you have to support one of these, one approach is to plan time 
for reviewing the manual pages and drinking heavily. If you don’t drink, spend 
your department’s alcohol budget on a new printer.

printcap extensions
A nice feature of the lpr/lpd system is that it does not mind if you supply values 
for nonstandard printcap variables. Often, when a particular printer needs more 
configuration information than the base system defines, you can put extra vari-
ables in printcap for the printer’s filters to use.

For example, the output filter for a network printer might need to know the net-
work name of the device. The printcap entry for the printer might contain an 
entry such as

:nn=laser.colorado.edu:\ 

The use of printcap extensions allows all of the configuration information for a 
printer to be stored in one convenient place. If you see variables in the printcap
file that are not discussed in the printcap man page, check the documentation for 
the printer filters to determine the meanings of the variables.

Our site has taken advantage of this feature to document the physical location of 
each printer. Our printers have entries such as

  



ptg

Printing history and the rise of print systems 1065

Pr
in

tin
g

:lo=Room 423, Engineering building:\

We have scripts that monitor paper and toner levels in the printers and send mail 
to support staff with instructions such as “Take more paper to room 423 in the 
Engineering building” when necessary.

26.6 WHAT A LONG, STRANGE TRIP IT’S BEEN

You can see from the previous sections how different the three major printing 
systems are from one another, why having vendors complete the migration from 
older systems to CUPS would be helpful, and why CUPS’s decision to provide 
commands that mimic those of the older systems is a wise one.

How did things get this way? This section presents some historical background.

Printing history and the rise of print systems

Decades ago, the most common printers were ASCII line printers. Laser printers 
were expensive and rare. High-resolution output devices required custom driver 
software and formatting programs.

Today, instead of connecting to a single computer through a serial or parallel port, 
laser printers often connect to a TCP/IP network over an Ethernet, Wi-Fi, or Blue-
tooth link. Laser printers have lost the low-end market to inkjet printers. Color 
printers used to be a luxury, but like color photography and color monitors, 
they’re now the norm. Finding a black-and-white printer will soon be as hard as 
finding a black-and-white television. Or any television, for that matter.

Special-purpose printers, scanners, copiers, and fax machines are being pushed 
aside by multifunction devices that do all these jobs. Some of these now read files 
directly from your digital camera’s memory card.

Early printers were primitive, and so were their spoolers. The computer you were 
working on was assumed (correctly) to be connected directly to the printer. 
Printer configuration consisted of answering questions such as “Serial or paral-
lel?” This was true for non-UNIX systems, too, though the non-UNIX systems 
were proprietary: IBM systems knew how to drive IBM printers, Apple computers 
knew how to drive Apple LaserWriters, and so on.

The earliest commercial UNIX application, sold by INTERACTIVE Systems Cor-
poration, was a document production system for a law firm. The key pieces were a 
text editor, markup languages (nroff/troff), and printing software.

As the complexity of the world increased, several attempts were made to create 
unified standards for UNIX, but none of them succeeded. The printing protocols 
in use got older and creakier. 

The BSD and System V printing systems were both developed for the line printers 
of yore. These systems, hacked and overloaded in an attempt to keep up with 
evolving technologies, were never really up to the job of supporting modern 

  



ptg

1066 Chapter 26 Printing 

printers, and each new printer feature, such as duplexing (double-sided printing), 
required a lot of special-case hacks. 

Why were there two competing printing systems, and was there any important 
difference between them? Stand up in the middle of a users’ group meeting and 
yell, “Anyone who uses vi instead of emacs is an idiot!” Then come ask us again.

Network printing added another universe of complexity. Early network printing 
systems were idiosyncratic and used an assortment of protocols for printer-to-
spooler communication, client-to-spooler communication, and network traffic 
negotiation.

HP’s JetDirect printers often accepted raw data on port 9100, as did printers from 
other manufacturers that adopted HP’s convention. Printers with internal lpd
daemons (implementations of the BSD protocol) expected jobs on port 515.

Gritting its teeth, the IETF’s Printer Working Group created the Internet Printing 
Protocol (IPP), which it built on top of HTTP. This choice structured interactions 
in terms of simple GET and POST requests and let printing take advantage of 
standard technologies for authentication, access control, and encryption.

Michael Sweet and Andrew Senft of Easy Software Products (ESP) brought IPP to 
UNIX in the form of the CUPS implementation. Apple adopted CUPS for Mac OS 
X (and, in 2007, bought the source code), and CUPS became the most complete 
implementation of IPP on the planet. CUPS is an open source project, fixes many 
older systems’ problems, and is freely redistributable.

Printer diversity

In addition to diversity in print systems, administrators face diversity in the print-
ers themselves.

Because printers can plug into computers, users tend to lump them in with pe-
ripherals such as mice and monitors. They’re more complicated than that. They’re 
really more like smartphones or routers, but with moving parts.

At one time, the most powerful computer Apple made was the Apple LaserWriter. 
Today, your desktop machine is probably more powerful than your printer, but 
the printer is still a computer. It has a CPU, memory, an operating system, and 
perhaps even a disk. 

If it’s a network printer, it has its own network stack and IP address. If you have a 
network printer around, enter its address (or DNS name) into your web browser. 
Chances are, the printer will serve up some web pages that let you administer the 
printer hardware: the printer is running its own web server.

(Since system administrators are security minded, you may already be thinking, 
“Does that mean a printer could be compromised or hit by a denial of service 
attack?” You bet. See the section on security that starts on page 1081.)

  



ptg

Common printing software 1067

Pr
in

tin
g

What operating system is your printer running? What?! You don’t know? Not sur-
prising. You probably can’t find out, either, without some digging—and perhaps 
not even then. The operating system varies from vendor to vendor and sometimes 
even from model to model. Mid-range and higher-end printers may even run 
some derivative of UNIX or Linux.

Your printer may handle a variety of network protocols and accept jobs in any of 
several different printer-specific page-description and document-description lan-
guages. It may even understand and print common bitmap formats such as GIF, 
JPG, and TIFF.

Your printer may only print in black and white, or it may print in color. It may 
print pages at resolutions that range from 150 through 2400 dots per inch (dpi), or 
even at asymmetric resolutions such as 1200 x 600—1200dpi in one direction and 
600 in the other.

If you’re administering a larger facility, you may need to support several models of 
printers from several different manufacturers, each of which has different capabil-
ities. This state of affairs means that the printing software on your computers 
must be prepared to communicate with diverse (and sometimes unknown) hard-
ware through an array of protocols.

26.7 COMMON PRINTING SOFTWARE

There’s more to printing than just spooling and printing jobs. Even on a stock 
Ubuntu system (which uses CUPS), the command

 $ man -k . | egrep -i 'ghostscript|cups|print(er|ing| *(job|queue|filter))'

lists well over a hundred printing-related man pages—and that’s just a quick and 
dirty search. (Not everything you find will be printing-related. apcupsd is a dae-
mon that talks to Universal Power Supplies made by APC, and even the print
command has nothing to do with printing.) Several of these commands and tools 
are worth knowing about and work across all three of the printing systems cov-
ered in this book.

Both the BSD and System V print systems lack many of the format translation 
facilities that are needed to drive modern printers. So, most vendors that use these 
systems have at least one set of tools that sits on top of their printing system to 
provide the additional features. These tools are sometimes included in the OS, but 
more often they are extra-cost add-ons. Third-party and freely distributed pack-
ages are also in wide use.

pr is one of the oldest printing tools. It reformats text files for the printed page. It 
breaks its input into pagefuls of 66 lines, adds headers and footers, and can dou-
ble-space text. It’s perfect for minor massaging of text files on their way to the 
printer. (Why 66? Because that’s how many lines fit on an old, green-and-white 
line printer page.)

  



ptg

1068 Chapter 26 Printing

Adobe’s enscript command performs similar conversions with quite a few more 
bells and whistles. Its output is PostScript. GNU enscript is an open source ver-
sion of this command that is backward compatible with Adobe’s; however, GNU 
enscript offers a wealth of new features, including language-sensitive highlight-
ing, support for various paper sizes, font downloading, and user-defined headers.

One of enscript’s main claims to fame was its implementation of 2-up printing. If 
you’re not using CUPS, that feature can still be useful. If you are using CUPS, you 
don’t need enscript for this; try lpr -o number-up=2.

At the high end of the complexity spectrum is Ghostscript, originally written by 
Exeter graduate L. Peter Deutsch so that he could print PostScript documents on 
inexpensive PCL printers. Today, Ghostscript interprets both PostScript and PDF. 
CUPS uses it as a filter, but Ghostscript can also create page images for the screen, 
either on its own or with help from front ends such as Evince, gv, GNOME Ghost-
view (ggv), or KDE’s KGhostView.

Linux distributions all come with a free version of Ghostscript. If you need to 
install and build Ghostscript yourself, see ghostscript.com. A commercial version 
of Ghostscript with support is available from Artifex Software.

26.8 PRINTER LANGUAGES

A print job is really a computer program written in a specialized programming 
language. These programming languages are known collectively as page descrip-
tion languages or PDLs. The language interpreters for these PDLs often run inside 
the printers themselves.

Pages encoded in a PDL can be much smaller and faster to transmit than the 
equivalent raw images. (Or, in some cases, bigger.) PDL descriptions can also be 
device independent and resolution independent.

PDLs you may encounter include PostScript, PCL5, PCL6 (also called PCL/XL or 
“pxl”), and PDF. Many printers can accept input in more than one language. We 
touch on each of these languages briefly in the sections below.

Printers have to interpret jobs written in these languages and transform them into 
some form of bitmap representation that makes sense to the actual imaging hard-
ware. Therefore, printers contain language interpreters. Just as with C or Java, 
these languages exist in multiple versions, and the versions make a difference. 
Most PostScript printers understand PostScript Level 3, but if you send a Level 3 
program to a printer that only understands Level 2, the printer may be confused.

Rasterizing a PDL description (or anything else, such as an image file) into a bit-
map page image is called “raster image processing,” and a program that performs 
such rasterization is called a RIP. “To rip” is sometimes used informally as a 
verb—this has nothing to do with CDs, DVDs, BitTorrent, or the DMCA.

  



ptg

PCL 1069

Pr
in

tin
g

It’s possible to rip print jobs in your computer and view the images on your dis-
play. We discuss host-based interpreters that do this, such as Ghostscript, on page 
1078. You could in theory use your computer to rip jobs for printing and ship the 
completed (and much larger) bitmaps off to be printed by a not-very-smart print 
device. In fact, this is the way that many Windows “GDI” printers work. The level 
of support for this mode of operation varies widely among systems.

PostScript

PostScript is still the most common PDL found on UNIX and Linux systems. It 
was invented at Adobe Systems, and many PostScript printers still use an inter-
preter licensed from Adobe. Almost all page layout programs can generate Post-
Script, and some work with PostScript exclusively.

PostScript is a full-fledged programming language. You can read most PostScript 
programs with a text editor or with less. The programs are full of parentheses, 
curly braces, and slashes, and often start with the characters %!PS. Although these 
starting characters are not required by the language itself, PostScript interpreters 
and other printing software often look for them when trying to recognize and 
classify print jobs.

PCL

PCL is Hewlett-Packard’s Printer Control Language. It’s understood by HP print-
ers as well as many other brands; some printers speak only PCL. Unlike Post-
Script, which is a Turing-complete, generalized programming language, PCL just 
tells printers how to print pages. PCL jobs are binary, not human readable, and 
usually much shorter than the equivalent PostScript. Applications seldom gener-
ate PCL directly, but filters can convert PostScript to PCL.

PCL also varies more than PostScript. The differences are minor but annoying. 
Jobs that print correctly on a LaserJet 5si can print slightly wrong on a LaserJet 
5500, and vice versa. It’s not just this pair of models, either; every PCL printer has 
a custom PCL dialect with commands to exploit that printer’s features.

For example, if you tell your computer you have a LaserJet 4500 when you actually 
have a LaserJet 4550, it may generate some PCL commands that the 4550 ignores 
or misinterprets. If you have a stored PCL print job—say, a blank purchase request 
form—and you replace the printer for which it was generated with something 
newer, you may have to regenerate the job.

Worse still, HP has defined two almost completely unrelated language families 
called PCL: PCL5 (PCL5C means color and PCL5E means black and white) and 
PCL6 (also called PCL/XL). Nowadays, it’s normal for new HP printers to have 
language interpreters for both.

  



ptg

1070 Chapter 26 Printing

PDF

Adobe’s Portable Document Format is produced by Adobe Acrobat and many 
other non-Adobe applications. OpenOffice, for example, prefers to export docu-
ments as PDF.

PDF documents are platform independent, and PDF is routinely used to exchange 
documents electronically for both on-line and off-line (printed) use. The final 
text of this book was delivered to the book printer as a PDF file.

PDF is a document description language, not just a page description language. It 
describes not only individual pages, but also the overall structure of a document: 
which pages belong to which chapters, which text columns flow to other text col-
umns, and so on. It also accommodates a variety of multimedia, hypertext, and 
scripting features for on-screen use.

Some printers interpret PDF directly. If yours doesn’t, a host of PDF viewers and 
translators (including Ghostview, xpdf, kpdf, Evince, and Acrobat Reader) can 
convert your PDF documents into something else (such as PostScript) that is 
more widely understood. Your print system may even hide the conversion re-
quirement from you and automatically convert PDF documents before sending 
them to the printer.

XPS

Worth a mention, too, is Microsoft’s XML Paper Specification, aka XPS, aka 
OpenXPS. XPS is not yet widely used even on Windows systems. UNIX and Linux 
support is currently scant, although Artifex already has an XPS interpreter. Linux 
distributions will undoubtedly start to support XPS if it becomes popular.

PJL

PJL, Hewlett-Packard’s Printer Job Language, is not really a PDL. It’s a metalan-
guage that describes printer jobs. We mention it here because you’ll see it men-
tioned in printer descriptions. You’ll also need to know about it if you’re looking 
at the internals of print jobs to try to solve printing problems.

PJL is a job control language that specifies things such as a job’s PDL, whether the 
job is duplex or simplex, what size paper to use, and so on. The PJL commands 
come at the start of the job, and the PJL statements all start with @PJL:

@PJL SET COPIES=3 
@PJL COMMENT FOO BAR MUMBLE 
@PJL SET DUPLEX=ON 
@PJL SET PAGEPROTECT=OFF 
@PJL ENTER LANGUAGE=PCL

Non-HP printers may understand (or deliberately ignore) PJL, but if you’re hav-
ing trouble printing something that contains PJL on a non-HP printer, try remov-
ing the PJL with a text editor and resubmitting the job.

  



ptg

Printer drivers and their handling of PDLs 1071

Pr
in

tin
g

Printer drivers and their handling of PDLs

What if a printer supports only a subset of the languages you need to process? If 
you download a PostScript file from the web and your printer only understands 
PCL5E, what do you do? If your printer doesn’t interpret PDF directly, how do 
you print a PDF file?

One option is to convert the file by hand. Your boxes come with plenty of conver-
sion utilities; there’s almost always some way to turn what you have into some-
thing your printers can print. Browsers can transform HTML (or XHTML) pages 
into PostScript. OpenOffice can turn MS Word files into PDF. Ghostscript can 
turn PDF into PostScript and PostScript into almost anything, including PCL.

An easier approach is to let your printing system do the work for you. Some sys-
tems, such as CUPS, have some built-in knowledge about which conversions need 
to be done and can set up the conversions for you automatically.

If you need to determine what PDL a file uses and you can’t tell from the filename 
(e.g., foo.pdf), the file command can tell you (unless the file starts with a chunk 
of PJL instructions, in which case file just says “HP Printer Job Language data”).

Save a few print jobs to files instead of shipping them to a printer, and you can see 
what a program in one of these languages looks like. A minute or two perusing 
files of each of these types in your text editor will give you a good feel for how 
different they are. (Don’t cat them directly to your screen, since only PostScript is 
ASCII. Random binary data tends to confuse terminal emulators.)

PostScript:
%!PS-Adobe-3.0 
%%BoundingBox: 0 0 612 792 
%%Pages: 1 
% ... 
% Draw a line around the polygons... 
pop pop pop dup 0 setgray 0 0 moveto dup 0 lineto 0.707106781 mul dup 

lineto closepath stroke 
PDF: 
%PDF-1.3 
%A?A?AA"
 81 0 obj 
<< 
/Linearized 1 
/O 83 
/H [ 915 494 ] 
/T 125075 
>> 
endobj
 xref 
81 24 
0000000016 00000 n
 A^<8f>

  



ptg

1072 Chapter 26 Printing

^P^@A?A`<9e> 
endstream 
endobj

PCL5:
^[E^[&l1o0o1t0l6D^[&l1X^[*r0F^[*v0n1O^[*p4300X^[%1BDT~,1TR0TD1SP1FT10,50 
CF3,1LB.~;^[%1A^[*c100G^[*v2T^[&a0P^[*p0X^[*p0Y^[(10U^[(s1p12vsb4148T^[&l0 
E^[*p0Y^[*ct7920Y^[(10U^[(s1p12vsb4101T^[&a0P^[&l0o66f0E^[9^[&a0P^[*p0X^[* 
p0Y^[*p474Y^[*p141X^[(10U^[(10U^[(s1p12vsb4101T^[*p402Y^[*p186X^[*v0O^[*c9 
00a4b100g2P^[*v1O^[*p250Y^[*v0O^[*c900a4b100g2P^[*v1O^[*v0O^[*c4a156b100g2 
P^[*v1O^[*p251Y^[*p187X^[*v0O^[*c899a154b10g2P^[*v1O^[*p346Y^[*p256X

PCL/XL:
A`X^BX^BA?<89>A^@A?<86>A^CA?<8f>AA^@A?<88>A^AA?<82>HA^@A?(A^@A? 
%AA?cA^A^P^@TimesNewRmnBdA?A?A?UUA?BA?A?Au^BA?A?o<85>A"A>^CA^ 
BA?LkAf^@^@A?A!dA^A:^@

26.9 PPD FILES

When you invoke lpr to print book.ps on the color printer Pollux, lpr may come 
back and ask you what size paper you want to print on. But wait—how does the 
system know to tell its client, lpr, that Pollux can print on A4 paper? How does it 
know Pollux can handle PostScript, and what should it do if it can’t? Where does it 
find the information that Pollux is a color printer?

If you’re using CUPS, all this information is kept in PostScript Printer Description 
(PPD) files that describe the attributes and capabilities of your printers. The 
CUPS daemon reads the PPDs for its printers and passes information about them 
to clients and filters as needed.

PPDs were first developed for the Mac world, but they were quickly adopted by 
Windows as well. Mac and Windows printer drivers use the PPD file to figure out 
how to send PostScript jobs to the printer. For example, it makes no sense to ask a 
single-sided, black-and-white printer sold in America to print a duplex, color 
document on European B4-sized paper.

Every PostScript printer has its own PPD file created by the vendor, although the 
file is not always easy to find. Check the installation disk and the vendor’s web site. 

PPD files are just text files. Take a look at one in a text editor to see the type of 
information it contains. On a network, PPDs can even be remote—CUPS clients 
can get all the PPD information they need from the relevant CUPS server.

CUPS also uses PPDs to describe printers that lack a PostScript interpreter. An 
extra field does the trick. Look:

$ grep cupsFilter /usr/share/ppd/ghostscript/model/pxlmono.ppd
*cupsFilter: "application/vnd.cups-postscript 100 pstopxl"
*cupsFilter: "application/vnd.cups-pdf 0 pstopxl"

  



ptg

Paper sizes 1073

Pr
in

tin
g

You can diff a couple of related PPDs (try pxlmono.ppd and pxlcolor.ppd) to see 
exactly how two printers differ.

If you need a PPD file and your printer vendor doesn’t supply one—say, because 
the printer doesn’t have a PostScript interpreter and the vendor doesn’t care about 
anything but Windows—go to linuxprinting.org and hunt through the Foomatic 
database for more information. Your printer may also be supported by the Guten-
print project (gutenprint.sourceforge.net). If you have a choice of PPDs from 
these sources and your users want every last drop of quality, the ones marked 
“foomatic+gutenprint” are often quite good. However, you’ll still have to experi-
ment with the printer configuration to find out what options give the best output.

If a PPD file is nowhere to be found: 

• You should have consulted linuxprinting.org before you acquired the 
printer. Even if you got the printer out of a dumpster, “free” doesn’t 
always mean “inexpensive.”

• There may well be a PPD file that will let you print something, even if it 
doesn’t take advantage of all your printer’s features. For example, we’ve 
had good luck using generic HP drivers on non-HP printers.

Though CUPS depends on PPDs, older printing systems make no use of them. 
For the BSD or System V printing systems, you can either massage your Post-
Script or you can live with what you get by default.

26.10 PAPER SIZES

Users want output on physical sheets of paper. Paper comes in sizes and shapes. 
To make your users happy, you should know the basic facts about paper sizes.

In the United States and Canada, the most common paper size is called letter and 
is 8.5  11 inches. Some Linux distributions (e.g., Knoppix and SUSE) are pro-
duced in Europe, where they don’t even know what inches are, or in England, 
where they do know but don’t use them to measure paper. In these places, and in 
Japan, the common paper type is called A4, and printers all come with A4 trays. 
Ergo, some distributions’ printing utilities produce A4 page images by default.

A4 paper makes sense because it’s irrational—mathematically speaking, that is. 
The ratio of length to width of A4 paper is . If you slice a piece of A4 paper in 
half horizontally, you get two half-size pieces of paper that have the same length-
to-width ratio: . This paper size is called A5. Cut A5 in half and you get two 
sheets of A6. In the other direction, A3 is twice the area of A4, but the same shape, 
and so on.

In other words, you can manufacture A0 paper, which has an area of one square 
meter, and use a paper cutter to create the other sizes you need. The only common 
U.S. paper size you can play this kind of game with is ledger (11  17 inches, also 
known as tabloid), which you can slice in half to get two sheets of letter.

2

2

  



ptg

1074 Chapter 26 Printing

There are also an ISO B series and C series that preserve the  aspect ratio but 
have different base areas. B0 paper is one meter tall, and C0 paper has an area of 
two square meters. Engineers will see immediately that the sides of Bn paper are 
the geometric means of An 1 and An sides, while Cn paper sides are the geomet-
ric means of An and Bn.

What does all this mean? Bn has the same look as An but is bigger, and Cn is 
intermediate between the two. A report on A4 paper fits beautifully in a C4 ma-
nila folder. Folding an A4 letter down the middle to make it A5 lets it slide into a 
C5 envelope. Fold it again and it slides just as nicely into a C6 envelope.

To confuse things slightly, Japan has its own B series that’s similar but different. 
Although it has the same aspect ratio as the ISO papers, the size of Japanese B4 
paper is the arithmetic mean of A3 and A4, which (engineers will also see imme-
diately) makes it slightly larger than ISO B4 paper. There is no Japanese C series.

Just as the ISO system makes it easy to copy two pages of a B5 textbook onto a 
single B4 handout, it makes all types of n-up printing (printing several reduced-
sized page images on the same page) trivial. European copiers often have buttons 
that reduce or expand by a factor of .

If you have a CUPS system with the paperconf command, you can use it to print 
the dimensions of various named papers in inches, centimeters, or printer’s points 
(72nds of an inch). For the Americans, Table 26.7 lists some typical uses for com-
mon sizes to give a sense of their scale.

Unfortunately, A4 paper is slightly thinner and longer (8.3  11.7 inches) than 
American letter paper. Printing an A4 document on letter paper typically cuts off 
vital slivers such as headers, footers, and page numbers. Conversely, if you’re in 
Europe or Japan and try to print American pages on A4 paper, you may have the 
sides of your documents chopped off, though the problem is less severe.

2

2

Table 26.7 Common uses for ISO paper sizes

Sizes Common uses

A0, A1 Posters
A3, B4 Newspapers 

A4 Generic “pieces of paper” 
A5 Note pads (roughly 5  8 inches)

B5, B6 Books, postcards, German toilet paper
A7 “3  5” index cards
B7 Passports (even U.S. passports are B7) 
A8 Business cards
B8 Playing cards

  



ptg

Printer selection 1075

Pr
in

tin
g

Individual software packages may have their own defaults regarding paper size. 
For example, GNU enscript is maintained in Finland by Markku Rossi and de-
faults to A4 paper. If you’re American and your distribution hasn’t compiled in a 
different default, one option is to grab the source code for enscript and reconfig-
ure it. Typically, however, it’s easier to set the paper type on the command line or 
in a GUI configuration file. If your documents come out with the ends or sides cut 
off, paper size conflicts are a likely explanation.

You may also be able to adjust the default paper size for many printing tasks with 
the paperconfig command, the PAPERSIZE environment variable, or the con-
tents of the /etc/papersize file. (Note: paperconfig != paperconf.)

Admittedly, not all output is on paper. If you take a color picture to the bakery 
department of a large supermarket, they can probably make you a cake that has a 
copy of that picture on top of it. These pictures are printed by specialized bitmap 
printers that use edible inks. Large, rectangular cakes are known as sheet cakes, 
and they come in standard sizes, too. Unfortunately, we’ll have to limit our discus-
sion of sheet sizes to paper. You can’t talk about everything…

26.11 PRINTER PRACTICALITIES

Printers can bring troubles and frustrations. Here are some general guidelines to 
help limit those. When all else fails, just be glad you’re not still using a dot-matrix 
printer connected via an RS-232 serial port. (Unless, of course, you are.)

Printer selection

If you’re using CUPS, before you buy a printer or accept a “free” printer that 
someone else is throwing away, go to the Foomatic database at linuxprinting.org 
(funded and run by the Linux Foundation) and check to see how well the printer 
is supported. The database classifies printers into four categories ranging from 
Paperweight to Perfectly; you want Perfectly.

Everyone likes printers with embedded PostScript interpreters. Configuration of 
these printers is invariably easy.

Non-PostScript printers tend to be less well supported. To print to these, you need 
software that converts print jobs into the printer’s preferred PDL or data format. 
Chances are, this software is available either from your Linux/UNIX vendor or 
from one of the other locations mentioned in this chapter. Still, CUPS handles 
most of these printers pretty well, too.

If you’re not using CUPS and you have a PostScript printer, you’re probably still in 
good shape. If you have a non-PostScript printer, try using Ghostscript to turn 
PostScript and PDF documents into something your printer can accept.

  



ptg

1076 Chapter 26 Printing

GDI printers

Windows still holds an advantage in a couple of areas, one of which is its support 
for very low-end printers. The el cheapo printers used on Windows systems are 
known collectively as GDI printers or WinPrinters. These printers have very little 
built-in intelligence and lack interpreters for any real PDL. They expect rasteriza-
tion to be performed by the host computer.

Some of the information needed to communicate with GDI printers is hidden in 
proprietary, Windows-specific code. Such secrecy hinders efforts to develop sup-
port for these devices, but the open source community has demonstrated a re-
markable aptitude for reverse engineering. CUPS supports many WinPrinters.

A second area of strength for Windows is its support for brand-new printers. Just 
as with new video and audio cards, new printers are first released with Windows 
drivers that fully support all the model’s documented and undocumented fea-
tures. Even CUPS support generally lags. If you buy a fancy, just-released printer 
because you need its advanced features, you may have to resign yourself to driving 
it from Windows for a while.

Legacy UNIX systems, which typically don’t run CUPS, have an even tougher 
time with these printers. If you want to use a WinPrinter but only have legacy 
UNIX systems, consider buying an inexpensive Mac, Linux, or Windows box to 
run the printer. You can always share the printer over the network.

Double-sided printing

A duplexer is a hardware component that lets a printer print on both sides of the 
page. Some printers include them by default, and others support them as an op-
tional add-on. We like them; they save both paper and filing space.

If you don’t have access to (or can’t afford) a printer that duplexes, you can run 
paper through a printer once to print the odd pages, then flip the paper over and 
run it a second time for the even pages. Experiment with a two-page document to 
find out which way to flip the paper, then tape instructions to the printer.

A variety of printing software can help with this process. For example, Ghostview 
(gv) has icons that let you mark odd or even pages, and an option to print only 
marked pages. The CUPS versions of lp and lpr handle this task with the options 
-o page-set=odd and -o page-set=even. You can even enshrine these options in a 
printer instance if you use them frequently; see page 1036.

Some printers, particularly inexpensive laser printers, are not designed with dou-
ble-sided printing in mind. Their manufacturers often warn of the irreparable 
damage that is sure to attend printing on both sides of the page. We have never 
actually seen a case of such damage, but surely printer manufacturers wouldn’t 
steer you wrong just to sell more expensive printers. Would they?

  



ptg

Other printer advice 1077

Pr
in

tin
g

Other printer accessories

In addition to duplexers, many printers let you add memory, extra paper trays, 
hard disks, and other accessories. These upgrades can allow the printer to handle 
jobs that would otherwise be indigestible, or at the very least, they can let jobs 
print more efficiently. If you have problems getting jobs to print, review the error 
logs to see if more printer memory might help resolve the problem. See, for exam-
ple, the comments regarding CUPS logging on page 1082.

Serial and parallel printers

If your printer is directly attached to your computer with a cable, it’s using some 
form of serial or parallel connection.

Although the parallel standard has not aged gracefully, it does provide us with 
ports that require relatively little tinkering. If you have a parallel printer, it will 
probably be easy to set up—that is, if you can find a computer with a parallel port 
to hook it to.

A serial connection on older Mac hardware could be FireWire, but serial connec-
tions on newer computers are usually USB. For Linux, check the database of sup-
ported USB devices at linuxprinting.org to see the status of your hardware.

You almost certainly do not have an old-fashioned RS-232 serial printer. If you do, 
it’s going to require a mess of extra configuration. The spooler software has to 
know the appropriate values for the baud rate and other serial options so that it 
can communicate properly with the printer. Even CUPS lets you handle these, by 
specifying options in the URI for the device (see the on-line CUPS Software Ad-
ministrators Manual for details). However, our suggestion is to not bother; it’s 
faster and cheaper to buy a modern printer than to figure out the exact combina-
tion of serial magic needed to get things working.

Network printers

Many printers contain full-fledged network interfaces that allow them to sit di-
rectly on a network and accept jobs through one or more network or printing 
protocols. Data can be sent to network-attached printers much faster than to 
printers connected to serial or parallel ports. 

Laser printers are likely to be network printers. Inkjet printers, less so, but net-
worked inkjets do exist. If you want to know whether you have a network printer, 
look for an Ethernet port or a wireless antenna on its back panel.

Other printer advice

Some administrative issues related to printing transcend the details of your print-
ing system. For the most part, these issues arise because printers are temperamen-
tal mechanical devices that cost money every time they are used.

  



ptg

1078 Chapter 26 Printing

Use banner pages only if you have to
Your system can usually print header and trailer pages for each job that show the 
title of the job and the user who submitted it. These banner pages are sometimes 
useful for separating jobs on printers used by many different people, but in most 
cases they’re a waste of time, toner, and paper.

On BSD systems, suppress them by setting the Boolean printcap variable sh. On 
System V systems, don’t have your interface script generate them.

With CUPS, you can globally disable banner pages in your GUI or by running 
lpadmin, then turn them on for any individual jobs that might benefit from them:

$ lpr -o job-sheets=confidential gilly.ps

CUPS lets you turn on banners for individual users by using lpoptions. You can 
also create a printer instance that adds banner pages to jobs (see Printer instances
on page 1036). CUPS also lets you create a custom banner page by copying an 
existing one from /usr/share/cups/banners and modifying it. Put the new page in 
with the others under a new name.

Fan your paper
Printers are supposed to pull one page at a time from the paper tray. Sometimes, 
though, blank pages stick together and your printer will try to feed two or more 
pages at a time. You can minimize the frequency of this problem just by fanning 
paper before you load it. Hold one side of the ream, bend the paper, and run your 
thumb down the opposite edge as you would riffle through a deck of cards. It’s 
low-tech, it’s free, and it works.

Some inkjet paper cares which side is up. Its packaging should indicate the pre-
ferred orientation. 

Provide recycling bins
All kinds of computer paper are recyclable. You can use the boxes that paper 
comes in as recycling bins; the paper fits in them perfectly. Post a sign asking that 
no foreign material (such as staples, paper clips, or newspaper) be discarded there.

Use previewers
Users often print a document, find a small error in the formatting, fix it, and then 
reprint the job. This waste of paper and time can easily be avoided with software 
that lets users see, on-screen, what the printed output will look like.

Having previewers isn’t enough; your users have to know how to use them. 
They’re sometimes happy to learn. One use of accounting records is to check for 
cases in which the same document has been printed repeatedly. It can point you to 
a user who doesn’t know about previewers.

Previewing is built into many modern WYSIWYG editors, browsers, and print-
job aggregators. For other types of documents, your options vary. Tools such as 

  



ptg

Keep extra toner cartridges on hand 1079

Pr
in

tin
g

Ghostview (gv) preview random PostScript and PDF documents. For roff, pipe 
the output of groff into Ghostview; for TeX output, try xdvi, kdvi, or Evince.

Buy cheap printers
Printer hardware technology is mature. You don’t need to spend a lot of money for 
good output and reliable mechanics.

Don’t splurge on an expensive “workgroup” printer just because you have a work-
group. If you’re only printing text, an inexpensive “personal” printer can produce 
good-quality output, be nearly as fast and reliable, and weigh tens of pounds less. 
One 10-page-a-minute printer can serve about five full-time writers. You may be 
better off buying five $150 printers for a group of 25 writers than one $750 printer.

Even if you stick to mainstream brands, no individual manufacturer is a univer-
sally safe bet. We have had excellent experiences with HP laser printers. They are 
solid products, and HP has been very aggressive in supporting both Linux and 
CUPS. Even so, some of HP’s printers have been complete disasters. Look for re-
views on the Internet before buying. Here, too, cheap is an advantage: a $150 mis-
take is easier to cover up than a $750 mistake.

Keep extra toner cartridges on hand
Faded or blank areas on a laser-printed page are hints that the printer is running 
out of toner. Buy replacement cartridges before you need them. In a pinch, re-
move the cartridge from the printer and gently rock it to redistribute the remain-
ing toner particles. You can often get another few hundred pages out of a cartridge 
this way.

Streaks and spots probably mean you should clean your printer. Look on the 
printer to see if there is a “clean” cycle. If not, or if the cleaning cycle doesn’t help, 
read the manufacturer’s cleaning instructions. Most toner cartridges include an 
imaging drum, so try swapping toner cartridges to verify that the problem is re-
ally the printer and not the cartridge. If none of these procedures resolve the 
streaks, pay to have the printer serviced.

Printer manufacturers hate the use of recycled and aftermarket cartridges, and 
they go to great lengths to try to prevent it. Many devices use “keyed” consum-
ables whose identities are detected (either electronically or physically) by the 
printer. Even if two printers look identical, such as the Xerox Phaser 6120 and the 
Konica-Minolta Magicolor 2450, it doesn’t necessarily mean that you can use the 
same cartridges in both.

Sometimes you can do surgery to convert one vendor’s cartridges to another’s 
printer, but it helps to know what you’re doing. Usually, you just make a mess. If 
you spill toner, vacuum up as much of the material as possible and wipe up the 
remainder with cold water. Contrary to common belief, laser printer toner is not 
toxic, but as with all fine powders, you should not inhale the toner dust.

  



ptg

1080 Chapter 26 Printing

When you replace a cartridge, save the box and baggie the new cartridge came in 
to use when recycling the spent one. Then find a company to take the old car-
tridge off your hands.

Keyed consumables spurred the growth of companies (“punch and pours”) that 
refill old cartridges for a fraction of the new-cartridge price. Cartridge recyclers 
are usually also punch-and-pours, so you can recycle your old cartridges and get 
replacements at the same time.

Opinions on the quality and life span of recycled cartridges vary. One punch-and-
pour we know won’t refill color toner cartridges or sell remanufactured ones be-
cause they believe the savings are less than the increased maintenance costs for 
the printers that use them.

Pay attention to the cost per page
Most inexpensive printers are sold at close to their manufacturing cost. The man-
ufacturers make their money on the consumables, which are disproportionately 
expensive. As of this writing, a quick check reveals that Amazon is selling for $80 
a laser printer that takes toner cartridges costing $65. You can buy a cheap inkjet 
printer for less than $50 at Wal-Mart, but it won’t be long before you need to buy a 
set of replacement ink cartridges that cost more than the printer.2 You can feign 
outrage over this, but printer companies have to make their money on something. 
Cheaper cartridges would just mean pricier printers. 

A good rule of thumb is that inkjet printers are cheap as long as you don’t print 
with them. Laser printers have a higher initial cost, but the consumables are 
cheaper and last longer. A full-color page from an inkjet printer can cost 20–50 
times as much as an analogous print from a laser printer. It also requires special 
paper and prints more slowly. Inkjet cartridges empty quickly and frequently plug 
up or go bad. The ink usually runs when wet, so don’t use an inkjet to print a 
recipe book for use in the kitchen. On the other hand, you can now get photo 
prints from an inkjet that look as good as prints from a photo lab. Color laser 
photos? Nice enough, but no comparison.

All printers have failure-prone mechanical parts. Cheap printers break faster. 

In other words, it’s all tradeoffs. For low-volume, personal use—printing a web 
page or two a day, or printing a couple of rolls of film per month—a low-cost, 
general purpose inkjet is an excellent choice.

Next time you go printer shopping, estimate how long you want to keep your 
printer, how much printing you do, and what kind of printing you need before 
you buy. Assess quantitatively the long-term cost per page for each candidate 
printer. Ask your local punch-and-pour whether they remanufacture cartridges 
for the printer, and at what price.

2. Keep in mind, though, that many inexpensive printers come with “starter” cartridges that include less 
ink or toner than a standard replacement.

  



ptg

Restarting a print daemon 1081

Pr
in

tin
g

Consider printer accounting
Printer accounting can give you a good feel for how your printing resources are 
being consumed. At medium-to-large installations, consider using it just to keep 
tabs on what’s going on. The per-job overhead is unimportant, and you get to see 
who is using the printer. Demographic information about the sources of print jobs 
is valuable when you are planning the deployment of new printers.

Secure your printers
Network printers typically support remote management. Even if you don’t have 
CUPS and IPP, you can configure and monitor them from a web browser with 
HTTP, and perhaps with SNMP. Through the remote interface, you can set pa-
rameters such as the printer’s IP address, default gateway, syslog server, SNMP 
community name, protocol options, and administrative password.

By default, most remotely administrable printers are unprotected and must have a 
password (or perhaps an SNMP “community string”) assigned as part of the in-
stallation process. The installation manuals from your printer manufacturer 
should explain how to do this on any particular printer.

GUI administration tools, such as the CUPS browser interface, are increasingly 
able to hide vendor variations from you. Expect this trend to continue.

26.12 TROUBLESHOOTING TIPS

Printers combine all the foibles of a mechanical device with the communication 
eccentricities of a foreign operating system. They (and the software that drives 
them) delight in creating problems for you and your users. Here are some general 
tips for dealing with printer adversity.

Restarting a print daemon

Always remember to restart daemons after changing a configuration file.

You can restart cupsd in whatever way your system normally restarts daemons: 
/etc/init.d/cups restart, or something similar. In theory, you can also send cupsd
a HUP signal. Unfortunately, this seems to just kill the daemon on SUSE systems. 

Alternatively, you can use the CUPS GUI or another GUI interface such as the 
KDE Print Manager application to restart cupsd.

Other systems have their own specialized methods for resetting the print system; 
often, they are vendor specific. For example, AIX uses the following sequence:

$ sudo stopsrc -s lpd
$ sudo startsrc -s lpd

Just what you would have guessed, right?

  



ptg

1082 Chapter 26 Printing

Logging

CUPS maintains three logs: a page log, an access log, and an error log. The page 
log lists the pages that CUPS has printed. The other two logs are just like the 
access log and error log for Apache, which should not be surprising since the 
CUPS server is a web server.

The cupsd.conf file specifies the logging level and the locations of the log files. 
They’re all typically kept underneath /var/log.

Here’s an excerpt from a log file that corresponds to a single print job:
I [26/Jul/2009:18:59:08 -0600] Adding start banner page "none" to job 24.
I [26/Jul/2009:18:59:08 -0600] Adding end banner page "none" to job 24.
I [26/Jul/2009:18:59:08 -0600] Job 24 queued on 'Phaser_6120' by 'jsh'.
I [26/Jul/2009:18:59:08 -0600] Started filter /usr/libexec/cups/filter/pstops (PID 

19985) for job 24.
I [26/Jul/2009:18:59:08 -0600] Started backend /usr/libexec/cups/backend/usb 

(PID 19986) for job 24.

Problems with direct printing

Under CUPS, to verify the physical connection to a local printer, you can directly 
run the printer’s back end. For example, here’s what we get when we execute the 
back end for a USB-connected printer:

$ /usr/lib/cups/backend/usb 
direct usb "Unknown" "USB Printer (usb)" 
direct usb://XEROX/Phaser%206120?serial=YGG210547 "XEROX Phaser 6120" 

"Phaser 6120"

When the USB cable for the Phaser 6120 is disconnected, that printer drops out of 
the back end’s output:

$ /usr/lib/cups/backend/usb 
direct usb "Unknown" "USB Printer (usb)"

Network printing problems

Before you start tracking down a network printing problem, make sure you can 
print from the machine that actually hosts the printer. Your “network printing 
problem” may just be a “printing problem.” Also make sure that the network is up.

Next, try connecting to the printer daemon. You can connect to cupsd with a web 
browser (hostname:631) or the telnet command (telnet hostname 631).

Network lpd print jobs are delivered on TCP port 515. Unless you want to be 
printing jobs for strangers, your firewall should block all traffic to this port from 
the Internet. To test your connectivity to a remote lpd server, telnet to port 515 of 
the server. If you can establish a connection, you can at least verify that the net-
work is working and that lpd is running on the server.

If you have problems debugging a network printer connection, keep in mind that 
there must be a queue for the job on some machine, a way to decide where to send 

  



ptg

Recommended reading 1083

Pr
in

tin
g

the job, and a method of sending the job to the machine that hosts the print 
queue. On the print server, there must be a place to queue the job, sufficient per-
missions to allow the job to be printed, and a way to output to the device.

Any and all of these will, at some point, go wrong, so be prepared to hunt in many 
places, including these:

• System log files on the sending machine, for name resolution and per-
mission problems

• System log files on the print server, for permission problems

• Log files on the sending machine, for missing filters, unknown printers, 
missing directories, etc.

• The print daemon’s log files on the print server’s machine, for messages 
about bad device names, incorrect formats, etc. 

• The printer log file on the printing machine, for errors in transmitting 
the job (as specified by the lf variable in the /etc/printcap file on BSD 
printing systems)

• The printer log file on the sending machine, for errors about preprocess-
ing or queuing the job

Consult your system’s documentation to determine which of these log files are 
available and where the files are located. The system’s log files are usually specified 
in syslog’s configuration file, /etc/syslog.conf. The locations of CUPS log files are 
specified in /etc/cups/cupsd.conf.

Distribution-specific problems

Every program has bugs.3 On Ubuntu systems, for example, there seem to be 
CUPS updates every month or so. Some problems are worse than others, and 
some have security implications.

On some older versions of Red Hat Enterprise Linux, CUPS was badly broken. 
The right solution for those systems is an OS upgrade, but if you can’t install a 
newer release, try installing the current release of CUPS.

26.13 RECOMMENDED READING

Each vendor and GUI supplies its own, idiosyncratic printing-system-specific 
documentation. KDE includes man pages for the KDEPrint commands, plus the 
KDEPrint Handbook. You can find additional information at printing.kde.org. All 
of these sources contain useful references to other documentation. (Actually, the 
KDE documentation is a great introduction to CUPS even if you don’t use KDE.)

3. And every program can be shortened. Therefore, as the saying goes, any program can be reduced to a 
single line that doesn’t work.

  



ptg

1084 Chapter 26 Printing

CUPS comes with a lot of documentation in HTML format. An excellent way to 
access it is to connect to a CUPS server and click the link for on-line help. Of 
course, this isn’t any help if you’re consulting the documentation to figure out why 
you can’t connect to the CUPS server. On your computer, the documents should 
be installed in /usr/share/doc/cups in both HTML and PDF formats. If they 
aren’t there, ask your distribution’s package manager or look on cups.org. 

The cups.org forums are a good place to ask questions, but do your homework 
first and ask politely.

If you’re running Linux, try linuxprinting.org. It’s a vast collection of Linux print-
ing resources and a good place to start when answering questions. The site also 
has a nice CUPS tutorial that includes a troubleshooting section.

Wikipedia and SUSE both supply good CUPS overviews. You can find SUSE’s at 
en.opensuse.org/SDB:CUPS_in_a_Nutshell.

If you want a printed CUPS reference manual, we recommend the following one. 
This is the CUPS bible, right from the horse’s mouth.

SWEET, MICHAEL R., CUPS: Common UNIX Printing System. Indianapolis, Indi-
ana: Sams Publishing, 2001. 

26.14 EXERCISES

E26.1 Find someone who isn’t computer literate (an art student, your mother, 
or perhaps a Microsoft Certified Professional) and teach that person 
how to print a PDF document on your system. Did your subject find 
any of the steps confusing? How could you make the process easier for 
other users?

E26.2 Using a web browser, visit a printer on your network. If you have CUPS, 
visit a CUPS server on your system with the same browser. What pre-
vents you from making administrative changes to that server’s printers?

E26.3 Visit a real or virtual big-box store such as Sam’s Club or Amazon.com 
and pick three color laser printers you can buy for under $400. If you 
had to purchase one of these printers for your organization tomorrow, 
which one would it be and why? Make sure you’ve checked the database 
at linuxprinting.org.

E26.4 You have been asked to design the system software to run inside a laser 
printer aimed at the corporate workgroup market. What distribution 
will you start with? What additional software will you need to add? Will 
you have to write all of it? How will you accommodate Windows and 
Mac OS clients? (Hint: Check out Linux distributions designed for 
“embedded systems.”)

  



ptg

1085

D
at

a 
Ce

nt
er

27 Data Center Basics

A service is only as reliable as the data center that houses it. For those with hands-
on experience, that’s just common sense. But for upper management, the data 
center can seem like a faraway and almost imaginary land.

With the rise of desktop workstations and the move away from big-iron comput-
ing, it once appeared that the days of the central data center might be numbered. 
In reality, the need for properly designed data centers is higher today than ever 
before. These facilities house the mission-critical servers (often running UNIX or 
Linux) that feed the world’s hunger for on-line data and applications.

Certain aspects of data centers—such as their physical layout, power, and cool-
ing—were traditionally designed and maintained by “facilities” or “physical plant” 
staff. However, the fast-moving pace of IT technology and the increasingly low 
tolerance for downtime have forced a shotgun marriage of IT and facilities staff as 
partners in the planning and operation of data centers. As a sysadmin, you get to 
play the role of “subject matter expert” for the facilities folks.1

1. At least, if you want to sleep at night…

Data Center

  



ptg

1086 Chapter 27 Data Center Basics

A data center is composed of:

• A physically safe and secure space
• Racks that hold computer, network, and storage devices
• Electric power sufficient to operate the installed devices
• Cooling, to keep the devices within their operating temperature ranges
• Network connectivity throughout the data center, and to places beyond 

(enterprise network, partners, vendors, Internet)

27.1 DATA CENTER RELIABILITY TIERS

Several aspects of a data center’s design contribute to the overall availability it can 
provide, including

• Uninterruptible power supplies (UPSs) – UPSs provide power when 
the normal long-term power source (e.g., the commercial power grid) 
becomes unavailable. Depending on size and capacity, they can provide 
anywhere from a few minutes to a couple of hours of power. UPSs alone 
cannot support a site in the event of a long-term outage.

• On-site power generation – If the commercial grid is unavailable, on-
site standby generators can provide long-term power. Generators are 
usually fueled by diesel, LP gas, or natural gas and can support the site as 
long as fuel is available. It is customary to store at least 72 hours of fuel 
on-site and to arrange to buy fuel from multiple providers.

Generator-backed facilities still need UPSs to cover the short time (usu-
ally less than 60 seconds) required to start the generators and transfer 
from grid to generator power.

• Redundant power feeds – In some locations, it may be possible to 
obtain more than one power feed from the commercial power grid (pos-
sibly from different power generators).

• Mechanical systems – These are also known as HVAC systems, but in 
the context of a data center, only cooling is really relevant—no heat nec-
essary! A plethora of available technologies provide both primary and 
standby cooling.

The Uptime Institute is an industry group that researches and guides data centers. 
They have developed a four-tier system for classifying the reliability of data cen-
ters, which we summarize in Table 27.1. In this table, N means that you have just 
enough of something (UPSs, generators) to meet normal needs. N+1 means that 
you have one spare; 2N means that each device has its own spare.

Centers in the highest tier must be “compartmentalized,” which means that 
groups of systems are powered and cooled in such a way that the failure of one 
group has no effect on other groups.

  



ptg

Cooling 1087

D
at

a 
Ce

nt
er

Even 99.671% availability may sound pretty good at first glance, but it works out 
to nearly 29 hours of downtime per year. 99.995% availability corresponds to 26 
minutes of downtime per year.

Exhibit A Courtesy of xkcd.com

Of course, no amount of redundant power or cooling is going to keep an applica-
tion available if it’s administered poorly or is improperly architected. The data 
center is a foundational building block, necessary but not sufficient to ensure 
overall availability from the end user’s perspective.

You can learn more about the Uptime Institute’s availability standards from their 
web site, uptimeinstitute.org.

27.2 COOLING

Just like humans, computers work better and live longer if they’re happy in their 
environment. Maintenance of a safe operating temperature is a prerequisite for 
this happiness.

See Chapter 28, Green 
IT, for a discussion of 
data center energy 
savings.

The American Society of Heating, Refrigerating and Air-conditioning Engineers 
(ASHRAE) traditionally recommended data center temperatures (measured at 
server inlets) in the range of 68° to 77°F (20° to 25°C). In an effort to support 
organizations’ attempts to reduce energy consumption, ASHRAE released 

Table 27.1 Uptime Institute availability classification system

Tier Generators UPSs Power feeds HVAC Availability

1 None N Single N 99.671%
2 N N+1a Single N+1 99.741%
3 N+1 N+1a Dual, switchable N+1 99.982%
4 2N 2N Dual, simultaneous 2N 99.995%

a. With redundant components

  



ptg

1088 Chapter 27 Data Center Basics

updated guidance in 2008 that enlarged the recommended temperature range to 
64.4° to 80.6°F (18° to 27°C).

Temperature maintenance starts with an accurate estimate of your cooling load. 
Traditional textbook models for data center cooling (even those from the 1990s) 
may be up to an order of magnitude off from the realities of today’s high-density 
blade server chassis. Hence, we have found that it’s a good idea to double-check 
the cooling load estimates produced by your HVAC folks. 

You’ll definitely need an HVAC engineer to help you calculate the cooling load 
that your roof, walls, and windows (don’t forget solar load) contribute to your 
environment. HVAC engineers usually have a lot of experience with those com-
ponents and should be able to give you a good estimate. The part you need to 
check up on is the internal heat load for your data center.

You need to determine the heat load contributed by the following components:

• Roof, walls, and windows (from your HVAC engineer)
• Electronic gear
• Light fixtures
• Operators (people)

Electronic gear
You can estimate the heat load produced by your servers (and other electronic 
gear) by determining the servers’ power consumption. Direct measurement of 
power use is by far the best way to obtain this information. Your friendly neigh-
borhood electrician can help, or you can purchase an inexpensive meter and do it 
yourself.2 Most equipment is labeled with its maximum power consumption in 
watts, but typical consumption tends to be significantly less than the maximum.

You can convert power consumption to the standard heat unit, BTUH, by multi-
plying by 3.413 BTUH/watt. For example, if you wanted to build a data center that 
would house 25 servers rated at 450 watts each, the calculation would be

Light fixtures
As with electronic gear, you can estimate light fixture heat load based on power 
consumption. Typical office light fixtures contain four 40-watt fluorescent tubes. 
If your new data center had six of these fixtures, the calculation would be

2. The Kill A Watt meter made by P3 is a popular choice at around $20.

=   38,385 BTUH25 servers 450 watts
server

3.412 BTUH 
watt

=   3,276 BTUH6 fixtures 160 watts
fixture

3.412 BTUH 
watt

  



ptg

Hot aisles and cold aisles 1089

D
at

a 
Ce

nt
er

Operators
At one time or another, humans will need to enter the data center to service some-
thing. Allow 300 BTUH for each occupant. To allow for four humans in the data 
center at the same time:

Total heat load
Once you have calculated the heat load for each component, sum the results to 
determine your total heat load. For our example, we assume that our HVAC engi-
neer estimated the load from the roof, walls, and windows to be 20,000 BTUH.

Cooling system capacity is typically expressed in tons. You can convert BTUH to 
tons by dividing by 12,000 BTUH/ton. You should also allow at least a 50% slop 
factor to account for errors and future growth.

See how your estimate matches up with the one from your HVAC folks.

Hot aisles and cold aisles

You can dramatically reduce your data center’s cooling difficulties by putting 
some thought into its physical layout. The most common and effective strategy is 
to alternate hot and cold aisles. 

Facilities that have a raised floor and are cooled by a traditional CRAC (computer 
room air conditioner) unit are often set up so that cool air enters the space under 
the floor, rises up through holes in the perforated floor tiles, cools the equipment, 
and then rises to the top of the room as warm air, where it is sucked into return air 
ducts. Traditionally, racks and perforated tiles have been placed “randomly” about 
the data center, a configuration that results in relatively even temperature distri-
bution. The result is an environment that is comfortable for humans but not really 
optimized for computers.

A better strategy is to lay out alternating hot and cold aisles between racks. Cold 
aisles have perforated cooling tiles and hot aisles do not. Racks are arranged so 
that equipment draws in air from a cold aisle and exhausts it to a hot aisle; the 
exhaust sides of two adjacent racks are therefore back to back. See Exhibit B on 
the next page for an illustration of this basic concept.

=   1,200 BTUH4 humans 300 BTUH
human

20,000 BTUH for roof, walls, and windows
 38,385 BTUH for servers and other electronic gear 

3,276 BTUH for light fixtures 
1,200 BTUH for operators

 62,861 BTUH total

=   7.86 tons of cooling required62,681 BTUH 1 ton 1.512,000 BTUH

  



ptg

1090 Chapter 27 Data Center Basics

Exhibit B Hot and cold aisles, raised floor

This arrangement optimizes the flow of cooling so that air inlets always breathe 
cool air rather than another server’s hot exhaust. Properly implemented, the alter-
nating row strategy results in aisles that are noticeably cold and hot. You can mea-
sure your cooling success with an infrared thermometer, which is an indispens-
able tool of the modern system administrator. This point-and-shoot $100 device 
(such as the Fluke 62) instantly measures the temperature of anything you aim it 
at, up to six feet away. Don’t take it out to the bars.

If you must run cabling under the floor (see Racks on page 1094 for a discussion of 
this), run power under cold aisles and network cabling under hot aisles. 

Facilities without a raised floor can use in-row cooling units such as those manu-
factured by APC (www.apcc.com). These units are skinny and sit between racks. 
Exhibit C shows how this system works.

Exhibit C Hot and cold aisles with in-row cooling (bird’s-eye view)

Hot 
aisle 

Cold 
aisle

Cold 
aisle

Hot 
aisle

Hot aisle containment

C
O

O
L

E
R

Rack Rack Rack

C
O

O
L

E
R

Rack Rack Rack

C
O

O
L

E
R

C
O

O
L

E
R

RackRack Rack Rack

C
O

O
L

E
R

Rack Rack

  

www.apcc.com


ptg

Power 1091

D
at

a 
Ce

nt
er

Both CRAC and in-row cooling units need a way to dissipate heat outside the data 
center. This requirement is typically satisfied with a loop of liquid refrigerant 
(such as chilled water, Puron/R410A, or R22) that carries the heat outdoors. We 
omitted the refrigerant loops from Exhibits B and C for simplicity, but most in-
stallations will require them. See Chapter 28, Green IT, for some comments on 
using cool outdoor air as an alternative to mechanical refrigeration.

Humidity

According to the 2008 ASHRAE guidelines, data center humidity should be kept 
between 30% and 55%. If the humidity is too low, static electricity becomes a 
problem. If it is too high, condensation can form on circuit boards and cause short 
circuits and oxidation. Depending on your geographic location, you may need 
either humidification or dehumidification equipment to maintain a proper level 
of humidity. 

Environmental monitoring

If you are supporting a mission-critical computing environment, it’s a good idea 
to monitor the temperature (and other environmental factors, such as noise and 
power) in the data center even when you are not there. It can be very disappoint-
ing to arrive on Monday morning and find a pool of melted plastic on your data 
center floor.

Fortunately, automated data center monitors can watch the goods while you are 
away. We use and recommend the Sensaphone (sensaphone.com) product family. 
These inexpensive boxes monitor environmental variables such as temperature, 
noise, and power, and they phone or page you when they detect a problem. You 
can reach Sensaphone in Aston, Pennsylvania, at (610) 558-2700.

27.3 POWER

Computer hardware requires clean, stable power. In a data center, this means at 
the very least a power conditioner that filters out spikes and produces the correct 
voltage levels and phases. 

See page 100 for more 
information about 
shutdown procedures.

Servers and network infrastructure equipment should be put on uninterruptible 
power supplies. Good UPSes have an RS-232, Ethernet, or USB interface that can 
be attached either to the machine to which they supply power or to a centralized 
monitoring infrastructure that can elicit a higher-level response. Such connec-
tions let the UPS warn computers or operators that power has failed and that a 
clean shutdown should be performed before the batteries run out.

UPSs are available in various sizes and capacities, but even the largest ones cannot 
provide long-term backup power. If your facility must operate on standby power 
for longer than a UPS can handle, you need a local generator in addition to a UPS.

A large selection of standby power generators are available, ranging in capacity 
from 5 kW to more than 2,500 kW. The gold standard is the family of generators 

  



ptg

1092 Chapter 27 Data Center Basics

made by Cummins Onan (onan.com). Most organizations select diesel as their 
fuel type. If you’re in a cold climate, make sure you fill the tank with “winter mix 
diesel” or substitute Jet A-1 aircraft fuel to prevent gelling. Diesel is chemically 
stable but can grow algae, so consider adding an algicide to diesel you will store 
for an extended period.

Generators and the infrastructure to support them are expensive, but they can 
save money in some ways, too. If you install a standby generator, your UPSs need 
only be large enough to cover the short gap between the power going out and your 
generator coming on-line.

If UPSs or generators are part of your power strategy, it is extremely important to 
have a periodic test plan in place. We recommend that you test all components of 
your standby power system at least every 6 months. In addition, you (or your 
vendor) should perform preventative maintenance on standby power components 
at least annually.

Rack power requirements

Planning the power for a data center is one of the most difficult challenges you 
may face. Typically, the opportunity to build a new data center or to significantly 
remodel an existing one comes up only every decade or so, so it’s important to 
look far down the road when it comes to power.

Most architects have a bias toward calculating the amount of power needed in a 
data center by multiplying the center’s square footage by a magic number. This 
approach proves to be ineffective in most real-world cases because the size of the 
data center alone tells you very little about the types of equipment it might even-
tually house. Our recommendation is to use a per-rack power consumption 
model and to ignore the amount of floor space.

Historically, data centers have been designed to provide between 1.5 kW and 3 
kW to each rack. But now that server manufacturers have started squeezing serv-
ers into 1U of rack space and building blade server chassis that hold 20 or more 
blades, the power needed to support a full rack of modern gear has skyrocketed. 

One approach to solving the power density problem is to put only a handful of 1U 
servers in each rack, leaving the rest of the rack empty. Although this technique 
eliminates the need to provide more power to the rack, it’s a prodigious waste of 
space. A better strategy is to develop a realistic projection of the power that might 
be needed by each rack and to provision power accordingly.

Equipment varies in its power requirements, and it’s hard to predict exactly what 
the future will hold. A good approach is to create a system of power consumption 
tiers that allocates the same amount of power to all racks in a particular tier. This 
scheme is useful not only for meeting current equipment needs but also for plan-
ning future use. Table 27.2 outlines some basic starting points for tier definitions. 

  



ptg

kVA vs. kW 1093

D
at

a 
Ce

nt
er

The power allocations for the upper tiers in Table 27.2 may seem generous, but 
they are not so hard to reach, even with today’s equipment. APC measured the 
power consumption of a chassis containing 14 IBM BladeCenter HS20s at 4,050 
watts.3 Six of those chassis in a rack consume 24.3 kW. Without cooling, that’s 
enough power to reduce 50 pounds of steel, aluminum, or silicon to a liquid pud-
dle within 15 minutes. Needless to say, you’ll need special cooling arrangements 
and multiple power supplies for these configurations.

Once you’ve defined your power tiers, estimate your need for racks in each tier. 
On the floor plan, put racks from the same tier together. Such zoning concentrates 
the high-power racks and lets you plan cooling resources accordingly. 

kVA vs. kW
One of the many common disconnects between IT folks, facilities folks, and UPS 
engineers is that each of these groups uses different units for power. The amount 
of power a UPS can provide is typically labeled in kVA (kilovolt-amperes). But 
computer equipment and the electrical engineers that support your data center 
usually express power in watts (W) or kilowatts (kW). You might remember from 
fourth grade science class that watts = volts  amps. Unfortunately, your fourth 
grade teacher failed to mention that watts is a vector value, which for AC power 
includes a “power factor” (pf) in addition to volts and amps.

If you are designing a bottle-filling line at a brewery that involves lots of large 
motors and other heavy equipment, ignore this section and hire a qualified engi-
neer to determine the correct power factor to use in your calculations. For mod-
ern-day computer equipment, you can cheat and use a constant. The equations 
you can use for a “probably good enough” conversion between kVA and kW are

kVA = kW / .85 
kW = kVA * .85

Table 27.2 Power-tier model for racks in a data center

Power tier Watts/rack

Ultra-high density a 25 kW
Very high density (e.g. blade servers)b 20 kW
High density (e.g., 1U servers) 16 kW
Storage equipment 12 kW
Network switching equipment 8 kW
Normal density 6 kW

a. Projected top tier in 2015
b. Current top tier in 2010

3. See the white paper “Power and Cooling for Ultra-High Density Racks and Blade Servers” at apc.com.

  



ptg

1094 Chapter 27 Data Center Basics

A final point to note on this topic is that when estimating the amount of power 
you need in a data center (or to size a UPS), you should measure devices’ power 
consumption with a clamp-on ammeter (aka current clamp) such as the Fluke 902 
rather than relying on the manufacturer’s stated values as shown on the label 
(which typically represent maximum consumption values). 

Remote control

You may occasionally find yourself in a situation in which you need to regularly 
power-cycle a server because of a kernel or hardware glitch. Or, perhaps you have 
non-UNIX servers in your data center that are more prone to this type of prob-
lem. In either case, you may want to consider installing a system that lets you 
power-cycle problem servers by remote control. 

A reasonable solution is manufactured by American Power Conversion (APC). 
Their MasterSwitch product is similar to a power strip, except that it can be con-
trolled by a web browser through its built-in Ethernet port. You can reach APC at 
(401) 789-0204 or on the web at apc.com.

27.4 RACKS

The days of the traditional raised-floor data center—in which power, cooling, net-
work connections, and phone lines are all hidden underneath the floor—are over. 
Have you ever tried to trace a cable that runs under the floor of one of these laby-
rinths? Our experience is that while it looks nice through glass, a “classic” raised-
floor room is a hidden rat’s nest. Today, you should use a raised floor to hide 
electrical power feeds, to distribute cooled air, and for nothing else. Network ca-
bling (both copper and fiber) should be routed through overhead raceways de-
signed specifically for this purpose.

In a dedicated data center, storing equipment in racks (as opposed to, say, setting 
it on tables or on the floor) is the only maintainable, professional choice. The best 
storage schemes use racks that are interconnected with an overhead track system 
for routing cables. This approach confers that irresistible high-tech feel without 
sacrificing organization or maintainability.

The best overhead track system is manufactured by Chatsworth Products (Chats-
worth, CA, (818) 882-8595; chatsworth.com). Using standard 19" single-rail telco 
racks, you can construct homes for both shelf-mounted and rack-mounted serv-
ers. Two back-to-back 19" telco racks make a high-tech-looking “traditional” rack 
(for cases in which you need to attach rack hardware both in front of and in back 
of equipment). Chatsworth provides the racks, cable races, and cable management 
doodads, as well as all the hardware necessary to mount them in your building. 
Since the cables lie in visible tracks, they are easy to trace and you will naturally be 
motivated to keep them tidy.

  



ptg

Recommended reading 1095

D
at

a 
Ce

nt
er

27.5 TOOLS

A well-outfitted sysadmin is an effective sysadmin. Having a dedicated tool box is 
an important key to minimizing downtime in an emergency. Table 27.3 lists some 
items to keep in your tool box, or at least within easy reach.

27.6 RECOMMENDED READING

Telecommunications Infrastructure Standard for Data Centers. ANSI/TIA/EIA 942.

ASHRAE INC. ASHRAE 2008 Environmental Guidelines for Datacom Equipment.  
Atlanta, GA: ASHRAE, Inc., 2008.

EUBANK, HUSTON, JOEL SWISHER, CAMERON BURNS, JEN SEAL, AND BEN EMERSON. 
Design Recommendations for High Performance Data Centers. Snowmass, CO: 
Rocky Mountain Institute, 2003.

Table 27.3 A system administrator’s tool box

General tools

Hex (Allen) wrench kit Ball-peen hammer, 4 oz.
Scissors Electrician’s knife or Swiss army knife 
Small LED flashlight Phillips-head screwdrivers: #0, #1, and #2 
Socket wrench kit Pliers, both flat-needlenose and regular
Stud finder Ridgid SeeSnake micro inspection camera
Tape measure Slot-head screwdrivers: 1/8", 3/16", and 5/16"
Torx wrench kit Teensy tiny jeweler’s screwdrivers
Tweezers

Computer-related specialty items

Digital multimeter (DMM) Cable ties (and their Velcro cousins) 
Infrared thermometer PC screw kit (such as those from crazypc.com)
RJ-45 end crimper Portable network analyzer/laptop
SCSI terminators Spare Category 5 and 6A RJ-45 crossover cables 
Spare power cord Spare RJ-45 connectors (solid core and stranded)
Static grounding strap Wire stripper (with an integrated wire cutter)

Miscellaneous

Can of compressed air Dentist’s mirror (possibly a telescoping one)
Cellular telephone First-aid kit, including ibuprofen and acetaminophen
Electrical tape Home phone and pager #s of on-call support staff
Q-Tips List of emergency maintenance contacts a 

Six-pack of good microbrew beer (suggested minimum)

a. And maintenance contract numbers if applicable

  



ptg

1096 Chapter 27 Data Center Basics

27.7 EXERCISES

E27.1 Why would you want to mount your computers in a rack?

E27.2 Environmental factors affect both people and machines. Augment the 
factors listed in this book with some of your own (e.g., dust, noise, 
light, clutter, etc.). Pick four factors and evaluate the suitability of your 
lab for man and machine.

E27.3 A workstation draws 0.8 A, and its monitor draws 0.7 A @ 120 V.

a) How much power does this system consume in watts? 

b) With electricity going for about $0.12/kWh, what does it cost to 
leave this system on year-round?

c) How much money can you save annually by turning off the moni-
tor for an average of 16 hours a day (either manually or with En-
ergy Star features such as DPMS)?

d) What is the annual cost of cooling this system? (State your assump-
tions regarding cooling costs and show your calculations.)

E27.4 Design a new computing lab for your site. State your assumptions re-
garding space, numbers of machines, and type and power load of each 
machine. Then compute the power and cooling requirements for the 
lab. Include both servers and client workstations. Include the layout of 
the room, the lighting, and the expected human load as well.

  



ptg

1097

Gr
ee

n 
IT

28 Green IT

You might think that a book about system administration would be the last place 
to find a chapter on environmental and social consciousness. But now that large 
IT installations have become commonplace, the environmental impact and re-
source consumption of the equipment we oversee have started to attract attention. 
Green IT is the art and science of reducing these hidden and not-so-hidden costs.

Although each of us can make a difference through small changes in our choices 
and behavior, most improvement comes from centrally driven efforts to effect 
change. For example, no amount of “Choose unleaded gasoline! It’s a whole lot 
better!” would have equalled the impact of the federal mandate to stop producing 
cars that required lead. Guess who can set similar mandates for your IT organiza-
tion? You can!

But why bother? Bragging rights and the satisfaction of doing the right thing for 
the planet may be reason enough for some. But there are practical reasons to con-
vince decision-makers in your organization to consider a green IT effort as well:

• Lower initial costs – by minimizing the equipment that your organiza-
tion buys and uses, you reduce capital expenditures. By minimizing the 
size of the data center required, you can reduce real estate costs.

Green IT

  



ptg

1098 Chapter 28 Green IT

• Lower operating costs – power, management, and maintenance for 
equipment cost money over time. Efficient use of fewer pieces of equip-
ment means that your organization spends less on the direct costs of 
operations.

• Indirect cost savings – you pay for electricity twice: once to power your 
equipment, and then again to cool down the equipment after it has con-
verted that expensive power into heat.1 Less equipment means less cool-
ing, less square footage for IT projects, and fewer people dedicated to IT 
operations. Fewer people means less spent on rent, office cooling, wages, 
benefits, and support. 

This chapter focuses on some basic concepts you can use to reduce your IT orga-
nization’s energy and resource consumption. We’ve targeted organizations that 
have from 1 to 500 servers in their data centers. If your environment is larger, you 
should consider hiring an expert in green data-center construction to achieve the 
most dramatic results.

28.1 GREEN IT INITIATION

What exactly does it mean to be “green”? We define it as

• Lower power consumption
• Smaller physical plant requirements
• Lower consumption of consumables
• Recyclable outputs

There is no silver bullet or single path to a green IT environment. Despite some 
vendors’ claims, you cannot purchase one product that makes all the greenness in 
the world shower down upon you. Specifically, green IT is a lot more than just 
server virtualization. And, like so many aspects of system administration, green 
IT is more a journey than a destination. You must first visualize where you want 
to go, map out a plan to get there, and chart your progress along the way. Ongoing 
measurement and monitoring must be key elements of your overall plan.

Start your green IT journey by assessing the eco-friendliness of your current envi-
ronment. Take a comprehensive view of all IT within your organization, not only 
to maximize the project’s impact but also to ensure that you don’t ultimately end 
up playing the “squeeze the balloon” game. For example, it might seem eco-won-
derful to remove all the servers from your environment until you discover that 
eliminating your 50 managed servers has resulted in users purchasing and deploy-
ing 600 rogue server-class systems in their cubicles as part of a “personal server 
deprivation revolt.”

1. The informational work done by IT equipment is not significant in a thermodynamic sense. Comput-
ers are essentially 100% efficient at converting electricity into heat.

  



ptg

The green IT eco-pyramid 1099

Gr
ee

n 
IT

Here is some information to gather as you start your green IT assessment:

• Equipment survey – everything, including servers, laptops, worksta-
tions, monitors, printers, storage devices, network gear, backup devices, 
UPSs, and cooling units. Capture the location, model number, “size” (in 
units appropriate to the specific equipment), and age of each item.

It’s helpful to have power consumption data for each item as well. Rated 
power consumption can be misleading—better to measure a device’s 
actual energy use with a Kill A Watt meter, which costs around $20.2 For 
devices that have both active and sleep states (e.g., printers), you may 
want to record average energy use over a one-day or one-week period.

• Accounting of consumables – paper, toner, storage media

• Organizational metrics – including gross revenue, number of employ-
ees, number of physical locations, total facility energy consumption, IT 
equipment energy consumption (in data centers), data center cooling 
energy consumption, total IT capital cost, total IT operations cost, and 
total facilities costs for data centers.

Once you’ve collected this baseline data, identify one to three targets for optimiza-
tion. These targets should be tied to your organization’s overall strategy for suc-
cess and growth, and if achieved, they should also demonstrate progress toward 
becoming a greener IT shop. We can’t tell you what targets will work best for your 
environment, but here are some appropriate examples:

• Data center energy consumption per dollar of gross revenue
• Number of employees per physical server
• Sheets of paper used per employee per month
• Average energy consumption of an employee’s workspace equipment
• Average life of a laptop computer
• Data center energy use as a proportion of total facility use3

Plan to reassess your green IT status at least yearly, but review energy consump-
tion monthly.

28.2 THE GREEN IT ECO-PYRAMID

It’s easy to see how eco-unfriendly your organization is. The hard part is making 
(and monitoring) progress toward the goal of being green. To help you navigate 
the sea of choices presented in this chapter, we map green IT strategies into three 
divisions, as shown in Exhibit A on the next page.

2. This product is designed for the North American market, but similar products exist for other markets. 
A version made for the UK can be found at reuk.co.uk/Buy-UK-Power-Meter.htm.

3. This metric multiplied by 100 yields the percentage of facility power delivered to IT equipment and is 
known in the industry as “DCiE.” It is a standard metric that can be used to compare organizations. 
Power usage effectiveness (PUE) is the reciprocal of DCiE and is a common benchmark for very large 
data centers.

  



ptg

1100 Chapter 28 Green IT

Exhibit A Approaches to green IT

We show these categories in the form of a pyramid because the strategies at the 
bottom have the most significant impact and are most likely to provide secondary 
benefits. As you go up the pyramid, the strategies involve more cost and effort and 
tend to be less effective.

Reducing direct consumption should always be your first-choice strategy; less is 
more. If you can achieve your mission with less effort and fewer resources, that 
eliminates both capital and operational costs.

Mitigation of secondary consumption is the next best strategy. For example, the 
cooling needed to support a server counts as secondary consumption since it only 
occurs because the server exists in the first place. Optimizing the HVAC system to 
minimize cooling expenses saves money, but it doesn’t save as much as eliminat-
ing the server entirely.

Perhaps somewhat nonintuitively, choosing products and technologies that have 
been designed to be “green” is our lowest-value strategy. Think of it this way: we 
first reduce the number of cars on the road as much as possible, and only then do 
we replace the remaining cars with fuel efficient models.

28.3 GREEN IT STRATEGIES: DATA CENTER

Data centers are excellent targets for green IT initiatives because they typically 
operate 7  24  365 and are under the direct control of the IT group. A study by 
Lawrence Berkeley Laboratories showed that data centers can be as many as 40 
times more energy-intensive than conventional office space.4

At this level of consumption, special strategies are required. As shown in Exhibit 
B, the strategies to reduce direct consumption at the bottom of the pyramid are 

Reduce direct consumptionMost effective

Least effective

Least expensive

Most expensive

Manage secondary 
consumption and

output stream

Choose 
green

products and 
technologies

4. See eetd.lbl.gov/emills/PUBS/PDF/ACEEE-datacenters.pdf for lots of gory details.

  



ptg

Application consolidation 1101

Gr
ee

n 
IT

the most effective approaches. You don’t need to use every strategy in a given en-
vironment, but every little bit counts.

Exhibit B Green IT strategies for data centers

Application consolidation

Over time, organizations and IT departments tend to accumulate applications. 
New applications come onboard to support specific business initiatives and the 
CEO’s pet projects, but old applications rarely die. More commonly, they linger 
“on the road to retirement” for a decade with no one being willing to take the risk 
of pulling the plug. Whatever the reason, the number one opportunity for prog-
ress in an established organization is to consolidate applications to the minimum 
set that meets current business needs.

Let’s consider an example organization that has three applications: EmployeeLinq, 
AccountAwesome, and ElectricClockster. Although this is a simplified example, 
it’s loosely based on real-world applications used by one organization that we ex-
amined. Each of the applications had a back-end database server, an application 
server, and a web front-end server. That’s a total of nine servers to support these 
three applications.

The first step toward consolidation is to map out the functions provided by each 
application. Table 28.1 on the next page shows the features of our example apps. 
As you can see, there’s quite a bit of overlap.

This organization had three systems that could be (and were!) used to track time, 
two systems that could do payroll (though only one was currently in use), and 
many other overlapping functions.

This situation came to pass because three different departments—Finance, Hu-
man Resources, and Operations—had each chosen their own application. Not 
only does this lack of coordination waste energy and computing resources, but it 

Granular capacity planning 
Only-as-needed servers

Server virtualization 
SANs instead of local disks

Server consolidation 
Application consolidation

Warmer machine room temps 
Equipment life extension

Degraded mode for outages 
Efficient cooling/ouside air

Cloud computing 
Energy-optimized configuration

Low-power equipment

Least effective
Most expensive

Most effective 
Least expensive

  



ptg

1102 Chapter 28 Green IT

also complicates or forestalls integration of data among departments. In this case, 
moving the organization to a single application trimmed software, hardware, and 
energy costs by over 60% and resulted in smoother data flow within the company.

Your situation is probably not this dramatic, but if you take the time to map out 
your application domains, chances are that you’ll find some significant overlap. 
The business case for consolidating applications is easy to make because the pro-
jected results can (at least in part) be expressed in dollars saved. Data integration 
and operational improvements are just icing on the cake.

Server consolidation

Most organizations have at least a few “single purpose” servers that operate at 10% 
utilization or less. For example, we’ve seen many organizations that have dedi-
cated NTP (network time protocol) servers. NTP is a low-overhead protocol that 
requires very little computational effort. Reserving a server for NTP is like flying a 
Boeing 767 cross-country with only one passenger. 

Server consolidation is a close cousin of application consolidation and is equally 
effective. Instead of bundling multiple functions into one application, you bundle 
multiple services onto one server machine.

Unlike Windows, UNIX and Linux excel at preemptive multitasking. A good solu-
tion in the NTP case is to run the NTP daemon on the same servers that provide 
common infrastructural services such as DNS and Kerberos.5

Another common opportunity for server consolidation is presented by database 
servers that are dedicated to a single application. If you have competent sysad-
mins and DBAs (and good monitoring), a single database server should be able to 
host the databases for many applications. Once again, this consolidation reduces 
license fees, capital costs, and energy consumption.

Table 28.1 Functional breakdown of three applications

Function EL AA EC

Accounts payable/receivable X
Benefits management X X
Employee time tracking X X X
General ledger X
Payroll X X
Time reporting X X X
Vacation/sick day tracking X X

5. NTP is a special case in that its response latency must be kept low. However, that doesn’t mean you 
can’t run other services on the same machine. NTP server daemons are commonly niced to give them 
ready access to the CPU whenever they want it (see page 129). You can achieve similar ends—perhaps 
even a bit more reliably—through server virtualization.

  



ptg

Server virtualization 1103

Gr
ee

n 
IT

In some cases, you may be able to reduce the number of servers you need by re-
placing old, less powerful servers with a smaller number of new, more powerful, 
and more energy-efficient servers.

SAN storage

One common indicator of IT gluttony is a fleet of servers that are loaded up with 
hard disks. For example, imagine a data center that has 100 servers, each with six 
1TB disks. That’s 600 disks that must be manufactured, maintained, powered, and 
eventually scrubbed and disposed of. The likelihood that these drives’ average uti-
lization exceeds 50% is virtually nil.

This approach results in excessive waste because it chops the storage into discrete 
chunks that cannot be efficiently managed to make “just the right amount” of 
storage available to each server or application. Some servers may have less than 
1TB of actual data in play while others are underprovisioned at 6TB and unable to 
benefit from the idle drives in their neighbor’s chassis. The reality is that it’s hard 
to push much above 30% storage utilization in a typical data center that has dis-
crete storage for each server.

A good alternative to this approach is a storage area network or SAN; see page 274 
for more details. SAN technology provides highly reliable storage that is also eco-
friendly because sysadmins can allocate the centralized storage space efficiently. 
Many organizations exceed 90% utilization on their SANs. That’s triple the effi-
ciency of discrete storage. Now that SANs can run on Ethernet, there is no longer 
any major hardware hurdle to deploying this wonderful tool.

Server virtualization

Server virtualization seems to be everyone’s favorite topic in the green IT arena, 
although some of the current buzz is probably fueled by the marketing dollars of 
the companies selling virtualization platforms. 

Server virtualization (covered in detail in Chapter 24) is in fact a fantastic tool. Its 
eco-impact is similar to that of server consolidation. In both approaches, several 
applications or services end up running on a single computer. Virtualization re-
duces energy consumption by reducing the number of chassis in production and 
achieving higher utilization of the remaining units.

Virtualization offers some additional features that are not provided by consolida-
tion, such as the ability to easily scale out identical systems, the ability to reserve a 
portion of the hardware’s capacity for a given server, and the ability to migrate 
virtual servers among physical chassis. Those aspects of virtualization are a win.

Virtualization also has a dark side. Applications that are I/O intensive typically do 
not virtualize well and tend to be more sluggish in a virtualized environment. The 
virtualization process itself consumes resources, so virtualized systems have over-
head that physical systems do not. The additional layers of abstraction introduced 
by virtualization require constant vigilance on the part of system administrators, 

  



ptg

1104 Chapter 28 Green IT

both because the virtualization itself must be actively managed and because virtu-
alization may affect the operation of the hosted systems.

Virtualization is best employed in environments that have adequate IT staff and 
mature processes. At this point, we don’t really recommend server virtualization 
for beginning sysadmins. However, the technology is rapidly becoming more reli-
able and easier to use. Soon, it will be inescapable.

Only-as-needed servers

Only-as-needed servers are powered down when not in use. This approach works 
best in cases where the demand for computing power is predictably cyclical; for 
example, when the server is linked to the accounting cycle or to work that is only 
done in the wee hours of the morning. This isn’t a common technique, but every 
once in a while there’s a green IT savings opportunity so special that only this 
trick fits. 

You can roll your own implementation with some scripts and Ethernet-connected 
(managed) power strips. Platforms such as RightScale (rightscale.com) extend the 
concept into demand-based territory. Using systems such as this, you can set 
thresholds at which additional servers are automatically spun up (or spun down) 
according to metrics such as CPU load or transaction volume.

Granular utilization and capacity planning

In green IT, as in other areas, you can only manage what you can measure. Careful 
data collection is an essential tool for optimizing your environment.

If you track your site’s use of resources such as CPU and memory (see Chapter 29, 
Performance Analysis), you can plan your hardware deployments so that you don’t 
have to buy overprovisioned servers “just to make sure” your capacity is sufficient. 
Monitoring and analysis take time, but they’re an excellent basis for “lean and 
mean” data center management.

Buy only what you need; use only what you must.

Energy-optimized server configuration

Some systems give you the opportunity to save energy by altering the behavior of 
the system itself.

Power-saving options for Linux
CPUs and CPU cores can be idled to reduce their power consumption. To achieve 
the lowest possible power consumption, you pack as many threads as possible 
onto one core or CPU and do not activate additional cores or CPUs until they are 
needed. Conversely, to achieve the best possible performance, you distribute 
threads as widely as possible among cores and CPUs to minimize the time-costs 
of context switching and cache contention. In theory, you must trade away some 
performance to reduce power consumption.

  



ptg

Filesystem power savings 1105

Gr
ee

n 
IT

In practice, the opportunity to idle parts of the CPU only arises when the system 
isn’t busy. In those circumstances, the additional overhead of packing threads 
onto one core may have no detectable effect. Experiment to see if you can discern 
any difference with your specific workload.

The process scheduler’s power management system consults two control vari-
ables, both of which are set through files in the /sys/devices/system/cpu direc-
tory. The sched_mc_power_savings variable controls whether all cores on a CPU 
are used before activating another CPU, and the sched_smt_power_savings vari-
able controls whether all thread slots on a core are used before activating another 
core. In both cases, a value of 0 turns power saving off and a 1 turns it on.

For example, to turn on both power-saving modes, you could use the commands
$ sudo sh -c 'echo 1 > /sys/devices/system/cpu/sched_mc_power_savings' 
$ sudo sh -c 'echo 1 > /sys/devices/system/cpu/sched_smt_power_savings'

To make these changes persistent across reboots, check out the sysctl command 
or add the lines to a startup script such as /etc/init.d/local on Ubuntu or SUSE 
(create it if necessary) or /etc/rc.local on Red Hat.

A computer’s CPU is one of its most profligate consumers of energy (just look at 
those heat sinks!), so aggressive power management can significantly reduce the 
system’s power use.

Filesystem power savings
You can save power and increase performance by preventing filesystems from 
maintaining a “last access” time (st_atime) for every file. This information isn’t 
very useful, and it theoretically adds a tax of one seek and one write to every file 
operation. (The real-world impact is harder to quantify because of block caching.)

Zedlewski et al. analyzed hard disk power consumption in a 2003 paper and con-
cluded that seeks cost about 4 millijoules each on an IBM Microdrive; the cost is 
probably at least double that for a standard drive with its larger armature. Com-
bining the cost of seeks with the cost of writes, we calculate the benefit of dis-
abling last access times to be up to several kWh per drive per year. Not a huge 
savings, but probably worthwhile for the performance benefits alone; the energy 
savings are just gravy.

On most filesystems, you can turn off maintenance of the last access time with the 
noatime option to mount:

$ sudo mount -o remount,noatime   /

Some Linux systems also support the relatime mount option, which provides hy-
brid functionality. Under this option, last access time is only updated if the previ-
ous value is earlier than the file’s modification time. This mode allows tools such 
as mail readers to correctly identify cases in which an interesting file has been 
changed but not yet read.

  



ptg

1106 Chapter 28 Green IT

Cloud computing

See page 987 for more 
information about 
cloud computing.

Take a deep breath, and think outside the box—outside the box of your data cen-
ter, that is. The recent availability of “cloud computing” has brought many bene-
fits, but one worth mentioning here is energy efficiency. In their quest to provide 
low-cost, high-reliability services, providers like Amazon have constructed ultra-
high-efficiency data centers and utilization management processes. These cloud 
providers can supply compute cycles that are more eco-friendly than you could 
ever achieve in your own data center.

If you have applications (especially web applications) that don’t absolutely have to 
live under your own roof, consider outsourcing their infrastructure to a cloud 
data center. You still have complete administrative control of the virtual systems 
that run in this environment. You just never get to physically “hug” them. 

Free cooling

Nothing is more disturbing on a cold winter’s day than to walk outside a data 
center and see the compressor pad whirling away at full speed. It’s 10 degrees out-
side, but the HVAC engineer apparently designed a system that uses mechanical 
cooling (and an amazing amount of energy) to pull heat out of the data center 
regardless of the ambient temperature.

Fortunately, some modern HVAC engineers specialize in data centers and have a 
better solution to this problem: use outside air for cooling when the temperature 
is low enough.

Of course, this solution isn’t available everywhere or in every season. The Green 
Grid, a consortium of technology companies dedicated to advancing energy effi-
ciency in data centers, now produces “free cooling” maps for North America and 
Europe that illustrate how many hours a year a center can be cooled by outside air 
in a given area. A more detailed on-line cooling calculator is also available—check 
it out at thegreengrid.org.

Efficient data center cooling

Various tricks of data center design can be used to reduce the amount of energy 
used for cooling. For example, the hot aisle/cold aisle layout described on page 
1089 concentrates cooling where it is most needed and allows other parts of the 
data center to operate at higher temperatures.

See Chapter 27, Data Center Basics, for a broader discussion of some of these tips.

Degraded mode for outages

Many organizations are obsessed with availability (aka uptime). What often aren’t 
considered are the additional energy and resources used to ensure a particular 
level of availability. 

  



ptg

Equipment life extension 1107

Gr
ee

n 
IT

Internal customers are accustomed to thinking of services as being either up or 
down. Consider offering degraded service as an additional choice for fault man-
agement, and ask whether that might meet the customers’ availability needs. 

For example, instead of running a fully redundant set of equipment for every pro-
duction environment, you could use server virtualization to deploy several appli-
cations to a single chassis in the event of an outage. This configuration might sup-
ply all the standard functionality, but at slower speed than normal. In some cases, 
this tradeoff can reduce the organization’s capital costs by 50% or more.

Equipment life extension

Electronics manufacturing consumes energy and generates toxic waste, so pur-
chases of new equipment entail an environmental cost that isn’t necessarily re-
flected in the price tag. Unfortunately, the technology industry has become so 
accustomed to rapid innovation and product development that manufacturers of-
ten discontinue support for equipment after just a few years. 

If your current equipment meets your business needs and is reasonably energy 
efficient, you may want to consider a life extension strategy.6 Such a scheme typi-
cally involves scouring eBay and other sources of salvage equipment for similar 
systems you can acquire cheaply and bring to your site as a source of vintage spare 
parts. This approach typically extends system life by two to three years, though in 
at least one case we have kept a system running eight extra years this way.

If older equipment is not meeting performance requirements or cannot be supple-
mented by on-site spares, another option is to buy new equipment for the produc-
tion environment and reassign the current equipment to a development environ-
ment, where performance and reliability are not as important. This approach 
doesn’t avoid new purchases entirely, but it may delay purchases for the develop-
ment environment for a year or two.

If equipment simply must be retired, make sure that you turn it over to a legiti-
mate computer recycler who will break it down into component pieces and recy-
cle each piece appropriately. Make sure the recycler has a certified data destruc-
tion program so that your data doesn’t later show up in someone else’s hands.

Computers contain a surprising amount of toxic waste. Whatever you do, don’t 
just throw old equipment into the dumpster—that waste typically goes to a land-
fill not designed to handle electronics.

Some regions have organizations that provide computer recycling services for 
free. In the Portland, Oregon, area, freegeek.org is a model recycling program.

6. If your current equipment is not energy efficient, you may be better off replacing it immediately to 
achieve operational energy savings, even when disposal and replacement costs are considered.

  



ptg

1108 Chapter 28 Green IT

Warmer temperature in the data center

Approximately one-third of the energy consumed in a traditional data center goes 
to support cooling. Historically, data centers have maintained temperatures in the 
range of 68–77 degrees Fahrenheit. These values are now seen as conservative.

In early 2009, the American Society of Heating, Refrigerating and Air-Condition-
ing Engineers (ASHRAE) issued guidance that an expanded range of 64.4–80.6 
degrees Fahrenheit is acceptable for data centers. Raising the data center tempera-
ture by three degrees typically saves an estimated 12% in cooling costs.

See Chapter 27, Data Center Basics, for additional cooling tips.

Low-power equipment

When procuring new equipment, take the time to select products that have mini-
mal environmental impact. 

The IEEE has standardized the criteria for environmental assessment of electron-
ics in IEEE publication 1680. One evaluation system based on IEEE P1680, the 
Electronic Products Environmental Assessment Tool (EPEAT), considers a wide 
range of potential impacts that might be involved in a product’s manufacture. It 
can help you compare products uniformly. The system currently covers desktop 
and laptop computers, thin clients, workstations, and computer monitors. It is re-
quired for U.S. federal government purchases. Visit EPEAT at epeat.net.

Note that EPEAT compliance requires conformance to Energy Star standards (in 
version 5.0 as of July 1, 2009) for energy consumption during use.

Some server manufacturers (including Dell, Sun, IBM, and HP) offer environ-
mentally focused product families. But even eco-friendly servers have an environ-
mental impact and consume power. The existence of these product lines should 
not be viewed as a license to add equipment in the name of being green. Focus 
first on reducing the number of servers that you need, then pick the most eco-
friendly option for meeting that need. 

28.4 GREEN IT STRATEGIES: USER WORKSPACE

Staff work areas present another set of opportunities to green up your operations. 
Exhibit C summarizes some improvements to consider.

Below are listed workspace arenas in which green IT can be a player. Most of the 
accompanying suggestions are straightforward, and you’ll find many of them fa-
miliar from other sources. (Chances are that you’re already doing some of them.)

• User education – encourage users to power off equipment that’s not 
needed, to think before they print documents, and to let desktop equip-
ment go into a power-saving mode instead of running a screen saver (or, 
better yet, turn it off).

  



ptg

Green IT strategies: user workspace 1109

Gr
ee

n 
IT

Exhibit C Green IT strategies for the workspace

• Monitors – replace CRTs with LCD monitors. They use significantly less 
power and contain fewer toxic elements.

• Workstation idle – centrally configure workstations to “sleep” or power-
off when idle for a given period (e.g., 30 minutes).

• Workstation count – limit desktop workstations to one per user. Users 
who claim to need more than one workstation should be encouraged to 
use a desktop virtualization client.

• Task-based sizing – don’t buy “one size fits all” workstations. Have three 
or four tiers of workstation specifications so that users have the appro-
priate configuration for their task mix.

• Personal heaters – this is not really an IT topic per se, but it’s a pet peeve 
of ours, and the IT department is usually the one to notice. Do not allow 
the use of personal space heaters in users’ offices or cubicles. Explain to 
users that such heaters feed a vicious cycle in which the office HVAC and 
the heater fight in an effort to enforce different temperature targets. If 
the user’s work area is truly the wrong temperature, escalate the issue 
with the appropriate HVAC support team. (Maybe you can offer them 
some VIP IT support in exchange for their assistance.)

• Print duplexing – configure printers to default to double-sided, two-up 
printing. This works fine for most routine printing, and users can always 
select something other than the default for special cases.

• eDocument campaign – launch a campaign or contest within your 
organization to find ways to eliminate the use of printed documents.

• Office temperature – since office computing equipment is designed to 
work at much higher temperatures than humans are, raise that office 
cooling setting to 78 F or higher.

Electronic documents 
Print duplexing and 2-up printing

No space heaters 
Task-based workstation sizing

One workstation per person 
Workstations sleep when idle

Replace CRTs with LCDs 
User education

Workplace recycling 
Equipment life extension 

Equipment recycling
Warmer office temperature

Telecommuting
Recycled paper and toner

Least effective
Most expensive

Most effective 
Least expensive

  



ptg

1110 Chapter 28 Green IT

• Equipment recycling – once or twice a year, hold equipment recycling 
days during which staff can pile up their unwanted, unused, or underuti-
lized equipment for your favorite recycling company to haul off. If you’re 
really eco-friendly, let staff add equipment from home to the pile.

• Equipment life extension – once a workstation has become too old or 
too slow to be used by staff with the most intense computing demands, 
cycle it down to staff who have lower requirements. They’ll see it as an 
upgrade, and you’ll squeeze another year or two of life out of it.

• Workplace recycling – start a workplace recycling program for used 
paper. Many recycling companies also accept office plastics (soda bot-
tles, etc.) in the same stream.

• Recycled paper and printer cartridges – become a consumer of recy-
cled goods. Purchase 100% recycled paper for your printers and copiers, 
and buy recycled toner cartridges as well. We’ve had outstanding luck 
with Boise Aspen 100 as general-purpose recycled printer paper that’s 
inexpensive and has outstanding ecological characteristics.

• Telecommuting – encourage staff to telecommute one or more days per 
week by installing and supporting technologies that facilitate remote 
access, such as VPNs, VOIP service at home, and web-available applica-
tions. In addition to the benefits for the staff involved, telecommuting 
reduces the use of transportation and office support services. Make sure, 
though, that telecommuters turn off their equipment at whichever site 
they’re not occupying on a given day. Otherwise, this policy can back-
fire, at least from an energy conservation perspective.

28.5 GREEN IT FRIENDS

If you’re looking to do even more in the green IT space, you can find both cama-
raderie and guidance from a variety of organizations and resources. Table 28.2 
lists some of the groups that we’re familiar with and recommend.

Table 28.2 The green mafia

Organization Web site Description

Energy Star energystar.gov Consumer product standards
EPEAT epeat.net Green electronics manufacturing
French Green IT greenit.fr French Green IT blog
Green IT Observatory greenit.bf.rmit.edu.au Australian green IT research 
Green IT Promo Council greenit-pc.jp Green IT for Japan and Asia
Green Standards Trust greenstandards.org Office equipment recycling
IT Industry Council itic.org General best practices for IT
Less Watts lesswatts.org Saving power with Linux
The Green Grid thegreengrid.org Data center focus

  



ptg

Exercises 1111

Gr
ee

n 
IT

In addition to stockpiling green ideas, many of these organizations have their own 
sets of benchmark data that you can use to find out how your organization com-
pares with others of similar size and activity.

28.6 EXERCISES

E28.1 Use a Kill A Watt meter to measure the power consumption of your 
desktop workstation under various load conditions, including sleep 
mode or power-save mode. How much power would be saved if you 
turned your workstation off every night?

E28.2 Write a script that emails the system administrator when CPU load 
indicates that a new server should be spun up.

E28.3 Make a list of the main applications that your organization uses today. 
Which ones have overlapping functionality?

E28.4 Visit thegreengrid.org and determine if your location could benefit by 
using outside air for cooling.

E28.5 Organizations such as TerraPass and Carbonfund.org sell CO2 “off-
sets” through which organizations can compensate for their carbon 
emissions. For example, one common strategy used by offsetters is to 
subsidize the development of carbon-neutral energy sources (e.g., so-
lar and wind power), with the goal of reducing future emissions.

These programs have proved controversial. Some observers doubt the 
reality of the claimed emission reductions, while others question the 
programs on philosophical grounds.7 

Select a specific carbon offset provider and assess the plausibility of 
the strategies it is pursuing. Are the programs sufficiently well docu-
mented that you could make your own evaluation of their quality? 
Has any impartial group evaluated this provider, and if so, what were 
their conclusions?

7. WordPress developer Mark Jaquith wrote, “It’s like killing a person, and then convincing a murderer to 
kill one less person. You didn’t negate your murder. You still killed the person. Convincing someone 
else to reduce their emissions doesn’t make up for your emissions.” We don’t necessarily endorse this 
view, but it is representative the anti-offset perspective.

  



ptg

1112

29 Performance Analysis

Performance analysis and tuning are often likened to system administration 
witchcraft. They’re not really witchcraft, but they do qualify as both science and 
art. The “science” part involves making careful quantitative measurements and 
applying the scientific method. The “art” part relates to the need to balance re-
sources in a practical, level-headed way, since optimizing for one application or 
user may result in other applications or users suffering. As with so many things in 
life, you may find that it’s impossible to make everyone happy.

A sentiment widespread in the blogosphere has it that today’s performance prob-
lems are somehow wildly different from those of previous decades. That claim is 
inaccurate. It’s true that systems have become more complex, but the baseline de-
terminants of performance and the high-level abstractions used to measure and 
manage it remain the same as always. Unfortunately, improvements in baseline 
system performance correlate strongly with the community’s ability to create new 
applications that suck up all available resources.

This chapter focuses on the performance of systems that are used as servers. 
Desktop systems typically do not experience the same types of performance issues 
that servers do, and the answer to the question of how to improve performance on 

Performance

  



ptg

Performance Analysis 1113

Pe
rf

or
m

an
ce

a desktop machine is almost always “Upgrade the hardware.” Users like this an-
swer because it means they get fancy new systems on their desks more often. 

One of the ways in which UNIX and Linux differ from other mainstream operat-
ing systems is in the amount of data that is available to characterize their inner 
workings. Detailed information is available for every level of the system, and ad-
ministrators control a variety of tunable parameters. If you still have trouble iden-
tifying the cause of a performance problem despite the available instrumentation, 
source code is often available for review. For these reasons, UNIX and Linux are 
typically the operating systems of choice for performance-conscious consumers.

Even so, performance tuning isn’t easy. Users and administrators alike often think 
that if they only knew the right “magic,” their systems would be twice as fast. One 
common fantasy involves tweaking the kernel variables that control the paging 
system and the buffer pools. These days, kernels are pretuned to achieve reason-
able (though admittedly, not optimal) performance under a variety of load condi-
tions. If you try to optimize the system on the basis of one particular measure of 
performance (e.g., buffer utilization), the chances are high that you will distort the 
system’s behavior relative to other performance metrics and load conditions. 

The most serious performance issues often lie within applications and have little 
to do with the underlying operating system. This chapter discusses system-level 
performance tuning and mostly leaves application-level tuning to others. As a sys-
tem administrator, you need to be mindful that application developers are people 
too. (How many times have you said, or thought, that “it must be a network prob-
lem”?) Given the complexity of modern applications, some problems can only be 
resolved through collaboration among application developers, system administra-
tors, server engineers, DBAs, storage administrators, and network architects. In 
this chapter, we help you determine what data and information to take back to 
these other folks to help them solve a performance problem—if, indeed, the prob-
lem lies in their area. This approach is far more productive than just saying, “Ev-
erything looks fine; it’s not my problem.”

In all cases, take everything you read on the web with a tablespoon cup of salt. In 
the area of system performance, you will see superficially convincing arguments 
on all sorts of topics. However, most of the proponents of these theories do not 
have the knowledge, discipline, and time required to design valid experiments. 
Popular support means very little; for every hare-brained proposal, you can ex-
pect to see a Greek chorus of “I increased the size of my buffer cache by a factor of 
ten just like Joe said, and my system feels much, much faster!!!” Right.

Here are some rules to keep in mind:

• Collect and review historical information about your system. If the sys-
tem was performing fine a week ago, an examination of the aspects of 
the system that have changed may lead you to a smoking gun. Keep 
baselines and trends in your hip pocket to pull out in an emergency. As a 
first step, review log files to see if a hardware problem has developed.

  



ptg

1114 Chapter 29 Performance Analysis

Chapter 21, Network Management and Debugging, discusses some trend 
analysis tools that are also applicable to performance monitoring. The 
sar utility discussed on page 1129 can also be used as a poor man’s trend 
analysis tool.

• Tune your system in a way that lets you compare the current results to 
the system’s previous baseline.

• Always make sure you have a rollback plan in case your magic fix actu-
ally makes things worse. 

• Don’t intentionally overload your systems or your network. The kernel 
gives each process the illusion of infinite resources. But once 100% of the 
system’s resources are in use, the kernel has to work hard to maintain 
that illusion, delaying processes and often consuming a sizable fraction 
of the resources itself.

• As in particle physics, the more information you collect with system 
monitoring utilities, the more you affect the system you are observing. It 
is best to rely on something simple and lightweight that runs in the back-
ground (e.g., sar or vmstat) for routine observation. If those feelers 
show something significant, you can investigate further with other tools.

29.1 WHAT YOU CAN DO TO IMPROVE PERFORMANCE

Here are some specific things you can do to improve performance:

• Ensure that the system has enough memory. As we see in the next sec-
tion, memory size has a major influence on performance. Memory is so 
inexpensive these days that you can usually afford to load every perfor-
mance-sensitive machine to the gills.

• If you are using UNIX or Linux as a web server or as some other type of 
network application server, you may want to spread traffic among sev-
eral systems with a commercial load balancing appliance such as Cisco’s 
Content Services Switch (cisco.com), Nortel’s Alteon Application Switch 
(nortel.com), or Brocade’s ServerIron (brocade.com). These boxes make 
several physical servers appear to be one logical server to the outside 
world. They balance the load according to one of several user-selectable 
algorithms such as “most responsive server” or “round robin.”

These load balancers also provide useful redundancy should a server go 
down. They’re really quite necessary if your site must handle unexpected 
traffic spikes.

• Double-check the configuration of the system and of individual applica-
tions. Many applications can be tuned to yield tremendous performance 
improvements (e.g., by spreading data across disks, by not performing 
DNS lookups on the fly, or by running multiple instances of a server).

  



ptg

Factors that affect performance 1115

Pe
rf

or
m

an
ce

• Correct problems of usage, both those caused by “real work” (too many 
servers run at once, inefficient programming practices, batch jobs run at 
excessive priority, and large jobs run at inappropriate times of day) and 
those caused by the system (such as unwanted daemons).

• Eliminate storage resources’ dependence on mechanical operations 
where possible. Solid state disk drives (SSDs) are widely available and 
can provide quick performance boosts because they don’t require the 
physical movement of a disk or armature to read bits. SSDs are easily 
installed in place of existing old-school disk drives.1

• Organize hard disks and filesystems so that load is evenly balanced, 
maximizing I/O throughput. For specific applications such as databases, 
you can use a fancy multidisk technology such as striped RAID to opti-
mize data transfers. Consult your database vendor for recommenda-
tions. For Linux systems, ensure that you’ve selected the appropriate 
Linux I/O scheduler for your disk (see page 1130 for details). 

• It’s important to note that different types of applications and databases 
respond differently to being spread across multiple disks. RAID comes 
in many forms; take time to determine which form (if any) is appropriate 
for your particular application.

• Monitor your network to be sure that it is not saturated with traffic and 
that the error rate is low. A wealth of network information is available 
through the netstat command, described on page 868. See also Chapter 
21, Network Management and Debugging.

• Identify situations in which the system is fundamentally inadequate to 
satisfy the demands being made of it. You cannot tune your way out of 
these situations.

These steps are listed in rough order of effectiveness. Adding memory and balanc-
ing traffic across multiple servers can often make a huge difference in perfor-
mance. The effectiveness of the other measures ranges from noticeable to none.

Analysis and optimization of software data structures and algorithms almost al-
ways lead to significant performance gains. But unless you have a substantial base 
of local software, this level of design is usually out of your control.

29.2 FACTORS THAT AFFECT PERFORMANCE

Perceived performance is determined by the basic capabilities of the system’s re-
sources and by the efficiency with which those resources are allocated and shared. 

1. Current SSDs have two main weaknesses. First, they are an order of magnitude more expensive per 
gigabyte than traditional hard disks. Second, they may be rewritten only a limited number of times 
before wearing out. Their rewrite capacity is high enough to be immaterial for desktop machines (tens 
of thousands of writes per block), but it’s a potential stumbling block for a high-traffic server. See page 
212 for more information about SSDs.

  



ptg

1116 Chapter 29 Performance Analysis

The exact definition of a “resource” is rather vague. It can include such items as 
cached contexts on the CPU chip and entries in the address table of the memory 
controller. However, to a first approximation, only the following four resources 
have much effect on performance:

• CPU utilization
• Memory
• Storage I/O
• Network I/O

If resources are still left after active processes have taken what they want, the sys-
tem’s performance is about as good as it can be.

If there are not enough resources to go around, processes must take turns. A pro-
cess that does not have immediate access to the resources it needs must wait 
around doing nothing. The amount of time spent waiting is one of the basic mea-
sures of performance degradation.

CPU utilization is one of the easiest resources to measure. A constant amount of 
processing power is always available. In theory, that amount is 100% of the CPU 
cycles, but overhead and various inefficiencies make the real-life number more 
like 95%. A process that’s using more than 90% of the CPU is entirely CPU bound 
and is consuming essentially all of the system’s available computing power.

Many people assume that the speed of the CPU is the most important factor af-
fecting a system’s overall performance. Given infinite amounts of all other re-
sources or certain types of applications (e.g., numerical simulations), a faster CPU 
does make a dramatic difference. But in the everyday world, CPU speed is rela-
tively unimportant.

Disk bandwidth is a common performance bottleneck. Because traditional hard 
disks are mechanical systems, it takes many milliseconds to locate a disk block, 
fetch its contents, and wake up the process that’s waiting for it. Delays of this mag-
nitude overshadow every other source of performance degradation. Each disk ac-
cess causes a stall worth millions of CPU instructions. Solid state drives are one 
tool you can use to address this problem; they are significantly faster than drives 
with moving parts.

Because of virtual memory, disk bandwidth and memory can be directly related if 
the demand for physical memory is greater than the supply. Situations in which 
physical memory becomes scarce often result in memory pages being written to 
disk so they can be reclaimed and reused for another purpose. In these situations, 
using memory is just as expensive as using the disk. Avoid this trap when perfor-
mance is important; ensure that every system has adequate physical memory.

Network bandwidth resembles disk bandwidth in many ways because of the laten-
cies involved in network communication. However, networks are atypical in that 
they involve entire communities rather than individual computers. They are also 
particularly susceptible to hardware problems and overloaded servers.

  



ptg

How to analyze performance problems 1117

Pe
rf

or
m

an
ce

29.3 HOW TO ANALYZE PERFORMANCE PROBLEMS

It can be difficult to isolate performance problems in a complex system. As a sys-
admin, you often receive anecdotal problem reports that suggest a particular 
cause or fix (e.g., “The web server has gotten painfully sluggish because of all 
those damn AJAX calls…”). Take note of this information, but don’t assume that 
it’s accurate or reliable; do your own investigation.

A rigorous, transparent, scientific methodology helps you reach conclusions that 
you and others in your organization can rely on. Such an approach lets others 
evaluate your results, increases your credibility, and raises the likelihood that your 
suggested changes will actually fix the problem.

“Being scientific” doesn’t mean that you have to gather all the relevant data your-
self. External information is usually very helpful. Don’t spend hours looking into 
issues that can just as easily be looked up in a FAQ.

We suggest the following five steps:

Step 1: Formulate the question.

Pose a specific question in a defined functional area, or state a tentative conclu-
sion or recommendation that you are considering. Be specific about the type of 
technology, the components involved, the alternatives you are considering, and 
the outcomes of interest.

Step 2: Gather and classify evidence.

Conduct a systematic search of documentation, knowledge bases, known issues, 
blogs, white papers, discussions, and other resources to locate external evidence 
related to your question. On your own systems, capture telemetry data and, where 
necessary or possible, instrument specific system and application areas of interest. 

Step 3: Critically appraise the data.

Review each data source for relevance and critique it for validity. Abstract key 
information and note the quality of the sources.

Step 4: Summarize the evidence both narratively and graphically.

Combine findings from multiple sources into a narrative précis and, if possible, a 
graphic representation. Data that seems equivocal in numeric form can become 
decisive once charted.

Step 5: Develop a conclusion statement.

Arrive at a concise statement of your conclusions (i.e., the answer to your ques-
tion). Assign a grade to indicate the overall strength or weakness of the evidence 
that supports your conclusions.

  



ptg

1118 Chapter 29 Performance Analysis

29.4 SYSTEM PERFORMANCE CHECKUP

Enough generalities—let’s look at some specific tools and areas of interest. Before 
you take measurements, you need to know what you’re looking at.

Taking stock of your hardware

Start your inquiry with an inventory of your hardware, especially CPU and mem-
ory resources. This inventory can help you interpret the information presented by 
other tools and can help you set realistic expectations regarding the upper bounds 
on performance.

On Linux systems, the /proc filesystem is the place to look to find an overview of 
what hardware your operating system thinks you have (more detailed hardware 
information can be found in /sys; see page 438). Table 29.1 shows some of the key 
files. See page 421 for general information about /proc.

Four lines in /proc/cpuinfo help you identify the system’s exact CPU: vendor_id, 
cpu family, model, and model name. Some of the values are cryptic; it’s best to 
look them up on-line.

The exact info contained in /proc/cpuinfo varies by system and processor, but 
here’s a representative example:

suse$ cat /proc/cpuinfo 
processor : 0 
vendor_id : GenuineIntel 
cpu family : 6
model : 15 
model name : Intel(R) Xeon(R) CPUE5310@ 1.60GHz 
stepping : 11 
cpu MHz : 1600.003 
cache size : 4096 KB 
physical id : 0 
cpu cores : 2 
siblings : 2
…

The file contains one entry for each processor core seen by the OS. The data varies 
slightly by kernel version. The processor value uniquely identifies each core. 
physical id values are unique per physical socket on the circuit board, and core id 

Table 29.1 Sources of hardware information on Linux

File Contents 

/proc/cpuinfo CPU type and description 
/proc/meminfo Memory size and usage 
/proc/diskstats Disk devices and usage statistics

  



ptg

Taking stock of your hardware 1119

Pe
rf

or
m

an
ce

values are unique per core within a physical socket. Cores that support hyper-
threading (duplication of CPU contexts without duplication of other processing 
features) are identified by an ht in the flags field. If hyperthreading is actually in 
use, the siblings field for each core shows how many contexts are available on a 
given core.

Another command to run for information on PC hardware is dmidecode. It 
dumps the system’s Desktop Management Interface (DMI, aka SMBIOS) data. 
The most useful option is -t type; Table 29.2 shows the valid types.

The example below shows typical information:
suse$ sudo dmidecode -t 4 
# dmidecode 2.7 
SMBIOS 2.2 present.

Handle 0x0004, DMI type 4, 32 bytes.
Processor Information 

Socket Designation: PGA 370 
Type: Central Processor 
Family: Celeron 
Manufacturer: GenuineIntel 
ID: 65 06 00 00 FF F9 83 01 
Signature: Type 0, Family 6, Model 6, Stepping 5

…

Table 29.2 Type values for dmidecode -t 

Value Description

1 System information 
2 Base board Information 
3 Chassis information 
4 Processor information 
7 Cache information 
8 Port connector information 
9 System slot information 

11 OEM strings 
12 System configuration options 
13 BIOS language information 
16 Physical memory array 
17 Memory device 
19 Memory array mapped address 
32 System boot information 
38 IPMI device information

  



ptg

1120 Chapter 29 Performance Analysis

Bits of network configuration information are scattered about the system. ifconfig 
-a is the best source of IP and MAC information for each configured interface. 

On Solaris systems, the psrinfo -v and prtconf commands are the best sources of 
information about CPU and memory resources, respectively. Example output for 
these commands is shown below.

solaris$ psrinfo -v 
Status of virtual processor 0 as of: 01/31/2010 21:22:00

on-line since 07/13/2009 15:55:48.
The sparcv9 processor operates at 1200 MHz,

and has a sparcv9 floating point processor. 
Status of virtual processor 1 as of: 01/31/2010 21:22:00

on-line since 07/13/2009 15:55:49.
The sparcv9 processor operates at 1200 MHz, 

and has a sparcv9 floating point processor.

solaris$ prtconf
System Configuration:  Sun Microsystems  sun4v 
Memory size: 32640 Megabytes 
System Peripherals (Software Nodes):

SUNW,Sun-Fire-T200 
…

Under HP-UX, machinfo is an all-in-one command you can use to investigate a 
machine’s hardware configuration. Here’s some typical output:

hp-ux$ sudo machinfo 
CPU info:

1 Intel(R) Itanium 2 processor (1.5 GHz, 6 MB) 
400 MT/s bus, CPU version B1

Memory: 4084 MB (3.99 GB)

Firmware info:
   Firmware revision:  02.21
   FP SWA driver revision: 1.18
   BMC firmware revision: 1.50

Platform info:
   Model: "ia64 hp server rx2600" 
OS info:
   Nodename: hpux11
   Release: HP-UX B.11.31 
Machine: ia64

It takes a bit of work to find CPU and memory information under AIX. First, use 
the lscfg command to find the names of the installed processors.

aix$ lscfg | grep Processor 
+ proc0 Processor
+ proc2 Processor

  



ptg

Analyzing CPU usage 1121

Pe
rf

or
m

an
ce

You can then use lsattr to extract a description of each processor:
aix$ lsattr -E -l proc0 
frequency 1898100000 Processor Speed False
smt_enabled true Processor SMT enabled False
smt_threads 2 Processor SMT threads False
state enable Processor state False
type PowerPC_POWER5 Processor type False

lsattr can also tell you the amount of physical memory in the system:
aix$ lsattr -E -l sys0 -a realmem 
realmem 4014080 Amount of usable physical memory in Kbytes

Gathering performance data

Most performance analysis tools tell you what’s going on at a particular point in 
time. However, the number and character of loads probably changes throughout 
the day. Be sure to gather a cross-section of data before taking action. The best 
information on system performance often becomes clear only after a long period 
(a month or more) of data collection. It is particularly important to collect data 
during periods of peak use. Resource limitations and system misconfigurations 
are often only visible when the machine is under heavy load.

Analyzing CPU usage

You will probably want to gather three kinds of CPU data: overall utilization, load 
averages, and per-process CPU consumption. Overall utilization can help identify 
systems on which the CPU’s speed is itself the bottleneck. Load averages give you 
an impression of overall system performance. Per-process CPU consumption data 
can identify specific processes that are hogging resources.

You can obtain summary information with the vmstat command. vmstat takes 
two arguments: the number of seconds to monitor the system for each line of 
output and the number of reports to provide. If you don’t specify the number of 
reports, vmstat runs until you press <Control-C>.

The first line of data returned by vmstat reports averages since the system was 
booted. The subsequent lines are averages within the previous sample period, 
which defaults to five seconds. For example:

$ vmstat 5 5 
procs -----------memory---------- ---swap-------io---- --system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
1 0 820 2606356 428776 487092 0 0 4741 65 1063 4857 25 1 73 0 
1 0 820 2570324 428812 510196 0 0 4613 11 1054 4732 25 1 74 0 
1 0 820 2539028 428852 535636 0 0 5099 13 1057 5219 90 1 9 0 
1 0 820 2472340 428920 581588 0 0 4536 10 1056 4686 87 3 10 0 
3 0 820 2440276 428960 605728 0 0 4818 21 1060 4943 20 3 77 0

Although exact columns may vary among systems, CPU utilization stats are fairly 
consistent across platforms. User time, system (kernel) time, idle time, and time 

  



ptg

1122 Chapter 29 Performance Analysis

waiting for I/O are shown in the us, sy, id, and wa columns on the far right. CPU 
numbers that are heavy on user time generally indicate computation, and high 
system numbers indicate that processes are making a lot of system calls or are 
performing lots of I/O.

A rule of thumb for general-purpose compute servers that has served us well over 
the years is that the system should spend approximately 50% of its nonidle time in 
user space and 50% in system space; the overall idle percentage should be non-
zero. If you are dedicating a server to a single CPU-intensive application, the ma-
jority of time should be spent in user space.

The cs column shows context switches per interval (that is, the number of times 
that the kernel changed which process was running). The number of interrupts 
per interval (usually generated by hardware devices or components of the kernel) 
is shown in the in column. Extremely high cs or in values typically indicate a 
misbehaving or misconfigured hardware device. The other columns are useful for 
memory and disk analysis, which we discuss later in this chapter.

Long-term averages of the CPU statistics let you determine whether there is fun-
damentally enough CPU power to go around. If the CPU usually spends part of its 
time in the idle state, there are cycles to spare. Upgrading to a faster CPU won’t do 
much to improve the overall throughput of the system, though it may speed up 
individual operations.

As you can see from this example, the CPU generally flip-flops back and forth 
between heavy use and idleness. Therefore, it’s important to observe these num-
bers as an average over time. The smaller the monitoring interval, the less consis-
tent the results.

On multiprocessor machines, most tools present an average of processor statistics 
across all processors. On Linux, Solaris, and AIX, the mpstat command generates 
vmstat-like output for each individual processor. The -P flag lets you specify a 
specific processor to report on. mpstat is useful for debugging software that sup-
ports symmetric multiprocessing—it’s also enlightening to see how (in)efficiently 
your system uses multiple processors. Here’s an example that shows the status of 
each of four processors:

linux$ mpstat -P ALL 
08:13:38 PM CPU %user %nice %sys %iowait %irq %soft %idle intr/s
08:13:38 PM 0 1.02 0.00 0.49 1.29 0.04 0.38 96.79 473.93
08:13:38 PM 1 0.28 0.00 0.22 0.71 0.00 0.01 98.76 232.86
08:13:38 PM 2 0.42 0.00 0.36 1.32 0.00 0.05 97.84 293.85
08:13:38 PM 3 0.38 0.00 0.30 0.94 0.01 0.05 98.32 295.02

On a workstation with only one user, the CPU generally spends most of its time 
idle. Then when you render a web page or switch windows, the CPU is used heav-
ily for a short period. In this situation, information about long-term average CPU 
usage is not meaningful. 

  



ptg

Analyzing CPU usage 1123

Pe
rf

or
m

an
ce

The second CPU statistic that’s useful for characterizing the burden on your sys-
tem is the “load average,” which represents the average number of runnable pro-
cesses. It gives you a good idea of how many pieces the CPU pie is being divided 
into. The load average is obtained with the uptime command:

$ uptime 
11:10am  up 34 days, 18:42, 5 users, load average: 0.95, 0.38, 0.31

Three values are given, corresponding to the 5, 10, and 15-minute averages. In 
general, the higher the load average, the more important the system’s aggregate 
performance becomes. If there is only one runnable process, that process is usu-
ally bound by a single resource (commonly disk bandwidth or CPU). The peak 
demand for that one resource becomes the determining factor in performance.

When more processes share the system, loads may or may not be more evenly 
distributed. If the processes on the system all consume a mixture of CPU, disk, 
and memory, the performance of the system is less likely to be dominated by con-
straints on a single resource. In this situation, it becomes most important to look 
at average measures of consumption, such as total CPU utilization.

See page 123 for 
more information 
about priorities.

Modern single-processor systems are typically busy with a load average of 3 and 
do not deal well with load averages over about 8. A load average of this magnitude 
is a hint that you should start to look for ways to spread the load artificially, such 
as by using nice to set process priorities.

The system load average is an excellent metric to track as part of a system base-
line. If you know your system’s load average on a normal day and it is in that same 
range on a bad day, this is a hint that you should look elsewhere (such as the 
network) for performance problems. A load average above the expected norm 
suggests that you should look at the processes running on the system itself.

Another way to view CPU usage is to run the ps command with arguments that 
show you how much of the CPU each process is using (-aux for Linux and AIX, 
-elf for HP-UX and Solaris). On a busy system, at least 70% of the CPU is often 
consumed by just one or two processes. Deferring the execution of the CPU hogs 
or reducing their priority makes the CPU more available to other processes.

See page 133 for 
more information 
about top.

An excellent alternative to ps is a program called top. It presents about the same 
information as ps, but in a live, regularly updated format that shows the status of 
the system over time.2 AIX’s topas command is even nicer.

On virtualized systems, ps, top, and other commands that display CPU utilization 
data may be misleading. A virtual machine that is not using all of its virtual CPU 
cycles allows other virtual machines to use (steal) those cycles. Any measurement 
that is relative to the operating system, such as clock ticks per second, should be 
examined carefully to be sure you understand what is really being reported. See 

2.  Refreshing top’s output too rapidly can itself be quite a CPU hog, so be judicious in your use of top.

  



ptg

1124 Chapter 29 Performance Analysis

Chapter 24, Virtualization, for additional information about various virtualization 
technologies and their implications.

How the system manages memory

The kernel manages memory in units called pages that are usually 4KiB or larger. 
It allocates virtual pages to processes as they request memory. Each virtual page is 
mapped to real storage, either to RAM or to “backing store” on disk. (Backing 
store is usually space in the swap area, but for pages that contain executable pro-
gram text, the backing store is the original executable file. Likewise, the backing 
store for some data files may be the files themselves.) The kernel uses a “page 
table” to keep track of the mappings between these made-up virtual pages and real 
pages of memory.

The kernel can effectively allocate as much memory as processes ask for by aug-
menting real RAM with swap space. Since processes expect their virtual pages to 
map to real memory, the kernel may have to constantly shuffle pages between 
RAM and swap as different pages are accessed. This activity is known as paging.3

The kernel tries to manage the system’s memory so that pages that have been re-
cently accessed are kept in memory and less active pages are paged out to disk. 
This scheme is known as an LRU system since the least recently used pages are the 
ones that get shunted to disk.

It would be inefficient for the kernel to keep track of all memory references, so it 
uses a cache-like algorithm to decide which pages to keep in memory. The exact 
algorithm varies by system, but the concept is similar across platforms. This sys-
tem is cheaper than a true LRU system and produces comparable results.

When memory is low, the kernel tries to guess which pages on the inactive list 
were least recently used. If those pages have been modified by a process, they are 
considered “dirty” and must be paged out to disk before the memory can be re-
used. Pages that have been laundered in this fashion (or that were never dirty to 
begin with) are “clean” and can be recycled for use elsewhere.

When a process refers to a page on the inactive list, the kernel returns the page’s 
memory mapping to the page table, resets the page’s age, and transfers it from the 
inactive list to the active list. Pages that have been written to disk must be paged in 
before they can be reactivated if the page in memory has been remapped. A “soft 
fault” occurs when a process references an in-memory inactive page, and a “hard 
fault” results from a reference to a nonresident (paged-out) page. In other words, 
a hard fault requires a page to be read from disk and a soft fault does not.

The kernel tries to stay ahead of the system’s demand for memory, so there is not 
necessarily a one-to-one correspondence between page-out events and page 
allocations by running processes. The goal of the system is to keep enough free 

3. Ages ago, a second process known as “swapping” could occur by which all pages for a process were 
pushed out to disk at the same time. Today, demand paging is used in all cases.

  



ptg

Analyzing memory usage 1125

Pe
rf

or
m

an
ce

memory handy that processes don’t have to actually wait for a page-out each time 
they make a new allocation. If paging increases dramatically when the system is 
busy, it would probably benefit from more RAM.

Linux is still evolving rapidly, and its virtual memory system has not quite fin-
ished going through puberty—it’s a little bit jumpy and a little bit awkward. You 
can tune the kernel’s “swappiness” parameter (/proc/sys/vm/swappiness) to give 
the kernel a hint about how quickly it should make physical pages eligible to be 
reclaimed from a process in the event of a memory shortage. By default, this pa-
rameter has a value of 60. If you set it to 0, the kernel resorts to reclaiming pages 
that have been assigned to a process only when it has exhausted all other possibil-
ities. If you set the parameter higher than 60 (the maximum value is 100), the 
kernel is more likely to reclaim pages. (If you find yourself tempted to modify this 
parameter, it’s probably time to buy more RAM for the system.)

If the kernel fills up both RAM and swap, all VM has been exhausted. Linux uses 
an “out-of-memory killer” to handle this condition. This function selects and kills 
a process to free up memory. Although the kernel attempts to kill off the least 
important process on your system, running out of memory is always something to 
avoid. In this situation, it’s likely that a substantial portion of the system’s re-
sources are being devoted to memory housekeeping rather than to useful work.

Analyzing memory usage

Two numbers summarize memory activity: the total amount of active virtual 
memory and the current paging rate. The first number tells you the total demand 
for memory, and the second suggests the proportion of that memory that is ac-
tively used. Your goal is to reduce activity or increase memory until paging re-
mains at an acceptable level. Occasional paging is inevitable; don’t try to eliminate 
it completely.

You can determine the amount of paging (swap) space that’s currently in use. Run 
swapon -s on Linux, swap -l under Solaris and AIX, and swapinfo under HP-UX. 

linux$ swapon -s 
Filename Type Size Used Priority 
/dev/hdb1 partition 4096532 0 -1
/dev/hda2 partition 4096564 0 -2

solaris$ swap -l 
swapfile dev swapl blocks free 
/dev/dsk/c0t0d0s1 32,1 16 164400 162960

hp-ux$ swapinfo 
Kb Kb Kb PCT START/ Kb

TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME
dev 8388608 0 8388608 0% 0 - 1 /dev/vg00/lvol

swapinfo and swapon report usage in kilobytes, and swap -l uses 512-byte disk 
blocks. The sizes quoted by these programs do not include the contents of core 
memory, so you must compute the total amount of virtual memory yourself.

  



ptg

1126 Chapter 29 Performance Analysis

VM = size of real memory + amount of swap space used

On UNIX systems, paging statistics obtained with vmstat look similar to this out-
put from Solaris:

solaris$ vmstat 5 5 
procs memory page disk faults
r b w swap free re mf pi po fr de sr s0 s6 s4 -- in sy cs
0 0 0 338216 10384 0 3 1 0 0 0 0 0 0 0 0 132 101 58
0 0 0 341784 11064 0 26 1 1 1 0 0 0 0 1 0 150 215 100
0 0 0 351752 12968 1 69 0 9 9 0 0 0 0 2 0 173 358 156
0 0 0 360240 14520 0 30 6 0 0 0 0 0 0 1 0 138 176 71
1 0 0 366648 15712 0 73 0 8 4 0 0 0 0 36 0 390 474 237

CPU information has been removed from this example. Under the procs heading 
is shown the number of processes that are immediately runnable, blocked on I/O, 
and runnable but swapped. If the value in the w column is ever nonzero, it is likely 
that the system’s memory is pitifully inadequate relative to the current load.

The columns under the page heading give information about paging activity. All 
columns represent average values per second. Table 29.3 shows their meanings.

The de column is the best indicator of serious memory problems. If it often jumps 
above 100, the machine is starved for memory. Unfortunately, some versions of 
vmstat don’t show this number.

On Linux systems, paging statistics obtained with vmstat look like this:
linux$ vmstat 5 5 
procs -------------memory------------ -swap- ---io--- --system-- -------cpu--------
r b swpd free buff cache si so bi bo in cs us sy id wa st
5 0 0 66488 40328 597972 0 0 252 45 1042 278 3 4 93 1 0
0 0 0 66364 40336 597972 0 0 0 37 1009 264 0 1 98 0 0
0 0 0 66364 40344 597972 0 0 0 5 1011 252 1 1 98 0 0
0 0 0 66364 40352 597972 0 0 0 3 1020 311 1 1 98 0 0
0 0 0 66364 40360 597972 0 0 0 21 1067 507 1 3 96 0 0

Table 29.3 Decoding guide for vmstat paging statistics

Column Meaning

re Number of pages reclaimed (rescued from the free list) 
mf Number of minor faults (minor meaning “small number of pages”) 
pi Number of kilobytes paged in 
po Number of kilobytes paged out 
fr Number of kilobytes placed on the free list 
de Number of kilobytes of “predicted short-term memory shortfall” 
sr Number of pages scanned by the clock algorithm

  



ptg

Analyzing disk I/O 1127

Pe
rf

or
m

an
ce

As in the UNIX output, the number of processes that are immediately runnable 
and that are blocked on I/O are shown under the procs heading. Paging statistics 
are condensed to two columns, si and so, which represent pages swapped in and 
out, respectively.

Any apparent inconsistencies among the memory-related columns are for the 
most part illusory. Some columns count pages and others count kilobytes. All val-
ues are rounded averages. Furthermore, some are averages of scalar quantities and 
others are average deltas. 

Use the si and so fields to evaluate the system’s paging behavior. A page-in (si) 
does not necessarily represent a page being recovered from the swap area. It could 
be executable code being paged in from a filesystem or a copy-on-write page be-
ing duplicated, both of which are normal occurrences that do not necessarily indi-
cate a shortage of memory. On the other hand, page-outs (so) always represent 
data written to disk after being forcibly ejected by the kernel. 

If your system has a constant stream of page-outs, it’s likely that you would benefit 
from more physical memory. But if paging happens only occasionally and does 
not produce annoying hiccups or user complaints, you can ignore it. If your sys-
tem falls somewhere in the middle, further analysis should depend on whether 
you are trying to optimize for interactive performance (e.g., a workstation) or to 
configure a machine with many simultaneous users (e.g., a compute server).

On a traditional hard disk, you can figure that every 100 page-outs cause about 
one second of latency.4 If 150 page-outs must occur to let you scroll a window, you 
will wait for about 1.5 seconds. A rule of thumb used by interface researchers is 
that an average user perceives the system to be “slow” when response times are 
longer than seven-tenths of a second.

Analyzing disk I/O

You can monitor disk performance with the iostat command. Like vmstat, it ac-
cepts optional arguments to specify an interval in seconds and a repetition count, 
and its first line of output is a summary since boot. Like vmstat, it also tells you 
how the CPU’s time is being spent. Here is an example from Solaris:

solaris$ iostat 5 5
tty sd0 sd1 nfs1 cpu

tin tout kps tps serv kps tps serv kps tps serv us sy wt id
0 1 5 1 18 14 2 20 0 0 0 0 0 0 99
0 39 0 0 0 2 0 14 0 0 0 0 0 0 100
2 26 3 0 13 8 1 21 0 0 0 0 0 0 100
3 119 0 0 0 19 2 13 0 0 0 0 1 1 98
1 16 5 1 19 0 0 0 0 0 0 0 0 0 100

4. We assume that about half of disk operations are page-outs.

  



ptg

1128 Chapter 29 Performance Analysis

Columns are divided into topics (in this case, five: tty, sd0, sd1, nfs1, and cpu), 
with the data for each topic presented in the fields beneath it. iostat output tends 
to be somewhat different on every system. 

The tty topic presents data concerning terminals and pseudo-terminals. This in-
formation is basically uninteresting, although it might be useful for characterizing 
the throughput of a modem. The tin and tout columns give the average total 
number of characters input and output per second by all of the system’s terminals.

Each hard disk has columns kps, tps, and serv, indicating kilobytes transferred 
per second, total transfers per second, and average “service times” (seek times, 
essentially) in milliseconds. One transfer request can include several sectors, so 
the ratio between kps and tps tells you whether there are a few large transfers or 
lots of small ones. Large transfers are more efficient. Calculation of seek times 
seems to work only on specific drives and sometimes gives bizarre values (the 
values in this example are reasonable).

iostat output on Linux, HP-UX, and AIX looks more like this:
aix$ iostat 
…
Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn
hdisk0 0.54 0.59 2.39 304483 1228123
hdisk1 0.34 0.27 0.42 140912 216218
hdisk2 0.01 0.02 0.05 5794 15320
hdisk3 0.00 0.00 0.00 0 0

Each hard disk has the columns tps, Blk_read/s, Blk_wrtn/s, Blk_read, and 
Blk_wrtn, indicating I/O transfers per second, blocks read per second, blocks 
written per second, total blocks read, and total blocks written. 

Disk blocks are typically 1KiB in size, so you can readily determine the actual disk 
throughput in KiB/s. Transfers, on the other hand, are nebulously defined. One 
transfer request can include several logical I/O requests over several sectors, so 
this data is also mostly useful for identifying trends or irregular behavior.

The cost of seeking is the most important factor affecting disk drive performance. 
To a first approximation, the rotational speed of the disk and the speed of the bus 
to which the disk is connected to have relatively little impact. Modern disks can 
transfer hundreds of megabytes of data per second if they are read from contigu-
ous sectors, but they can only perform about 100 to 300 seeks per second. If you 
transfer one sector per seek, you can easily realize less than 5% of the drive’s peak 
throughput.

Seeks are more expensive when they make the heads travel a long distance. If you 
have a disk with several filesystem partitions and files are read from each partition 
in a random order, the heads must travel back and forth a long way to switch 
between partitions. On the other hand, files within a partition are relatively local 
to one another. When partitioning a new disk, consider the performance implica-
tions and put files that are accessed together in the same filesystem.

  



ptg

sar: collect and report statistics over time 1129

Pe
rf

or
m

an
ce

To really achieve maximum disk performance, you should put filesystems that are 
used together on different disks. Although the bus architecture and device drivers 
influence efficiency, most computers can manage multiple disks independently, 
thereby dramatically increasing throughput. For example, it is often worthwhile to 
split frequently accessed web server data and logs among multiple disks.

It’s especially important to split the paging (swap) area among several disks if pos-
sible, since paging tends to slow down the entire system. Many systems can use 
both dedicated swap partitions and swap files on a formatted filesystem.

Some systems also let you set up multiple “memory-based filesystems,” which are 
essentially the same thing as PC RAM disks. A special driver poses as a disk but 
actually stores data in high-speed memory. Many sites use a RAM disk for their 
/tmp filesystem or for other busy files such as web server logs or email spools. 
Using a RAM disk reduces the memory available for general use, but it makes the 
reading and writing of temporary files blindingly fast. It’s generally a good deal. 

See page 144 for 
more information 
about lsof and fuser.

The lsof command, which lists open files, and the fuser command, which shows 
the processes that are using a filesystem, can be helpful for isolating disk I/O per-
formance issues. These commands show interactions between processes and file-
systems, some of which may be unintended. For example, if an application is writ-
ing its log to the same device used for database logs, a disk bottleneck may result. 

xdd: analyze disk subsystem performance

Modern storage systems can involve network or SAN-attached elements, RAID 
arrays, and other layers of abstraction. Consider the xdd tool for measuring and 
optimizing these complex systems. xdd is available under the GPL and runs on all 
of our example systems (not to mention Windows). 

xdd measures subsystem I/O on single systems and on clusters of systems. It is 
well documented and yields accurate and reproducible performance measure-
ments. You can read more about it at ioperformance.com.

sar: collect and report statistics over time

The sar command is a performance monitoring tool that has lingered through 
multiple UNIX and Linux epochs despite its somewhat obtuse command-line 
syntax. The original command has its roots in early AT&T UNIX. 

At first glance, sar seems to display much the same information as vmstat and 
iostat. However, there’s one important difference: sar can report on historical as 
well as current data.

The Linux package 
that contains sar is 
called sysstat.

Without options, the sar command reports CPU utilization for the day at 10-min-
ute intervals since midnight, as shown below. This historical data collection is 
made possible by the sal script, which is part of the sar toolset and must be set up 
to run from cron at periodic intervals. sar stores the data it collects underneath 
the /var/log directory in a binary format.

  



ptg

1130 Chapter 29 Performance Analysis

linux$ sar 
Linux 2.6.18-92.ELsmp (bajafur.atrust.com)  01/16/2010

12:00:01 AM CPU %user %nice %system %iowait %idle
12:10:01 AM all 0.10 0.00 0.04 0.06 99.81
12:20:01 AM all 0.04 0.00 0.03 0.05 99.88
12:30:01 AM all 0.04 0.00 0.03 0.04 99.89
12:40:01 AM all 0.09 0.00 0.03 0.05 99.83
12:50:01 AM all 0.04 0.00 0.03 0.04 99.88
01:00:01 AM all 0.05 0.00 0.03 0.04 99.88

In addition to CPU information, sar can also report on metrics such as disk and 
network activity. Use sar -d for a summary of this day’s disk activity or sar -n
DEV for network interface statistics. sar -A reports all available information.

sar has some limitations, but it’s a good bet for quick-and-dirty historical infor-
mation. If you’re serious about making a long-term commitment to performance 
monitoring, we suggest that you set up a data collection and graphing platform 
such as Cacti. Cacti comes to us from the network management world, but it can 
actually graph arbitrary system metrics such as CPU and memory information. 
See page 886 for some additional comments on Cacti and an example of the 
graphs that it’s capable of producing.

nmon and nmon_analyser: monitor in AIX

On AIX systems, nmon is the monitoring tool of choice. It is similar to sar in 
many ways.

Stephen Atkins of IBM developed a super-spreadsheet called nmon_analyser that 
processes the data collected by nmon. It’s great for producing cleaned-up data as 
well as for creating presentation graphs. It analyzes data with more sophistication 
than does sar. For example, it can calculate weighted averages for hot-spot analy-
sis and can integrate IBM and EMC disk performance information. Although 
nmon_analyser is not officially supported by IBM, you can find it at 

ibm.com/developerworks/aix/library/au-nmon_analyser

Choosing a Linux I/O scheduler

Linux systems use an I/O scheduling algorithm to mediate between processes 
competing to perform disk I/O. The I/O scheduler massages the order and timing 
of disk requests to provide the best possible overall I/O performance for a given 
application or situation.

Four different scheduling algorithms are available in the Linux 2.6 kernel. You can 
take your pick. Unfortunately, the scheduling algorithm is set at boot time (with 
the elevator=algorithm kernel argument), so it’s not easy to change. The system’s 
scheduling algorithm is usually specified in the GRUB boot loader’s configuration 
file, grub.conf.

  



ptg

Help! My system just got really slow! 1131

Pe
rf

or
m

an
ce

The available algorithms are

• Completely Fair Queuing (elevator=cfq): This is the default algorithm 
and is usually the best choice for general-purpose servers. It tries to 
evenly distribute access to I/O bandwidth. (If nothing else, the algorithm 
surely deserves an award for marketing: who could ever say no to a com-
pletely fair scheduler?)

• Deadline (elevator=deadline): This algorithm tries to minimize the 
latency for each request. It reorders requests to increase performance.

• NOOP (elevator=noop): This algorithm implements a simple FIFO 
queue. It assumes that I/O requests have already been optimized or reor-
dered by the driver or will be optimized or reordered by the device (as 
might be done by an intelligent controller). This option may be the best 
choice in some SAN environments and is the best choice for SSD drives.

By determining which scheduling algorithm is most appropriate for your environ-
ment (you may need to run trials with each scheduler) you may be able to im-
prove I/O performance.

oprofile: profile Linux systems in detail

oprofile is an incredibly powerful integrated system profiler for Linux systems 
running the 2.6 kernel or later. All components of a Linux system can be profiled: 
hardware and software interrupt handlers, kernel modules, the kernel itself, 
shared libraries, and applications. 

If you have a lot of extra time on your hands and want to know exactly how your 
system resources are being used (down to the smallest level of detail), consider 
running oprofile. This tool is particularly useful if you are developing your own 
in-house applications or kernel code. 

Both a kernel module and a set of user-level tools are included in the oprofile
distribution, which is available for download at oprofile.sourceforge.net. 

As of early 2010, a new system for tracing performance is on the horizon. Known 
as the performance events (“perf events”) subsystem, it provides a level of instru-
mentation never before seen in the Linux kernel. This is likely to be the future of 
Linux performance profiling and is slated to eventually replace oprofile.

29.5 HELP! MY SYSTEM JUST GOT REALLY SLOW!

In previous sections, we’ve talked mostly about issues that relate to the average 
performance of a system. Solutions to these long-term concerns generally take the 
form of configuration adjustments or upgrades.

However, you will find that even properly configured systems are sometimes 
more sluggish than usual. Luckily, transient problems are often easy to diagnose. 
Most of the time, they are caused by a greedy process that is simply consuming so 

  



ptg

1132 Chapter 29 Performance Analysis

much CPU power, disk, or network bandwidth that other processes are affected. 
On occasion, malicious processes hog available resources to intentionally slow a 
system or network, a scheme known as a “denial of service” or DOS attack.

You can often tell which resource is being hogged without even running a diag-
nostic command. If the system feels “sticky” or you hear the disk going crazy, the 
problem is most likely a disk bandwidth or memory shortfall.5 If the system feels 
“sluggish” (everything takes a long time, and applications can’t be “warmed up”), 
the problem may lie with the CPU load.

The first step in diagnosis is to run ps auxww (ps -elf on Solaris and HP-UX) or 
top to look for obvious runaway processes. Any process that’s using more than 
50% of the CPU is likely to be at fault. If no single process is getting an inordinate 
share of the CPU, check to see how many processes are getting at least 10%. If you 
snag more than two or three (don’t count ps itself), the load average is likely to be 
quite high. This is, in itself, a cause of poor performance. Check the load average 
with uptime, and use vmstat or top to check whether the CPU is ever idle. 

If no CPU contention is evident, run vmstat to see how much paging is going on. 
All disk activity is interesting: a lot of page-outs may indicate contention for 
memory, and disk traffic in the absence of paging may mean that a process is 
monopolizing the disk by constantly reading or writing files. 

There’s no direct way to tie disk operations to processes, but ps can narrow down 
the possible suspects for you. Any process that is generating disk traffic must be 
using some amount of CPU time. You can usually make an educated guess about 
which of the active processes is the true culprit.6 Use kill -STOP to suspend the 
process and test your theory.

Suppose you do find that a particular process is at fault—what should you do? 
Usually, nothing. Some operations just require a lot of resources and are bound to 
slow down the system. It doesn’t necessarily mean that they’re illegitimate. It is 
sometimes useful to renice an obtrusive process that is CPU-bound, however.

Sometimes, application tuning can dramatically reduce a program’s demand for 
CPU resources; this effect is especially visible with custom network server soft-
ware such as web applications. 

Processes that are disk or memory hogs can’t be dealt with so easily. renice gener-
ally does not help. You do have the option of killing or stopping the process, but 
we recommend against this if the situation does not constitute an emergency. As 
with CPU pigs, you can use the low-tech solution of asking the owner to run the 
process later.

5. That is, it takes a long time to switch between applications, but performance is acceptable when an 
application is repeating a simple task.

6. A large virtual address space or resident set used to be a suspicious sign, but shared libraries have 
made these numbers less useful. ps is not very smart about separating system-wide shared library 
overhead from the address spaces of individual processes. Many processes wrongly appear to have tens 
of megabytes of active memory.

  



ptg

Recommended reading 1133

Pe
rf

or
m

an
ce

The kernel allows a process to restrict its own use of physical memory by calling 
the setrlimit system call.7 This facility is also available in the C shell through the 
built-in limit command. For example, the command

% limit memoryuse 32m

causes all subsequent commands that the user runs to have their use of physical 
memory limited to 32MiB (Solaris uses memorysize rather than memoryuse). 
This feature is roughly equivalent to renice for memory-bound processes.

If a runaway process doesn’t seem to be the source of poor performance, investi-
gate two other possible causes. The first is an overloaded network. Many pro-
grams are so intimately bound up with the network that it’s hard to tell where 
system performance ends and network performance begins. See Chapter 21 for 
more information about the tools used to monitor networks.

Some network overloading problems are hard to diagnose because they come and 
go very quickly. For example, if every machine on the network runs a network-
related program out of cron at a particular time each day, there will often be a 
brief but dramatic glitch. Every machine on the net will hang for five seconds, and 
then the problem will disappear as quickly as it came.

Server-related delays are another possible cause of performance crises. UNIX and 
Linux systems are constantly consulting remote servers for NFS, Kerberos, DNS, 
and any of a dozen other facilities. If a server is dead or some other problem 
makes the server expensive to communicate with, the effects ripple back through 
client systems.

For example, on a busy system, some process may use the gethostent library rou-
tine every few seconds or so. If a DNS glitch makes this routine take two seconds 
to complete, you will likely perceive a difference in overall performance. DNS for-
ward and reverse lookup configuration problems are responsible for a surprising 
number of server performance issues.

29.6 RECOMMENDED READING

COCKCROFT, ADRIAN, AND BILL WALKER. Capacity Planning for Internet Services. 
Upper Saddle River, NJ: Prentice Hall. 2001.

DREPPER, ULRICH. What Every Programmer Should Know about Memory.
lwn.net/Articles/250967.

EZOLT, PHILLIP G. Optimizing Linux Performance. Upper Saddle River, NJ: Pren-
tice Hall PTR, 2005.

JOHNSON, S., ET AL. Performance Tuning for Linux Servers. Indianapolis, IN: IBM 
Press, 2005.

7. More granular resource management can be achieved through the Class-based Kernel Resource Man-
agement functionality; see ckrm.sourceforge.net.

  



ptg

1134 Chapter 29 Performance Analysis

LOUKIDES, MIKE, AND GIAN-PAOLO D. MUSUMECI. System Performance Tuning 
(2nd Edition). Sebastopol, CA: O’Reilly & Associates, 2002.

TUFTE, EDWARD R. The Visual Display of Quantitative Information (2nd Edition).
Cheshire, CT: Graphics Press, 2001. 

29.7 EXERCISES

E29.1 Make an educated guess as to what the problem might be in each of 
the following scenarios:

a) When switching between applications, the disk thrashes and there 
is a noticeable lag.

b) A numerical simulation program takes more time than normal, 
but system memory is mostly free.

c) Users on a busy LAN complain of slow NFS access, but the load 
average on the server is very low.

d) Running a command (any command) often produces the error 
message “out of memory.”

E29.2 Load balancing can dramatically impact server performance as seen 
from the outside world. Discuss several load balancing mechanisms. 

E29.3 List the four main resources that can affect performance. For each re-
source, give an example of an application that could easily lead to the 
exhaustion of that resource. Discuss ways to alleviate some of the 
stress associated with each scenario.

E29.4 Write three simple programs or scripts. The first should drive the 
CPU’s %system time high. The second should drive the CPU’s %user 
time high. The third should affect neither of these measures but 
should have a high elapsed time. Use your programs in conjunction 
with the commands described in the Analyzing CPU usage section 
(starting on page 1121) to see what happens when you stress the sys-
tem in various ways.

E29.5 Write two simple programs or scripts. The first should be read-inten-
sive and the second write-intensive. Use your programs with the com-
mands in the Analyzing disk I/O section (starting on page 1127) to see 
what happens when you stress the system in various ways. (For bonus 
points, give each of your programs the option to use either a random 
or a sequential access pattern.)

E29.6 Choose two programs that use a noticeable amount of system re-
sources. Use vmstat and the other tools mentioned in this chapter to 
profile both applications. Make a claim as to what each program does 
that makes it a resource hog. Back up your claims with data.

  



ptg

1135

M
S 

W
in

do
w

s

30 Cooperating with Windows

Chances are high that your environment includes both Microsoft Windows and 
UNIX systems. If so, these operating systems can assist each other in many ways. 
Among other feats, Windows applications can run from a UNIX desktop or access 
a UNIX server’s printers and files. UNIX applications can display their user inter-
faces on a Windows desktop.

Both platforms have their strengths, and they can be made to work together. Win-
dows is a popular and featureful desktop platform, capable of bridging the gap 
between the user and the network cable. UNIX, on the other hand, is a reliable 
and scalable infrastructure platform. So let’s not fight, OK?

30.1 LOGGING IN TO A UNIX SYSTEM FROM WINDOWS

See page 926 for 
more information 
about SSH.

Users may often find themselves wanting to head for the snow-covered slopes of a 
good bash session without abandoning the Windows box on their desk. The best 
remote access tool for UNIX and Linux systems is the secure shell protocol, SSH.

Several SSH client implementations are available for Windows. Our current favor-
ite, the open source PuTTY, is simple and effective. It supports many of the fea-
tures you have come to expect from a native terminal application such as xterm. 

MS Windows

  



ptg

1136 Chapter 30 Cooperating with Windows

SSH also supports file transfer, and PuTTY includes two command-line clients 
for this purpose: psftp and pscp. Hard-core “never touch a command line” Win-
dows users might prefer the graphical WinSCP client from winscp.net.

Another good option is to install the more general UNIX-on-Windows Cygwin 
package and to run its SSH utilities from rxvt. There’s more information about 
Cygwin starting on page 1140.

A nifty zero-footprint Java implementation of SSH called MindTerm is available 
from AppGate (appgate.com). It’s free for personal use. It runs on any system that 
supports Java and can be configured in a variety of ways.

Of the commercial SSH client implementations, our favorite is VanDyke Soft-
ware’s SecureCRT, available for purchase from vandyke.com. SecureCRT supports 
all our favorite terminal features, and VanDyke offers excellent customer service 
and an open-minded attitude toward feature requests from customers. Like 
PuTTY, SecureCRT features built-in SFTP file transfer software.

An interesting feature of SSH is its ability to forward TCP ports between client 
and server. For example, this feature allows you to set up on the client a local port 
that forwards incoming connections to a different port on a machine that is only 
reachable from the server. Although this feature opens a world of new possibili-
ties, it is also potentially dangerous and is something you must be aware of when 
granting SSH access to your server. Fortunately, the port-forwarding feature can 
be disabled on the server side to limit SSH to terminal access and file transfer.

30.2 ACCESSING REMOTE DESKTOPS

Graphical desktops on UNIX are tied to the free X Window System, which is in no 
way related to Microsoft Windows. X was developed at MIT in the mid-1980s and 
has been adopted as a standard by all UNIX workstation manufacturers and Linux 
distributions. It has been through several major updates, but a stable base was 
finally reached with version 11, first published in the early 1990s. The version 
number of the protocol was appended to X to form X11, the name by which it is 
most commonly known. (The name “Windows” by itself always refers to Micro-
soft Windows, both in this chapter and in the real world.)

X11 is a client/server system. The X server is responsible for displaying data on 
the user’s screen and for acquiring input from the user’s mouse and keyboard. It 
communicates with client applications over the network. The server and clients 
need not be running on the same machine.

A more detailed discussion of the X Windows architecture can be found in Chap-
ter 25, The X Window System, which starts on page 1011.

X server running on a Windows computer

X11 is a rich protocol that has incorporated many extensions over the years. The 
implementation of an X server is, therefore, rather complex. Nevertheless, X 

  



ptg

X server running on a Windows computer 1137

M
S 

W
in

do
w

s

server implementations now exist for almost every operating system. X itself is OS 
agnostic, so X11 clients running on a UNIX box can display on an X server run-
ning under Microsoft Windows and still be controlled as if the user were sitting at 
the system console. 

Unfortunately, the original designers of the X protocols did not devote much 
thought to security. Every program that connects to your X server can read every-
thing you type on the keyboard and see everything displayed on your screen. To 
make matters worse, remote programs need not even display a window when ac-
cessing your X server; they can simply lurk silently in the background.

Several methods of securing X11 have been proposed over time, but they have all 
tended to be somewhat complex. The bottom line is that you are best off prevent-
ing all remote connections to your X server unless you are absolutely sure of what 
you are doing. Most X servers are configured to refuse remote connections by 
default, so you should be safe as long as you do not run the xhost program (or its 
equivalent) to grant remote access.

See page 926 for 
more information 
about SSH.

Unfortunately, granting remote access is exactly what you need to do when you 
seek to run programs on UNIX and display their interfaces on Windows. So, how 
to run a remote application without granting remote access to the X server? The 
most common method is to use a feature of the SSH protocol that is specifically 
designed to support X11. This scheme creates a secure tunnel between X clients 
running on the remote host and the local X server. Programs started on the re-
mote host display automatically on the local machine, but through the magic of 
SSH, the local X server perceives them as having originated locally.

Note that X forwarding only works if the X forwarding features have been enabled 
on both the SSH server and the SSH client. If you use the PuTTY SSH client on 
Windows, simply activate the X11 forwarding feature in its setup screen. On the 
SSH server side (that is, the X11 client side; the UNIX machine), make sure that 
the /etc/ssh/sshd_config file contains the line

X11Forwarding yes

If you modify the SSH server configuration, make sure you restart the sshd pro-
cess to activate the new configuration. The X11Forwarding option is enabled by 
default on most UNIX systems that ship OpenSSH.

As our technical reviewer Dan Foster notes, forwarding X connections over SSH 
“can be excruciatingly slow, even on a LAN, and it is even worse if there is any 
network latency.” VNC, discussed below, is an alternative.

Although Apple provides a free X server for Mac OS X, Microsoft unfortunately 
offers no corresponding feature. A free X server for Windows is available from the 
Cygwin project (cygwin.com), and it works very well once you’ve configured it. 
The Xming server for Windows is an excellent alternative that’s much easier to 
configure. Commercial X servers for Windows include Exceed and X-Win32. 
These offer much simpler configuration at a rather steep price. 

  



ptg

1138 Chapter 30 Cooperating with Windows

VNC: Virtual Network Computing

In the late 1990s, a few people at AT&T Labs in Cambridge, UK, developed a 
system for remote desktop access called VNC. Their idea was to marry the sim-
plicity of a dumb terminal with the modern world of window systems. In contrast 
to X11, the VNC protocol does not deal with individual applications. Instead, it 
creates a complete virtual desktop (or provides remote access to an existing desk-
top) as a unit.

AT&T published the VNC software under a liberal source license. This openness 
allowed other folks to hop on the bandwagon and create additional server and 
viewer implementations, as well as protocol improvements that reduced the con-
sumption of network bandwidth. Today, VNC viewers are available for most de-
vices that provide some means for graphical display. VNC servers for UNIX, Li-
nux, and Windows are widely available. VNC implementations exist even for most 
smartphones.

The UNIX VNC server implementation is essentially a graphics adapter emulator 
that plugs into the X.Org X Windows server. Running a vncserver from your 
UNIX account creates a new virtual desktop that runs in the self-contained world 
of the UNIX machine. You can then use a VNC viewer to access that desktop 
remotely. We recommend taking advantage of the vncpasswd command before 
starting the server for the first time to establish a connection password.

The VNC protocol is stateless and bitmap based. Therefore, viewers can freely 
connect and disconnect. Moreover, several viewers can access the same server at 
the same time. This last feature is especially useful for remote support and for 
training setups. It also facilitates shared console access for system administration.

VNC servers in the Windows world do not normally create an extra desktop; they 
simply export the standard Windows desktop as it is displayed on screen. The 
main application for this technology is remote support.

These days, the original authors of the VNC protocol are running their own com-
pany, RealVNC (realvnc.com). The UltraVNC project (uvnc.com) is concentrat-
ing on the Windows domain with a very fast and feature-rich Windows-based 
VNC server implementation, and TightVNC (tightvnc.com) is working on im-
proved compression ratios. These groups do talk with each other, so features tend 
to cross-pollinate among the various implementations.

The VNC protocol has been designed with extensibility in mind. All combina-
tions of viewers and servers can work together; they pick the best protocol variant 
that both sides understand. Implementation-specific features (such as file trans-
fer) can only be accessed by a server and client running from the same project.

Windows RDP: Remote Desktop Protocol

Ever since Windows 2000 Server, every Windows box has the technical ability to 
provide graphical remote access to several users at the same time. The remote 

  



ptg

Running Windows and Windows-like applications 1139

M
S 

W
in

do
w

s

access component is called Remote Desktop, and it uses a protocol called the Re-
mote Desktop Protocol (RDP) to communicate between client and server. RDP 
clients for UNIX let administrators manage Windows systems from a UNIX desk-
top. They are an indispensable tool for UNIX administrators who have Windows 
systems in their environments.

To take advantage of RDP, you must enable it on the server (Windows) side and 
set up a client to access it. On Windows 7, go to the System control panel, click 
Remote settings, and select an option in the Remote Desktop box. Older versions 
of Windows might require you to manually enable the Terminal Server service.

On the UNIX side, install the open source rdesktop program (www.rdesktop.org) 
to display Windows desktops on your UNIX workstation. Clients exist for most 
other operating systems, too, including mobile devices. 

RDP can also map the server’s printers and disks onto the client. 

30.3 RUNNING WINDOWS AND WINDOWS-LIKE APPLICATIONS

As discussed in Chapter 24, the free but proprietary product VMware Server from 
vmware.com lets you run multiple operating systems simultaneously on PC hard-
ware. VMware emulates entire virtual “guest machines” on top of a host operating 
system, which must be either Linux or Windows. Regardless of the host OS, you 
can install most Intel-compatible operating systems into one of VMware’s virtual 
machines. From the guest machine’s perspective, the operating system runs ex-
actly as it would on dedicated hardware, and applications install normally. Other 
virtualization offerings such as KVM and VirtualBox can also run Windows and 
should be candidates for running Windows applications.

A different approach is taken by the Wine system from winehq.org. Wine imple-
ments the Windows programming API in the UNIX environment, allowing you 
to run Windows applications directly on top of X. This free software translates 
native Windows API calls to their UNIX counterparts and can do so without us-
ing any Microsoft code. Wine supports TCP/IP networking, serial devices, and 
sound output. It runs on Linux, BSD, Mac OS, and Solaris systems.

A large number of Windows applications run in Wine without problems, and oth-
ers can be made to work with a few tricks; see the web site for details. Unfortu-
nately, getting an application to run under Wine is often not so simple. The tal-
ented folks at codeweavers.com have written a commercial installer system that 
can make some of the balkier Windows apps work correctly.

If your tool of choice is supported by CodeWeavers, great. But even if it is not, give 
the application a try—you might be pleasantly surprised. If an application does 
not work on its own and you cannot find any prewritten hints, be prepared to 
spend some serious spare time whipping it into shape if you are determined to do 
it on your own. If you have the budget, you can consider contracting CodeWeav-
ers to help you.

  

www.rdesktop.org


ptg

1140 Chapter 30 Cooperating with Windows

Win4Lin is a commercial alternative to Wine from NeTraverse. Win4Lin claims to 
be more stable than Wine and to support a few more Microsoft applications. 
However, it requires kernel modifications, which Wine does not. Win4Lin is avail-
able from win4lin.com.

Dual booting, or why you shouldn’t

If you’ve ever installed Linux on a computer that had a former life as a Windows 
machine, you have doubtless been offered the option to set up a dual boot config-
uration. Such configurations function pretty much as promised. It is even possible 
to mount Windows partitions under Linux and to access Linux filesystems under 
Windows. Read all about setting up a dual boot configuration on page 85.

But wait! If you are doing real work and need access to both Windows and UNIX, 
be very skeptical of dual booting as a possible solution in the context of a produc-
tion system. Dual boot setups represent Murphy’s Law at its worst: they always 
seem to be booted into the wrong OS, and the slightest chore usually requires 
multiple reboots. With the advent of widespread virtualization and cheap comput-
ing hardware, there’s usually no reason to put yourself through this torture. 

Microsoft Office alternatives

A few years ago, Sun released an open source version of StarOffice, its Microsoft 
Office-like application suite, under the name OpenOffice.org. OpenOffice.org in-
cludes a spreadsheet, a word processor, a presentation package, a drawing applica-
tion, and a database application similar to Microsoft Access. These tools can read 
and write files generated by their Microsoft analogs. You can download the suite 
from openoffice.org.

OpenOffice.org is available on all major platforms, including Windows, Linux, 
Solaris, Mac OS X, and most other versions of UNIX. If you’re looking for a pack-
age with a commercial support contract, you can also buy Sun’s StarOffice, which 
is essentially OpenOffice.org in a box with support and better spell-checking.

Google competes on the application front with its Google Apps offering. In addi-
tion to its powerful Gmail and Google Calendar offerings, Google also includes 
basic word processing and spreadsheets. These free products include collabora-
tion features that let multiple users edit documents simultaneously from several 
locations. Since all of Google’s apps run in a web browser, they can be used on 
virtually any operating system. You can export and import content in various for-
mats, including those of Microsoft Office.

30.4 USING COMMAND-LINE TOOLS WITH WINDOWS

What many UNIX people miss most when working on Windows systems is their 
beloved command-line terminal. Not just any old terminal application or the 
abomination known as the DOS box, but a proper xterm with support for win-
dow resizing, colors, mouse control, and all the fancy xterm escape sequences.

  



ptg

Windows compliance with email and web standards 1141

M
S 

W
in

do
w

s

Although Windows has no stand-alone (i.e., without X) native port of xterm, a 
neat little program called rxvt comes awfully close. It is part of the Cygwin sys-
tem, downloadable from cygwin.com. If you install Cygwin’s X server, you can use 
the real xterm.

Cygwin is distributed under the GNU General Public License and contains an 
extensive complement of common UNIX commands as well as a porting library 
that implements the POSIX APIs under Windows. Cygwin’s reconciliation of the 
UNIX and Windows command-line and filesystem conventions is well thought 
out and manages to bring many of the creature comforts of a UNIX shell to native 
Windows commands. In addition to making UNIX users feel at home, Cygwin 
makes it easy to get UNIX software running under Windows. See cygwin.com for 
more details.

The MKS Toolkit is a commercial alternative to Cygwin. See MKS’s web site at 
mkssoftware.com for more information.

A growing list of UNIX software now also runs natively on Windows, including 
Apache, Perl, BIND, PHP, MySQL, Vim, Emacs, Gimp, Wireshark, and Python. 
Before attempting to force an application to work on Windows with something 
like Cygwin, find out if a native implementation is available.

30.5 WINDOWS COMPLIANCE WITH EMAIL AND WEB STANDARDS

In an ideal world, everybody would use open standards to communicate and hap-
piness would abound. But this is not an ideal world, and many have accused Win-
dows of being a mess of proprietary protocols and broken implementations of 
Internet standards. Partially true, perhaps, but Windows can play along nicely in 
some parts of the standards world. Two of these areas are email and web service.

In the wild history of the web, a number of corporations have tried to embrace 
and extend the web in ways that would allow them to lock out competition and 
give their own business a mighty boost. Microsoft is still engaged in this battle at 
the browser level with its numerous extensions peculiar to Internet Explorer. At 
the underlying level of the HTTP protocol, however, Windows and Windows 
browsers are relatively platform agnostic.

Microsoft provides its own web server, IIS, but the adoption of IIS has historically 
lagged that of Apache running on Linux by a significant margin. Unless you are 
locked in to a server-side technology such as ASP, or your vendor’s product re-
quires IIS, there’s no compelling reason to use Windows machines as web servers. 

For email, Microsoft touts its Exchange Server product as the preferred server-
side technology. Truth be told, Exchange Server’s capabilities do outshine those of 
Internet-standard mail systems, particularly when the mail clients consist of Win-
dows boxes running Microsoft Outlook. But fear not: Exchange Server can also 
speak SMTP for inbound and outbound mail, and it can serve up mail to UNIX 
clients through the standard IMAP and POP protocols.

  



ptg

1142 Chapter 30 Cooperating with Windows

On the client side, both Outlook and its free younger sibling Windows Mail can 
connect to UNIX IMAP and POP servers (as can most other third-party email 
user agents for Windows). Mix and match in any combination you like. More in-
formation about POP and IMAP can be found starting on page 756.

30.6 SHARING FILES WITH SAMBA AND CIFS

In the early 1980s, IBM designed an API that let computers on the same network 
subnet talk to one another using names instead of cryptic numeric addresses. The 
result was called the Network Basic/Input Output System, or NetBIOS. The com-
bination of NetBIOS and its original underlying network transport protocol was 
called the NetBIOS Extended User Interface, or NetBEUI. The NetBIOS API be-
came quite popular, and it was adapted for use on top of a variety of different 
network protocols such as IPX, DECNet, and TCP/IP.

Microsoft and Intel developed a file-sharing protocol on top of NetBIOS and 
called it “the core protocol.” Later, it was renamed the Server Message Block pro-
tocol, or SMB for short. A later evolution of the SMB protocol known as the Com-
mon Internet File System (CIFS) is essentially a version of SMB that has been 
cleaned up and tuned for operation over wide area networks. CIFS is the current 
lingua franca of Windows file sharing.

In the Windows world, a filesystem or directory made available over the network 
is known as a “share.” It sounds a bit strange to UNIX ears, but we follow this 
convention when referring to CIFS filesystems.

Samba: CIFS server for UNIX

Samba is an enormously popular software package, available under the GNU 
Public License, that implements the server side of CIFS on UNIX and Linux hosts. 
It was originally created by Andrew Tridgell, who first reverse-engineered the 
SMB protocol and published the resulting code in 1992. Here, we focus on Samba 
version 3.

Today, Samba is well supported and under active development to expand its func-
tionality. It provides a stable, industrial-strength mechanism for integrating Win-
dows machines into a UNIX network. The real beauty of Samba is that you only 
need to install one package on the server; no special software is needed on the 
Windows side.

CIFS provides five basic services:

• File sharing
• Network printing
• Authentication and authorization
• Name resolution
• Service announcement (file server and printer “browsing”)

  



ptg

Samba installation 1143

M
S 

W
in

do
w

s

Samba not only serves files through CIFS, but it can also perform the basic func-
tions of a Windows Active Directory controller. As a domain controller, Samba 
supports advanced features such as Windows domain logins, roaming Windows 
user profiles, and CIFS print spooling. 

Most of Samba’s functionality is implemented by two daemons, smbd and nmbd. 
smbd implements file and print services, as well as authentication and authoriza-
tion. nmbd provides the other major CIFS components: name resolution and ser-
vice announcement.

Unlike NFS, which requires kernel-level support, Samba requires no drivers or 
kernel modifications and runs entirely as a user process. It binds to the sockets 
used for CIFS requests and waits for a client to request access to a resource. Once 
a request has been authenticated, smbd forks an instance of itself that runs as the 
user who is making the requests. As a result, all normal file-access permissions 
(including group permissions) are obeyed. The only special functionality that 
smbd adds on top of this is a file-locking service that gives client PCs the locking 
semantics to which they are accustomed.

Samba installation

Samba is known to work with all of our example systems.1 Linux distributions 
package it as a matter of course. Patches, documentation, and other goodies are 
available from samba.org. Make sure you are using the most current Samba pack-
ages available for your system since many updates fix security vulnerabilities.

On all systems, you’ll need to edit the smb.conf file (which is to be found in either 
/etc/samba/smb.conf or /etc/smb.conf) to tell Samba how it should behave. In 
this file, you specify the directories and printers that should be shared, their access 
rights, and Samba’s general operational parameters. The Samba package comes 
with a well-commented sample smb.conf file that is a good starting place for new 
configurations. Note that once Samba is running, it checks its configuration file 
every few seconds and loads any changes you make.

It’s important to be aware of the security implications of sharing files and other 
resources over a network. For a typical site, you need to do two things to ensure a 
basic level of security:

• Explicitly specify which clients can access the resources shared by 
Samba. This part of the configuration is controlled by the hosts allow 
clause in the smb.conf file. Make sure that it contains only the IP 
addresses (or address ranges) that it should.

• Block access to the server from outside your organization. Samba uses 
encryption only for password authentication. It does not use encryption 
for its data transport. In almost all cases, you should block access from 

1. HP also offers a Samba derivative called the HP CIFS Server, which is available for download from the 
HP software depot.

  



ptg

1144 Chapter 30 Cooperating with Windows

outside your organization to prevent your users from accidentally down-
loading files in the clear across the Internet. Blocking is typically imple-
mented at the network firewall level; Samba uses UDP ports 137 through 
139 and TCP ports 137, 139, and 445.

Since the release of Samba version 3, excellent documentation has been available 
on-line from samba.org.

Samba comes with sensible defaults for its configuration options, and most sites 
will need only a small configuration file. Use the command testparm -v to get a 
listing of all the Samba configuration options and the values to which they are 
currently set. This listing includes your settings from the smb.conf file as well as 
any default values you have not overridden.

Avoid setting options in the smb.conf file unless they are different from the de-
fault values and you have a clear idea of why you want to lock them down. The 
advantage of this approach is that your configuration automatically adapts to the 
settings recommended by the Samba authors when you upgrade to a newer ver-
sion of Samba.

That having been said, do make sure that password encryption is turned on:
encrypt passwords = true

This option encrypts the password exchange between Windows clients and the 
Samba server. It’s currently the default, and there’s no conceivable situation in 
which you would want to turn it off.

The encryption feature requires the Samba server to store a special Windows 
password hash for every user. Windows passwords work in a fundamentally dif-
ferent way from UNIX passwords, and therefore it is not possible to use the pass-
words from /etc/shadow.2

Samba provides a special tool, smbpasswd, for setting up these passwords. For 
example, let’s add the user tobi and set a password for him:

$ sudo smbpasswd -a tobi 
New SMB password: password 
Retype new SMB password: password

Users can change their own Samba passwords with smbpasswd as well:
$ smbpasswd -r smbserver -U tobi 
New SMB password: password 
Retype new SMB password: password

This example changes the Samba password of user tobi on the server smbserver.

2. Windows passes the current user’s credentials to the Samba server when establishing a connection. For 
this reason, users’ Samba passwords are usually set to match their Windows passwords.

  



ptg

User authentication 1145

M
S 

W
in

do
w

s

Filename encoding

Starting with version 3.0, Samba encodes all filenames in UTF-8. If your server 
runs with a UTF-8 locale, this a great match.3 If you are in Europe and you are still 
using one of the ISO 8859 locales on the server, you will find that filenames with 
special characters such as ä, ö, ü, é, or è look rather odd when you type ls in a 
directory in which such files have been created with Samba and UTF-8. The solu-
tion is to tell Samba to use the same character encoding as your server:

unix charset = ISO8859-15 
display charset = ISO8859-15

Make sure that the filename encoding is correct right from the start. Otherwise, 
files with oddly encoded names will accumulate. Fixing them can be quite a com-
plex task later on.

User authentication

In the Windows authentication systems, the client does not trust the server; the 
user’s password never travels across the net as plaintext. Instead, Windows uses a 
Kerberos-based challenge/response method for authentication. A Windows client 
can authenticate to a Samba server by using Kerberos as well.

Windows saves your login username and password and tries to use these creden-
tials to authenticate you to network services whenever it is presented with an au-
thentication request. So, if a user has the same username and password combina-
tion on your Windows box as on your Samba server, Samba grants seemingly 
passwordless access to the appropriate Samba shares. All the authentication hap-
pens transparently in the background.

The downside of the challenge/response approach is that the server has to store 
plaintext-equivalent passwords. In actual fact, the server’s copies of the passwords 
are locally encrypted, but this is primarily a precaution against casual browsing. 
An intruder who gains access to the encrypted passwords can use them to access 
the associated accounts without the need for further password cracking. Samba 
passwords must be protected even more vigorously than the /etc/shadow file.

In complex environments with multiple Samba servers, it makes sense to operate 
a centralized directory service that makes sure the same password is active on all 
servers. Samba supports LDAP and Windows authentication services. LDAP is 
discussed in Chapter 19, Sharing System Files.

To merge the authentication systems of Windows and UNIX, you have two basic 
options. First, you can configure a Samba server to act as a Windows Active Di-
rectory controller. (See Active Directory authentication starting on page 1154 for 
more information about how to implement this option.) Alternatively, you can 
install the pGina software (sourceforge.net/projects/pgina) on your Windows cli-
ents. This clever application replaces the standard Windows login system with a 

3. Type echo $LANG to see if your system is running in UTF-8 mode.

  



ptg

1146 Chapter 30 Cooperating with Windows

framework that supports all sorts of standard authentication services, including 
LDAP and NIS.

Basic file sharing

If each user has a home directory, the homes can be “bulk shared”:
[homes] 
comment = Home Directories 
browseable = no 
valid users = %S 
writeable = yes 
guest ok = no

This configuration allows the user oetiker (for example) to access his home direc-
tory through the path \\sambaserver\oetiker from any Windows system. 

At some sites, the default permissions on home directories allow people to browse 
one another’s files. Because Samba relies on UNIX file permissions to implement 
access restrictions, Windows users coming in through CIFS can read one an-
other’s home directories as well. However, experience shows that this behavior 
tends to confuse Windows users and make them feel exposed. The valid users
line in the configuration fragment above tells Samba to prevent connections to 
other people’s home directories. Leave it out if this is not what you want.

Samba uses its magic [homes] section as a last resort. If there is an explicitly de-
fined share in the configuration for a particular user’s home directory, the param-
eters set there override the values set through [homes].

Group shares

Samba can map Windows access control lists (ACLs) to either file permissions or 
ACLs (if the underlying filesystem supports them). In practice, we find that the 
concept of ACLs tends to be too complex for most users. Therefore, we normally 
just set up a special share for each group of users that requires one and configure 
Samba to take care of setting the appropriate permissions. Whenever a user tries 
to mount this share, Samba checks to make sure the applicant is in the appropriate 
UNIX group and then switches its effective UID to the designated owner of the 
group share (a pseudo-user created for this purpose). For example:

[eng] 
comment = Group Share for engineering 
; Everybody who is in the eng group may access this share. 
; People will have to log in using their Samba account. 
valid users = @eng 
; We have created a special user account called "eng". All files 
; written in this directory will belong to this account as 
; well as to the eng group. 
force user = eng 
force group = eng 
path = /home/eng

  



ptg

Transparent redirection with MS DFS 1147

M
S 

W
in

do
w

s

; Disable NT Acls as we do not use them here. 
nt acl support = no

; Make sure that all files have sensible permissions. 
create mask = 0660 
force create mask = 0660 
security mask = 0000 
directory mask = 2770 
force directory mask = 2770 
directory security mask = 0000

; Normal share parameters 
browseable = no 
writeable = yes 
guest ok = no

A similar effect can be achieved through Samba’s inherit permissions option. If 
that option is enabled on a share, all new files and directories inherit their settings 
from their parent directory:

[eng] 
comment = Group Share for engineering 
path = /home/eng 
nt acl support = no 
browseable = no 
writeable = yes 
inherit permissions = yes

Because Samba will now propagate settings from the parent directory, it’s impor-
tant to set the permissions on the root of the share appropriately:

$ sudo chmod u=rw,g=rws,o= /home/eng 
$ sudo chgrp eng /home/eng 
$ sudo chown eng /home/eng

Note that this configuration still requires you to create an eng pseudo-user to act 
as the owner of the shared directory. 

Transparent redirection with MS DFS

Microsoft’s Distributed File System (MS DFS) lets directories within a share trig-
ger clients to transparently automount other shares as soon as they are accessed. 
For habitués of UNIX and Linux this does not sound like a big deal, but for Win-
dows the whole concept is quite revolutionary and unexpected. 

Here is an example:
[global] 
; Enable MS DFS support for this Samba server. 
host msdfs = yes 
… 
[mydfs] 
; This line tells Samba that it has to look out for

  



ptg

1148 Chapter 30 Cooperating with Windows

; DFS symlinks in the directory of this share. 
msdfs root = yes 
path = /home/dfs/mydfs

You create symbolic links in /home/dfs/mydfs to set up the actual automounts. 
For example, the following command makes the jump “directory” a link to one of 
two directories on other servers. (Note the single quotes. They are required for 
protection of the backslashes.)

$ sudo ln -s 'msdfs:serverX\shareX,serverY\shareY' jump

If more than one source is provided (as here), Windows will fail over between 
them. Users who access \\server\mydfs\jump will now actually be reading files 
from shareX on serverX or shareY on serverY, depending on availability. If the 
filesystems are exported read/write, you must make sure you have some mecha-
nism in place to synchronize the files. rsync can be helpful for this.

With Samba, you can also redirect all clients that access a particular share to a 
different server. This is something a Windows server cannot do.

[myredirect] 
msdfs root = yes 
msdfs proxy = \\serverZ\shareZ

Note that DFS only works for users who have the same username and password 
on all the servers involved.

smbclient: a simple CIFS client

In addition to its many server-side features, the Samba package includes a simple 
command-line file transfer program called smbclient. You can use this program 
to access any Windows or Samba server. For example:

$ smbclient //phobos/c\$ -U BOULDER\\ben 
Password: password 
Domain=[BOULDER] OS=[Windows Vista (TM) Business 6001 Service Pack 1] 

Server=[Windows Vista (TM) Business 6.0] 
smb: \>

Once you have successfully logged in to the file server, you use standard ftp-style 
commands (such as get, put, cd, lcd, and dir) to navigate and transfer files. Type ?
to see a full list of the available commands.

Linux client-side support for CIFS

Linux includes direct client-side support for the SMB/CIFS filesystem. You can 
mount a CIFS share into your filesystem tree much as you can with any other 
filesystem that is directly understood by the kernel. For example:

$ sudo mount -t cifs -o username=joe //redmond/joes /home/joe/mnt

Although this feature is useful, keep in mind that Windows conceptualizes net-
work mounts as being established by a particular user (hence the username=joe 

  



ptg

Sharing printers with Samba 1149

M
S 

W
in

do
w

s

option above), whereas UNIX regards them as more typically belonging to the 
system as a whole. Windows servers generally cannot deal with the concept that 
several different people might be accessing a mounted Windows share.

From the perspective of the UNIX client, all files in the mounted directory appear 
to belong to the user who mounted it. If you mount the share as root, then all files 
belong to root, and garden-variety users might not be able to write files on the 
Windows server.

The mount options uid, gid, fmask, and dmask let you tweak these settings so 
that ownership and permission bits are more in tune with the intended access 
policy for that share. Check the mount.cifs manual page for more information 
about this behavior.

To allow users to mount a Windows share on their own, you can add a line in the 
following format to your /etc/fstab file:

//redmond/joes /home/joe/mnt cifs 
username=joe,fmask=600,dmask=700,user,noauto 0 0

Because of the user option specified here, users can now mount the filesystem just 
by running the command

$ mount /home/joe/mnt

mount prompts the user to supply a password before mounting the share.
See Chapter 18 for 
more information 
about NFS.

Although NFS is the UNIX standard for network file service, in some situations it 
may make more sense to use Samba and CIFS to share files among UNIX and 
Linux computers. For example, in some versions of NFS, it is dangerous to allow 
users to perform mounts of corporate filesystems from their personal laptops.4 
However, you can safely use CIFS to give these laptops access to their owner’s 
home directories.

30.7 SHARING PRINTERS WITH SAMBA

The simple approach to printer sharing is to add a [printers] section to the 
smb.conf file; this makes Samba share all local printers. Samba uses the system 
printing commands to do its work, but since UNIX printing is not very standard-
ized, you may have to tell Samba which particular printing system is in use on 
your server. To do that, set the printing option to an appropriate value; check the 
smb.conf man page for the list of printing systems that are currently supported.

[printers] 
; Where to store print files before passing them to the printing system? 
path = /var/tmp

4. NFSv3 security is based on the idea that the user has no root access on the client and that UIDs match 
on the client and server. This is not normally the case for self-managed machines. NFSv4 does better 
UID mapping than NFSv3 and is dramatically more secure.

  



ptg

1150 Chapter 30 Cooperating with Windows

; Everybody can use the printers. 
guest ok = yes 
; Let Samba know this share is a printer. 
printable = yes 
; Show the printers to everyone looking. 
browseable = yes 
; Tell samba what flavor of printing system the system is using. 
printing = cups

See Chapter 26 for 
more information 
about printing.

Windows clients can now use these printers as network printers, just as if they 
were hosted by a Windows server. There is one small problem, though. The Win-
dows client will want know what kind of printer it is using, and it will ask the user 
to select an appropriate printer driver. This leads to quite a lot of support requests 
from users who do not know how to proceed in this situation. If the particular 
printer in question requires a driver that is not included with Windows, the situa-
tion becomes even more support-intensive.

Fortunately, you can configure Samba to furnish the necessary Windows printer 
drivers to the Windows clients. But to make this work, you must do some prepara-
tion. First, to make sure that Samba behaves like a print server, add appropriate 
entries to the [global] section of the smb.conf file:

[global] 
; Who is our printer admin 
printer admin = printadm 
; The following have the right value by default. 
disable spoolss = no 
; Don't bother showing it; you cannot add printers anyway 
show add printer wizard = no 
; Assuming you want everybody to be able to print 
guest ok = yes 
browseable = no

Now Samba knows that it is a print server, and it will accept the user printadm as 
its printer administrator.

If you are going to provide printer drivers for your Windows clients, there has to 
be a place to store the drivers. This is done through a special share called [print$].

[print$] 
comment = Printer Driver Area 
; Place to store the printer drivers 
path = /var/lib/samba/printers 
browseable = yes 
guest ok = yes 
read only = yes 
; Who can administer the printer driver repository 
write list = printadm

  



ptg

Installing a printer driver from Windows 1151

M
S 

W
in

do
w

s

Before you can start to upload printer drivers to the new print server, you must 
take care of a few more details at the system level. Make sure the printadm ac-
count exists and has permission to access Samba.

$ sudo useradd printadm 
$ sudo smbpasswd -a printadm

Samba can store printer drivers only if the appropriate directory structure exists 
and is owned by printadm (as defined in the write list option):

$ sudo mkdir -p /var/lib/samba/printers 
$ sudo cd /var/lib/samba/printers 
$ sudo mkdir W32X86 WIN40 x64 
$ sudo chown -R printadm .

At this point there are two options: you can either walk to a Windows box and 
upload the printer drivers from there, or you can use Samba tools to do it all from 
the command line. Unfortunately, there is no simple way of knowing what exactly 
has to be installed for a particular driver, so we recommend the first approach in 
most circumstances. Only if you are faced with repeatedly installing a driver on 
multiple servers is it worthwhile to examine the installation and learn to replicate 
it with command-line tools.

Installing a printer driver from Windows

To install drivers from a Windows client, open a connection to the Samba server 
by typing \\sambaserver in the Start -> Run dialog box. Windows will ask you to 
log in to the Samba server. Log in as the user printadm. If all goes well, a window 
pops up with a list of shares provided by the server.

Within the Printers subfolder you should see all the printers you have shared from 
your server. Right-click in the blank space around the printer icons to activate the 
Server Properties dialog, then add your favorite printer drivers by making use of 
the Drivers tab.

The uploaded drivers end up in the directory specified for the [print$] share. At 
this point, you might want to take a quick peek at the properties of the driver you 
just uploaded. This list of files is what you will have to provide to the Samba com-
mand-line tool if ever you want to automate the uploading of the driver.

Once the proper drivers have been uploaded, you can now associate them with 
specific printers. Bring up the Properties panel of each printer in turn (by right-
clicking and selecting Properties) and select the appropriate drivers in the Ad-
vanced tab. Then open the Printing Defaults dialog and modify the settings. Even 
if you are happy with the default settings, make at least one small change to force 
Windows to store the configuration data structures on the Samba server. Samba 
then provides that data to clients that access the printer. If you miss this last step, 
you may end up with clients crashing because no valid default configuration can 
be found when they try to use the printer.

  



ptg

1152 Chapter 30 Cooperating with Windows

Installing a printer driver from the command line

As you may have guessed already, some of these steps are hard to replicate without 
Windows, especially the setting of printer defaults. But if you want to set up hun-
dreds of printers on a Samba server, you may want to try to do it from the com-
mand line all the same. Command-line configuration works particularly well for 
PostScript printers because the Windows PostScript printer driver works correctly 
without default configuration information.

If you made a note of the files required by a particular driver, you can install the 
driver from the command line. First, copy the required files to the [print$] share:

$ cd ~/mydriver 
$ smbclient -U printadm '//samba-server/print$' -c 'mput *.*'

Next, assign the driver to a particular printer. Let’s assume you have a simple Post-
Script printer with a custom PPD file:

$ rpcclient -U printadm -c "\ 
adddriver \"Windows NT x86\" \"Our Custom PS:\
PSCRIPT5.DLL:CUSTOM.PPD:PS5UI.DLL:PSCIPT.HLP:NULL:NULL:PSCRIPT.NTF\"" \
samba-server 

The backslashes at the ends of lines allow the command to be split onto multiple 
lines for clarity; you can omit these and enter the command on one line if you 
prefer. The backslashes before double quotes distinguish the nested sets of quotes.

The long string in the example above contains the information listed in the prop-
erty dialog of the printer driver that is seen when the printer driver is being in-
stalled from Windows:

• Long printer name
• Driver filename 
• Data filename 
• Configuration filename 
• Help filename 
• Language monitor name (set this to NULL if you have none)
• Default data type (set this to NULL if there is none)
• Comma-separated list of additional files

To configure a printer to use one of the uploaded drivers, run

$ rpcclient -U printadm -c "\ 
set driver \"myprinter\" \"Our Custom PS\"" samba-server

30.8 DEBUGGING SAMBA

Samba usually runs without requiring much attention. However, if you do have a 
problem, you can consult two primary sources of debugging information: the log 

  



ptg

Debugging Samba 1153

M
S 

W
in

do
w

s

files for each client and the smbstatus command. Make sure you have appropriate 
log file settings in your configuration file.

[global] 
; The %m causes a separate file to be written for each client. 
log file = /var/log/samba.log.%m 
max log size = 1000 
; How much info to log. You can also specify log levels for components 
; of the system (here, 3 generally, but level 10 for authentication). 
log level = 3 auth:10

Higher log levels produce more information. Logging takes time, so don’t ask for 
too much detail unless you are debugging. Operation can be slowed considerably.

The following example shows the log entries generated by an unsuccessful con-
nect attempt followed by a successful one.

[2009/09/05 16:29:45, 2] auth/auth.c:check_ntlm_password(312)
  check_ntlm_password:  Authentication for user [oetiker] -> [oetiker] FAILED 

with error NT_STATUS_WRONG_PASSWORD 
[2009/09/05 16:29:45, 2] smbd/server.c:exit_server(571)
  Closing connections 
[2009/09/05 16:29:57, 2] auth/auth.c:check_ntlm_password(305)
  check_ntlm_password:  authentication for user [oetiker] -> [oetiker] -> 

[oetiker] succeeded
[2009/09/05 16:29:57, 1] smbd/service.c:make_connection_snum(648)
  etsuko (127.0.0.1) connect to service oetiker initially as user oetiker 

(uid=1000, gid=1000) (pid 20492)
[2009/09/05 16:29:58, 1] smbd/service.c:close_cnum(837)
  etsuko (127.0.0.1) closed connection to service oetiker 
[2009/09/05 16:29:58, 2] smbd/server.c:exit_server(571)
  Closing connections

The smbcontrol command is handy for altering the debug level on a running 
Samba server without altering the smb.conf file. For example,

$ sudo smbcontrol smbd debug "4 auth:10"

The example above would set the global debug level to 4 and set the debug level 
for authentication-related matters to 10. The smbd argument specifies that all 
smbd daemons on the system will have their debug levels set. To debug a specific 
established connection, you can use the smbstatus command to figure out which 
smbd daemon handles the connection and then pass its PID to smbcontrol to 
debug just this one connection. At log levels over 100 you will start to see (en-
crypted) passwords in the logs.

smbstatus shows currently active connections and locked files. This information 
is especially useful when you are tracking down locking problems (e.g., “Which 
user has file xyz open read/write exclusive?”). The first section of output lists the 
resources that a user has connected to. The last section lists any active file locks.

  



ptg

1154 Chapter 30 Cooperating with Windows

$ sudo smbstatus # Some output lines condensed for clarity

Samba version 3.4.1

PID Username Group Machine 
---------------------------------------------------------------------------------

10612 trent atrust tanq (192.168.20.6)
5283 ned atrust ithaca (192.168.20.1)
1037 paul atrust pauldesk2 (192.168.20.48)
8137 trent atrust atlantic (192.168.1.3)
1173 jim jim jim-desktop (192.168.20.7)

11563 mgetty mgetty mgetty (192.168.20.5)
6125 brian brian brian-desktop (192.168.20.16)

Service pid machine Connected at 
-------------------------------------------------------------------------------
swdepot2 18335 john-desktop Fri Sep 18 13:21:40 2009 
swdepot2 1173 jim-desktop Thu Sep 3 15:47:58 2009 
goldmine 1173 jim-desktop Thu Sep 3 15:38:44 2009 
swdepot2 1037 pauldesk2 Tue Sep 8 10:59:28 2009
admin 1037 pauldesk2 Tue Sep 8 10:59:28 2009

Locked files:
Pid DenyMode Access R/W Oplock Name
--------------------------------------------------------------
1037 DENY_WRITE 0x20089 RDONLY EXCLUSIVE+BATCH /home/paul/smsi… 
6125 DENY_WRITE 0x2019f RDWR NONE /home/trent/rdx…
1037 DENY_WRITE 0x2019f RDWR NONE /home/ben/samp…
18335 DENY_WRITE 0x2019f RDWR NONE /home/ben/exa…

If you kill the smbd associated with a certain user, all its locks disappear. Some 
applications handle this gracefully and reacquire any locks they need. Others, 
such as MS Access, freeze and die a horrible death with much clicking required on 
the Windows side just to be able to close the unhappy application. As dramatic as 
this may sound, we have yet to see any file corruption resulting from such a proce-
dure. In any event, be careful when Windows claims that files have been locked by 
another application. Often Windows is right and you should fix the problem on 
the client side by closing the offending application instead of brute-forcing the 
locks on the server.

30.9 ACTIVE DIRECTORY AUTHENTICATION

The Windows desktops lurking on your network most likely use Microsoft’s Ac-
tive Directory system for authentication, directory services, and other network 
services. Active Directory (AD) collects users, groups, computers, and operating 
system polices under a single umbrella, centralizing and simplifying system ad-
ministration. It is also one of the primary reasons why Windows has gained a 
permanent foothold in many enterprises. UNIX has assembled some of the pieces 
of this puzzle, but none of the UNIX solutions are as polished or as widely imple-
mented as Active Directory.

  



ptg

Getting ready for Active Directory integration 1155

M
S 

W
in

do
w

s

See page 908 for 
more information 
about PAM.

Ever devious, the Samba project folks have made great strides toward providing 
Active Directory support for UNIX and Linux environments. With the help of 
Samba, Linux systems can join an Active Directory domain and allow access to 
the system by accounts defined in AD that have no entries in the /etc/passwd file. 
Linux UIDs are derived from their analogous Windows user identifiers, known as 
security identifiers or SIDs. By leveraging PAM, a home directory can automati-
cally be created for a user who doesn’t already have one. The integration system 
even allows the passwd command to change a user’s AD password. All of this 
Windows integration magic is handled by a component of Samba called winbind. 

Active Directory embraces and extends several standard protocols, notably LDAP 
and Kerberos. In an attempt to achieve IT system management nirvana, Microsoft 
has unfortunately sacrificed compliance with the original protocols, creating an 
intoxicating web of proprietary RPC dependencies.

See page 739 for more 
information about the 
name service switch.

To emulate the behavior of an Active Directory client, winbind hooks into PAM, 
NSS, and Kerberos. It converts authentication and system information requests 
into the appropriate Microsoft-specific formats. From the standpoint of UNIX, 
Active Directory is just another source of LDAP directory information and Ker-
beros authentication data.

You must complete the following configuration chores before your Linux system 
can enter Active Directory paradise:

• Install Samba with support for Active Directory and identity conversion.
• Configure the name service switch, nsswitch.conf, to use winbind as a 

source of user, group, and password information.
• Configure PAM to service authentication requests through winbind.
• Configure Active Directory as a Kerberos realm.

See Chapter 17 for 
more information 
about DNS.

UNIX and Linux AD clients should also use AD controllers to service their DNS 
requests and to set their clocks with NTP. Ensure as well that the system’s fully 
qualified domain name is listed in /etc/hosts. In some cases, it’s necessary to add 
the domain controller’s IP address to /etc/hosts, too. However, we discourage this 
if you’re using Active Directory for DNS service.

winbind is an excellent option for Linux systems, but UNIX has largely been left 
out in the cold. We have heard reports of UNIX sites successfully deploying the 
same general scheme described here, but each system has a few caveats, and the 
integration tends to be not as clean as on Linux. For UNIX systems, we suggest 
using one of the alternatives described on page 1160.

Getting ready for Active Directory integration

Samba is included by default on most Linux distributions, but some distributions 
do not include the identity mapping services needed for a full AD client imple-
mentation. Those components can be fiddly to set up correctly if you’re compiling 
from source code, so we recommend installing binary packages if they’re available 
for your distribution.

  



ptg

1156 Chapter 30 Cooperating with Windows

The Samba components, on the other hand, should be as fresh as possible. Active 
Directory integration is one of Samba’s newer features, so downloading the most 
recent source code from samba.org can eliminate frustrating bugs.

If you build Samba from source, configure it with the idmap_ad and idmap_rid
shared modules. The appropriate argument to the ./configure script is 

--with-shared-modules=idmap_ad,idmap_rid

Build and install Samba with the familiar make, sudo make install sequence. 
When installed correctly, the winbind library is deposited in /lib:

ubuntu$ ls -l /lib/libnss_winbind.so.2 
-rw-r--r-- 1 root root 21884 2009-10-08 00:28 /lib/libnss_winbind.so.2

The winbind daemon is stopped and started through normal operating system 
procedures. It should be restarted after changes to nsswitch.conf, smb.conf, or 
the Kerberos configuration file, krb5.conf. There is no need to start it until these 
other services have been configured.

Configuring Kerberos for Active Directory integration

Kerberos is infamous for complex configuration, particularly on the server side. 
Fortunately, you only need to set up the client side of Kerberos, which is a much 
easier task. The configuration file is /etc/krb5.conf.

First, double-check that the system’s fully qualified domain name has been in-
cluded in /etc/hosts and that NTP is using an Active Directory server as a time 
reference. Then, edit krb5.conf to add the realm as shown in the following exam-
ple. Substitute your site’s AD domain for ULSAH.COM.

[logging] 
default = FILE:/var/log/krb5.log

[libdefaults] 
clockskew = 300 
default_realm = ULSAH.COM 
kdc_timesync = 1 
ccache_type = 4 
forwardable = true 
proxiable = true

[realms] 
ULSAH.COM = { 

kdc = dc.ulsah.com 
admin_server = dc.ulsah.com 
default_domain = ULSAH

} 
[domain_realm]

.ulsah.com = ULSAH.COM 
ulsah.com = ULSAH.COM

Several values are of interest in the above example. A 5-minute clock skew is al-
lowed even though the time is set through NTP. This gives some slack in the event 

  



ptg

Samba as an Active Directory domain member 1157

M
S 

W
in

do
w

s

of an NTP problem. The default realm is set to the AD domain, and the key distri-
bution center, or KDC, is configured as an AD domain controller. krb5.log might 
come in handy for debugging. 

Request a ticket from the Active Directory controller by running the kinit com-
mand. Specify a valid domain user account. “administrator” is usually a good test, 
but any account will do. When prompted, type the domain password.

ubuntu$ kinit administrator@ULSAH.COM 
Password for administrator@ULSAH.COM: <password>

Use klist to show the Kerberos ticket:
ubuntu$ klist
Ticket cache: FILE:/tmp/krb5cc_1000 
Default principal: administrator@ULSAH.COM

Valid starting Expires Service principal 
10/11/09 13:40:19 10/11/09 23:40:21 krbtgt/ULSAH.COM@ULSAH.COM 
renew until 10/12/09 13:40:19

Kerberos 4 ticket cache: /tmp/tkt1000 
klist: You have no tickets cached

If a ticket is displayed, authentication was successful and you configured Kerberos 
correctly. In this case, the ticket is valid for 10 hours and can be renewed for 24 
hours. (You can use the kdestroy command to invalidate the ticket.)

See the man page for krb5.conf for additional configuration options.

Samba as an Active Directory domain member

Like other Samba components, winbind is configured in the smb.conf file. Con-
figure Samba as an AD domain member with the security = ads option. 

A working configuration is reproduced below. We set our Kerberos realm and 
pointed Samba authentication at the domain controller. We also set up the user 
identity mapping with smb.conf ’s idmap options. Note that the configuration of 
individual shares in smb.conf is separate from the configuration of AD authenti-
cation services; only domain authentication is shown here.

[global] 
security = ads 
realm = ULSAH.COM 
password server = 192.168.7.120 
workgroup = ULSAH 
winbind separator = + 
idmap uid = 10000-20000 
idmap gid = 10000-20000 
winbind enum users = yes 
winbind enum groups = yes 
template homedir = /home/%D/%U 
template shell = /bin/bash

  



ptg

1158 Chapter 30 Cooperating with Windows

client use spnego = yes 
client ntlmv2 auth = yes 
encrypt passwords = yes 
winbind use default domain = yes 
restrict anonymous = 2

Most of the options here are straightforward, but see man smb.conf for details.

Of particular note is the winbind use default domain option. If you’re using 
multiple AD domains, this value should be no. If you’re using only one domain, 
however, setting this value to yes lets you omit the domain during authentication 
(you can use “ben” as opposed to “ULSAH\ben”, for example). Additionally, the 
winbind separator value specifies an alternative to the backslash when user-
names are typed. The workgroup value should be the short name of the domain. 
A domain such as linux.ulsah.com would use LINUX as the workgroup value.

After configuring Samba, restart the Samba and winbind services to make these 
new settings take effect.

It’s finally time to join the system to the domain; use the Samba-provided net tool, 
which borrows its syntax from the Windows command of the same name. net
accepts several protocols for communicating with Windows. We use the ads op-
tion to target Active Directory. 

Ensure that a ticket exists by running klist (and request one with kinit if it does 
not), then use the following command to join the domain:

ubuntu$ sudo net ads join -S DC.ULSAH.COM  -U administrator 
Enter administrator's password: <password>
Using short domain name -- ULSAH 
Joined 'UBUNTU' to realm 'ulsah.com'

We specified an AD server, dc.ulsah.com, on the command line (not strictly nec-
essary) and the administrator account. By default, AD adds the new system to the 
Computer organizational unit of the domain hierarchy. If the system appears in 
the Computers OU within Windows’ AD Users and Computers tool, the domain 
join operation was successful. You can also examine the system state with the net 
ads status command. See the net man page for additional options, including 
LDAP search operations.

Name service switch configuration is simple. The system’s passwd and group files 
should always be consulted first, but you can then punt to Active Directory by way 
of winbind. These entries in nsswitch.conf do the trick:

passwd: compat winbind 
group: compat winbind 
shadow: compat winbind

Once NSS has been configured, you can test AD user and group resolution with 
the wbinfo command. Use wbinfo -u to see a list of the domain’s users and 

  



ptg

PAM configuration 1159

M
S 

W
in

do
w

s

wbinfo -g to see groups. The command getent passwd shows the user accounts 
defined in all sources, in /etc/passwd format:

ubuntu$ getent passwd 
root:x:0:0:root:/root:/bin/bash 
daemon:x:1:1:daemon:/usr/sbin:/bin/sh 
… 
bwhaley:x:10006:10018::/home/bwhaley:/bin/sh 
guest:*:10001:10001:Guest:/home/ULSAH/guest:/bin/bash 
ben:*:10002:10000:Ben Whaley:/home/ULSAH/ben:/bin/bash 
krbtgt:*:10003:10000:krbtgt:/home/ULSAH/krbtgt:/bin/bash

The only way to distinguish local users from domain accounts is by user ID and 
by the ULSAH path in the home directory, apparent in the last three entries above. 
If your site has multiple domains or if the winbind use default domain option is 
not set, the short domain name is prepended to domain accounts (for instance, 
ULSAH\ben).

PAM configuration

See page 908 for 
general information 
about PAM.

At this point the system has been configured to communicate with Active Direc-
tory through Samba, but authentication has not been configured. Setting up PAM 
to do authentication through Active Directory is a bit tricky, mostly because the 
specifics differ widely among Linux distributions.

The general idea is to configure winbind as an authentication module for all the 
services that should have Active Directory support. Some distributions, such as 
Red Hat, conveniently set up all services in a single file. Others, such as Ubuntu, 
rely on several files. Table 30.1 lists the appropriate files for each of our example 
Linux distributions. 

To enable winbind authentication, add 
auth sufficient pam_winbind.so

at the beginning of each file. An exception is SUSE’s common-password file, in 
which you must replace the auth keyword with password:

password sufficient pam_winbind.so

PAM can create home directories automatically if they don’t exist when a new (to 
the system) user logs in. Since Active Directory users aren’t added by the standard 
useradd command, which is normally responsible for creating home directories, 

Table 30.1 PAM configuration files for winbind support

System Authentication Session

Ubuntu common-account, common-auth, sudo common-session

SUSE common-auth, common-password, common-account common-session

Red Hat system-auth system-auth

  



ptg

1160 Chapter 30 Cooperating with Windows 

this feature is quite helpful. Add the following line to PAM’s session configuration 
file as indicated in Table 30.1:

session required pam_mkhomedir.so umask=0022 skel=/etc/skel

With this configuration, PAM creates home directories with octal permissions 
755 and with account profiles copied from /etc/skel.

You may also want to restrict access to the local system to users who are in a 
particular Active Directory group. To do that, add the following line to PAM’s 
session configuration file:

session required /lib/security/$ISA/pam_winbind.so use_first_pass 
require_membership_of=unix_users

Here, only users in the AD group unix_users can log in.

Alternatives to winbind

Although the “free as in beer” route to Active Directory clienthood outlined above 
works well enough, it is error prone and riddled with complexity. Alternatives 
exist for administrators who want a relatively painless installation and trouble-
shooting support from a knowledgeable third party. 

Products from Likewise Software automate winbind, name service switch, PAM, 
and identity mapping configuration for more than 100 Linux distributions and 
UNIX variants, including all the example systems referenced in this book. Like-
wise also includes a group policy object agent, which permits some centralized 
configuration for AD-enabled UNIX systems. Several GUI plug-ins, including a 
management console and an Active Directory snap-in, simplify installation and 
configuration. A limited version is available for free, or you can pay for support 
and complete functionality. Find details at likewise.com.

Another option that skirts winbind entirely is a tool kit called Quest Authentica-
tion Services. It offers many of the same features as Likewise’s tools, but adds addi-
tional group policy management features. Be prepared to open your wallet, as 
Quest’s tools do not come cheap. See quest.com/authentication-services for the 
full scoop.

30.10 RECOMMENDED READING

TERPSTRA, JOHN H. Samba-3 by Example: Practical Exercises to Successful Deploy-
ment (2nd Edition). Upper Saddle River, NJ: Prentice Hall PTR, 2006. (An on-line 
version of this book is available at samba.org.)

TERPSTRA, JOHN H., JELMER R. VERNOOIJ. The Official Samba-3 HOWTO and Ref-
erence Guide (2nd Edition). Upper Saddle River, NJ: Prentice Hall PTR, 2006. (An 
on-line version of this book is available at samba.org.)

  



ptg

Exercises 1161

M
S 

W
in

do
w

s

30.11 EXERCISES

E30.1 Why would you want to block Internet access to ports 137–139 and 
445 on a Samba server?

E30.2 Install the Cygwin software on a Windows machine and use ssh in 
rxvt to connect to a UNIX machine. What differences from PuTTY 
do you find?

E30.3 In the lab, compare the performance of a client that accesses files 
through Samba with one that accesses files from a native CIFS server 
(i.e., a Windows machine). If your two test servers have different 
hardware, devise a way to adjust for the hardware variation so that the 
comparison is more indicative of the performance of the server soft-
ware. (May require root access.)

E30.4 In the lab, use a packet sniffer such as tcpdump or Wireshark to mon-
itor a telnet session between Windows and a UNIX server. Obtain and 
install the PuTTY software and repeat the monitoring. In each case, 
what can you see with the packet sniffer? (Requires root access.)

E30.5 Set up a Samba print server that provides Windows printer drivers for 
all the printers it shares. Make sure the printers come with a sensible 
default configuration.

E30.6 Configure the system of your choice to authenticate to an Active Di-
rectory environment. Make sure that password changes work and that 
home directories are automatically created at login for new users.

  



ptg

1162

Serial Devices

31 Serial Devices and 
Terminals

An operating system with over 40 years of history is sure to be dragging some 
cruft along with it. Some would put support for serial devices into this category, 
arguing that it’s a technology from a bygone era that is best forgotten. Compared 
to today’s multi-megabit serial interfaces such as USB, traditional serial ports may 
indeed seem too slow and twiddly to be useful.

In fact, an understanding of serial interfaces is an essential component of any sys-
tem administrator’s tool box. For better or worse, the UNIX command-line inter-
face is based on the ancient concept of a serial terminal and the associated com-
mands and control structures remain in use today. Even if you have never been 
within 50 paces of a hardwired terminal, you’re still using the same basic OS facil-
ities that supported it. For example, the console window on your UNIX or Linux 
desktop is really a pseudo-terminal, as is the device to which you appear to be 
connected when you log in through the network.

Actual RS-232C serial ports are still around, too. They’re no longer the general 
facility they used to be, but they remain important in several situations. They’re 
the common denominator for bootstrapping all types of hardware devices, from 
lights-out enterprise-class server managers to embedded systems the size of a 
thumbnail, including custom hardware projects. They’re a medium you can use to 

  



ptg

The RS-232C standard 1163

Se
ria

l D
ev

ic
es

communicate with legacy systems. There are even cases in which you might run 
into an actual hardwired terminal, such as on a manufacturing floor. 

This chapter describes how to connect and use RS-232-based serial devices in the 
modern world. The first few sections address serial hardware and cabling consid-
erations. Then, starting on page 1171, we talk about the software infrastructure 
that supports both hardwired terminals and the pseudo-terminals that emulate 
them. Finally, we cover the use of a UNIX or Linux system to communicate with 
the serial consoles of other devices.

31.1 THE RS-232C STANDARD

Most slow-speed serial ports conform to some variant of the RS-232C standard. 
This standard specifies the electrical characteristics and meaning of each signal 
wire, as well as the pin assignments on the traditional 25-pin (DB-25p) serial con-
nector shown in Exhibit A.

Exhibit A A male DB-25 connector

Full RS-232C1 is never used in real-world situations since it defines numerous 
signals that are unnecessary for basic communication. DB-25 connectors are also 
inconveniently large. As a result, 9-pin DB-9 connectors are now commonly used 
instead of the original 25-pin flavor. In cases where structured cabling is used, RJ-
45 connectors are also a convenient alternative. Both of these connectors are de-
scribed in the section titled Alternative connectors starting on page 1165.

Exhibit A shows a male DB-25. As with all serial connectors, the pin numbers on 
a female connector are a mirror image of those on a male connector so that like-
numbered pins mate. The diagram is drawn from the orientation shown, as if you 
were facing the end of the cable, about to plug the connector into your forehead.

Note that in Exhibit A, only seven pins are actually installed, which is typical. The 
RS-232 signals and their pin assignments on a full-size DB-25 connector are 

1 13

14 25

Connector Pin numbers

1. To be technically correct, this standard should now be referred to as EIA-232-E. However, no one will 
have the slightest idea what you are talking about.

  



ptg

1164 Chapter 31 Serial Devices and Terminals

shown in Table 31.1. Only the shaded signals are ever used in practice (at least on 
computer systems); all others can be ignored.

Unlike connector standards such as USB and Ethernet that were designed to be 
mostly idiot-proof, RS-232 requires you to know what types of devices you are 
connecting. Two interface configurations exist: DTE (Data Terminal Equipment) 
and DCE (Data Communications Equipment). DTE and DCE share the same 
pinouts, but they specify different interpretations of the RS-232 signals. 

Every device is configured as either DTE or DCE; a few devices support both, but 
not simultaneously. Computers, terminals, and printers are generally DTE, and 
most modems are DCE. DTE and DCE serial ports can communicate with each 
other in any combination, but different combinations require different cabling.

There is no sensible reason for both DTE and DCE to exist; all equipment could 
use the same wiring scheme. The existence of two conventions is merely one of 
the many pointless historical legacies of RS-232.

DTE and DCE can be confusing if you let yourself think about the implications 
too much. When that happens, just take a deep breath and reread these points:

• The RS-232 pinout for a given connector type is always the same, regard-
less of whether the connector is male or female (matching pin numbers 
always mate) and regardless of whether the connector is on a cable, a 
DTE device, or a DCE device.

• All RS-232 terminology is based on the model of a straight-through con-
nection from a DTE device to a DCE device. By “straight through,” we 
mean that TD on the DTE end is connected to TD on the DCE end, and 
so on. Each pin connects to the same-numbered pin on the other end.

Table 31.1 RS-232 signals and pin assignments on a DB-25

Pin Name Function Pin Name Function

1 FG Frame ground 14 STD Secondary TD
2 TD Transmitted data 15 TC Transmit clock
3 RD Received data 16 SRD Secondary RD
4 RTS Request to send 17 RC Receive clock
5 CTS Clear to send 18 – Not assigned
6 DSR Data set ready 19 SRTS Secondary RTS
7 SG Signal ground 20 DTR Data terminal ready
8 DCD Data carrier detect 21 SQ Signal quality detector
9 – Positive voltage 22 RI Ring indicator
10 – Negative voltage 23 DRS Data rate selector
11 – Not assigned 24 SCTE Clock transmit external
12 SDCD Secondary DCD 25 BUSY Busy
13 SCTS Secondary CTS

  



ptg

Alternative connectors 1165

Se
ria

l D
ev

ic
es

• Signals are named relative to the perspective of the DTE device. For 
example, the name TD (transmitted data) really means “data transmitted 
from DTE to DCE.” Despite the name, the TD pin is an input on a DCE 
device. Similarly, RD is an input for DTE and an output for DCE.

• When you wire DTE equipment to DTE equipment (computer-to-ter-
minal or computer-to-computer), you must trick each device into think-
ing the other is DCE. For example, both DTE devices expect to transmit 
on TD and receive on RD. You must cross-connect the wires so that one 
device’s transmit pin goes to the other’s receive pin, and vice versa.

• Three sets of signals must be crossed in this fashion for DTE-to-DTE 
communication (if you choose to connect them at all). TD and RD must 
be crossed. RTS and CTS must be crossed. And each side’s DTR pin must 
be connected to both the DCD and DSR pins of the peer.

• To add to the confusion, a cable crossed for DTE-to-DTE communica-
tion is often called a “null modem” cable. You might be tempted to use a 
null modem cable to hook up a modem, but since modems are DCE, 
that won’t work! A cable for a modem is called a “modem cable” or a 
“straight cable.”

Exhibit B shows pin assignments and connections for both null-modem and 
straight-through cables. Only signals used in the real world are shown.

Exhibit B Pin assignments and connections for DB-25 cables

31.2 ALTERNATIVE CONNECTORS

The following sections describe the most common modern connector systems, 
DB-9 and RJ-45. Despite their physical differences, these connectors provide ac-
cess to the same electrical signals as a DB-25. Devices that use different connec-
tors are always compatible if the right kind of converter cable is used.

StraightLegend

1
2
3
4
5
6
7
8

20

1
2
3
4
5
6
7
8

20

1
2
3
4
5
6
7
8

20

1
2
3
4
5
6
7
8

20

Null modem

Frame ground 
Transmitted data

Received data 
Request to send

Clear to send 
Data set ready 
Signal ground

Data carrier detect 
Data terminal ready

FG 
TD 
RD 
RTS 
CTS 
DSR 
SG 
DCD 
DTR

  



ptg

1166 Chapter 31 Serial Devices and Terminals

The DB-9 variant

The DB-9 is the most common modern-day embodiment of RS-232. It’s a 9-pin 
connector that looks like a “DB-25 junior” and supplies the eight most commonly 
used signals. Pin 9 is left unconnected.

Exhibit C A male DB-9 connector

The RJ-45 variant

An RJ-45 is an 8-wire modular telephone connector. The use of RJ-45s makes it 
easy to run serial communications through your building’s existing wiring if the 
wiring plant was installed with twisted-pair Ethernet in mind. 

RJ-45 jacks for serial connections are usually not found on computers or on gar-
den-variety serial equipment, but they are often used as intermediate connectors 
for routing serial lines through patch panels. RJ-45s are compact, self-securing, 
cheap, and easy to crimp onto the ends of custom-cut cables. An inexpensive 
crimping tool is required.

Several systems map the pins on an RJ-45 connector to those on a DB-25. Table 
31.3 shows the official RS-232D standard, which is used only haphazardly.

Table 31.2 DB-9 Pinout

DB-9 Signal Function

1 DCD Data carrier detect
2 RD Received data
3 TD Transmitted data
4 DTR Data terminal ready
5 SG Signal ground
6 DSR Data set ready
7 RTS Request to send
8 CTS Clear to send

1 2 3 4 5 

9876

Connector Pin numbers

  



ptg

Hard and soft carrier 1167

Se
ria

l D
ev

ic
es

Exhibit D A male RJ-45 connector

A well-thought-out standard for RJ-45 to DB-25 wiring was created by Dave Yost. 
If you’re planning to use a significant amount of serial cabling, be sure to check it 
out at yost.com/computers/RJ45-serial.

31.3 HARD AND SOFT CARRIER

UNIX expects to see the DCD signal, carrier detect, go high (positive voltage) 
when a serial device is attached and turned on. If your serial cable has a DCD line 
and your computer really pays attention to it, you are using what is known as hard 
carrier. Most systems also allow soft carrier; that is, the computer pretends that 
DCD is always asserted.

For certain devices (such as traditional hardwired terminals), soft carrier is a great 
blessing. You can get away with using only three wires for each serial connection: 
transmit, receive, and signal ground. However, modem connections really need 
the DCD signal. If a terminal is connected through a modem and the carrier sig-
nal is lost, the modem should hang up (especially on a long distance call!).

You can specify soft carrier for a serial port in the configuration file for whatever 
client software you use in conjunction with the port (e.g., gettydefs or inittab for 
a login terminal or printcap for a printer). You can also use stty -clocal to enable 
soft carrier on the fly. 

Table 31.3 Pins for an RJ-45 to DB-25 straight cable

RJ-45 DB-25 Signal Function

1 6 DSR Data set ready
2 8 DCD Data carrier detect
3 20 DTR Data terminal ready
4 7 SG Signal ground
5 3 RD Received data
6 2 TD Transmitted data
7 5 CTS Clear to send
8 4 RTS Request to send

8 1

Top 
View

Connector Pin numbers

  



ptg

1168 Chapter 31 Serial Devices and Terminals

For example,
suse$ sudo stty -clocal < /dev/ttyS1 

enables soft carrier for the port ttyS1.

31.4 HARDWARE FLOW CONTROL

The CTS and RTS signals make sure that a device does not send data faster than 
the receiver can process it. For example, if a modem is in danger of running out of 
buffer space (perhaps because the connection to the remote site is slower than the 
serial link between the local machine and the modem), it can tell the computer to 
shut up until more room becomes available in the buffer.

Flow control is essential for high-speed modems and is also very useful for serial 
printers. On systems that do not support hardware flow control (either because 
the serial ports do not understand it or because the serial cable leaves CTS and 
RTS disconnected), flow control can sometimes be simulated in software with the 
ASCII characters XON and XOFF. However, software flow control must be explic-
itly supported by high-level software, and even then it does not work very well.

XON and XOFF are <Control-Q> and <Control-S>, respectively. This is a prob-
lem for emacs users because <Control-S> is the default key binding for the emacs
search command. To fix the problem, bind the search command to another key or 
use stty start and stty stop to change the terminal driver’s idea of XON and XOFF.

Most terminals ignore the CTS and RTS signals. By jumpering pins 4 and 5 to-
gether at the terminal end of the cable, you can fool the few terminals that require 
a handshake across these pins before they will communicate. When the terminal 
sends out a signal on pin 4 saying “I’m ready,” it gets the same signal back on pin 5 
saying “Go ahead.” You can also jumper the DTR/DSR/DCD handshake like this.

As with soft carrier, hardware flow control can be set through configuration files 
or with the stty command.

On Sun hardware, flow control for built-in serial ports must be set up with the 
eeprom command.

On some HP platforms, you may need to set flow control for built-in serial ports 
with the Guardian Service Processor (GSP).

31.5 SERIAL DEVICE FILES

Serial ports are represented by device files in or under /dev. Even today, many 
computers have one or two serial ports built in, mainly as a communication 
mechanism of last resort. In the past, such ports were usually known by names 
such as /dev/ttya and /dev/ttyb, but naming conventions have diverged over time, 
and those ports are now often named /dev/ttyS0 or/dev/tty1.

  



ptg

setserial: set serial port parameters under Linux 1169

Se
ria

l D
ev

ic
es

Sometimes, more than one device file refers to the same serial port. For example, 
/dev/cua/a on a Solaris system refers to the same port as /dev/term/a. However, 
the minor device number for /dev/cua/a is different:

solaris$ ls -lL /dev/term/a /dev/cua/a 
crw - - - - - - - 1 uucp uucp 37, 131072 Jan 11 16:35 /dev/cua/a 
crw-rw-rw- 1 root sys 37, 0 Jan 11 16:35 /dev/term/a

As always, the names of the device files do not really matter. Device mapping is 
determined by the major and minor device numbers, and the names of device 
files are merely a convenience for human users.

Multiple device files are primarily used to support modems that handle both in-
coming and outgoing calls. In the Solaris scheme, the driver allows /dev/term/a to 
be opened only when DCD has been asserted by the modem, indicating the pres-
ence of an active (inbound) connection (assuming that soft carrier is not enabled 
on the port). /dev/cua/a can be opened regardless of the state of DCD; it’s used 
when connecting to the modem to instruct it to place a call. Access to each device 
file is blocked while the other is in use.

On HP-UX, serial device files are not always created automatically. You can use 
the ioscan command to force the system to look for them, something like

hp-ux$ sudo ioscan -C tty -fn

You can then create the device files with
hp-ux$ sudo mksf -H port-from-ioscan-output -d asio0 -a0 -i -v

AIX appears to be moving away from supporting serial interfaces entirely. In par-
ticular, if you have a system with multiple LPARs (see Chapter 24), serial inter-
faces are not available by default. You may have to purchase special hardware to 
obtain serial connectivity in this case.

31.6 SETSERIAL: SET SERIAL PORT PARAMETERS UNDER LINUX

The serial ports on a PC can appear at several different I/O port addresses and 
interrupt levels (IRQs). These settings might be configured through the system’s 
BIOS, or they might be set automatically through plug and play (PnP) code at 
boot time. On rare occasions, you may need to change a serial port’s address and 
IRQ settings to accommodate some cranky piece of hardware that is finicky about 
its own settings and only works correctly when it has co-opted the settings nor-
mally used by a serial port. Unfortunately, the serial driver may not be able to 
detect such configuration changes without your help.

The traditional UNIX response to such diversity is to allow the serial port param-
eters to be specified when the kernel is compiled. Fortunately, Linux lets you skip 
this tedious step and change the parameters on the fly with the setserial com-
mand. setserial -g shows the current settings.

  



ptg

1170 Chapter 31 Serial Devices and Terminals

ubuntu$ setserial -g /dev/ttyS0 
/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4

To set the parameters, you specify the device file and then a series of parameters 
and values. For example, the command 

ubuntu$ sudo setserial /dev/ttyS1 port 0x02f8 irq 3

sets the I/O port address and IRQ for ttyS1. It’s important to keep in mind that 
this command does not change the hardware configuration in any way; it simply 
informs the Linux serial driver of the configuration. To change the actual settings 
of the hardware, consult your system’s BIOS. 

setserial changes only the current configuration, and the settings do not persist 
across reboots. Unfortunately, there isn’t a standard way to make the changes per-
manent; each of our example distributions does it differently.

The /etc/init.d/setserial script on Ubuntu systems is used for serial port initial-
ization. It reads parameters for each port from /var/lib/setserial/autoserial.conf. 

SUSE’s /etc/init.d/serial script handles serial port initialization. Unfortunately, 
this script has no configuration file; you must edit it directly to reflect the com-
mands you want to run. Bad SUSE! The script uses its own little metalanguage to 
construct the setserial command lines, but fortunately there are plenty of com-
mented-out example lines to choose from.

Red Hat’s /etc/rc.d/rc.sysinit script checks for the existence of /etc/rc.serial and 
executes it at startup time if it exists. No example file is provided, so you must 
create the file yourself if you want to make use of this feature. Just list the setserial
commands you want to run, one per line. For completeness, it’s probably a good 
idea to make the file executable and to put #!/bin/sh on the first line; however, 
these touches d’élégance aren’t strictly required.

31.7 PSEUDO-TERMINALS

Hardwired CRT terminals may be nothing more than museum fodder these days, 
but their spirit lives on in the form of pseudo-terminals. These pairs of device files 
emulate a text terminal interface on behalf of services such as virtual consoles, 
virtual terminals (e.g., xterm), and network login services like telnet and ssh.

Here’s how it works. Each of the of the paired device files accesses the same device 
driver inside the kernel. The slave device is named something like /dev/ttyp1. A 
process that would normally interact with a physical terminal, such as a shell, uses 
the slave device in place of a physical device such as /dev/ttyS0. A host process 
such as sshd or telnetd opens the corresponding master device—in this example, 
/dev/ptyp1. The pseudo-terminal device driver shuttles keystrokes and text out-
put between the two devices, hiding the fact that no physical terminal exists.

Although pseudo-terminals don’t need a baud rate or flow control strategy, most 
of the other terminal attributes and settings covered in this chapter apply to them.

  



ptg

The login process 1171

Se
ria

l D
ev

ic
es

The expect scripting language uses a pseudo-terminal to control a process (such 
as ftp or parted) that expects to interact with a human user. It is quite useful for 
automating certain types of sysadmin tasks.

31.8 CONFIGURATION OF TERMINALS

Cheap computers have replaced ASCII terminals. However, even the “terminal” 
windows on a graphical display (such as xterm) use the same drivers and configu-
ration files as real terminals, so system administrators still benefit by understand-
ing how this archaic technology works.

Terminal configuration involves two main tasks: making sure that a process is 
attached to a terminal to accept logins, and making sure that information about 
the terminal is available once a user has logged in. Before we dive into the details 
of these tasks, however, let’s look at the entire login process.

The login process

See page 88 for more 
information about the 
init daemon.

The login process involves several different programs, the most important of 
which is the init daemon. One of init’s jobs is to spawn a process, known generi-
cally as a getty (but not on Solaris, which calls it a ttymon), on each terminal port 
that is turned on in the /etc/ttys or /etc/inittab file. The getty sets the port’s initial 
characteristics (such as speed and parity) and prints a login prompt.

The actual name of the getty program varies among Linux distributions, and 
some distributions include multiple implementations. Red Hat and SUSE use a 
simplified version called mingetty to handle logins on virtual consoles. To man-
age terminals and dial-in modems, they provide Gert Doering’s mgetty imple-
mentation. Ubuntu uses a single getty written by Wietse Venema et al.; this ver-
sion is also available on SUSE systems under the name agetty. An older 
implementation called uugetty has largely been superseded by mgetty. Finally, 
HylaFAX (hylafax.org), a popular open source fax server, has its own version of 
getty called faxgetty.

To distinguish among this plenitude of gettys, think of them in order of complex-
ity. mingetty is the simplest and is essentially just a placeholder for a getty. It can 
only handle logins on Linux virtual consoles. agetty is a bit more well-rounded 
and handles both serial ports and modems. mgetty is the current king of the hill. 
It handles incoming faxes as well as logins and does proper locking and coordina-
tion so that the same modem can be used as both a dial-in and a dial-out line.

The sequence of events in a complete login is as follows:

• getty prints a login prompt (along with the contents of the /etc/issue file 
on Linux systems).

• A user enters a login name at getty’s prompt.
• getty runs the login program with the specified name as an argument.
• login requests a password and validates the account against /etc/shadow 

or an administrative database system such as NIS or LDAP.

  



ptg

1172 Chapter 31 Serial Devices and Terminals

• login prints the message of the day from /etc/motd and runs a shell.
• The shell executes the appropriate startup files.2

• The shell prints a prompt and waits for input.

When the user logs out, control returns to init, which wakes up and spawns a new 
getty on the terminal port.

Files in /etc control the characteristics associated with each terminal port. These 
characteristics include the presence of a login prompt and getty process on the 
port, the baud rate to expect, and the type of terminal that is assumed to be con-
nected to the port.

Unfortunately, terminal configuration is one area where there is little agreement 
among vendors. Table 31.4 lists the files used by each system.

The /etc/ttytype file

On many systems, terminal type information is kept in a file called /etc/ttytype. 
The format of an entry in ttytype is

termtype device

where device is the short name of the device file representing the port and the 
termtype names an entry in the termcap or terminfo database. When you log in, 
the TERM environment variable is set to the value of this field.

Here is a sample ttytype file:
wyse console 
dialup ttyi0 
dialup ttyi1 
vt320 ttyi2 
h19 ttyi3 
dialout ttyi4

2. .profile for sh and ksh; .bash_profile and .bashrc for bash; .cshrc and .login for csh/tcsh.

Table 31.4 Terminal configuration files

System On/off Terminal type Parameters Monitor

Ubuntua /etc/event.d/ttyb /etc/ttytype /etc/gettydefs getty

SUSE /etc/inittab /etc/ttytype /etc/gettydefs getty

Red Hat /etc/inittab /etc/ttytype /etc/gettydefs getty

Solarisc _sactab _sactab zsmon/_pmtab ttymon

HP-UX /etc/inittab /etc/ttytype /etc/gettydefs getty

AIXd /etc/inittab /etc/security/login.cfg ODM database getty

a. Ubuntu has moved from init to upstart for TTY/getty management; see page 1175.
b. Virtual consoles are defined in /etc/default/console-setup.
c. Solaris configuration files are in /etc/saf and should be managed with sacadm.
d. To ensure consistency, use SMIT to modify TTY parameters on AIX.

  



ptg

The /etc/gettydefs file 1173

Se
ria

l D
ev

ic
es

The /etc/gettytab file

The gettytab file associates symbolic names such as std.9600 with port configura-
tion profiles that include parameters such as speed, parity, and login prompt. Here 
is a sample:

# The default entry, used to set defaults for other entries, and in cases 
# where getty is called with no specific entry name.

default:\ 
:ap:lm=\r\n%h login\72 :sp#9600:

# Fixed-speed entries

2|std.9600|9600-baud:\ 
:sp#9600:

h|std.38400|38400-baud:\ 
:sp#38400:

The format is the same as that of printcap or termcap. The lines with names sep-
arated by a vertical bar (|) list the names by which each configuration is known. 
The other fields in an entry set the options to be used with the serial port.

The /etc/gettydefs file

Like gettytab, gettydefs defines port configurations used by getty. A given system 
will usually have one or the other, never both. The gettydefs file looks like this:

console# B9600 HUPCL # B9600 SANE IXANY #login: #console 
19200# B19200 HUPCL # B19200 SANE IXANY #login: #9600 
9600# B9600 HUPCL # B9600 SANE IXANY HUPCL #login: #4800 
4800# B4800 HUPCL # B4800 SANE IXANY HUPCL #login: #2400 
2400# B2400 HUPCL # B2400 SANE IXANY HUPCL #login: #1200 
1200# B1200 HUPCL # B1200 SANE IXANY HUPCL #login: #300 
300# B300 HUPCL # B300 SANE IXANY TAB3 HUPCL #login: #9600

The format of an entry is 
label# initflags # finalflags # prompt #next

getty tries to match its second argument with a label entry. If it is called without a 
second argument, the first entry in the file is used. The initflags field lists ioctl(2) 
flags that should be set on a port until login is executed. The finalflags field sets 
flags that should be used thereafter.

There must be an entry that sets the speed of the connection in both the initflags
and the finalflags. The flags that are available vary by system; check the gettydefs
or mgettydefs man page for authoritative information.

The prompt field defines the login prompt, which may include tabs and newlines 
in backslash notation. The next field gives the label of an inittab entry that should 
be substituted for the current one if a break is received. This was useful decades 
ago when modems didn’t negotiate a speed automatically and you had to match 

  



ptg

1174 Chapter 31 Serial Devices and Terminals

speeds by hand with a series of breaks. Today, it’s an anachronism. For a hard-
wired terminal, next should refer to the label of the current entry.

Each time you change the gettydefs file, you should run getty -c gettydefs, which 
checks the syntax of the file to make sure that all entries are valid.

The /etc/inittab file

See page 88 for more 
information about the 
role of init. 

init supports various “run levels” that determine which system resources are en-
abled. There are seven run levels, numbered 0 to 6, with “s” recognized as a syn-
onym for level 1 (single-user operation). When you leave single-user mode, init
prompts you to enter a run level unless an initdefault field exists in /etc/inittab as 
described below. init then scans the inittab file for all lines that match the speci-
fied run level.

Run levels are usually set up so that you have one level in which only the console 
is enabled and another level in which all gettys are enabled. You can define the 
run levels in whatever way is appropriate for your system; however, we recom-
mend that you not stray too far from the defaults.

Entries in inittab are of the form
id:run-levels:action:process

Here are some simple examples of inittab entries:
# Trap CTRL-ALT-DELETE 
ca::ctrlaltdel:/sbin/shutdown -t3 -r now

# Run gettys in standard runlevels 
1:2345:respawn:/sbin/mingetty tty1 
2:2345:respawn:/sbin/mingetty tty2

In this format, id is a one- or two-character string that identifies the entry; it can 
be null. For terminal entries, it is customary to use the terminal number as the id.

run-levels enumerates the run levels to which the entry pertains. If no levels are 
specified (as in the first line), then the entry is valid for all run levels. action tells 
how to handle the process field; Table 31.5 lists some of the commonly used values.

If one of the run-levels matches the current run level and the action field indicates 
that the entry is relevant, init uses sh to execute (or terminate) the command 
specified in the process field. The Wait? column in Table 31.5 tells whether init
waits for the command to complete before continuing.

In the example inittab lines above, the last two lines spawn mingetty processes on 
the first two virtual consoles (accessed with <Alt-F1> and <Alt-F2>). If you add 
hardwired terminals or dial-in modems, the appropriate inittab lines look similar 
to these. However, you must use mgetty or getty (agetty on SUSE) with such de-
vices because mingetty is not sophisticated enough to handle them correctly. In 
general, respawn is the correct action and 2345 is an appropriate set of levels.

  



ptg

getty configuration for Linux 1175

Se
ria

l D
ev

ic
es

The command telinit -q makes init reread the inittab file.

getty configuration for Linux

Different gettys require different configuration procedures. The getty/agetty ver-
sion found on SUSE and Ubuntu is generally a bit cleaner than the mgetty version 
because it accepts all of its configuration information on the command line (in 
/etc/inittab). 

The general model is
/sbin/getty port speed termtype

where port is the device file of the serial port relative to /dev, speed is the baud rate 
(e.g., 38400), and termtype identifies the default terminal type for the port. The 
termtype refers to an entry in the terminfo database. Most emulators simulate a 
DEC VT100, denoted vt100. Most of the many other minor options relate to the 
handling of dial-in modems.

mgetty is a bit more sophisticated than agetty in its handling of modems and 
integrates both incoming and outgoing fax capability. Unfortunately, its configu-
ration is a bit more diffuse. In addition to other command-line flags, mgetty can 
accept an optional reference to an entry in /etc/gettydefs that specifies configura-
tion details for the serial driver. Unless you’re setting up a sophisticated modem 
configuration, you can usually get away without a gettydefs entry. 

Use man mgettydefs to find the man page for the gettydefs file. It’s named this 
way to avoid conflict with an older gettydefs man page that no longer exists on 
any Linux system.

A simple mgetty command line for a hardwired terminal looks like this:
/sbin/mgetty -rs speed device

Table 31.5 Common values for the /etc/inittab action field

Value Wait? Meaning

initdefault – Sets the initial run level
boot No Runs when inittab is read for the first time
bootwait Yes Runs when inittab is read for the first time
ctrlaltdel No Runs in response to a keyboard <Control-Alt-Delete>a

once No Starts the process once
wait Yes Starts the process once
respawn No Always keeps the process running
powerfail No Runs when init receives a power-fail signal
powerwait Yes Runs when init receives a power-fail signal
sysinit Yes Runs before accessing the console
off – Terminates the process if it is running, on some systems

a. Linux systems only.

  



ptg

1176 Chapter 31 Serial Devices and Terminals

speed is the baud rate (e.g., 38400), and device is the device file for the serial port 
(use the full pathname).

If you want to specify a default terminal type for a port when using mgetty, you 
must specify it in a separate file, /etc/ttytype, and not on the mgetty command 
line. The format of an entry in ttytype is described on page 1172.

Ubuntu Upstart

Ubuntu has replaced its init with a rearchitected version called Upstart that starts 
and stops services in response to events. The executable file for Upstart is still 
known as /sbin/init, however.

Upstart uses one file for each active terminal in /etc/event.d. For example, if we 
wanted a getty to run on ttyS0, /etc/event.d/ttyS0 might look like this:

# ttyS0 – getty

# This service maintains a getty on ttyS0 from the point when 
# the system is started until it is shut down again. 

start on runlevel 2 
start on runlevel 3 
start on runlevel 4 
start on runlevel 5 

stop on runlevel 0 
stop on runlevel 1 
stop on runlevel 6 respawn 
exec /sbin/getty 38400 ttyS0

See page 94 for some additional comments on Upstart.

Solaris and sacadm

Rather than traditional UNIX gettys that watch each port for activity and provide 
a login prompt, Solaris has a convoluted hierarchy called the Service Access Facil-
ity that controls TTY monitors, port monitors, and many other things that pro-
vide a lot of complexity but little added functionality.

To set up a serial port to provide a login prompt, you must first configure a “mon-
itor” that watches the status of the port (ttymon). You then configure a port mon-
itor that watches the TTY monitor. For example, to set up a 9,600 baud monitor 
on ttyb to print a login prompt with terminal type VT100, you would use the 
following commands.

solaris$ sudo sacadm -a -p myttymon -t ttymon -c /usr/lib/saf/ttymon -v 1 
solaris$ sudo pmadm -a -p myttymon -s b -i root -fu -v 1 -m "`ttyadm -d 

/dev/term/b -l 9600 -T vt100 -s /usr/bin/login`"

The /etc/ttydefs file is used much like gettydefs on other systems to set speed and 
parity parameters.

  



ptg

Special characters and the terminal driver 1177

Se
ria

l D
ev

ic
es

See the manual pages for saf, sacadm, pmadm, ttyadm, and ttymon as well as the 
terminals chapter in the Solaris AnswerBook for more information about setting 
up these monitors. Have fun.

31.9 SPECIAL CHARACTERS AND THE TERMINAL DRIVER

The terminal driver supports several special functions that you access by typing 
particular keys (usually control keys) on the keyboard. The exact binding of func-
tions to keys can be set with the tset and stty commands. Table 31.6 lists some of 
these functions, along with their default key bindings.

Depending on what a vendor’s keyboards look like, the default for ERASE might 
be either <Control-H> or the delete character. (The actual keyboard key may be 
labeled “backspace” or “delete,” or it may show only a backarrow graphic.) Unfor-
tunately, the existence of two different standards for this function creates a multi-
tude of problems.

You can use stty erase (see the next section) to tell the terminal driver which key 
code your setup is actually generating. However, some programs (such as text ed-
itors and shells with command-editing features) have their own idea of what the 
backspace character should be, and they don’t always pay attention to the terminal 
driver’s setting. In a helpful but confusing twist, some programs obey both the 
backspace and delete characters. You may also find that systems you log in to 
through the network make different assumptions from those of your local system. 

Solving these annoying little conflicts can be a Sunday project in itself. In general, 
there is no simple, universal solution. Each piece of software must be individually 
beaten into submission. Two useful resources to help with this task are the Linux 
Backspace/Delete mini-HOWTO from tldp.org and a nifty article by Anne Baretta 
at ibb.net/~anne/keyboard.html. These notes are both written from a Linux per-
spective, but the problem (and solutions) are not limited to Linux.

Table 31.6 Special characters for the terminal driver

Name Default Function

erase <Control-?> Erases one character of input 
werase <Control-W> Erases one word of input 
kill <Control-U> Erases the entire line of input 
eof <Control-D> Sends an “end of file” indication 
intr <Control-C> Interrupts the currently running process 
quit <Control-\> Kills the current process with a core dump
stop <Control-S> Stops output to the screen 
start <Control-Q> Restarts output to the screen 
susp <Control-Z> Suspends the current process 
lnext <Control-V> Interprets the next character literally

  



ptg

1178 Chapter 31 Serial Devices and Terminals

31.10 STTY: SET TERMINAL OPTIONS

stty lets you directly change and query the various settings of the terminal driver. 
There are about a zillion options, but most can be safely ignored. stty generally 
uses the same names for driver options as the termios man page does, but occa-
sional discrepancies pop up.

A good combination of options to use for a plain-vanilla terminal is
solaris$ stty intr ^C kill ^U erase ^H -tabs

Here, -tabs prevents the terminal driver from taking advantage of the terminal’s 
built-in tabulation mechanism, a useful practice because many emulators are not 
very smart about tabs. The other options set the interrupt, kill, and erase charac-
ters to <Control-C>, <Control-U>, and <Control-H> (backspace), respectively.

You can use stty to examine the current modes of the terminal driver as well as to 
set them. stty with no arguments produces output like this:

solaris$ stty 
speed 38400 baud; 
erase = ^H; eol = M-^?; eol2 = M-^?; swtch = <undef>; 
ixany 
tab3

For a more verbose status report, use the -a option:
solaris$ stty -a 
speed 38400 baud; rows 24; columns 80; 
intr = ^C; quit = ^\; erase = ^H; kill = ^U; eof = ^D; eol = M-^?; eol2 = M-^?; 
swtch = <undef>; start = ^Q; stop = ^S; susp = ^Z; dsusp = ^Y; rprnt = ^R; 
werase = ^W; lnext = ^V; flush = ^O; 
-parenb -parodd cs8 hupcl -cstopb cread -clocal -crtscts 
-ignbrk brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff 
-iuclc ixany imaxbel 
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab3 bs0 vt0 ff0 
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt 
echoctl echoke

The format of the output is similar but lists more information. The meaning of the 
output should be intuitively obvious if you’ve written a terminal driver recently.

stty operates on the file descriptor of its standard input, so you can set and query 
the modes of a terminal other than the current one by using the shell’s input redi-
rection character (<). You must be the superuser to change the modes on some-
one else’s terminal.

31.11 TSET: SET OPTIONS AUTOMATICALLY

tset initializes the terminal driver to a mode appropriate for a given terminal type. 
The type can be specified on the command line; if the type is omitted, tset uses 
the value of the TERM environment variable.

  



ptg

Terminal unwedging 1179

Se
ria

l D
ev

ic
es

tset supports a syntax for mapping certain values of the TERM environment vari-
able into other values. This feature is useful if you often log in through a modem 
or data switch and would like to have the terminal driver configured correctly for 
the terminal you are really using on the other end of the connection rather than 
something generic and unhelpful such as “dialup.”

For example, suppose that you use xterm at home and that the system you are 
dialing in to is configured to think that the terminal type of a modem is “dialup.” 
Putting the command

tset -m dialup:xterm

in your .login or .profile file sets the terminal driver appropriately for xterm
whenever you dial in. 

Unfortunately, the tset command is not really as simple as it pretends to be. To 
have tset adjust your environment variables in addition to setting your terminal 
modes, you need lines something like this:

set noglob 
eval `tset -s -Q -m dialup:xterm` 
unset noglob

This incantation suppresses the messages that tset normally prints (the -Q flag), 
and asks that shell commands to set the environment be output instead (the -s
flag). The shell commands printed by tset are captured by the backquotes and fed 
to the shell as input with the built-in command eval, causing the commands to 
have the same effect as if they had been typed by the user.

set noglob prevents the shell from expanding any metacharacters such as * and ? 
that are included in tset’s output. This command is not needed by sh/ksh users 
(nor is the unset noglob to undo it), since these shells do not normally expand 
special characters within backquotes. The tset command itself is the same no 
matter what shell you use; tset looks at the environment variable SHELL to deter-
mine what flavor of commands to print.

31.12 TERMINAL UNWEDGING

Some programs (e.g., vi) make drastic changes to the state of the terminal driver 
while they are running. This meddling is normally invisible to the user, since the 
terminal state is restored when the program exits or is suspended. However, a 
program can crash or be killed without performing this housekeeping step. When 
this happens, the terminal may behave very strangely: it might fail to handle new-
lines correctly, to echo typed characters, or to execute commands properly.

Another common way to confuse a terminal is to accidentally run cat or more on 
a binary file. Most binaries contain a mix of 8-bit characters that is guaranteed to 
send some of the less-robust emulators into outer space.

  



ptg

1180 Chapter 31 Serial Devices and Terminals

To fix this situation, use reset or stty sane. reset is actually just a link to tset on 
many systems, and it can accept most of tset’s arguments. However, it is usually 
run without arguments. Both reset and stty sane restore the default state of the 
terminal driver and send out an appropriate reset code from termcap/terminfo if 
one is available.

In many cases for which a reset is appropriate, the terminal has been left in a 
mode in which no processing is done on the characters you type. Most terminals 
generate carriage returns rather than newlines when the Return or Enter key is 
pressed. Without input processing, this key generates <Control-M> characters in-
stead of sending off the current command to be executed. To enter newlines di-
rectly, use <Control-J> or the line feed key (if there is one) instead of Return.

31.13 DEBUGGING A SERIAL LINE

Debugging serial lines is not difficult. Here are some typical errors: 

• Forgetting to tell init to reread its configuration files
• Forgetting to set soft carrier when using three-wire cables
• Using a cable with the wrong nullness
• Soldering or crimping connectors upside down
• Connecting to the wrong wire because of bad or nonexistent wire maps 
• Setting the terminal options (including speed) incorrectly

A breakout box is an indispensable tool for debugging serial cabling problems. It 
is patched into the serial line and shows the signals on each pin as they pass 
through the cable. The better breakout boxes have both male and female connec-
tors on each side and so are flexible in their positioning. LEDs associated with 
each “interesting” pin show when the pin is active.

Some breakout boxes are read-only and just let you monitor the signals; others let 
you rewire the connection and assert a voltage on a particular pin. For example, if 
you suspect that a cable needs to be nulled (crossed), you can use the breakout 
box to override the actual cable wiring.

31.14 CONNECTING TO SERIAL DEVICE CONSOLES

Perhaps the most common and useful application of RS-232 today is to connect to 
the serial “console” of another device. The device could be anything from a man-
ageable UPS or network switch to an embedded Linux system such as the TiVo 
box under your TV. For example, you might connect a serial line to the UPS that 
powers your equipment rack in a remote data center so that you can shut off 
power remotely in an emergency.

  



ptg

Connecting to serial device consoles 1181

Se
ria

l D
ev

ic
es

The basic steps for connecting to a serial console are as follows:

• Attach a cable between the serial port on your UNIX system and the 
device you want to talk to. See the discussion earlier in this chapter about 
the various connector types and pinouts that might be necessary. You’ll 
most likely need a null modem cable. These are available at your nearest 
computer store.

• Install or identify the terminal communication software you will use on 
your UNIX or Linux system. Decades ago, the standard command for 
this was cu or tip. You can still use these in a pinch, but modern-day 
alternatives such as minicom and picocom are better. Linux distribu-
tions normally include one of these; on other systems, you may need to 
install the software yourself (see freshmeat.net/projects/minicom or 
freshmeat.net/projects/picocom, respectively).

• Configure your communication software to open the correct device file 
(see the discussion earlier in this chapter). Usually, names like /dev/ttya, 
/dev/tty1, /dev/ttyS0, or /dev/S0 are good first guesses.

• Set the baud rate, stop bits, and flow control to match the defaults used 
on the target device. These parameters are usually outlined in the man-
ual for the device, but you can also try all possible combinations. If you 
don’t know the correct baud rate, an “old dog” trick is to connect and 
type a few characters. If you have to type multiple characters to get a 
single character of garbage, you’ve set the baud rate too high. If typing 
one or two characters produces many characters of garbage, you’ve set 
the baud rate too low. Shhhh… don’t tell anyone!

• Once you’ve successfully connected, you should be able to enter com-
mands on the remote console. If you find that the device suddenly hangs 
on long output, you have probably misconfigured the flow control; typ-
ing <Control-Q> will sometimes get you by. 

If you have trouble connecting, the first debugging step should be to remove the 
crossover in the cable, or to add one if you didn’t start with one. Don’t forget that 
if you’re connecting to a remote UNIX box, you’ll need to set up a getty on the far 
end to listen for your connection and present a login prompt.

Exercises begin on the next page.

  



ptg

1182 Chapter 31 Serial Devices and Terminals

31.15 EXERCISES

E31.1 What is a null modem cable? How is it used to connect DCE and DTE 
serial devices?

E31.2 Can you use a three-wire serial cable for a serial modem connection? 
For a serial printer? Why or why not?

E31.3 How does traditional serial hardware flow control work? What can be 
done if a system does not understand hardware flow control?

E31.4 What is a pseudo-terminal? What programs use pseudo-terminals?

E31.5 Devise inittab entries that

a) Run a program called server-fallback, wait for it to finish, and then 
immediately halt the system if the power fails.

b)Respawn a server called unstable-srv if it crashes.

c) Run a script called clean-temp that removes all temporary files each 
time the system is rebooted.

E31.6 A friend of yours carelessly left himself logged in overnight in the com-
puting lab and is now experiencing strange problems when he runs 
shell applications. Programs quit or suspend, and previous input disap-
pears when certain commands and input are given; however, some 
things seem to work normally. What could an unfriendly user have 
done to cause such behavior? Explain how you could test your answer. 
How could the problem be fixed? Who would do such a mean thing?

  



ptg

1183

Po
lic

y/
Po

lit
ic

s

32 Management, 
Policy, and Politics

You may run the smartest team of administrators ever, but if your technical man-
agement is inadequate, you will be miserable and so will your users. In this chap-
ter we discuss the nontechnical aspects of running a successful information tech-
nology (IT) support organization, along with a few technical tidbits that help 
shore up the managerial end of system administration.

Most of the topics and ideas presented in this chapter are not specific to a particu-
lar environment. They apply equally to a part-time system administrator and to a 
large group of full-time professionals in charge of a major IT installation. Like 
green vegetables, they’re good for you no matter what size meal you’re preparing. 

Good sysadmins have both technical skills and “soft skills.” The ability to organize 
a group of administrators and make sure they meet the organization’s needs can 
be the difference between an OK administrator and a great one. 

In addition to management hints, this chapter also includes sections on topics 
such as IT policy, best practices, and standards compliance.

Policy/Politics

  



ptg

1184 Chapter 32 Management, Policy, and Politics

32.1 THE PURPOSE OF IT

An IT organization is more than a group of technical folks who fix printers and 
computers when there are problems. From a strategic perspective, IT is a collec-
tion of people and roles that serve the needs of the organization by supporting 
users and systems. Never forget the golden rule of system administration: enter-
prise needs drive IT activities, not the other way around.

The IT group needs to cooperate with other groups within the organization to 
make sure it is providing the best possible value. A few of the areas that require 
such cross-functional negotiation are spending, policy, management, and service 
level agreements (SLAs).

In many organizations—especially in small companies and in small divisions 
within large companies—the system administrator wears many hats, possibly in-
cluding that of a group leader or manager. Understanding some of the key areas in 
which IT interfaces with the rest of the organization will help make that relation-
ship smoother and more effective.

At a bare minimum, an IT organization must

• Maintain a list of open tasks
• Prioritize its task list and allocate resources
• Communicate task status to users and the enterprise
• Work with the enterprise to ensure its needs are met
• Monitor the computing environment, including security monitoring
• Track emerging technologies
• Develop skills in its staff
• Assist with regulatory compliance
• Document and follow repeatable processes
• Measure progress toward negotiated goals and report status
• Plan for and be ready for disasters
• Be flexible enough to keep users happy while being disciplined enough 

to keep administrators happy

Budgeting and spending

IT spending should be aligned with the goals of the larger organization. The IT 
budget has a dramatic impact on the extent and quality of IT services the rest of 
the organization can expect to receive, so it’s critically important that the IT staff 
help everyone understand this connection and make appropriate tradeoffs.

IT spending as a percentage of the organization’s total budget varies quite a bit, 
but it’s generally a nontrivial component. The average organization spends be-
tween 2% and 9%. The percentage varies among industries, with the mean being 
approximately 4% to 5%.

This total budget is further subdivided into capital and operating expenses. Capi-
tal expenses generally go toward equipment purchases. Operating costs include 

  



ptg

IT policy 1185

Po
lic

y/
Po

lit
ic

s

labor and services such as WAN connectivity. Various feats of legerdemain are 
available to convert one type of expense into another. For example, equipment 
leases turn capital expenses into operating expenses, and prepaid maintenance 
contracts on new equipment allow service expenses to be capitalized. You proba-
bly don’t care about the distinction between these expense types, but your ac-
countants do, so it’s your issue as well.

System administrators need to understand the budget because their ability to plan 
for the year ahead depends on it. For example, if an administrator would like to 
implement both a centralized logging system and a security monitoring solution, 
the budget is a relevant constraint. If the budget allocates only enough money for 
one server, the administrator will either have to prioritize the projects or come up 
with a solution that lets both systems run on the same server. (Virtualization is a 
great option in this example, but there are other situations in which sharing is not 
so easy or cost effective.) If the administrator can contribute to the budget plan-
ning process, he or she might lobby for more money if the expenses can be rea-
sonably predicted to increase the business’s satisfaction with its IT infrastructure.

IT policy

IT policies affect everyone in the organization, so they are important components 
of the organization’s overall strategy. System administrators are major contribu-
tors to the development and maintenance of good policies. Administrators are 
sometimes directly responsible for developing policy; in other cases, administra-
tors may be asked to review policies developed by other members of the organiza-
tion. Either way, the system administrators provide valuable input. Many organi-
zations have one set of policies that end users are expected to follow and another 
set of policies for administrators. Administrators should be familiar with both sets 
of policies and should develop organizational procedures that support them.

Documentation, policy’s kissing cousin, can sometimes be ignored or depriori-
tized relative to “real work.” Most sysadmins don’t like writing documentation, 
but it’s important to the smooth functioning of the IT system. Set up a wiki or use 
other tools that make it easy for administrators to jot down short notes and make 
it easy for others to locate relevant information for later review or use.

A couple of good choices for this role are MediaWiki and Confluence. MediaWiki, 
the software behind Wikipedia, is a free package written in PHP (mediawiki.org). 
Confluence is an enterprise solution that is not free and is designed for medium- 
and large-sized organizations. You can install it on your own server or purchase a 
hosted solution if you’d rather not manage it locally (atlassian.com). The “list of 
wiki software” Wikipedia page catalogs many other options, and wikimatrix.org is 
helpful for making detailed comparisons.

Specific policies, and the way that these policies play a role in compliance, are 
discussed later in this chapter (see page 1215).

  



ptg

1186 Chapter 32 Management, Policy, and Politics

Service level agreements

System administration is a service, and both people and computers are the recipi-
ents of that service. For the IT organization to successfully provide this service, 
keep users happy, and meet the needs of the enterprise, the exact details of the 
service being provided must be negotiated, agreed upon, and documented in “ser-
vice level agreements” or SLAs. A good SLA sets appropriate expectations and 
serves as a reference when questions arise. (But remember, IT provides solutions, 
not roadblocks!)

Users are happy when

• Their computers are up and running and they can log in
• Their other resources such as printers and file servers are available
• Their data files stay as they left them
• Their application software is installed and works as it’s supposed to
• Friendly, knowledgeable help is available when needed

Users want these things 24 hours a day, 7 days a week. Preferably for free. Users 
are miserable when

• They experience downtime, whether scheduled or unscheduled
• Upgrades introduce sudden, incompatible changes
• They receive incomprehensible messages from the system or sysadmins
• They receive long explanations of why things aren’t working

When something is broken, users want to know when it’s going to be fixed. That’s 
it. They don’t really care which hard disk or generator broke, or why; leave that 
information for your managerial reports.

From a user’s perspective, no news is good news. The system either works or it 
doesn’t, and if the latter, it doesn’t matter why. Our customers are happiest when 
they don’t even notice that we exist! Sad, but true.

It’s equally important to keep your staff happy. Good administrators are hard to 
find, and their needs must be considered when your site’s administrative systems 
are designed. System administrators and other technical staff are happy when

• Their computers and support systems are up and running
• They have the resources needed to do their jobs (dual monitors!)
• They have the latest and greatest software and hardware tools
• Their work is challenging, or at least interesting (minimal drudgery)
• They can work without being constantly interrupted
• They can be creative without the boss meddling and micromanaging
• Their work hours and stress levels are within reason

Technical people need more than just a paycheck at the end of the month to keep 
them going. They need to feel that they have a degree of creative control over their 
work and that they are appreciated by their peers, their boss, and their users.

  



ptg

Scope and descriptions of services 1187

Po
lic

y/
Po

lit
ic

s

The requirements for happy customers and happy IT staff have some factors in 
common. However, a few things seem to be orthogonal or even in direct conflict. 
The boss must make sure that all these differing expectations can be made com-
patible and attainable.

An SLA helps align end users and support staff. A well-written SLA addresses 
each of the issues discussed in the following sections.

Scope and descriptions of services
This section is the foundation of the SLA because it describes what the organiza-
tion can expect from IT. It should be written in terms that can be understood by 
nontechnical staff. Some example services might be

• Email
• Internet and web access
• File servers
• Business applications
• Printing

The standards that IT will adhere to when providing these services must also be 
defined. For example, an availability section would define the hours of operation, 
the agreed-upon maintenance windows, and the expectations regarding the times 
at which IT staff will be available to provide live support. One organization might 
decide that regular support should be available from 8:00 a.m. to 6:00 p.m. on 
weekdays but that emergency support must be available 24/7. Another organiza-
tion might decide that it needs standard live support available at all times. 

Here is a list of issues to consider when documenting your standards:

• Response time
• Service (and response times) during weekends and off-hours
• House calls (support for machines at home)
• Weird (unique or proprietary) hardware
• Upgrade policy (ancient hardware, software, etc.)
• Supported operating systems
• Standard configurations
• Expiration of backup tapes
• Special-purpose software
• Janitorial chores (cleaning screens and keyboards, vacuuming grilles)

When considering service standards, keep in mind that many users will want to 
customize their environments (or even their systems) if the software is not nailed 
down to prevent this. The stereotypical IT response is to forbid all user modifica-
tions, but although this policy makes things easier for IT, it isn’t necessarily the 
best policy for the organization.

Address this issue in your SLAs, and try to standardize on a few specific configu-
rations. Otherwise, your goals of easy maintenance and scaling to grow with the 

  



ptg

1188 Chapter 32 Management, Policy, and Politics

organization will meet some serious impediments. Encourage your creative, OS-
hacking employees to suggest modifications that they need for their work, and be 
diligent and generous in incorporating these suggestions into your standard con-
figurations. If you don’t, your users will work hard to subvert your rules.

Queue management policies
In addition to knowing what services are provided, users must also know about 
the priority scheme used to manage the work queue. Priority schemes always have 
wiggle room, but try to design one that covers most situations with few or no 
exceptions. Some priority-related variables are listed below:

• The importance of the service to the overall organization
• The security impact of the situation (has there been a breach?)
• The service level the customer has paid or contracted for
• The number of users affected
• The importance of any relevant deadline
• The loudness of the affected users (squeaky wheels)
• The importance of the affected users (this is a tricky one, but let’s be 

honest: some people in your organization have more pull than others)

Although all these factors will influence your rankings, we recommend a simple 
set of rules together with some common sense to deal with the exceptions. Basi-
cally, we use the following priorities: 

• Many people cannot work
• One person cannot work
• Requests for improvements

If two or more requests have top priority and the requests cannot be worked on in 
parallel, we base our decision regarding which problem to tackle first on the se-
verity of the issues (e.g., email not working makes almost everybody unhappy, 
whereas the temporary unavailability of a web service might hinder only a few 
people). Queues at lower priorities are usually handled in a FIFO manner. 

Users generally assume that all their important data is stored on backup tapes that 
will be archived forever. But backup media don’t last indefinitely; magnetic media 
in particular have a finite lifetime after which reading data becomes difficult. (You 
must periodically rewrite your data, possibly to newer media, if you want to keep 
it for a long time.) Backup tapes can also be subpoenaed, so your organization 
may not want old data to be available forever. It’s best to work with the people in 
charge of such decisions to draw up a written agreement that specifies how long 
backups must be kept, whether multiple copies are to be made (required? permis-
sible? never?), and where those copies must be stored.

These decisions should be made in the context of an organization-wide data re-
tention policy. This type of policy is covered later in this chapter, but in general, 
you need to classify your data and develop a retention schedule for each class.

  



ptg

Conformance measurements 1189

Po
lic

y/
Po

lit
ic

s

Make your backup and retention policies available to users. This measure pro-
motes realistic expectations regarding both backups and recoveries. It also puts 
users on notice that they must take precautions of their own if they feel they need 
better data protection than is provided for in their SLA.

In particular, users should understand whether or not the files on their local 
workstations will be backed up. Many organizations back up their centralized file 
servers but do not back up individual workstations. Usually, the workstations are 
cloned from system images and are considered disposable. Users need to know 
this so they can store critical information appropriately.

Roles and responsibilities
You must document who is responsible for what. Organizations that do not divide 
duties become inefficient and ineffective. Problems fall through the cracks be-
cause it’s not clear who owns which problem domains. Problems can also fall prey 
to groupthink, where it takes two or three administrators to take care of a single 
task. Some examples of defined roles are the following:

• Backup administrator
• Storage area network (SAN) and file service maven
• Application wrangler
• Patching and security czar
• Guy who nobody is quite sure what he does1

Or, you might map out roles and responsibilities according to the descriptions of 
services you have already defined. This approach may imply that you have to de-
lineate responsibilities from an administration perspective rather than from the 
user’s point of view.

Don’t forget to include “understudy” responsibilities in your taxonomy. Staff 
members won’t be in the office every day, and you need to know who to go to 
when a domain’s primary administrator is away.

Conformance measurements
An SLA needs to define how the organization will measure your success at fulfill-
ing the terms of the agreement. Targets and goals allow the staff to work toward a 
common outcome and can lay the groundwork for cooperation throughout the 
organization. Of course, you must make sure you have tools in place to measure 
the agreed-upon metrics. 

At a minimum, you should track the following metrics for your IT infrastructure:

• Percentage or number of projects completed on time and on budget
• Percentage or number of SLA elements fulfilled
• Uptime percentage by system (e.g., email 99.92% available through Q1)
• Percentage or number of tickets that were satisfactorily resolved

1. OK, maybe you don’t need this role in your IT group. But it is an industry standard. 

  



ptg

1190 Chapter 32 Management, Policy, and Politics

• Average time to ticket resolution
• Percentage or number of security incidents handled according to the 

documented incident handling process

32.2 THE STRUCTURE OF AN IT ORGANIZATION

Now that we have addressed the overall function of an IT organization, we can 
peek inside its structure. As a support organization grows, it becomes clear that 
not everybody in the group can or should know everything about the infrastruc-
ture. Instead, you must find a balance between efficiency and separation of duties.

Role separation adds a layer of checks and balances to the IT organization. Over 
time, this feature is becoming more and more important as standards and regula-
tions creep into even the smallest of organizations.

Take, for example, a 20-person U.S. company that has developed a hosted applica-
tion for medical facilities. If this application stores any protected health informa-
tion (PHI), then the organization’s systems must all comply with the dreaded 
Health Insurance Portability and Accountability Act (HIPAA). Among other 
things, this legislation requires you to define roles to protect access to sensitive 
data. For example, the tasks of determining what access a user should have and of 
actually provisioning that access must be executed by two different people.

A typical structure for an IT organization centers on a ticketing system and in-
cludes a help desk, an enterprise architecture group, an operations group, and a 
management layer. As shown in Exhibit A, every part of the IT organization inter-
acts with the ticketing system.

Exhibit A Structure of a typical IT organization

Ticket
system

H
el

p
desk Operation

s

ENTERPRISE ARCHITECTURE

MANAGEMENT

  



ptg

Common functions of ticketing systems 1191

Po
lic

y/
Po

lit
ic

s

The foundation: the ticketing and task management system

A ticketing and task management system lies at the heart of every functioning IT 
group. Having a good system in place will help your staff avoid two of the most 
common workflow pitfalls:

• Tasks falling through the cracks because everyone thinks they are being 
taken care of by someone else

• Resources wasted through duplication of effort when multiple people or 
groups work on the same problem without coordination

Common functions of ticketing systems

A trouble ticket system accepts requests through various interfaces (email, web 
forms, and command lines being the most common) and tracks them from sub-
mission to solution. Managers can assign tickets to staff groups or to individual 
staff members. Staff can query the system to see the queue of pending tickets and 
perhaps resolve some of them. Users can find out the status of a request and see 
who is working on it. Managers can extract high-level information such as

• The number of open tickets
• The average time to close a ticket
• The productivity of sysadmins
• The percentage of unresolved (rotting) tickets
• Workload distribution by time to solution

The request history stored in the ticket system becomes a history of the problems 
with your IT infrastructure and the solutions to those problems. If that history is 
easily searchable, it becomes an invaluable resource for the sysadmin staff.

Resolved trouble messages can be sent to novice sysadmins and trainees, inserted 
into a FAQ system, or just logged. New staff members can benefit from receiving 
copies of closed tickets because those tickets include not only technical informa-
tion but also examples of the tone and communication style that are appropriate 
for use with customers.

Like all documents, your ticketing system’s historical data can potentially be used 
against your organization in court. Follow the document retention guidelines set 
up by your legal department.

Most request-tracking systems automatically confirm new requests and assign 
them a tracking number that submitters can use to follow up or inquire about the 
request’s status. The automated response message should clearly state that it is just 
a confirmation. It should be followed promptly by a message from a real person 
that explains the plan for dealing with the problem or request.

  



ptg

1192 Chapter 32 Management, Policy, and Politics

Ticket ownership

Work can be shared, but in our experience, responsibility is less amenable to dis-
tribution. Every task should have a single, well-defined owner. That person need 
not be a supervisor or manager, just someone willing to act as a coordinator— 
someone willing to say, “I take responsibility for making sure this task gets done.”

An important side effect of this approach is that it is implicitly clear who imple-
mented what or who made what changes. This transparency becomes important if 
you want to figure out why something was done in a certain way or why some-
thing is suddenly working differently or not working anymore.

Being “responsible” for a task should not equate to being a scapegoat if problems 
arise. If your organization defines responsibility as blameworthiness, you may 
find that the number of available project owners quickly dwindles. Your goal in 
assigning ownership is simply to remove ambiguity about who should be address-
ing each problem. Don’t punish staff members for requesting help.

From a customer’s point of view, a good assignment system is one that routes 
problems to a person who is knowledgeable and can solve the problems quickly 
and completely. But from a managerial perspective, assignments need to occa-
sionally be challenging to the assignee so that the staff continue to grow and learn 
in the course of their jobs. Your job is to balance the need to play to employee’s 
strengths with the need to keep employees challenged, all while keeping both cus-
tomers and employees happy.

Larger tasks can be anything up to and including full-blown software engineering 
projects. These tasks may require the use of formal project management and soft-
ware engineering tools. We don’t describe these tools here; nevertheless, they’re 
important and should not be overlooked.

Sometimes sysadmins know that a particular task needs to be done, but they don’t 
do it because the task is unpleasant. A sysadmin who points out a neglected, unas-
signed, or unpopular task is likely to receive that task as an assignment. This situ-
ation creates a conflict of interest because it motivates sysadmins to remain silent 
regarding such situations. Don’t let that happen at your site; give your sysadmins 
an avenue for pointing out problems. You can allow them to open up tickets with-
out assigning an owner or associating themselves to the issue, or you can create an 
email alias to which issues can be sent.

User acceptance of ticketing systems

Receiving a prompt response from a real person is a critical determinant of cus-
tomer satisfaction, even if the personal response contains no more information 
than the automated response. For most problems, it is far more important to let 
the submitter know that the ticket has been reviewed by a real person than it is to 
fix the problem immediately. Users understand that administrators receive many 
requests, and they’re willing to wait a fair and reasonable time for your attention. 
But they’re not willing to be ignored.

  



ptg

Sample ticketing systems 1193

Po
lic

y/
Po

lit
ic

s

The mechanism through which users submit tickets affects their perception of the 
system. Make sure you understand your organization’s culture and your users’ 
preferences. Do they want a web interface? A custom application? An email alias? 
Maybe they’re only willing to make phone calls!

It’s also important that administrators take the time to make sure they understand 
what users are actually requesting. This point sounds obvious, but think back to 
the last five times you emailed a customer service or tech support alias. We’d bet 
there were at least a couple of cases in which the response seemed to have nothing 
to do with the question—not because those companies were especially incompe-
tent, but because accurately parsing trouble tickets is harder than it looks.

Once you’ve read enough of a ticket to develop an impression of what the cus-
tomer is asking about, the rest of the ticket starts to look like “blah blah blah.” 
Fight this! Clients hate waiting for a ticket to find its way to a human, only to learn 
that the request has been misinterpreted and must be resubmitted or restated. 
Back to square one.

Tickets are often vague or inaccurate because the submitter does not have the 
technical background needed to describe the problem in the way that a sysadmin 
would. That doesn’t stop users from making their own guesses as to what’s wrong, 
however. Sometimes these guesses are perfectly correct. Other times you must 
first decode the ticket to determine what the user thinks the problem is, then trace 
back along the user’s train of thought to intuit the underlying problem.

Sample ticketing systems

Tables 32.1 and 32.2 below summarize the characteristics of several well-known 
trouble ticketing systems. Table 32.1 shows open source systems, and Table 32.2 
shows commercial systems.

We like Mantis a lot. It was originally developed to track bugs in the software for a 
video game. It runs on Linux, Solaris, Windows, Mac OS, and even OS/2. Mantis 

Table 32.1 Open source trouble ticket systems

Name Inputa Lang Backb Web site

Double Choco Latte W PHP PM dcl.sourceforge.net
Mantis WE PHP M mantisbt.org
OTRS WE Perl PMOD otrs.org
RT: Request Tracker WE Perl M bestpractical.com
Scarab W Java M scarab.tigris.org
Trouble Ticket Express WEc Perl FMc troubleticketexpress.com

a. Input types: W = web, E = email
b. Back end: M = MySQL, P = PostgreSQL, O = Oracle, D = DB2, F = flat files
c. Email and MySQL options require the purchase of an add-on module (but they’re cheap).

  



ptg

1194 Chapter 32 Management, Policy, and Politics

is lightweight, simple, easily modifiable, and customizable. It requires MySQL, 
PHP, and a web server. But its most important feature is good documentation! 

Another nice system is OTRS, the Open Ticket Request System. OTRS features 
web interfaces for both customers and sysadmins, as well as an email interface. 
OTRS is highly customizable (e.g., greeting messages configurable by queue) and 
can even log the time spent on a ticket. 

Table 32.2 shows some of the commercial alternatives for request management. 
Since the web sites for commercial offerings are mostly marketing hype, details 
such as the implementation language and back end are not listed.

Some of the commercial offerings are so complex that they need a person or two 
dedicated to maintaining, configuring, and keeping them running (you know 
who you are, Remedy and ServiceDesk). These systems are appropriate for a site 
with a huge IT staff but are a waste for the typical small, overworked IT staff.

Ticket dispatching

In a large group, even one with an awesome ticketing system, one problem still 
remains to be solved: it is inefficient for several people to divide their attention 
between the task they are working on right now and the request queue, especially 
if requests come in by email to a personal mailbox. We have experimented with 
two solutions to this problem.

Our first try was to assign half-day shifts of trouble queue duty to staff members 
in our sysadmin group. The person on duty would try to answer as many of the 
incoming queries as possible during a shift. The problem with this approach was 
that not everybody had the skills to answer all questions and fix all problems. 
Answers were sometimes inappropriate because the person on duty was new and 
was not really familiar with the customers, their environments, or the specific 
support contracts they were covered by. The result was that the more senior peo-
ple had to keep an eye on things and so were not really able to concentrate on 
their own work. In the end, the quality of service was worse and nothing was 
really gained. 

After this experience, we created a “dispatcher” role that rotates monthly among a 
group of senior administrators. The dispatcher is responsible for checking the 

Table 32.2 Commercial trouble ticket systems

Name Scale Web site

EMC Ionix (Infra) Huge infra-corp.com/solutions
HEAT Medium frontrange.com 
Remedy (now BMC) Huge remedy.com
ServiceDesk Huge ca.com/us/service-desk.aspx
Track-It! Medium numarasoftware.com

  



ptg

Skill sets within IT 1195

Po
lic

y/
Po

lit
ic

s

ticketing system for new entries and for farming tasks out to specific staff mem-
bers. If necessary, the dispatcher contacts users to extract any additional informa-
tion that is necessary to prioritize requests. The dispatcher uses a home-grown 
staff-skills database to decide who on the support team has the appropriate skills 
and time to address a given ticket. The dispatcher also makes sure that requests 
are resolved in a timely manner.

Skill sets within IT

The ticketing system keeps track of work, but you must still make sure you have 
the right staff skills needed to perform that work. This requirement includes the 
help desk! Nothing is more annoying to an experienced user than a support con-
tact who asks, “Have you plugged in the power cable?” while frantically searching 
a customer service database in the background. On the other hand, it’s a waste of 
resources to have your most experienced administrator explain to a novice user 
how to find the delete key in some word processing system.

In general, a staff member with many entries in the skill list is more “valuable.” 
However, there is nothing wrong with having staff with fewer skills, as long as you 
have enough work for them to do.

An accurate skill list helps you verify that you have sufficient skill-specific man-
power to deal with vacations and illnesses. You can build the skill list as problems 
arise and are solved by members of the staff. Include the task, the staff member’s 
name, and the demonstrated level of expertise.

Skills should be defined at an appropriate level of abstraction, neither too specific 
nor too general. The following list of sample skills demonstrates an appropriate 
level of granularity:

• Create users, remove users, set passwords, change quotas
• Create CVS or SVN accounts
• Manage backups and restores
• Integrate new drivers into Windows Remote Installation Service (RIS)
• Package a Windows application in MSI format
• Create and install software application packages on Linux
• Install new hardware
• Analyze log files
• Debug mail server issues
• Debug printing problems
• Debug general hardware problems
• Create DNS entries
• Manage software licenses
• Manage security, especially antivirus software, patches, and upgrades
• Resolve Samba-related requests
• Configure DHCP
• Configure an LDAP server
• Add or remove web sites (configure Apache)

  



ptg

1196 Chapter 32 Management, Policy, and Politics

Time management

System administration involves more context switches in a day than many jobs 
have in a year, and user support personnel bear the brunt of this chaos. Every 
administrator needs good time-management skills. Without them, you won’t be 
able to keep up with your day-to-day responsibilities and you will become frus-
trated and depressed. (Or, if already frustrated and depressed, you will become 
more so.)

Sysadmin burnout is rampant. Most administrators last only a few years. No one 
wants to be constantly on call and continually yelled at. Finding ways to manage 
your time efficiently and keep your customers happy is a win/win situation.

32.3 THE HELP DESK

The help desk is a major component of the IT group structure shown in Exhibit A 
(page 1190). The task of the help desk is to deal with the human beings who use 
and depend on the computer systems you maintain. 

Scope of services

Help desk staff fulfill the portions of the IT SLA that define what kinds of direct 
assistance an individual within the organization can expect to receive. Issues ad-
dressed by the help desk include desktop support, application support, and first-
tier sysadmin issues such as server outages, network problems, and file restores. 

In addition to offering the usual ticket-based or hotline support, this division can 
also offer ancillary services such as training seminars. These measures help in-
crease customers’ self-sufficiency and reduce the number of support requests.

It’s also important to document an escalation policy. Employees need to know 
what to do when their needs are not being met—or when they want to express 
their gratitude for a job well done.

Help desk availability

Good IT support means that qualified staff are available to help whenever a cus-
tomer needs them.

Most problems are minor and can safely enter a service queue. Others are work-
stoppers that merit immediate attention. Automated responses from a request-
tracking system and recorded telephone messages announcing regular office 
hours just cause annoyance. Make sure that users can always access a path of last 
resort if the need arises. A cell phone that rotates among sysadmin staff outside 
business hours is usually sufficient.

Help desk addiction

Unfortunately, excellent support sometimes breeds dependence. It’s easy for users 
to get in the habit of consulting the help desk even when that isn’t appropriate. If 

  



ptg

Make processes reproducible 1197

Po
lic

y/
Po

lit
ic

s

you recognize that someone is using the support system for answers they could 
get just as easily from the man pages or from Google, you might try answering 
their questions by quoting the relevant man page or URL. Be careful, though: this 
tactic can really anger users when not presented with the utmost respect.

32.4 THE ENTERPRISE ARCHITECTS 

The second IT subgroup in Exhibit A, the enterprise architects, consists of the 
admins who hold the overall technical vision for the organization. This role al-
most always includes some number of UNIX or Linux administrators. These indi-
viduals consider both the immediate and long-term impacts of new systems on 
the overall infrastructure. They understand how the organization will evolve in 
coming years and how the requirements of today will feed the requirements of 
tomorrow. 

The enterprise architects are also responsible for understanding how systems in-
teract. For example, in an organization that stores sensitive information about 
customers, the architects must understand how enabling database encryption will 
impact end users and determine whether this impact is acceptable.

The following sections present a selection of architectural best practices to con-
sider when planning your site’s IT design. These principles are particularly impor-
tant when the configuration you will be supporting is new or unusual since these 
situations can be difficult to benchmark against real-world peers. Well-designed 
processes incorporate or foster adherence to these principles.

Make processes reproducible

System administration is not one of the performing arts. Whatever is done should 
be done consistently and repeatably. Usually, this means that the lowest level of 
changes should be made by scripts or by configuration programs rather than by 
system administrators. Variations in configuration should be captured in config 
files for your administrative software.

For example, a script that sets up a new machine should not be asking questions 
about IP numbers and packages to install. Instead, it should check a system con-
figuration directory to determine what to do. It can present this information for 
confirmation, but the choices should be preordained. The less user interaction, 
the smaller the chance for human error.

But let us be clear: we are not describing a site at which high-level administrative 
priests make policy decisions to be carried out by mindless drones. Reproducibil-
ity is just as relevant if you are the only administrator at your site. It’s not a good 
idea to make off-the-cuff configuration decisions that leave no audit trail. If a pa-
rameter needs to be changed, modify the central configuration information and 
propagate outward from there.

  



ptg

1198 Chapter 32 Management, Policy, and Politics

Leave a trail of bread crumbs

Who did what, and for what purpose? If there are problems with your system, 
fixing is much quicker when you can go back to the last working state, or at least 
figure out what has changed since then. Apart from the “what,” it is also important 
to know the “who” and “why.” Speaking with the person who implemented a trou-
blesome change often leads to important insight. You may be able to quickly undo 
the change, but sometimes the change was made for a good reason and undoing it 
will only make things worse.

More details about 
revision control sys-
tems can be found 
starting on page 397.

Revision control systems provide one useful way to keep track of changes. They 
provide both a historical record of the actual data over time and information 
about which sysadmin performed the change. If used correctly, each modification 
is accompanied by a comment that explains the reasoning behind it. Automated 
tools can check in the config files they modify and identify themselves in the 
comment. That way, it’s easy to identify a malfunctioning script and back out the 
changes it made.

If your organization uses a ticketing system, that is another place to keep track of 
changes. You can create a ticket for every change, and that ticket can include the 
who, what, when, where, and why. Possibly just as important, the ticket can also 
include a backout plan. That way, if something goes wrong at two in the morning, 
the on-call administrator does not have to wake up other sysadmins. 

You and your staff must be disciplined about opening a ticket for each change. 
Tracking systems only provide their full benefit if they are used by every adminis-
trator for every change.

Recognize the criticality of documentation

Documentation is so important to a scalable infrastructure that we have made it a 
major section of its own, starting on page 1200.

Customize and write code

The use of existing tools is a virtue, and you should exploit those tools whenever 
you can. But no site in the world is exactly like yours, and your organization is 
certain to have some unique requirements. An IT infrastructure that precisely fills 
the organization’s needs provides a competitive edge and increases everyone’s pro-
ductivity. 

With its excellent scriptability and cornucopia of open source tools, UNIX is the 
ideal basis for a well-tuned infrastructure. In our view, a system administration 
group without a software development function is hobbled.

Keep the system clean

System management is not just about installing and adding and configuring; it’s 
also about knowing what to keep, what to throw out, and what to refurbish. We 
call this concept “sustainable management.” It’s wonderful to be able to add a new 

  



ptg

Document dependencies 1199

Po
lic

y/
Po

lit
ic

s

computer to your environment in 5 minutes, and it’s great to be able to create a 
new user account in 10 seconds. But if you look ahead, it’s equally important to be 
able to find and remove old accounts and computers in an organized way. Sustain-
ability in system management means that you have the tools and concepts needed 
to run your operation over the long haul in an organized fashion.

32.5 THE OPERATIONS GROUP

The final role we discuss in this chapter is that of operations. In business terms, 
operations means “doing the day-to-day schlock that constitutes the business’s es-
sential purpose.” In an IT sense, ops is where many of the tasks that are normally 
referred to as “system administration” live. Some examples are backups, monitor-
ing, patching, upgrading, installing new software, and debugging.

The operations division is responsible for the installation and maintenance of the 
IT infrastructure. As a rule of thumb, the enterprise architecture and operations 
groups deal with computers and wires, whereas the help desk deals with people.

Operations focuses on creating a stable and dependable environment for custom-
ers. Availability and reliability are its key concerns. Operations staff should not 
perform experiments or make quick fixes or improvements on a Friday afternoon. 
The chance of failure (and of nobody but customers noticing the problems over 
the weekend) is just too high.

Aim for minimal downtime

Many people depend on the computing infrastructure we provide. An internal 
department can probably live for a while without its web site, but an Internet mail 
order company such as Amazon.com cannot. Some folks won’t notice if your print 
server is down, but an employee with a hard deadline for completing a document 
or proposal will be very unhappy indeed. In most organizations, losing access to 
email usually makes everybody crabby. Central file servers are another potential 
source of disaster.

At some sites you will need to provide emergency service. In some types of orga-
nizations that operate around the clock—such as hospitals—this might mean 24/7 
on-site coverage by experienced sysadmin staff. 

Even if you don’t have the budget or need to explicitly provide 24/7 coverage, you 
should be prepared to take advantage of any administrators that happen to be 
around late at night or on weekends. A rotating cell phone or on-line notification 
system can often provide “good enough” emergency coverage. Make sure that us-
ers can access this coverage in some easy and well-known way. For example, an 
email alias might relay an SMS message to a floating cell phone.

Document dependencies

To make accurate claims regarding availability or uptime, you must know not only 
your own strengths and weaknesses (including the reliability of the hardware you 

  



ptg

1200 Chapter 32 Management, Policy, and Politics

deploy) but also the dependencies of the IT systems on other hardware, software, 
and personnel. For example: 

• Power: independent power sources and circuits, surge and short protec-
tion, backup power systems such as generators and UPSes, building 
power wiring, maps of power supplied to specific pieces of equipment

• Network: building wiring, backup lines, customer service numbers for 
ISPs, network topology, contact information for other groups within the 
organization that have their own network management function

• Hardware: high-availability systems and procedures for using them, 
hot/cold standbys, spare parts, hardware maintenance contracts

Repurpose or eliminate older hardware

To maintain your infrastructure, you must buy new machines, repurpose older 
ones, and throw out ancient ones. We cover procurement later in the purchasing 
section, but getting rid of old favorites is just as important.

Because users and management can be reluctant to upgrade obsolete equipment, 
you sometimes have to take the initiative. Financial information is the most per-
suasive evidence. If you can demonstrate on paper that the cost of maintaining old 
equipment exceeds the cost of replacement, you can remove many of the intellec-
tual objections to upgrading. Sometimes it’s also useful to replace heterogeneous 
hardware just to save the time and effort needed to keep all the different OS and 
software versions up to date.

Inexpensive Intel/PC hardware is the standard architecture base on the desktop, 
especially now that Apple ships on Intel hardware. The prevalence of PCs has over 
the years shifted the expense of computing from the hardware side to the software 
and support sides.

The best way to maintain a dependable, well-performing infrastructure is to be 
proactive. Develop a policy that anticipates and describes the expected lifetimes of 
your various systems. For example, you might keep laptops for three years, desk-
tops for four years, and servers for five. These numbers may also vary by vendor 
and maintenance contract.

Planning the replacement of old hardware saves time and pain in the long run. If 
you have a policy of replacing laptops every three years, you are much less likely to 
get paged at midnight when a traveling executive suddenly cannot get to his or her 
email because the laptop has crashed. 

Maintain local documentation

Just as most people accept the health benefits of exercise and leafy green vegeta-
bles, everyone appreciates good documentation and has a vague idea that it’s im-
portant. Unfortunately, that doesn’t necessarily mean that they’ll write or update 
documentation without prodding.

  



ptg

Maintain local documentation 1201

Po
lic

y/
Po

lit
ic

s

Why should we care, really?

• Documentation reduces the likelihood of a single point of failure. It’s 
wonderful to have tools that deploy workstations in no time and distrib-
ute patches with a single command, but these tools are nearly worthless 
if no documentation exists and the expert is on vacation or has quit.

• Documentation aids reproducibility. When practices and procedures 
aren’t stored in institutional memory, they are unlikely to be followed 
consistently. When administrators can’t find information about how to 
do something, they have to wing it.

• Documentation saves time. It doesn’t feel like you’re saving time as you 
write it, but after spending a few days re-solving a problem that has been 
tackled before but whose solution has been forgotten, most administra-
tors are convinced that the time is well spent.

• Finally, and most importantly, documentation enhances the intelligibil-
ity of the system and allows subsequent modifications to be made in a 
manner that’s consistent with the way the system is supposed to work. 
When modifications are made on the basis of only partial understand-
ing, they often don’t quite conform to the architecture. Entropy increases 
over time, and even the administrators that work on the system come to 
see it as a disorderly collection of hacks. The end result is often the desire 
to scrap everything and start again from scratch.

Local documentation serves many purposes. Have you ever walked into a ma-
chine room needing to reboot one server, only to face racks and racks of hard-
ware, all alike and all unlabeled? Or had to install a piece of hardware that you’ve 
handled before, but all you can remember about the chore was that it was hard to 
figure out? 

Local documentation should be kept in a well-defined spot. Depending on the 
size of your operation, this might be a directory on a file server that is mounted on 
all your machines, a wiki, or perhaps even in the home directory of a special sys-
tem user account.

Once you have convinced your administrators to document configurations and 
administration practices, it’s important to protect this documentation as well. A 
malicious user can do a lot of damage by changing your organization’s documen-
tation. Make sure that people who need the documentation can find it and read it 
(make it searchable), and that everyone who maintains the documentation can 
change it. But balance accessibility with the need for protection.

Wiki-type documentation is particularly nice in that you can easily undo any ma-
licious changes. Other systems can be protected in a similar way by a revision 
control system.

  



ptg

1202 Chapter 32 Management, Policy, and Politics

Standardized documentation
Our experience suggests that the easiest and most effective way to maintain docu-
mentation is to standardize on short, lightweight documents. Instead of writing a 
system management handbook for your organization, write many one-page docu-
ments, each of which covers a single topic. Start with the big picture and then 
break it down into pieces that contain additional information. If you have to go 
into more detail somewhere, write an additional one-page document that focuses 
on steps that are particularly difficult or complicated.

This approach has several advantages:

• Your boss is probably only interested in the general setup of your envi-
ronment. That is all that’s needed to answer questions from above or to 
conduct a managerial discussion. Don’t pour on too many details or you 
will just tempt your boss to interfere in them.

• The same holds true for customers.

• A new employee or someone taking on new duties within your organiza-
tion needs an overview of the infrastructure to become productive. It’s 
not helpful to bury such people in information.

• It’s more efficient to use the right document than to browse through a 
large document.

• You can index pages to make them easy to find. The less time adminis-
trators have to spend looking for information, the better.

• It’s easier to keep documentation current when you can do that by 
updating a single page.

This last point is particularly important. Keeping documentation up to date is a 
huge challenge; documentation is often is the first thing to be dropped when time 
is short. We have found that a couple of specific approaches keep the documenta-
tion flowing.

First, set the expectation that documentation be concise, relevant, and unpol-
ished. Cut to the chase; the important thing is to get the information down. Noth-
ing makes the documentation sphincter snap shut faster than the prospect of writ-
ing a dissertation on design theory. Ask for too much documentation and you 
may not get any. Consider developing a simple form or template for your sysad-
mins to use. A standard structure helps to avoid blank-page anxiety and guides 
sysadmins to record pertinent information rather than fluff.

Second, integrate documentation into processes. Comments in configuration files 
are some of the best documentation of all. They’re always right where you need 
them, and maintaining them takes virtually no time at all. Most standard configu-
ration files allow comments, and even those that aren’t particularly comment 
friendly can often have some extra information sneaked into them. 

  



ptg

Hardware labeling 1203

Po
lic

y/
Po

lit
ic

s

Locally built tools can require documentation as part of their standard configura-
tion information. For example, a tool that sets up a new computer can require 
information about the computer’s owner, location, support status, and billing in-
formation even if these facts aren’t directly relevant to the machine’s software con-
figuration.

Documentation should not create information redundancies. For example, if you 
maintain a site-wide master configuration file that lists machines and their IP ad-
dresses, there should be no other place where this information is updated by 
hand. Not only is it a waste of your time to make updates in multiple locations, but 
inconsistencies are also certain to creep in over time. When this information is 
required in other contexts and configuration files, write a script that obtains it 
from (or updates) the master configuration. If you cannot completely eliminate 
redundancies, at least be clear about which source is authoritative. And write tools 
to catch inconsistencies, perhaps run regularly from cron.

The advent of tools such as wikis, blogs, and other simple knowledge manage-
ment systems has made it much easier to keep track of IT documentation. Set up 
a single location where all your documents can be found and updated. Don’t for-
get to keep it organized, however. One wiki page with 200 child pages all in one 
list is cumbersome and difficult to use. Be sure to include a search function to get 
the most out of your system.

Hardware labeling
Some documentation is most appropriate when written out on a piece of paper or 
taped to a piece of hardware. For example, emergency procedures for a complete 
system or network failure are not particularly useful if they are stored on a dead or 
unreachable machine.

Every computer should be identifiable without someone’s switching it on and log-
ging in, because those activities will not always be possible. Uniquely label each 
workstation, server, printer, tape drive, and piece of network equipment. Labels 
should include the item’s name and IP address (if it has one). Labels for peripher-
als should identify the host on which they live and the device files through which 
the device is accessed.

In a server room it is useful to have these labels on both the front and the back of 
the machines (especially in cramped racks) so that you can easily find the switch 
of the machine you want to power-cycle. 

If your environment includes many different types of systems, it may be useful to 
add additional information such as architecture, boot instructions, special key se-
quences, pointers to additional documentation, the vendor’s hotline, or the phone 
number of the person in charge. Recording key sequences may seem a bit silly, but 
servers are often connected to a console server rather than a dedicated monitor, 
and administrators need to know how to get to the correct system.

  



ptg

1204 Chapter 32 Management, Policy, and Politics

Be sure your central records and inventory data contain a copy of the information 
included on all these little sticky labels. This data is handy if you manage your 
machines through a TCP/IP connection to your console server instead of spend-
ing your work day in a noisy machine room.

In cases with extensive machine-specific data, you might consider deploying a bar 
coding system that lets you pull up all the relevant details for a device on a mobile 
laptop. (Of course, that mobile system shouldn’t itself depend on a properly func-
tioning network or database server.)

Network documentation
Network wiring must be scrupulously documented. Label all cables, identify 
patch panels and wall outlets, and mark network devices. Always make it easy for 
your wiring technicians to keep the documentation up to date; keep a pencil and 
forms hanging on the wall of wiring closets so that it’s painless to note that a cable 
moved from one device to another. You can transfer this data to on-line storage at 
regular intervals.

Most network devices (e.g., routers and switches) can be reconfigured over the 
network. Although you can now move machines among subnets from your cozy 
office, documentation becomes even more important. Be careful, because you can 
now screw up a much bigger part of your infrastructure more quickly and more 
thoroughly.

You might consider using a software package such as Rancid to help you keep 
track of your device configurations. These tools also catch accidental and forgot-
ten changes, which can drastically reduce unplanned downtime.

User documentation
Prepare a short document that you can give to new users. It should document 
local customs, procedures for reporting problems, the names and locations of 
printers, your backup and downtime schedules, and so on. This type of document 
can save an enormous amount of sysadmin or user services time. You should also 
make the information available on the web. A printed document is more likely to 
be read by new users, but a web page is easier to refer to at the time questions 
arise. Do both and keep them updated regularly. Outdated on-line documentation 
or FAQs are worse than useless.

In addition to documenting your local computing environment, you may want to 
prepare some introductory material about UNIX for your power users. We pro-
vide printed one-page crib sheets that list the commands and applications com-
monly needed by our user community.

Keep environments separate

Organizations that write and deploy their own software need separate develop-
ment, test, and production environments so that releases can be staged into 

  



ptg

Automate, automate, automate 1205

Po
lic

y/
Po

lit
ic

s

general use through a structured process. Separate, that is, but identical; make 
sure that when development systems are updated, the changes propagate to the 
test and production environments as well. Of course, the configuration updates 
themselves should be subject to the same kind of structured release control as the 
code. “Configuration changes” include everything from OS patches to application 
updates and administrative changes.

It is critical to protect your production environment by enforcing role separation 
throughout the promotion process. For example, the developers who have admin-
istrative privileges in the development environment should not be the same peo-
ple who have administrative and promotion privileges in other environments. A 
disgruntled developer with code promotion permissions could conceivably insert 
malicious code at the development stage and then promote it through to produc-
tion. By distributing approval and promotion duties to other people, you require 
multiple people to collude or make mistakes before problems can find their way 
into production systems.

Document your code promotion process and follow it religiously. Don’t make ex-
ceptions. If you find that the regular process is not efficient enough for emergency 
changes, document an emergency change process and then make sure it is fol-
lowed. You should also audit the code promotion process and go back and make 
retroactive adjustments where necessary.

Developers are sometimes frustrated by the level of documentation required in 
this type of system. Consider holding some lunch-and-learn sessions to help them 
understand the motivations for your requirements. Developers who are bought in 
as co-conspirators are more likely to follow the standard procedures.

Automate, automate, automate

Your site-wide management system should contain the following major elements: 

• Automated setup of new machines: This is not just OS installation; it 
also includes all the additional software and local configuration neces-
sary to allow a machine to enter production use. It’s inevitable that your 
site will need to support more than one type of configuration, so include 
multiple machine types in your plans from the beginning. 

• Systematic patching and updating of existing machines: When you 
identify a problem with your setup, you need a standardized and easy 
way to deploy updates to all affected machines. Note that because com-
puters are not turned on all the time (even if they are supposed to be), 
your update scheme must correctly handle machines that are not on-line 
when the update is initiated. You can check for updates at boot time or 
update on a regular schedule; see Chapter 12 for more information.

• A monitoring system: Your users should not have to call you to tell you 
that the server is down. Not only is it unprofessional, but you have no 
idea how long the system has been down. The first person to call you is 

  



ptg

1206 Chapter 32 Management, Policy, and Politics

probably not the first person to have experienced problems. You need 
some kind of monitoring system that raises an alarm as soon as prob-
lems are evident. But alarms are tricky. If there are too many, sysadmins 
start to ignore them; if too few, important problems go unnoticed. 

• A communication system: Keep in touch with the needs of your users; 
supporting them is the ultimate goal of everything you do as a system 
administrator. A request-tracking system is a necessity (see page 1191). 
A central location where users can find system status and contact infor-
mation (typically on the web) is also helpful. 

32.6 MANAGEMENT

The role of IT management is to define the IT group’s overall strategy and to over-
see the IT organization. Many responsibilities fall on the managers’ shoulders:

• Leading the group, bringing vision, and providing necessary resources
• Hiring, firing, staff assessment, and skill development
• Assigning tasks to the staff and tracking progress
• Ensuring and measuring compliance with SLAs
• Negotiating changes and updates to SLAs
• Communicating with the managers of the overall organization
• Handling problems: staff conflicts, rogue users, ancient hardware, etc.
• Acting as a “higher authority” to whom users can escalate problems
• Overseeing the development of a scalable infrastructure
• Planning for disasters and emergencies
• Extracting documentation from squirrelly sysadmins’ heads
• Facilitating security through policy development (both for users and for 

administrators) and enforcement

It might seem that the task of interfacing with customers is missing from this list. 
However, we believe that this role is actually best filled by members of the techni-
cal staff. Managers frequently do not have the technical background to evaluate 
the difficulty and feasibility of customers’ requests. There are likely to be fewer 
surprises on both sides of the table when those doing the actual work have input 
into the deliverables and schedules that are promised to customers.

Leadership

Leadership is hard to describe. But when lacking or poorly executed, its absence is 
all too readily apparent. In a way, leadership is the “system administration” of or-
ganizations: it sets the direction, makes sure the components work together, and 
keeps the whole system running with as few error messages as possible.

Unfortunately, the technical prowess that makes someone a great system adminis-
trator doesn’t necessarily translate to the leadership role, which requires a more 
people-centered skill set. People are a lot harder to master than Perl.

  



ptg

Hiring 1207

Po
lic

y/
Po

lit
ic

s

For new managers with strong technical backgrounds, it can be particularly hard 
to focus on the job of management and avoid the temptation to do engineering 
work. It’s sometimes more comfortable and more fun to dive into solving a techni-
cal problem than to have a long-overdue conversation with a “difficult” staff 
member. But which is more valuable to the organization?

A simple (and perhaps eye-opening) check on your level of leadership is the fol-
lowing. Make a list of the tasks your organization is working on. Use one color to 
mark the areas in which you are steering the boat, and a different color to mark 
the areas in which you are rowing or pulling the boat. Which color is dominant?

Personnel management

Personnel management can be particularly challenging. As part of your oversight 
function, you deal both with your employees’ technical and personal sides. Tech-
nically brilliant sysadmins can sometimes be poor communicators. As their man-
ager, you need to keep them on the growth curve in both dimensions. 

Technical growth is relatively easy to promote and quantify, but personal growth 
is just as important. Below are some important questions to ask when assessing an 
employee’s user interface:

• Is this person’s behavior suitable for our work environment?
• How does this person interact with authorities, customers, suppliers?
• Does this person get along with other members of the team?
• Does this person have leadership skills that should be developed?
• How does this person respond to criticism and technical disputes?
• Does this person actively work to address gaps in his or her knowledge?
• How are this person’s communication skills?
• Can this person plan, implement, and demonstrate a customer’s project?
• Does this person demonstrate ownership of his or her tasks? 
• Does this person tend to find solutions, or roadblocks?

Hiring

It’s important to make these assessments for potential new hires as well as for 
existing employees. The personal qualities of job applicants are often overlooked 
or underweighted. Don’t take shortcuts in this area—you’ll surely regret it later!

There are two approaches to building a staff of system administrators:

• Hire experienced people.
• Grow your own.

Experienced people may come up to speed faster, but you sometimes want them 
to unlearn certain things or change old habits. Conversely, inexperienced admin-
istrators may require fairly extensive technical training. Regardless of which op-
tion you choose, it’s helpful to have documented, comprehensive policies and pro-
cedures. If your existing IT staff have clear direction and understand your policies 

  



ptg

1208 Chapter 32 Management, Policy, and Politics

and procedures, they can be leaders in their own right and help to acclimate new-
comers to your organization’s way of doing things.

Some of the qualities of a good system administrator are contradictory. A sysad-
min must be brash enough to try innovative solutions when stuck on a problem 
but must also be careful enough not to try anything truly destructive. Interper-
sonal skills and problem-solving skills are both important, but they often seem to 
lie on orthogonal axes. While all of your sysadmins don’t need to be stellar com-
municators, a few personable sysadmins will go a long way toward promoting 
customer satisfaction.

When hiring sysadmins, you will have to decide which characteristics are the 
most important for a particular role. For example, if you are hiring a server ad-
ministrator who will be focused on back-end systems and have little interaction 
with customers, you might rank communication skills somewhat lower than tech-
nical skills. But since this person will be part of a larger team, you can’t ignore 
interpersonal skills entirely.

To assess technical expertise, you might try drafting a set of pertinent technical 
questions you can pose to interviewees. You might even try sticking a bogus ques-
tion in among the real ones to measure the BS factor in an applicant’s answers.

We believe that in-person interviews are important. You will learn more about an 
applicant in the first 15 minutes of an in-person interview than you can in a lon-
ger phone conversation.

We also believe strongly in checking references. During the reference check, we 
like to ask open-ended questions that give the respondent a chance to send subtle 
messages about the applicant. Listen carefully! People generally do not like to say 
negative things during a reference check, but they may give you subtle hints if you 
are paying close attention.

Some of the questions to ask will emerge from your interview with the candidate. 
For example, if the interview raises concern about whether an applicant pays close 
attention to details, you might ask a reference something like “Would you con-
sider the applicant more of a detail-oriented person or a big-picture thinker?”

Firing

If you make a hiring mistake, fire early. You may miss a few late bloomers, but 
keeping people who are not pulling their own weight can alienate your other staff 
members as they take up the slack and clean up the duds’ messes. Your customers 
will also realize that certain individuals don’t get things done and start demanding 
a particular system administrator for their jobs. You don’t want your customers 
interfering with management decisions in your daily business.

In many organizations it is very hard to fire someone, especially after the initial 
evaluation period is over. Make sure that initial evaluations are taken seriously. 

  



ptg

Quality control 1209

Po
lic

y/
Po

lit
ic

s

Later, you may have to collect data showing incompetence, give formal warnings, 
set performance goals, and so on.

Mechanics of personnel management

There is more to integrating a new employee into your infrastructure than just 
writing an offer letter. You must be aware of and honor your organization’s rules 
regarding advertising for positions, trial periods, reviews, and so on.

Another set of chores define the mechanics of getting a new person settled with a 
desk, computer, keys, accounts, and sudo access. Your processes should ensure 
that a system administrator hired to administer a particular set of servers is not 
given carte blanche to administer any system in the company.

Just as important are the policies and procedures to follow when a sysadmin 
leaves the organization. You need a checklist to ensure you don’t forget anything. 
Your checklist should include things such as

• Removing the user’s domain account (LDAP or Active Directory)
• Removing the user’s UNIX and Linux accounts
• Removing the user from all the site’s sudoers files
• Collecting keys and access cards (document all keys and cards collected)
• Collecting a company cell phone

Some organizations can print a definitive list of access rights and hardware that 
have been given to each employee. This is a great way to make sure you haven’t 
forgotten anything. 

In the United States, it’s common for employees to give two weeks’ notice before 
quitting. Some sites forego the two-week period and walk the employee to the 
door, immediately revoking all physical and network access. Smart!

Quality control

Managers set the tone for quality control. Each task should have clear criteria for 
completion. In addition to the work inherent in each task, completion criteria 
might include

• Testing the solution
• Updating local documentation
• Propagating the solution to all affected machines
• Completing the trouble ticket with details of the actions taken
• Getting the ticket initiator to sign off on the resolution as satisfactory

Even a simple task, such as creating a cron job to help with a daily administrative 
chore, should include a testing phase to ensure that the change works as intended. 
More complex tasks should include a documented test plan.

Ideally, your IT group would have a culture in which sysadmins take it upon 
themselves to ensure that each job is done well and completely. But to achieve that 

  



ptg

1210 Chapter 32 Management, Policy, and Politics

steady state, you may have to do some close monitoring; this is a good situation in 
which to apply the maxim that you should “inspect what you expect.”

Management without meddling

As a technically competent manager, you will frequently be tempted to advise em-
ployees on how to do their jobs. But be careful. There are situations where this is 
appropriate, but there are also situations where you need to let your employees 
grow and become fully responsible for their work.

We think of employee development as being a little bit like parenting. If a staff 
member is about to make a mistake that will give IT a black eye, cause serious 
damage, or otherwise cause a problem that is difficult to recover from, it’s time to 
investigate. Ask the staff member to explain the game plan, and make sure he or 
she understands the likely consequences of the plan. If the staff member still 
seems to be on the wrong path, you will probably need to step in.

On the other hand, if someone is about to make a mistake that could serve as a 
good learning opportunity without causing undue harm, it might be a good time 
to step back. Lessons learned through direct experience are retained better than 
those communicated by word of mouth.

Of course, pitfalls lie in both directions. You don’t want to be perceived as a mi-
cromanager, but you also don’t want to be seen as withholding information from 
your staff or as someone who lets staff fail when they could be succeeding. Sup-
port your staff even when they’ve made mistakes and help them learn. Never al-
low mistakes to become an ongoing source of embarrassment.

Community relations

System administration is a funny business. If you do your job well, users take your 
seamless computing environment for granted and nobody notices what you do. 
But in today’s world of viruses, spam, bloated applications, and total dependence 
on the Internet, the IT staff is an indispensable part of the organization.

Your satisfied customers are your best marketing device. However, there are other 
ways to gain visibility within your organization and within the broader commu-
nity. Based on our experience with tooting our own horn, we suggest the follow-
ing methods as being particularly effective.

• Hold town hall meetings where users can express their concerns and ask 
questions about the computing infrastructure. You might prepare for 
such a meeting by analyzing users’ support requests and open the meet-
ing with a short presentation on the most troublesome topics you’ve 
identified. Provide refreshments to ensure a good turnout.

• Leave plenty of time for questions and make sure you have knowledge-
able staff available to answer them. Don’t try to bluff your way out of 
unexpected questions, though. If you don’t know the answer off-hand, 
it’s best to admit this and follow up later.

  



ptg

Management of upper management 1211

Po
lic

y/
Po

lit
ic

s

• Design a seminar series directed at end users within your organization. 
Schedule meetings at two- or three-month intervals and publish the top-
ics to be presented well in advance.

• Attend conferences on system administration and give talks or write 
papers about the tools you develop. Such presentations not only give you 
feedback from your peers but they also show your customers (and your 
boss) that you do your job well.

System administration is ultimately about dealing with people and their needs. 
Personal relationships are as important as they are in any business. Talk to your 
customers and colleagues, and make time for personal discussions and exchanges.

If you support multiple groups of people, consider assigning a specific staff mem-
ber to act as an account manager for each group. This liaison should take on re-
sponsibility for the general happiness of the customer and should speak regularly 
with end users. Channel news and information about changes in the computing 
environment through the liaison to create additional opportunities for contact.

Management of upper management

To effectively discharge your management duties (particularly those in the “lead-
ership” arena), you need the respect and support of your own management. You 
need the ability to define your group’s structure and staffing, including decision 
authority over hiring and firing. You need control over task assignments, includ-
ing the authority to decide when goals have been achieved and staff can be reas-
signed. Finally, you need to be responsible for representing your group both 
within the larger organization and to the world at large.

Upper management sometimes has no idea what system administrators do. Use 
your trouble ticketing system to provide this information; it can help when you or 
your boss needs to campaign for additional staff or equipment. Also make sure 
that management understands the different roles of the help desk and the opera-
tions team. They need to know that the person who answers the phone when they 
dial the help desk is not the same person who configures the routers and servers. 
This clarity will go a long way toward keeping expectations in line.

It may be wise to keep good records even in the absence of a particular goal. Man-
agers, especially nontechnical managers, are often way off in their estimates of the 
difficulty of a task or the amount of time it will take to complete. This inaccuracy 
is especially noticeable for troubleshooting tasks.

Try to set expectations realistically. If you don’t have much experience in planning 
your work, double or triple your time estimates for large or crucial tasks. If an 
upgrade is done in two days instead of three, most users will thank you instead of 
cursing you as they might have if your estimate had been one day.

When it comes to making changes to production systems, you need to follow a 
documented change management process. This process should include approval 

  



ptg

1212 Chapter 32 Management, Policy, and Politics

from a change advisory board. Having management participate in the approval 
process will tend to decrease the number of user complaints. Users who see that 
the CEO is on-board with moving to a new email system are less likely to call you 
up insisting that you consider their favorite alternative.

Security is a common problem area. Tightening security typically means inconve-
niencing users, and the users often outweigh you both in number and whining 
ability. Increased security may reduce users’ productivity; before implementing a 
proposed security change, do a risk analysis to be sure both management and 
users understand why it is a good idea.

Make sure that any security change that impacts users (e.g., converting from pass-
words to RSA/DSA keys for remote logins) is announced well in advance, is well 
documented, and is well supported at changeover time. You might even consider 
holding workshops at which users can learn about the change and maybe even 
bring in a laptop so that the first time they use the new system there is someone 
there to help them. Documentation should be easy to understand and should pro-
vide cookbook-type recipes for dealing with the new system. Allow for extra staff-
ing hours when you first cut over to the new system so you can deal with frus-
trated, panicked users.

Purchasing

In many organizations, the group of people that make purchasing decisions does 
not include system administrators. This is, of course, fine for many decisions, but 
when the purchasing team is acquiring IT-related items, system administrators 
should have an opportunity to express their opinions and possibly even make a 
case for why one system should be chosen over another.

Sysadmins can provide good information about compatibility with the local envi-
ronment, the competence of vendors (especially third-party resellers), and the re-
liability of certain types of equipment. Reliability information is particularly im-
portant when ordering systems that affect the organization’s overall ability to 
function.

Another important piece of information that sysadmins can contribute is the im-
pact that a new system will have on the organization’s IT security and regulatory 
compliance. A good example might be a hospital in which a clinical department 
orders new imaging systems without consulting the system administration group. 
Unfortunately, when the hardware arrives and the sysadmins are called in to con-
figure it, they realize that it does not interact with the hospital’s authentication 
system. In fact, it does not require user login at all! Now the hospital has spent 
thousands of dollars on a system that is not HIPAA-compliant, and they will ei-
ther need to purchase a new system or work with the vendor to get individual 
authentication capabilities incorporated. Neither of these is a good option, and 
the hospital would have been better off if the system administrators had been 
called in to foresee these problems and recommend a different vendor.

  



ptg

Mediation 1213

Po
lic

y/
Po

lit
ic

s

Sysadmins need to know about any new system (hardware or software) that’s be-
ing ordered so that they can determine how to integrate it into the current infra-
structure and predict what projects and resources will be needed to support it.

Keep in mind that although system administrators can offer recommendations, 
the organization will make the ultimate purchasing decision. If the organization 
purchases something the system administrators think is a bad choice, that item 
still needs to be supported—ignoring systems you don’t like is not an option.

In organizations that must channel purchases to the lowest bidder, document 
evaluation criteria in addition to cost. Clauses such as “must be compatible with 
existing environment,” or “must be able to run XYZ package well” are relatively 
open ended and let you consider factors other than just the price when making 
purchasing decisions.

The incremental impact and cost of a piece of hardware is not constant. Is it the 
60th of that architecture or the first? Does it have enough local disk space for the 
system files? Does it have enough memory to run today’s bloated applications? Is 
there a spare network port to plug it into? Is it a completely new OS? Is it compli-
ant with relevant regulations? How does it fit into the organization’s long-range 
plans? Has the system been considered and approved by the enterprise architects?

Conflict resolution

Several chores that fall on the manager’s plate have the general flavor of getting 
along with people (usually customers, staff, or management) in sticky situations. 
We first look at the general approach and then talk about the special case of deal-
ing with “rogue” customers, sometimes known as cowboys.

Conflicts in the system administration world often occur between system admin-
istrators and their customers, colleagues, or suppliers. For example, a customer is 
not happy with the services rendered, a vendor didn’t deliver promised materials 
or services on time, a colleague didn’t do what was expected, or an engineering 
department insists that it needs control over the configurations of its desktops.

Mediation
Most people don’t like to talk about conflicts or even admit that they exist. When 
emotions flare, it’s generally because the conflict has been addressed much too 
late, after an unsatisfactory situation has been endured for a long time. During the 
festering phase, the parties build up resentment and ruminate on each other’s vil-
lainous motives.

A face-to-face meeting with a neutral mediator in attendance can sometimes de-
fuse the situation. Try to constrain the session to a single topic and limit the time 
to no more than one hour. These measures can lower the chance of the meeting 
degenerating into an endless gripe session.

  



ptg

1214 Chapter 32 Management, Policy, and Politics

The goal of a mediation session is to find a win/win solution for both parties. 
Formal mediation training can be obtained through multiple organizations, but 
here are some basic principles:

• Give each party a chance to express its desired outcome. Record these 
points in a neutral fashion on a whiteboard that both parties can see.

• As mediator, your goal is to highlight areas of agreement and to find 
commonality between both sets of desired outcomes.

• You may not reach agreement in one meeting. But if you can make prog-
ress toward finding common ground, consider the meeting a success.

• Build on any common ground you’ve identified in subsequent sessions. 
After just a couple meetings, you may develop enough common ground 
that both parties can be satisfied with the outcome.

Rogue users and departments
The introduction of closely managed systems and processes often causes conflict. 
Technically inclined users (and sometimes entire departments) may feel that cen-
tralized system administration cannot adequately accommodate their configura-
tion needs or their need for autonomous control over the computers they use.

Your first impulse may be to try and strong-arm such rogue users into accepting 
standard configurations in order to minimize the cost and time required to sup-
port them. However, this iron-fisted approach usually ends up creating both un-
happy users and unhappy sysadmins. Keep in mind that rogue users’ desires are 
often perfectly legitimate and that it is the sysadmins’ job to support them or, at 
least, to refrain from making their lives more difficult. 

The most desirable solution is to identify the underlying reasons for the users’ 
reluctance to accept managed systems. In many cases, you can address their needs 
and bring them back into the fold.

An alternative to the integration strategy is to trade support for autonomy. You 
might allow rogue users or groups to do what they want, with the explicit under-
standing that they must also take on responsibility for keeping the customized 
systems running. If you do this, be sure to protect your other resources. Install a 
firewall between the systems you manage and the systems managed by the out-
laws. This precaution will help thwart break-ins and viruses emanating from the 
segregated network. 

Have the residents of the segregated network sign a policy document that sets 
security guidelines. For example, if their systems interfere with the rest of the or-
ganization, their network connection can be turned off until they are no longer 
impacting the rest of the organization. The fix for such an issue might include 
requiring them to patch critical vulnerabilities or to install antivirus software.

  



ptg

The difference between policies and procedures 1215

Po
lic

y/
Po

lit
ic

s

All organizations have their “bleeding edgers,” users who are hooked on getting 
the latest stuff immediately. Such users are prepared to live with the inconve-
nience of beta versions and unstable prereleases as long as their software is up to 
date. Find ways to deal with these people as useful resources rather than as thorns 
in your side. They are ideal candidates to test new software and are often willing 
to feed bug reports back to you so that problems can be fixed.

Creative system administration is also needed to deal with the increasing number 
of mobile devices being brought to work. You must find ways of providing service 
for these (generally untrusted) devices without endangering the integrity of your 
systems. A separate network might be a good idea. Another option is to have the 
laptops run through a VPN that enforces “posture assessment.”

Posture assessment ensures that the laptops adhere to your most important secu-
rity policies. For example, you might require all machines connecting through the 
VPN to have a set of critical patches installed. For Windows laptops, you might 
also require antivirus software.

32.7 POLICIES AND PROCEDURES

Comprehensive IT policies and procedures serve as the groundwork for a modern 
IT organization. Policies set standards for users and administrators and foster 
consistency for everyone involved. More and more, policies require acknowledge-
ment in the form of a signature or other proof that the user has agreed to abide by 
their contents. Although this may seem excessive to some, it is actually a great way 
to protect administrators in the long run. 

The ISO/IEC 27001 standard is a good basis for constructing your policy set. It 
weaves general IT policies with other important elements such as IT security and 
the role of the Human Resources department. In the next few sections, we discuss 
the ISO/IEC 27001 framework and highlight some of its most important and use-
ful elements.

The difference between policies and procedures

Policies and procedures are two distinct things, but they are often confused, and 
the words are sometimes even used interchangeably. This sloppiness creates con-
fusion, however. To be safe, think of them this way:

• Policies are documents that define requirements or rules. The require-
ments are usually specified at a relatively high level. An example of a 
policy might be that incremental backups must be performed daily, with 
level 0 backups being completed each week.

• Procedures are documents that describe how a requirement or rule will 
be met. So, the procedure associated with the policy above might say 
something like “Incremental backups are performed using Backup Exec 
software, which is installed on the server backups01…”

  



ptg

1216 Chapter 32 Management, Policy, and Politics

This distinction is important because your policies should not change very often. 
You might review them annually and maybe change one or two pieces. Proce-
dures, on the other hand, evolve continuously as you change your architecture, 
systems, and configurations.

Some policy decisions are dictated by the software you are running or by the poli-
cies of external groups, such as ISPs. Some policies are mandatory if the privacy of 
your users’ data is to be protected. We call these topics “nonnegotiable policy.”

In particular, we believe that IP addresses, hostnames, UIDs, GIDs, and user-
names should all be managed site-wide. Some sites (multinational corporations, 
for example) are clearly too large to implement this policy, but if you can swing it, 
site-wide management makes things a lot simpler. We know of a company that 
enforces site-wide management for 35,000 users and 100,000 machines, so the 
threshold at which an organization becomes too big for site-wide management 
must be pretty high.

Other important issues have a larger scope than just your local sysadmin group:

• Handling of security break-ins
• Filesystem export controls
• Password selection criteria
• Removal of logins for cause
• Copyrighted material (e.g., MP3s and DVDs)
• Software piracy

Policy best practices 

Several policy frameworks are available, and they generally cover roughly the 
same territory. The following topics are examples of those that are typically in-
cluded in an IT policy set.

• Information security policy 
• External party connectivity agreements
• Asset management policy
• Information classification system
• Human Resources security policy
• Physical security policy
• Access control policies
• Security standards for development, maintenance, and new systems
• Incident management policy
• Business continuity management (disaster recovery)
• Regulatory compliance policy

Procedures

Procedures in the form of checklists or recipes can codify existing practice. They 
are useful both for new sysadmins and for old hands. Better yet are procedures 
that include executable scripts.

  



ptg

Risk assessment 1217

Po
lic

y/
Po

lit
ic

s

Several benefits accrue from standard procedures:

• Chores are always done in the same way.
• Checklists reduce the likelihood of errors or forgotten steps.
• It’s faster for the sysadmin to work from a recipe.
• Changes are self-documenting.
• Written procedures provide a measurable standard of correctness.

Here are some common tasks for which you might want to set up procedures:

• Adding a host
• Adding a user
• Localizing a machine
• Setting up backups for a new machine
• Securing a new machine
• Removing an old machine
• Restarting a complicated piece of software
• Reviving a web site that is not responding or not serving data
• Upgrading the operating system 
• Patching software
• Installing a software package
• Upgrading critical software (sendmail, gcc, named, OpenSSL, etc.)
• Backing up and restoring files
• Expiring backup tapes
• Performing emergency shutdowns

Many issues sit squarely between policy and procedure. For example:

• Who can have an account?
• What happens when they leave?

The resolutions of such issues need to be written down so that you can stay con-
sistent and avoid falling prey to the well-known, four-year-old’s ploy of “Mommy 
said no, let’s go ask Daddy!” 

32.8 DISASTER RECOVERY

Your organization depends on a working IT environment. Not only are you re-
sponsible for day-to-day operations, but you must also have plans in place to deal 
with any reasonably foreseeable eventuality. Preparation for such large-scale prob-
lems influences both your overall game plan and the way that you define daily 
operations. In this section, we look at various kinds of disasters, the data you need 
to gracefully recover, and the important elements of a disaster plan.

Risk assessment

Before a disaster recovery plan is completed, it’s a good idea to pull together a risk 
assessment to help you understand what assets you have, what risks they face, and 

  



ptg

1218 Chapter 32 Management, Policy, and Politics

what mitigation steps you already have in place. The NIST 800-30 special publica-
tion details an extensive risk assessment process. You can download it here:

http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

Part of the risk assessment process is to make an explicit, written catalog of the 
potential disasters you want to protect against. Disasters are not all the same, and 
you may need several different plans to cover the full range of possibilities. For 
example, some common threat categories are

• Floods
• Fires
• Earthquakes
• Hurricanes and tornadoes
• Electrical storms and power spikes
• Power failures, both short and long term
• Extreme heat or failure of cooling equipment
• Device hardware failures (dead servers, fried hard disks)
• Network device failures (routers, switches, cables)
• Malicious users, both external and internal2
• Accidental user errors (deleted or damaged files and databases, lost con-

figuration information, lost passwords, etc.)

For each potential threat, consider and write down all the possible implications of 
that event.

Once you understand the threats, you need to prioritize the services within your 
IT environment. Build a table that lists your IT services and assigns a priority to 
each. For example, a “software as a service” company might rate its external web 
site as a top-priority service, while an office with a simple, informational external 
web site might not worry about the site’s fate during a disaster.

Disaster management

More and more, organizations are designing their critical systems to automatically 
fail over to secondary servers in the case of problems. This is a great idea if you 
have little or no tolerance for services being down. However, don’t fall prey to the 
belief that because you are mirroring your data, you do not need off-line backups. 
Even if your data centers are miles apart, it is certainly possible that you could lose 
both of them. Make sure you include data backups in your disaster planning. 

Read more about cloud 
computing starting on 
page 987.

Cloud computing is another disaster-planning resource that is gaining traction. 
Through services such as Amazon’s EC2, you can get a remote site set up and 
functioning within minutes, without having to pay for dedicated hardware. You 
pay only for what you use, when you use it. This is a great and inexpensive alter-
native to a dedicated warm-backup site, albeit one that requires considerable tech-
nical planning.

2. As of 2005, about half of security breaches originated with insiders.

  

http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf


ptg

Disaster management 1219

Po
lic

y/
Po

lit
ic

s

A disaster recovery plan should include the following sections (based on the NIST 
disaster recovery standard, 800-34):

• Introduction – purpose and scope of the document

• Concept of operations – system description, recovery objectives, infor-
mation classification, line of succession, responsibilities

• Notification and activation – notification procedures, damage assess-
ment procedures, plan activation

• Recovery – the sequence of events and procedures required for recovery 
of lost systems

• Return to normal operations – concurrent processing, reconstituted 
system testing, return to normal operations, plan deactivation

We are accustomed to using the network to communicate and to access docu-
ments. However, these facilities may be unavailable or compromised after an inci-
dent. Store all relevant contacts and procedures off-line. Know where to get recent 
dump tapes and how to make use of them without reference to on-line data. 

In all disaster scenarios, you will need access to both on-line and off-line copies of 
essential information. The on-line copies should, if possible, be kept on a self-
sufficient machine: one that has a rich complement of tools, has key sysadmins’ 
environments, runs its own name server, has a complete local /etc/hosts file, has 
no file-sharing dependencies, has a printer attached, and so on. Don’t use an old 
junker that’s no good for anything else; the disaster recovery storage machine 
should be fast and should have plenty of memory and scratch disk space you can 
use for restores and compares during recovery. The machine needs a complete 
development environment so that it can patch and recompile any compromised 
software. It helps if the machine also has interfaces for all the types of disk drives 
used at your site (IDE, SATA, SCSI, FC-AL, etc.).

Here’s a list of handy data to keep on the backup machine and in the form of a 
printed booklet or optical disc:

• An outline of the recovery procedure: who to call, what to say
• Service contract phone numbers and customer numbers
• Key local phone numbers: police, fire, staff, boss
• Inventory of backup tapes and the backup schedule that produced them
• Network maps
• Software serial numbers, licensing data, and passwords
• Copies of software installation media (can be kept as ISO files)
• A copy of your systems’ service manuals
• Vendor contact info for that emergency disk you need immediately
• Administrative passwords

  



ptg

1220 Chapter 32 Management, Policy, and Politics

• Data on hardware and software configurations: OS versions, patch lev-
els, partition tables, PC hardware settings, IRQs, DMAs, and the like

• Startup instructions for systems that need to be brought back on-line in 
a particular order

Staff for a disaster

Your disaster recovery plan should document who will be in charge in the event of 
a catastrophic incident. Set up a chain of command and keep the names and 
phone numbers of the principals off-line. We keep a little laminated card with 
important names and phone numbers printed in microscopic type. Very handy— 
and it fits in your wallet.

It may be that the best person to put in charge is a sysadmin from the trenches, 
not the IT director (who is usually a poor choice for this role). 

The person in charge must be someone who has the authority and decisiveness to 
make tough decisions based on minimal information (e.g., a decision to discon-
nect an entire department from the network). The ability to make such decisions, 
communicate them in a sensible way, and lead the staff through the crisis are 
probably more important than having theoretical insight into system and network 
management.

An important but sometimes unspoken assumption made in most disaster plans 
is that sysadmin staff will be available to deal with the situation. Unfortunately, 
people get sick, go on vacation, leave for other jobs, and in stressful times may 
even turn hostile. Consider what you’d do if you needed extra emergency help. 
(Not having enough sysadmins around can sometimes constitute an emergency in 
its own right if your systems are fragile or your users unsophisticated.)

You might try forming a sort of NATO pact with a local consulting company that 
has sharable system administration talent. Of course, you must be willing to share 
back when your buddies have a problem. Most importantly, don’t operate close to 
the wire in your daily routine. Hire enough system administrators and don’t ex-
pect them to work 12-hour days.

Power and HVAC

Test your disaster recovery plan before you need to use it. An untested plan is no 
plan at all! Test and update the plan annually.

See page 1091 for more 
information about 
standby power options.

Test your generators and UPSes on a monthly or quarterly schedule, depending 
on how much risk your management is willing to accept. Verify that everything 
you care about is plugged into a UPS, that the UPS batteries are healthy, and that 
the failover mechanism works. To test an individual UPS, just unplug it from the 
wall. To make sure that all critical equipment is properly UPSified, you may have 
to throw the circuit breakers. Know your power system’s dependencies and points 
of failure.

  



ptg

Internet connection redundancy 1221

Po
lic

y/
Po

lit
ic

s

UPSes need maintenance, too. This function is probably outside the scope of your 
sysadmin duties, but you are responsible for ensuring that it is performed.

If you have a generator, contract with a local company that can deliver fuel for the 
generator when you need it. Keep enough fuel on hand to power your systems 
during an extended outage, but remember that fuel eventually goes bad. Gasoline 
starts to turn in as little as one month. Even when treated with a stabilizer addi-
tive, gasoline should not be stored for more than a year. Diesel is more chemically 
stable than gasoline but can support the growth of algae, so consider an algicidal 
additive for diesel that will be held for an extended period.

Most power outages are of short duration, but plan for two hours of battery life so 
that you have time to shut down machines properly in the event of a longer inter-
ruption. Most UPSes have a USB port or Ethernet interface that you can use to 
initiate a graceful shutdown of noncritical machines after a defined period with-
out power.

Take advantage of power outages to do any five-minute upgrades that you have 
already tested but have not yet deployed. You’re down anyway, so people expect to 
be inconvenienced. In some shops, an extra five minutes during a power outage is 
easier to accept than a scheduled downtime with a week’s notice. If you have old 
machines that you suspect are not in use anymore, leave them turned off until 
someone complains. It might not be until weeks later—or never—that the “miss-
ing” machine is noticed. 

See Chapter 28 for 
more information 
about environmental 
issues. 

Cooling systems often have a notification system that can call you if the tempera-
ture gets too high. Tune the value of “too high” so that you have time to get in 
before machines start to fry after the cooling system pages you; we use 76 degrees 
instead of 90, but some of us live in the mountains 45 minutes away (in summer, 
indeterminate in winter). Keep a couple of mechanical or battery-operated ther-
mometers in the machine room—losing power means that you lose all those nifty 
electronic indicators that normally tell you the temperature. 

If you co-locate equipment at a remote site, ask to see the hosting site’s backup 
power facilities before you sign a contract. Verify that the generator is real and is 
tested regularly. Ask to be present at the next generator test; whether or not you 
get to see an actual test, you’re likely to get useful information.

Internet connection redundancy

ISPs are occasionally swallowed as part of a merger. Such mergers have demol-
ished many companies’ carefully laid plans for maintaining redundant connec-
tions to the Internet. A post-merger ISP often consolidates circuits that belonged 
to the independent companies. Customers that formerly had independent paths 
to the Internet may then have both connections running through a single conduit 
and once again be at the mercy of a single backhoe fiber cut.

ISPs have also been known to advertise “redundant circuits” or “backup connec-
tions” of questionable value. On closer inspection you may find that yes, there are 

  



ptg

1222 Chapter 32 Management, Policy, and Politics

two fibers but both are in the same conduit, or it may be that the backup connec-
tion transits an already saturated ATM cloud. Hold a yearly review with your ISPs 
to verify that you still have genuine redundancy.

Security incidents

System security is covered in detail in Chapter 22, Security. However, it’s worth 
mentioning here as well because security considerations impact the vast majority 
of administrative tasks. There is no aspect of your site’s management strategy that 
can be designed without due regard for security. For the most part, Chapter 22 
concentrates on ways of preventing security incidents from occurring. However, 
thinking about how you might recover from a security-related incident is an 
equally important part of security planning. 

Having your web site hijacked is a particularly embarrassing type of break-in. For 
the sysadmin at a web hosting company, a hijacking can be a calamitous event, 
especially when it involves sites that handle credit card data. Phone calls stream in 
from customers, from the media, from the company VIPs who just saw the news 
of the hijacking on CNN. Who will take the calls? What should that person say? 
Who is in charge? What role does each person play? If you are in a high-visibility 
business, it’s definitely worth thinking through this type of scenario, coming up 
with some preplanned answers, and perhaps even having a practice session to 
work out the details.

Sites that accept credit card data have legal requirements to deal with after a hi-
jacking. Make sure your organization’s legal department is involved in security 
incident planning, and make sure you have relevant contact names and phone 
numbers to call in a time of crisis.

When CNN or Slashdot announces that your web site is down, the same effect 
that makes highway traffic slow down to look at an accident on the side of the 
road causes your Internet traffic to increase enormously, often to the point of 
breaking whatever it was that you just fixed. If your web site cannot handle an 
increase in traffic of 25% or more, consider having your load balancing device 
route excess connections to a server that presents a page that simply says “Sorry, 
we are too busy to handle your request right now.”

Develop a complete incident handling guide to take the guesswork out of manag-
ing security problems. See page 950 for more details on incident management.

32.9 COMPLIANCE: REGULATIONS AND STANDARDS

IT auditing and governance are big issues today. Regulations and quasi-standards 
for specifying, measuring, and certifying compliance have spawned myriad acro-
nyms: SOX, ITIL, COBIT, and ISO 27002, just to name a few. Unfortunately, this 
alphabet soup is leaving something of a bad taste in system administrators’ 
mouths, and software to implement all the controls deemed necessary by recent 
legislation is currently lacking.

  



ptg

Compliance: regulations and standards 1223

Po
lic

y/
Po

lit
ic

s

Some of the major advisory standards, guidelines, industry frameworks, and legal 
requirements that may apply to system administrators are listed below. The legis-
lative requirements are largely specific to the United States. However, the stan-
dards do contain some good advice even for organizations that are not required to 
adhere to them. It might be worth breezing through a few of them just to see if 
there are any best practices you might want to adopt. (The standards are listed in 
alphabetical order.)

• The CJIS (Criminal Justice Information Systems) standard applies to 
organizations that track criminal information and integrate that infor-
mation with the FBI’s databases. Its requirements can be found on-line at 
fbi.gov/hq/cjisd/cjis.htm.

• COBIT is a voluntary framework for information management based on 
industry best practices. It is developed jointly by the Information Sys-
tems Audit and Control Association (ISACA) and the IT Governance 
Institute (ITGI); see isaca.org for details. COBIT’s mission is “to 
research, develop, publicize, and promote an authoritative, up-to-date, 
international set of generally accepted information technology control 
objectives for day-to-day use by business managers and auditors.”

The first edition of the framework was published in 1996, and we are 
now at version 4.0, published in 2005. This latest iteration was strongly 
influenced by the requirements of the Sarbanes-Oxley Act. It includes 34 
high-level objectives that cover 215 “control objectives” categorized into 
four domains: Plan and Organize, Acquire and Implement, Deliver and 
Support, and Monitor and Evaluate.

• COPPA, the Children’s Online Privacy Protection Act, regulates orga-
nizations that collect or store information about children under age 13. 
Parental permission is required to gather certain information; see 
coppa.org for details.

• FERPA, the Family Educational Rights and Privacy Act, applies to all 
institutions that are recipients of federal aid administered by the Secre-
tary of Education. This regulation protects student information and 
accords students specific rights with respect to their data. For details, see 
ed.gov/policy/gen/guid/fpco/ferpa/index.html.

• FISMA, the Federal Information Security Management Act, applies to 
all government agencies and contractors to government agencies. It’s a 
large and rather vague set of requirements that seek to enforce compli-
ance with a variety of IT security publications from NIST, the National 
Institute of Standards and Technology. Whether or not your organiza-
tion falls under the mandate of FISMA, the NIST documents are worth 
reviewing. See csrc.nist.gov/publications/PubsTC.html.

  



ptg

1224 Chapter 32 Management, Policy, and Politics

• The FTC’s Safe Harbor framework bridges the gap between the U.S. 
and E.U. approaches to privacy legislation and defines a way for U.S. 
organizations that interface with European companies to demonstrate 
their data security. See export.gov/safeharbor/eg_main_018236.asp.

• The Gramm-Leach-Bliley Act (GLBA) regulates financial institutions’ 
use of consumers’ private information. If you’ve been wondering why 
the world’s banks, credit card issuers, brokerages, and insurers have been 
pelting you with privacy notices, that’s the Gramm-Leach-Bliley Act at 
work. See ftc.gov/privacy/privacyinitiatives/glbact.html.

• HIPAA, the Health Insurance Portability and Accountability Act, 
applies to organizations that transmit or store protected health informa-
tion (aka PHI). It is a broad standard that was originally intended to 
combat waste, fraud, and abuse in health care delivery and health insur-
ance, but it is now used to measure and improve the security of health 
information as well. See hhs.gov/ocr/privacy/index.html.

• ISO 27001 and ISO 27002 are a voluntary (and informative) collection 
of security-related best practices for IT organizations. See iso.org.

• ITIL is the IT Infrastructure Library, a collection of manuals originally 
developed by the British government that outline a framework for the 
management of IT services. It is voluntary but has become widely used. 
See itil.org and the ITIL section at the end of this list for details.

• CIP (Critical Infrastructure Protection) is a family of standards from 
the North American Electric Reliability Corporation (NERC) that pro-
mote the hardening of infrastructural systems such as power, telephone, 
and financial grids against risks from natural disasters and terrorism.

In a textbook demonstration of the Nietzschean concept of organiza-
tional “will to power,” it turns out that most of the economy falls into one 
of NERC’s 17 “critical infrastructure and key resource” (CI/KR) sectors 
and is therefore richly in need of CIP guidance. Organizations within 
these sectors should be evaluating their systems and protecting them as 
appropriate. See cip.gmu.edu/cip.

• The Payment Card Industry Data Security Standard (PCI DSS) was 
created by a consortium of payment brands including American 
Express, Discover, MasterCard, and Visa. It covers the management of 
payment card data and is relevant for any organization that accepts 
credit card payments. The standard comes in two flavors: a self-assess-
ment for smaller organizations and a third-party audit for organizations 
that process more transactions. See pcisecuritystandards.org.

• The FTC’s Red Flag Rules require anyone who extends credit to con-
sumers (i.e., any organization that sends out bills) to implement a formal 
program to prevent and detect identity theft. The rules require credit 

  



ptg

NIST: the National Institute for Standards and Technology 1225

Po
lic

y/
Po

lit
ic

s

issuers to develop heuristics for identifying suspicious account activity; 
hence, “red flag.” Search for “red flag” at ftc.gov for details.

• Last but certainly not least, the IT general controls (ITGC) portion of 
the Sarbanes-Oxley Act (SOX) applies to all public companies and is 
designed to protect shareholders from accounting errors and fraudulent 
practices. See sec.gov/rules/final/33-8124.htm.

ITIL: the Information Technology Infrastructure Library

Among these standards, the Information Technology Infrastructure Library 
(ITIL) has become a de facto standard for organizations seeking a comprehensive 
IT service management solution. ITIL processes are divided into six groups:

• Help desk – IT services for clients and for submitting problem reports 
and requests; also includes provisions for tracking and escalating issues

• Incident management – a reactive process whose goal is to restore ser-
vice after an incident has caused a disruption

• Problem management – identifies the causes of incidents to prevent 
future service disruptions

• Configuration management – encapsulates information about the 
components of an infrastructure and their interdependencies

• Change management – processes for managing changes within the 
infrastructure

• Release management – similar to change management, but used for 
large-scale changes within the organization

Large organizations may have a formal ITIL program complete with a ticketing 
system that closely mirrors ITIL concepts and definitions. But even a small orga-
nization that uses an open source ticketing system can adopt policies that encour-
age sensible change management. All changes should require the submission of a 
change request, approval by a change board, and tracking through a change ticket. 
All incidents should be required to follow a documented process of incident han-
dling that includes post-incident analysis to determine whether the problem was 
handled in the best possible way.

More generally, it’s fine to interpret voluntary standards in light of your site’s spe-
cific needs and constraints. The main goal is to understand the concepts embod-
ied in the standards and to absorb some of their philosophy. Some of the stan-
dards listed above are hundreds of pages long, so they can be difficult to even 
approach; feel free to make use of summaries and condensed versions.

NIST: the National Institute for Standards and Technology

NIST publishes a host of standards that are useful to administrators and technolo-
gists. Some of the most commonly used ones are mentioned below, but if you are 

  



ptg

1226 Chapter 32 Management, Policy, and Politics

ever bored and looking for standards, you might check out their web site. You will 
not be disappointed. 

NIST 800-53, Recommended Security Controls for Federal Information Systems and 
Organizations, describes how to assess the security of information systems. If your 
organization has developed an in-house application that holds sensitive informa-
tion, NIST 800-53 can help you make sure you have really secured it. Beware, 
however: embarking on a NIST 800-53 compliance journey is not for the faint of 
heart. You are likely to end up with a document that is close to 100 pages long and 
that includes excruciating details.3

NIST 800-34, Contingency Planning Guide for Information Technology Systems, is 
NIST’s disaster recovery bible. It is directed at government agencies, but any orga-
nization can benefit from it. Following the NIST 800-34 planning process takes 
time, but it forces you to answer important questions such as, “Which systems are 
the most critical?”, “How long can we survive without these systems?”, and “How 
are we going to recover if our primary data center is lost?”

32.10 LEGAL ISSUES

The U.S. federal government and several states have laws regarding computer 
crime. At the federal level, there are two pieces of legislation from the early 1990s 
and two more recent ones:

• The Federal Communications Privacy Act
• The Computer Fraud and Abuse Act
• The No Electronic Theft Act
• The Digital Millennium Copyright Act

Some big issues in the legal arena are the liability of sysadmins, network opera-
tors, and web hosting sites; peer-to-peer file-sharing networks; copyright issues; 
and privacy issues. The topics in this section comment on these issues and a vari-
ety of other legal debacles related to system administration.

Privacy

Privacy has always been difficult to safeguard, but with the rise of the Internet, it 
is in more danger than ever. Medical records have been repeatedly disclosed by 
poorly protected systems, stolen laptops, and misplaced backup tapes. Databases 
full of credit card numbers have been compromised. Web sites purporting to offer 
antivirus software actually install spyware when used. Fake email arrives almost 
daily, appearing to be from your bank and alleging that problems with your ac-
count require you to verify your account data. Usually, a close inspection of the 
email reveals that the data would go to a hacker in eastern Europe or Asia and not 
to your bank. This type of attack is called “phishing.”

3. If you plan to do business with a U.S. government agency, you may be required to complete a NIST 
800-53 assessment whether you want to or not…

  



ptg

Policy enforcement 1227

Po
lic

y/
Po

lit
ic

s

Technical measures can never protect against these attacks because they target 
your site’s most vulnerable weakness: its users. Your best defense is a well-edu-
cated user base. To a first approximation, no legitimate email or web site will ever

• Suggest that you have won a prize
• Request that you “verify” account information or passwords
• Ask you to forward a piece of email
• Ask you to install software you have not explicitly searched for
• Inform you of a virus or other security problem

Users who have a basic understanding of these dangers are more likely to make 
sensible choices when a pop-up window claims they have won a free MacBook.

Policy enforcement

Log files may prove to you beyond a shadow of a doubt that person X did bad 
thing Y, but to a court it is all just hearsay evidence. Protect yourself with written 
policies. Log files sometimes include time stamps, which are useful but not neces-
sarily admissible as evidence unless your computer is running the Network Time 
Protocol (NTP) to keep its clock synced to a reference standard.

You may need a security policy in order to prosecute someone for misuse. It 
should include a statement such as this: “Unauthorized use of computing systems 
may involve not only transgression of organizational policy but also a violation of 
state and federal laws. Unauthorized use is a crime and may involve criminal and 
civil penalties; it will be prosecuted to the full extent of the law.”

We advise you to display a splash screen that advises users of your snooping pol-
icy. You might say something like: “Activity may be monitored in the event of a 
real or suspected security incident.”

You may want to ensure that users see the notification at least once by including it 
in the startup files you give to new users. If you require the use of SSH to log in 
(and you should), you can configure /etc/ssh/sshd_config so that SSH always 
shows the splash screen. 

Be sure to specify that by the act of using their accounts, users acknowledge your 
written policy. Explain where users can get additional copies of policy documents 
and post key documents on an appropriate web page. Also include the specific 
penalty for noncompliance (deletion of the account, etc.). It is more important 
that you demonstrate a good faith effort to notify users of their responsibilities 
than that you get the notifications precisely correct in a legal sense.

In addition to the splash screen approach, it’s a good idea to have users sign a 
policy agreement before they are given access to your systems. This acceptable use 
agreement should be crafted in conjunction with your legal department. If you 
don’t have signed agreements from current employees, make a sweep to collect 
them, then make signing the agreement a standard part of the induction process 
for new hires.

  



ptg

1228 Chapter 32 Management, Policy, and Politics

You might also consider offering periodic information security training sessions. 
This is a great opportunity to educate users about important issues such as phish-
ing scams, when it’s OK to install software and when it’s not, password security, 
and any other points that are relevant to your environment.

Control = liability

ISPs typically have an appropriate use policy (AUP) dictated by their upstream 
providers and required of their downstream customers. This “flow down” of lia-
bility assigns responsibility for users’ actions to the users themselves, not to the 
ISP or the ISP’s upstream provider. Such policies have been used to attempt to 
control spam and to protect ISPs in cases where customers have stored illegal or 
copyrighted material in their accounts. Check the laws in your area; your mileage 
may vary.

Your policies should explicitly state that users are not to use company resources 
for illegal activities. However, that’s not really enough—you also need to discipline 
users if you find out they are doing naughty things. Organizations that know 
about naughty things but do not act on them are complicit and can be prosecuted. 
Unenforced or inconsistent policies are worse than none, from both a practical 
and legal point of view.

Because of the risk of being found complicit in user misbehavior, some sites limit 
the data that they log, the length of time for which log files are kept, and the 
amount of log file history kept on backup tapes. Some software packages help 
with the implementation of this policy by including levels of logging that help the 
sysadmin debug problems but that do not violate users’ privacy. However, always 
be aware of what kind of logging might be required by local laws or by any regula-
tory standards that apply to you.

Software licenses

Many sites have paid for K copies of a software package and have N copies in daily 
use, where K < N. Getting caught in this situation could be damaging to the com-
pany, probably more damaging than the cost of those N-minus-K other licenses. 
Other sites have received a demo copy of an expensive software package and 
hacked it (reset the date on the machine, found the license key, etc.) to make it 
continue working after the expiration of the demo period. How do you as a sysad-
min deal with requests to violate license agreements and make copies of software 
on unlicensed machines? What do you do when you find that machines for which 
you are responsible are running pirated software? 

It’s a very tough call. Management will often not back you up in your requests that 
unlicensed copies of software be either removed or paid for. Often, it is a sysad-
min who signs the agreement to remove the demo copies after a certain date, but 
a manager who makes the decision not to remove them.

We are aware of several cases in which a sysadmin’s immediate manager would 
not deal with the situation and told the sysadmin not to rock the boat. The admin 

  



ptg

Organizations, conferences, and other resources 1229

Po
lic

y/
Po

lit
ic

s

then wrote a memo to the boss asking to correct the situation and documenting 
the number of copies of the software that were licensed and the number that were 
in use. The admin quoted a few phrases from the license agreement and carbon 
copied the president of the company and his boss’s managers. In one case, this 
procedure worked and the sysadmin’s manager was let go. In another case, the 
sysadmin quit when even higher management refused to do the right thing. No 
matter what you do in such a situation, get things in writing. Ask for a written 
reply, or if all you get is spoken words, write a short memo documenting your 
understanding of your instructions and send it to the person in charge.

32.11 ORGANIZATIONS, CONFERENCES, AND OTHER RESOURCES

Many UNIX and Linux support groups—both general and vendor specific—help 
you network with other people who are using the same software. Table 32.3 pres-
ents a brief list of organizations, but plenty of other national and regional groups 
are not listed in this table.

FSF, the Free Software Foundation, sponsors of the GNU project (“GNU’s Not 
Unix,” a recursive acronym). The “free” in the FSF’s name is the “free” of free 
speech and not that of free beer. The FSF is also the origin of the GNU Public 
License, which is now in its third version and covers many of the free software 
packages used on UNIX and Linux systems.

USENIX, an organization of users of Linux, UNIX, and other open source operat-
ing systems, holds one general conference and several specialized (smaller) con-
ferences or workshops each year. The general conference has a parallel track 

Table 32.3 UNIX and Linux organizations of interest to system administrators

Name URL What it is

FSF fsf.org Free Software Foundation, sponsor of GNU
USENIX usenix.org UNIX users group, quite technical
SAGE sage.org The System Administrators Guild associated 

with USENIX; holds the yearly LISA conference
LOPSA lopsa.org League of Professional System Administrators, 

a spinoff from USENIX/SAGE
SANS sans.org Runs sysadmin and security conferences; less 

technical than SAGE, with a focus on tutorials
The Linux 
Foundation

linuxfoundation.org A nonprofit consortium dedicated to fostering 
the growth of Linux

AUUG auug.org.au Australian UNIX Users Group, covers both tech-
nical and managerial aspects of computing

SAGE-AU sage-au.org.au Australian SAGE, holds yearly conferences in Oz
SANE sane.nl System Administration and Network Engineer-

ing group, has yearly conferences in Europe

  



ptg

1230 Chapter 32 Management, Policy, and Politics

devoted to open systems that features ongoing OS development in the Linux and 
BSD communities. 

The big event for sysadmins is the USENIX LISA (Large Installation System Ad-
ministration) conference held in late fall. Trade shows are often associated with 
these conferences.

As a service to the Linux community, the Linux Foundation operates a USENIX 
workshop dedicated to Linux kernel development. Access to this two-day event is 
by invitation only.

SAGE, USENIX’s System Administrators Guild, is the first international organiza-
tion for system administrators. It promotes administration as a profession by 
sponsoring conferences and informal programs. See sage.org for the details. 

SAGE, together with USENIX, its parent organization, puts on system and net-
work administration conferences offering tutorials and technical sessions, invited 
talks, and help sessions. Occasionally, one-day workshops on special topics run in 
parallel. For information, see usenix.org.

The USENIX and SAGE newsletter—;login:—is produced by both organizations; 
it contains administrative news, tips, reviews, and announcements of interest to 
sysadmins. SAGE has a list of resources for sysadmins. See sage.org for current 
information.

In 2005, a falling out between USENIX and SAGE left the future of SAGE in 
doubt. The result was that some of the old-timers in the SAGE organization 
formed a separate organization called LOPSA, the League of Professional System 
Administrators, lopsa.org. As of early 2010, LOPSA doesn’t yet hold conferences, 
but they do have some training sessions scheduled. SAGE gave up its sysadmin 
certification program; let’s hope that LOPSA will pick it up. 

SANS offers many courses and seminars in the security space and runs a certifica-
tion program. The exam format is multiple choice, open book, with a time limit. 
Applicants can take two practice exams before the real thing. Individual certifi-
cates focus on narrow topics; applicants can also earn a general security (GSEC) 
certification. Certification is valid for only 2–3 years, so you must keep up with 
recent developments and recertify (for an added fee) to stay current. See giac.org 
for details.

Many local areas have regional UNIX, Linux, or open systems user groups. Some 
of these are affiliated with USENIX and some are not. The local groups usually 
have regular meetings, workshops with local or visiting speakers, and, often, din-
ner together before or after the meetings. They’re a good way to network with 
other sysadmins in your area.

The premier trade show for the networking industry is Interop; its tutorial series 
is also of high quality. Interop used to be an annual event that was eagerly awaited 
by techies and vendors alike. Interops now happens several times a year—a travel-

  



ptg

Exercises 1231

Po
lic

y/
Po

lit
ic

s

ing network circus, so to speak. The salaries of tutorial speakers have been cut in 
half, but the quality of the tutorials seems to have survived.

32.12 RECOMMENDED READING 

LIMONCELLI, THOMAS A. Time Management for System Administrators. Sebasto-
pol, CA: O’Reilly Media, 2005.

MACHIAVELLI, NICCOLÒ. The Prince. 1513.
Available on-line from gutenberg.org/etext/1232

BROOKS, FREDERICK P., JR. The Mythical Man-Month: Essays on Software Engineer-
ing. Reading, MA: Addison-Wesley, 1995.

SENFT, SANDRA, AND FREDERICK GALLEGOS. Information Technology Control and 
Audit (3rd Edition). Boca Raton, FL: Auerbach Publications, 2008.

The site itil-toolkit.com is a good place to start if you seek to understand the 
mountains of jargon and management-speak associated with ITIL processes and 
standards.

The site itl.nist.gov is the landing page for the NIST Information Technology Lab-
oratory. Lots of information about standards. Go to the publications page.

The web site of the Electronic Frontier Foundation, eff.org, is a great place to find 
commentary on the latest issues in privacy, cryptography, and legislation. Always 
interesting reading.

sans.org/resources/policies hosts the SANS security policy project. Several good 
sample IT policies are available from this site.

Lots of great resources for system administrators are also available on the SAGE 
site: sage.org/field/field.html.

32.13 EXERCISES

E32.1 What are your organization’s recurring procedures? Which are infre-
quently performed and reinvented each time? Which are risky?

E32.2 What are your dependencies on external providers? Do you need and 
have a plan B? Explain why or why not. Describe plan B if it exists.

E32.3 Briefly interview several internal customers to determine their expec-
tations with respect to the availability of the computing infrastructure. 
Are the expectations consistent? Are they reasonable? Are they con-
sistent with the system administration group’s stated goals?

E32.4 What organized infrastructure for system management is already es-
tablished at your site? Identify the pieces that are still missing.

  



ptg

1232 Chapter 32 Management, Policy, and Politics

E32.5 One of your co-workers is going to leave for lunch tomorrow and 
never return, but you don’t yet know which one. (No, you don’t get to 
pick.) What critical procedures might be affected, and how prepared 
is your organization to cover for the missing staff member? What doc-
umentation would have to exist in order to avoid a service disruption?

E32.6 What would happen if you didn’t come in for the next three months? 
How much would your colleagues hate you when you finally came 
back, and why? What can you do in the next two weeks to reduce the 
trauma of such an event?

E32.7 Your boss orders you to cut the system administration budget by 30% 
by the end of the current year. Can you quantify the consequences of 
this cut? Present a summary that will allow the boss to make an in-
formed decision regarding which services to reduce or discontinue.

E32.8 Who are some of the current major corporate supporters of Linux? 
What are their interests and motivations? What sort of contributions 
are they making?

E32.9 You are cleaning up after a disk crash and notice files in the 
lost+found directory. When you investigate further, you find that 
some of the files are mail messages that were sent between two stu-
dents who are setting up a back door around the department firewall 
to archive MP3 files on a remote file server. What should you do? Are 
there policies or regulations in place that cover such incidents?

E32.10 Evaluate your site’s local documentation for new users, sysadmins, 
standard procedures, and emergencies.

E32.11 Forecast the future of the various commercial and free UNIX and Li-
nux variants over the next five years. How will the current develop-
ment and distribution models hold up over time? What will be the 
long-term impact of the adoption of Linux by hardware vendors? Dif-
ferentiate between the server and desktop markets.

  



ptg

1233

Index

We have alphabetized files under their last components. And in most cases, only the last 
component is listed. For example, to find index entries relating to the /etc/mail/aliases file, 
look under aliases. Our friendly vendors have forced our hand by hiding standard files in 
new and inventive directories on each system.

Numbers

389 Directory Server  728, 732–733 
4mm backup tapes  301 
8mm backup tapes  301

A

A DNS records  582, 596 
AAAA DNS records  589 
Abell, Vic  145 
accept router, Exim  821 
access agents, email  747–748 
access control  103–118 
access control lists see ACLs 
access database, sendmail  791 
access_db feature, sendmail  785 
accounts see user accounts 
aclconvert command  162 
acledit command  162, 166 
aclget command  162, 166 
aclput command  162, 166 
ACLs, DNS  609, 643–644 
ACLs, filesystem  110, 159, 164–172 
ACLs, firewall  932–942 
acoustic management (disks)  229–

230 
Active Directory  1154

authenticating Linux with  
1154–1160

Active Directory continued 
authentication alternatives  

1160 
PAM and  1159

add_drv command  430, 437 
addgroup command  193 
address match lists, BIND  601 
Address Resolution Protocol 

(ARP)  450, 455, 468–469, 491 
addresses

IP see IP addresses 
broadcast  480 
Ethernet (aka MAC)  454–455, 

464 
loopback  457, 467 
multicast  456–457 
SCSI  218

adduser command  192 
adduser.conf file  193 
/var/adm directory  342 
administrative privileges see root 

account 
ADSM/TSM backup system  336 
ADSP (Author Domain Signing 

Practice)  572, 768 
ADSP DNS records  591–594 
AFR (annual failure rate)  211 
AfriNIC  462 
agetty process  1171–1176 
air conditioning see cooling 
AirPort  542 
AIT backup tapes  302

AIX  13 
disk addition recipe  209 
disk device files  224, 226 
documentation  19 
filesystems  255, 257 
installation  380 
iSCSI support  280–281 
kernel configuration  432–434 
kernel tuning  434 
log files  344 
logical volume management  

253–254 
mandatory access control 

(MAC)  922 
named  685–686 
network configuration  506–

508 
NFS (Network File System)  

702–703 
security  507–508 
single-user mode  87 
startup scripts  95–96

AJAX (Asynchronous JavaScript 
and XML)  956, 960

Akamai Technologies  978 
aliases file  190, 756–760 
aliases, email  190, 756–760

see also email 
see also Exim 
see also Postfix 
see also sendmail 
examples  760

  



ptg

1234 UNIX and Linux System Administration Handbook

aliases, email continued 
file format  757 
hashed database  760 
loops  758 
and mailing lists  760–761 
network distribution  290 
for new users  178 
postmaster  757

aliases.db file  760 
alien command  382 
Allman, Eric  344, 779 
allow-update clause, DNS  613, 

641 
Alpine mail client  745 
always_add_domain feature, 

sendmail  785 
Amanda backup system  335 
amavisd.conf file  771 
amavisd-agent command  772 
amavisd-nanny command  772 
amavisd-new  769–773

configuration  771–772 
DKIM  849 
use with Exim  826 
installation  771 
monitoring  772 
use with Postfix  842–843 
use with sendmail  794–795 
tools  772–773

Amazon web services  978, 1005– 
1009, 1106

additional features  1009 
Elastic Block Store  1006 
Elastic Compute Cloud (EC2)  

1005 
ElasticFox  1009 
installation and configuration  

1006 
instance termination  1009 
Simple Storage Service (S3)  

1006 
AME backup tapes  302 
American Power Conversion 

(APC)  1094 
American Registry for Internet 

Numbers (ARIN)  461–462, 549 
Anaconda  365 
Analog Apache log analyzer  967 
Anderson, Paul  409 
annual failure rate (AFR)  211 
Anvin, H. Peter  364 
anycast  457, 603 
Apache Software Foundation  19, 

964

APC (American Power Conver-
sion)  1094

APNIC  462 
AppArmor  924 
applications

consolidating  1101 
servers  960 
virtualization  987

appropriate use policy (AUP)  1228 
apropos command  17 
APT (Advanced Package Tool)  24, 

387–391 
apt-get command  387–391 
ARIN (American Registry for In-

ternet Numbers)  461–462, 549 
ARP (Address Resolution Proto-

col)  450, 455, 468–469, 491 
arp command  469 
ARPANET  448, 509 
ASHRAE temperature range  1087, 

1108 
AT&T  12 
AT&T UNIX System V  1268 
ATA interface  213–215

cables  215 
power connector  215 
secure erase  227–228 
SMART reporting  230–231 
TRIM command  228

ATA-over-Ethernet (AoE)  276 
Athena, Project  1011 
atime option, turning off  1105 
Atkins, Todd  358 
auditing  107 
AUP (appropriate use policy)  1228 
/etc/security/auth_attr file  108 
authadm command  108 
Author Domain Signing Practice 

(ADSP)  572, 768 
authorizations, Solaris  108 
authors, contacting  xlv 
/etc/rbac/auths file  108 
auto_master file  712 
auto.direct file  713, 716 
Automated Installer, Solaris  375–

376 
automount

direct maps  713 
Linux  717 
master maps  714 
replicated filesystems  715

automount command  712–713

automounters 
configuration  712–715 
NFS and  711–715 
replicated filesystems  715 
Windows  1147

autonegotiation, Ethernet  539–540 
autonomous systems  517–518 
autoserial.conf file  1170 
AutoYaST tool  367 
avoid-v4-udp-ports option, DNS  

605 
AWStats Apache log analyzer  967

B

backing store  1124 
backscatter spam  756, 765, 769 
backup root  232 
backup software and systems

see also backups 
see also Bacula 
ADSM/TSM  336 
Amanda  335 
Bacula  318–335 
commercial systems  335 
dd command  316 
dump/restore command  308–

314 
EMC NetWorker  337 
tar command  315–316 
Veritas  336

backups  292–337 
see also backup software and 

systems 
see also Bacula 
see also media, backup 
centralized  293 
cloud services  303 
compression  299 
designing data for  298 
encryption  295, 304 
fitting on media  294 
full restore  313–314 
hints  293–298 
Internet  303 
interval between  294 
off-site storage  295 
programs  315–335 
to removable disks  300 
restoring  293, 310–315 
schedules  305–307 
security  295 
setting up  307–314

  



ptg

Index 1235

backups continued 
snapshots  296 
for ugprades  314–315 
when to make  296 
for Windows  335 
for ZFS filesystems  316

Bacula  318–335 
architecture  319 
bacula-dir.conf file  324–327 
bacula-sd.conf file  327 
bconsole.conf file  328 
client file daemon  328 
configuration files  321–329 
installation  320–321 
manual backup  330 
media pools  329 
monitoring  334 
restoring files  330–333 
terms  322 
tips  334 
troubleshooting  334–335 
Windows clients  333

bad blocks, disk  227 
Baretta, Anne  1177 
bash shell  29

argument processing  40–42 
arithmetic  47 
basic use  30–33 
best practices  73–74 
command editing  30–31 
file test operators  44 
loops  45–46 
pipes and redirection  31–32 
scripting  37–48 
search path  113 
variables and quoting  32–33, 

42–43 
~/.bash_profile file  42, 189 
.bashrc file  189 
bastion hosts  796 
BATV (bounce address tag valida-

tion)  756, 765 
baud rate, tricks for determining  

1181 
BCP documents  450 
BCPL (Basic Combined Program-

ming Language)  1266 
Berkeley DB library  308, 760, 782, 

833 
Berkeley Fast File System  254–255 
Berkeley Internet Name Domain 

system see BIND 
Berkeley see University of Califor-

nia at Berkeley

Berkeley Software Design, Inc. (BS-
DI)  1270 

Bernstein, Dan  809 
BGP protocol  516, 520–521, 523 
bgpd daemon  523 
/bin directory  146 
BIND

see also DNS 
see also name servers 
see also named 
ACLs  643–644 
address match lists  601 
AIX  685–686 
client configuration  561–563 
components  600 
configuration examples  618–

624 
configuration files  600–624 
control programs  674 
debugging  667–681 
distribution-specific informa-

tion  681–683 
DNSSEC  573, 648–667 
.key DNSSEC key file  646 
dnssec-keygen command  646–

647, 655 
dnssec-signzone command  

657, 660 
doc (domain obscenity control)  

679–680 
documentation  686, 688 
forwarding zone, configuring  

615 
HP-UX  684–685 
keys, generating  654 
KSK (key signing key)  653 
localhost zone configuration 

example  619 
logging  612, 667–672 
loopback address  616 
master server, configuring  613 
/etc/named directory  603 
/etc/named.conf file  600–624, 

643, 671 
named-checkconf command  

600, 648, 679 
named-checkzone command  

600, 679 
notification options  603 
differences from NSD  626 
nsupdate command  641 
performance  680 
.private DNSSEC key file  646 
query forwarding  606

BIND continued 
/etc/resolv.conf file  561–562 
RIPE DNSSEC tools  665 
rndc command  638, 672, 674 
/etc/rndc.conf file  616 
/etc/rndc.key file  616 
rndc-confgen command  616 
root server hints  614 
root.cache file  615 
security  571 
shell interfaces see dig and 

nslookup
slave server, configuring  614 
Solaris  684 
split DNS  617–618, 620–623 
statistics  676 
stub zones, configuring  614 
/etc/syslog.conf file  668 
updating zone files  640–642 
versions  597–599 
zone transfers  564, 639–640

BIOSes  82 
blackhole option, DNS  606 
blacklists  766

in Exim  817–818 
in Postfix  840–841 
in sendmail  792

block device files  148, 150, 418 
blocking factor, tape  315 
bogus directive, DNS  611 
boot command  429 
boot loaders  79, 82–85

GRUB  85–86 
multibooting  85

boot.log file  353 
bootstrapping  78–81

device probing  79 
directly to bash  92 
from the network, non-PCs  

364 
from the network, PCs  363 
fsck and  81 
kernel initialization  79 
kernel options  84 
kernel threads  79 
mounting NFS filesystems  708 
multibooting  85 
PC-specific issues  82 
single-user mode  80–81, 88 
startup scripts  87–100 
/etc/sysconfig directory  92–93

Bostic, Keith  1270 
Bourne shell  14 
Bourne, Steve  1266

  



ptg

1236 UNIX and Linux System Administration Handbook

Bourne-again shell see bash 
breakout boxes  1180 
Bro network intrusion detection 

system  918 
broadcast

addresses  480 
directed  473, 508 
domain  534 
storms  480, 538

Bryant, Bill  925 
BSD printing  1054–1065

see also printing 
architecture  1054–1055 
configuration  1059–1065 
lpc command  1057–1059 
lpd daemon  1056 
lpq command  1056–1057 
lpr command  1056 
lprm command  1057 
printcap file  1059–1065 
PRINTER environment vari-

able  1054 
BSD UNIX  8, 12, 1268–1273 
budgeting  1184 
BugTraq  948 
Burgess, Mark  408 
bus errors  126 
BUS signal  125 
byte swapping  316

C

C language  1266 
CA (Certificate Authority)  972 
cable modems  544 
cables

see also serial cables 
10*Base*  533–535 
Category *  545 
Ethernet  534–536 
labeling  549 
PATA/IDE  215 
SATA  216

Cacti performance monitor  886 
CAIDA (Cooperative Association 

for Internet Data Analysis)  463 
Canaday, Rudd  1265 
canonical name (CNAME) DNS 

records  585 
capabilities (POSIX)  109 
capacity planning  1104 
capital cost reduction  1098–1110 
carbon offsets  1111

Card, Rémy  255 
catman command  17 
CBK (common body of knowl-

edge)  945 
CD backups  299 
CDNs (content distribution net-

works)  978–979 
CentOS Linux  10, 12 
CERT  948, 952 
Certificate Authority (CA)  972 
Certificate Signing Request (CSR)  

972 
Certified Information Systems Au-

ditor (CISA)  945 
cf/cf directory, sendmail  780 
cfdisk command  236 
cfengine  408 
cfgmgr command  263, 281, 419, 

433 
CGI scripting  959 
chage password aging program  

907 
Challenge Handshake Authentica-

tion Protocol (CHAP)  276 
change management  1197–1198, 

1205, 1225 
ChaosNet  577 
CHAP (Challenge Handshake Au-

thentication Protocol)  276 
character device files  148, 150, 418 
Chatsworth Products  1094 
chattr command  159 
chdev command  178 
Check Point  475 
chfn command  182 
chgrp command  157–158 
chkconfig command  91, 94 
chkrootkit script  904 
chmod command  152, 156–157, 

165, 167, 169–170, 172 
chown command  157–158 
Christiansen, Tom  49, 66, 74 
chrole command  108 
chroot  913–914

for named  643, 645 
for Postfix  830 
for sendmail  800

chsh command  182 
chuser command  195 
CIA triad  944 
CIDR (Classless Inter-Domain 

Routing)  458, 460–461 
CIFS see Samba

CIM (Common Information Mod-
ule) system configuration  410 

CIP (Critical Infrastructure Protec-
tion)  1224

CISA (Certified Information Sys-
tems Auditor)  945

Cisco  475, 963 
Cisco routers  525–528, 950 
CiscoWorks  889 
CISSP (Certified Information Sys-

tems Security Professional)  945 
Citadel  853 
CJIS (Criminal Justice Information 

Systems)  1223 
ClamAV virus scanner  819, 903 
Classless Inter-Domain Routing 

(CIDR)  458, 460–461 
ClearEmail  755 
Clearswift email appliance  853 
clock synchronization  288 
clogin command  1002 
cloud computing  987, 1005, 1106

backups  303 
hosting  978

cmdprivadm command  108 
CNAME DNS records  585 
COBIT  1223 
code promotion  1204–1205 
Coker, Russell  924 
co-location web hosting  978 
common body of knowledge 

(CBK)  945 
Common Criteria  947 
Common UNIX Printing System 

see CUPS 
Communigate Pro  853 
community relations  1210 
Computer Systems Research 

Group (CSRG)  1268 
concentrators see Ethernet, hubs 
.config file for Linux kernel  424–

425 
configuration files

copying  721–727 
network distribution  290 
pulling  727 
pushing  722–727

configuration management  1225 
configure command  26 
/usr/exim/configure file  812 
conflict resolution  1213
ConnectionRateThrottle option, 

sendmail  800

  



ptg

Index 1237

connectors
DB-25  1163–1165 
DB-9  1166 
PATA  215 
RJ-45  1166 
SATA  216 
SCSI  217

consoles, serial  1180 
console-setup file  1172 
CONT signal  125–126, 128 
contacting the authors  xlv 
Content Control  755 
content distribution networks 

(CDNs)  978–979 
content scanning  761–773

using Exim  818–820 
control characters  1177–1178 
control terminal  123 
controls statement, DNS  615–616 
cookies, NFS  693 
cooling

calculating load  1088–1089
data center  1087–1091, 1106, 

1108 
hot aisle/cold aisle  1106 
in-row  1090 
office temperature  1109 
using outside air  1106

Cooper, Mendel  48 
COPPA (Children’s Online Privacy 

Protection Act)  1223 
Corbato, Fernando  1265 
core files  289 
Courier IMAP server  747 
CPAN  65–66 
CPU

load averages  1123 
statistics  1122 
usage, analyzing  1116–1123

CRAC (computer room air condi-
tioner)  1089

crfs command  209, 254, 259 
cron daemon  283–291

common uses  288–290 
configuration (crontab) files  

284–287 
logging  284, 288

cron.allow and cron.deny files  
286–287

/etc/cron.d directory  287–288 
crontab command  286–287 
/etc/crontab file  287 
crontab files  284–287 
CRT  1109

/etc/security/crypt.conf file  194 
cryptography

backups, encryption of  295, 
304

Diffie-Hellman key exchange  
648

in DNS  573, 645–667 
in LDAP  735 
MD5 algorithm  646 
password encryption  176, 179, 

1144 
public key  927 
in sendmail  795–801 
SSL  972 
tools  924

.cshrc file  189 
CSMA/CD (Ethernet)  532 
CSR (Certificate Signing Request)  

972 
ctime file attribute  154 
CTS (clear to send) signal  1168 
cu command  1181 
Cummins Onan  1092 
CUPS  1032, 1034–1043

see also printing 
autoconfiguration  1040 
configuration  1038–1043 
cupsd daemon  1038 
cupsd.conf file  1039 
cupsdisable command  1042 
cupsenable command  1042 
filters  1037–1038 
lpadmin command  1041 
lpoptions command  1036 
lpr command  1035 
MIME types  1037 
network printers  1040 
network printing  1036–1037 
print queue  1035–1036 
printer classes  1041 
PRINTER environment vari-

able  1036 
cupsd.conf file  1039 
cut command  34 
Cygwin X server tools  1137, 1141 
cylinders, disk  210 
Cyrus IMAP server  747

D

Darik’s Boot and Nuke  228 
DARPA (Defense Advanced Re-

search Project Agency)  948

DAT backup tapes  301 
data center

see also cooling 
availability  1086 
components  1086 
cooling load  1088–1089 
energy use  1100 
generators, standby  1086, 1091 
green IT strategies for  1100–

1108 
hot aisle  1089–1091 
humidity  1091 
HVAC  1086 
in-row cooling  1090 
monitoring  1091 
power  1091 
preventative maintenance  1092 
rack density  1092 
rack power requirements  

1092–1093 
racks  1094 
raised floor  1089, 1094 
redundant power  1086 
reliability tiers  1086–1087 
remote power control  1094 
temperature  1108 
temperature range  1087 
tool box  1095 
UPSs  1086, 1091 
wiring tracks  1094 
zones  1093

data leak prevention (DLP)  754– 
755

databases 
administrative  721, 736 
DNS  555, 574–597 
NIS  736 
Postfix  833–837 
sendmail  782–783

/etc/datemsk file  185 
DB-25 connectors  1163–1165 
DB-9 connectors  1165–1166 
dbm/ndbm library  782 
DCC (Distributed Checksum 

Clearinghouses)  765
DCD (data carrier detect) signal  

1167–1168 
DCE (Data Communications 

Equipment) interface  1164– 
1165

DCiE  1099 
dd command  316, 992 
DDS backup tapes  301 
.deb software package format  382

  



ptg

1238 UNIX and Linux System Administration Handbook

debconf  368 
Debian GNU/Linux  8–11 
debugging see troubleshooting 
DEC VT100 terminal  1175 
default routes  466, 501, 513, 521 
defaultdomain file  494 
defaultrouter file  496
DefaultUser option, sendmail  

759, 796
degraded mode  1106 
DELAY_LA option, sendmail  801, 

803 
delgroup command  193 
deluser command  193 
/etc/deluser.conf file  199 
deluser.local script  199 
denial of service (DOS) attacks  

349, 583, 727, 800–801, 1132 
Dennis, Jack  1265 
Deraison, Renaud  916 
desktop environments  1028–1030 
Desktop Management Interface 

(DMI)  1119 
Deutsch, L. Peter  1068 
/dev directory  150, 417 
devfs, Solaris  419 
devfsadm command  419 
devfsadmd daemon  225, 419 
device drivers  150–151, 415–418

adding to Linux kernel  425– 
427

device awareness  427 
loadable  431, 434–437 
loadable modules  434–436
MODULE_DEVICE_TABLE

macro  427
for PC hardware  417 
serial  420 
Solaris  430 
terminal and control characters  

1177–1178 
Windows printer  1151–1152

device files 
block vs. character  148, 150–

151, 418 
creating  419 
device numbers  418 
for disks  207, 224–226 
naming conventions  420 
for serial ports  420, 1168–1170 
Solaris  429 
for tape drives  309, 420

/devices directory  150, 225 
devices, pseudo  419

df command  260
NFS and  708 

DFS (Distributed File System, Win-
dows)  1147 

dfstab file  700 
DHCP (Dynamic Host Configura-

tion Protocol)  469–472, 477, 
480, 484, 497–498, 504, 510

BIND and  640 
HP-UX  504 
Solaris  480, 497–498

/etc/dhcp.* files  497 
dhcpagent program  497 
dhcpcd daemon  471 
dhcpd.conf file  471–472 
dhcpdb2conf program  504 
dhcrelay daemon  472 
Diffie-Hellman key exchange  648 
dig command  597–598, 615, 677–

679 
Dihu, Habeeb  765 
directories  147–150

copying  315 
search bit  153

directory statement, DNS  603 
disaster recovery  1217–1222

from a security incident  950– 
952

internet connectivity  1221 
planning  298, 1217 
power and HVAC  1220 
risk assessment  1217 
staffing  1220 
standards  1226 
test plans  1220

/dev/disk directory  224–225 
disks

see also filesystems 
acoustic management  229–230 
addition  207–209 
AIX management  209, 224, 

226, 253–255, 257, 280–281 
ATA/PATA/IDE interface  

213–215 
as backup media  303 
configuration  220–274 
device files  207, 224–226 
elevator algorithm  1130 
failure rates  211, 213, 231 
Fibre Channel  214, 275 
formatting  226–227 
hardware installation  223–230 
hardware interfaces  213–220 
hardware overview  209–213

disks continued 
hot-plugging  223 
HP-UX management  208, 224–

226, 237, 251–253, 256–257, 
280

hybrid  209 
I/O analysis  1127–1130 
labeling  233 
Linux management see Linux 
load balancing  1114, 1129 
logical volume management  

221–222, 246–254 
partitioning  221–223, 231–237 
performance  210, 212, 219–

220, 1116–1130 
quotas  698 
RAID arrays  221–222, 234, 

237–245, 1115 
RAM  1129 
removable  300 
SATA interface  214–216 
secure erase  227–228 
SMART monitoring  230–231 
software overview  220–223 
solid state  206, 209–210, 212–

213, 228, 300 
traditional vs. SSD  210 
USB  300 
utilization of  1103

DISPLAY environment variable  
1015, 1019

distance-vector routing protocols  
515

Distfile file  723–725 
Distributed Checksum Clearing-

houses (DCC)  765 
Distributed Management Task 

Force (DMTF)  410 
DIX Ethernet II  453 
DKIM (DomainKeys Identified 

Mail)  572, 768, 845–853 
and amavisd-new  849 
and Exim  850–852 
and Postfix  852–853 
and sendmail  850 
DNS records for  846 
miltering  846–848

DKIM DNS records  591–594 
DLT backup tapes  301 
DMI (Desktop Management Inter-

face)  1119 
dmidecode command  1119 
DMTF (Distributed Management 

Task Force)  410

  



ptg

Index 1239

DNS  554–688 
see also BIND 
see also domain names, DNS 
see also name servers 
see also resource records, DNS 
see also zones, DNS 
adding a new machine  558–560 
ADSP records  768, 846 
anycast routing  603 
architecture  568–572 
authoritative servers  564, 569 
caching  556–557 
caching servers  564, 569 
use with CIDR  585–587 
client configuration  483–484 
CNAME hack  585–587 
cryptography in  573, 645–667 
database  555, 574–597 
delegation  555 
denial of service (DOS) attacks  

583 
design  568–572 
doc (domain obscenity control)  

679–680 
domain names see domain 

names, DNS 
dynamic updates  640–642 
EDNS0 protocol  574 
efficiency  556–557 
email security  572 
forward mapping  554 
internationalization  574 
IP addresses  582–583 
IPv6 support  573, 589 
lame delegations  670, 678–679 
master name server  564 
Microsoft and  667 
namespace  568 
nonauthoritative servers  564 
nonrecursive servers  565 
Punycode  574 
record types  578 
recursive servers  565 
referrals  565 
resolver configuration  561–563 
resource records see resource 

records, DNS 
reverse mapping  554, 582–583, 

623 
RFCs  688 
root servers configuration file  

555 
round-robin  962 
security  571

DNS continued 
server architecture  571 
server hints  566 
service switch file  776 
setup  568–572 
slave server  564 
SOA record serial number  580 
SOA record timeout values  580 
Sparta DNSSEC tools  664 
split view DNS  569, 617–618 
SSHFP record  928 
stub servers  564 
stub zones  597 
TKEY  645–648 
traceroute and  867 
TSIG (transaction signatures)  

623, 645–648 
TTL settings  680 
Vantages DNSSEC framework  

665 
ZSKs (zone-signing keys)  653

DNSKEY DNS records  650 
dnslookup router, Exim  822 
DNSSEC  573, 648–667 
dnssec-keygen command  646–

647, 655 
dnssec-signzone command  657, 

660 
doc (domain obscenity control), 

DNS  679–680 
DOCSIS standard  544 
documentation  18–20

BCPs  450 
FYIs  450 
importance of  1200 
man pages  16–18 
network  1204 
package-specific  19 
of passwords  112, 117–118 
RFCs  449–450 
standardization  1202 
STDs  450 
system-specific  18–19 
tools for  1185 
white papers  19

Doering, Gert  1171 
domain directive, DNS  562
DOMAIN macro, sendmail  784 
domain names, DNS  566–568

domain name length  567 
internationalization  574 
registration  549, 567 
second-level  567

domain obscenity control  679–680

DomainKeys Identified Mail see 
DKIM  768 

DontBlameSendmail option  796, 
798 

DOS (denial of service) attacks  
349, 583, 727, 800–801, 1132 

dot files  189–190 
Double Choco Latte  1193 
double-sided printing  1076 
Dovecot IMAP server  747 
dpkg command  383 
DR see disaster recovery 
drill command  625, 677 
drivers directory, Linux kernel 

source tree  426 
drivers see device drivers 
DrWeb virus scanner  819 
/dsk directory  226 
DSL networks  543–544 
DSR (data set ready) signal  1168 
DTE (Data Terminal Equipment) 

interface  1164–1165 
DTR (data terminal ready) signal  

1168 
dual booting  85, 1140 
dump command  305–310 
/etc/dumpdates file  309 
dumps see backups 
duplex printing  1076, 1109 
DVD backups  299 
dynamic servers  1104

E

E*Trade  10 
e2fsck command  251 
eco-pyramid  1099–1100 
EdgeCast  978 
editors, text  6–7 
eeprom command  1168 
EFF (Electronic Frontier Founda-

tion)  1231 
effective user IDs (EUIDs)  122 
EFI (Extensible Firmware Inter-

face)  235 
EFI partitioning  235–236 
EIA-232-E standard  1163 
EIA-606 standard  546–547 
EICAR  773 
EIGRP protocol  516, 519, 521 
elevator algorithm  1130 
emacs editor  6, 30 
.emacs file  189

  



ptg

1240 UNIX and Linux System Administration Handbook

email 
see also Exim 
see also MX DNS records 
see also Postfix 
see also sendmail 
aliases see aliases, email 
appliances  853 
architecture  753–756, 828–830 
blacklists  766, 792, 817–818, 

840–841 
clients  745 
components  744–746 
content scanning  761–773 
delivery status codes  752 
denial of service (DOS) attacks  

800–801 
DNS security  572 
DNS SPF records  590–591 
envelope  748 
fallback MX  803 
filtering  767 
forgery  763 
headers  748–750 
home mailbox  190 
IMAP protocol  747 
integrated solutions  853 
Local delivery agents (LDA)  

746 
loops  758 
mailing lists  760–761 
managed services  743 
market share  774 
message checks  762 
message stores  746–747 
message structure  748–750 
MX records  583–584 
POP protocol  747 
privacy  763 
relaying  791–792 
SASL  801 
secure messaging appliances  

853 
security  572, 759, 795–801 
server setup  754–756 
spam see spam 
submission agents (MSAs)  

745–746 
system components  744–746 
system design  753–756 
testing bulk mail  773 
to files  759 
to programs  759, 798–799 
transport agents  746

email continued 
transport layer security (TLS)  

801 
undeliverable messages  803 
user agents  744 
virus scanning  769–773 
whitelists  766–767

embedded interpreters  959 
EMC Ionix (Infra)  1194 
EMC, backup tool  337 
encryption

see also cryptography 
of backups  295, 304 
of passwords  176, 179, 1144

Energy Star  1108, 1110 
Enigmail  926 
enscript command  1068 
enterprise architecture (EA)  1197–

1199 
environment separation  1204–

1205 
environmental monitoring  1091 
EPEAT  1108, 1110 
equipment racks  1094 
errclear command  355 
errdemon daemon 353 
errlog circular file  354 
errpt command  354 
eSATA interface  216 
ESMTP protocol  746 
/etc directory  146 
Ethernet  532–539

addresses  454–455, 464 
autonegotiation  539–540 
broadcast domains  534 
cables  534–536 
collisions  480, 532, 869 
congestion  538, 548 
design issues  547–549 
DIX II  453 
frames  452–453 
hubs/concentrators  537 
jumbo frames  541 
layer 3 switches  539 
MAC spoofing  455 
MTU  453 
routers  539 
for SAN storage  275–281 
speed and duplex  481, 533 
standards  453, 533 
switches  534, 538–539 
topology  533 
troubleshooting  544–545 
UTP cables  534–536, 545

ethtool command  489–490 
EUIDs (effective user IDs)  122 
European Expert Group for IT-Se-

curity  773 
event correlation  359 
/etc/event.d files  1172, 1176 
/etc/event.d directory  94 
example systems  10–13

logos  11 
exec system call  123 
executable maps, NFS auto-

mounter  714 
execute bit  153 
exicyclog command  811 
exigrep command  811 
exilog command  811 
Exim  807–828

see also email 
access control lists (ACLs)  

815–818 
aliases file  823 
authentication  820 
blacklists  817–818 
command line flags for  810 
configuration language  811–

827 
content scanning  818–820 
debugging  827–828 
DKIM  850–852 
global options  813–815 
installation of  808–810 
logging  826–827 
macros  814 
monitoring status of  811 
retry configuration file section  

825 
rewrite configuration file sec-

tion  825 
transports  824–825 
utilities  811 
virus scanning  825–826

exim_checkaccess command  811 
exim_dbmbuild command  811 
exim_dumpdb command  811 
exim_fixdb command  811 
exim_lock command  811 
exim_tidydb command  811 
eximon application  811 
eximstats command  811 
exinext command  811 
exipick command  811 
exiqgrep command  811 
exiqsumm command  811 
exiwhat command  811

  



ptg

Index 1241

expect command  7, 1171 
export shell command  33 
exportfs  command  699 
exports file  699, 702–705 
ext* filesystems  158–159, 255–256 
extended partitions  235 
extendvg command  254 
Extensible Firmware Interface 

(EFI)  235

F

F5 Networks  963 
Fabry, Robert  1268
FALLBACK_MX option, sendmail  

803
FastCGI  959–960 
fasterase command  228 
fax server  1171 
faxgetty process  1171 
FC-AL (Fibre Channel arbitrated 

loop)  214 
fcntl system call  694 
fdisk command  207, 235–237
FEATURE macro, sendmail  784 
Fedora Directory Server  728 
Fedora Linux  10, 12 
FERPA (Family Educational Rights 

and Privacy Act)  1223 
Ferraiolo, David  108 
FHS (Filesystem Hierarchy Stan-

dard)  146 
fiber  536–537

colors of  537 
connectors  537 
diameters of  537 
multimode  536 
single mode  537

Fibre Channel interface  214, 275 
Fibre-Channel-over-Ethernet 

(FCoE)  276 
Field, Julian  769 
file attributes  152–159

ACLs  110, 159, 164–172 
change time  154 
changing  152, 156–158 
of device files  155 
directory search bit  153 
displaying with ls  152, 154–155 
execute bit  153 
group owner  155 
inode change time  154 
inode number  155, 257

file attributes continued 
link count  155 
on ext* filesystems  158–159 
owner  155 
permission bits  152–155 
setuid/setgid bits  106, 153–154, 

912–913 
sticky bit  154–155

file descriptors  31–32 
file statement, DNS  614 
filenames

control characters in  148 
encoding under Samba  1145 
length restrictions  142 
pathnames  142–143 
pattern matching  14, 51, 148 
spaces in  142–143

files 
see also device files 
see also directories 
see also file attributes 
see also filenames 
access control  104–105 
default permissions  158 
deleting  148–151 
links vs. original files  149 
modes see file attributes 
NFS locking  694 
ownership  155 
permissions  105, 110, 152–159, 

164–172 
removing temporary  289 
servers, dedicated NFS  711 
servers, system files  727 
sharing with Samba  1146 
types of  147–152

Filesystem Hierarchy Standard 
(FHS)  146

filesystems  254–263 
see also partitions 
backing up  294 
caching  257–258 
checking and repairing  81 
cleaning with cron  289–290 
copying  316 
defined  222 
disabling setuid execution  912 
enabling ACLs  162 
exporting through NFS  698–

705 
ext* (Linux)  158–159, 255–256 
JFS (AIX)  255, 257 
journaling  255–256 
lazy unmounting  144

filesystems continued 
load balancing  1114, 1129 
loopback  143 
mounting  143, 260–263, 1148 
mounting at boot time, NFS  

708 
organization  145–146 
overview  140–172 
page clusters  213 
quotas  698 
repairing  81, 258–261 
replicated  715 
resizing  250–251 
root  81, 146, 232 
smbfs  1148 
snapshots  249, 259, 269–271 
types  141 
unmounting  144–145 
VxFS (HP-UX)  256–257 
ZFS (Solaris)  161, 166–172, 

208, 222, 232, 240, 242, 264– 
274, 316

/etc/filesystems file  143, 254, 259– 
260, 263

filter commands  33 
find command  31, 143, 289 
findutils package  23, 143 
finger command  181 
firewalls  474–475, 499–500, 932–

942
ICMP blocking  862, 867 
Linux IP tables  935–942 
Netfilter  935–939 
packet-filtering  932–933 
stateful  934 
traceroute and  867

FISMA (Federal Information Secu-
rity Management Act)  947, 1223

flash memory disks (SSDs)  206, 
209–210, 212–213, 228

flock system call  694 
flow control, serial line  1168 
flow down liability  1228 
Fluke meter  1090, 1094 
fork system call  123 
format command  208, 227, 236, 

266 
.forward file, email  797 
forward mapping, DNS  554 
forwarders option, DNS  606 
fragmentation, of packets  454 
FreeBSD  8 
freegeek.org  1107 
French Green IT  1110

  



ptg

1242 UNIX and Linux System Administration Handbook

/etc/default/fs file  258 
fsck command  81, 258–261 
F-Secure virus scanner  819 
FSF (Free Software Foundation)  

1229 
/etc/fstab file  143, 208, 259–262, 

708, 711, 1149 
FSUID process parameter  122 
FTP

active vs. passive  933 
through firewalls  933–934

fully qualified hostnames  566 
FUSE (Linux user-space filesys-

tems)  258 
fuser command  144–145, 902, 

1129 
FYI documents  450

G

gated routing daemon  502, 523 
gconf tool  190 
gdm display manager  1013 
GECOS information  181 
Geer, Dan  295 
$GENERATE directive, DNS  587 
generators, standby  1091 
genfilt module  932 
Gentoo Linux  10 
gethostbyname routine  739 
gethostent routine  1133 
getpwent routine  721 
getpwnam routine  721 
getpwuid routine  721 
getty process  1171–1177

configuration file  1173 
gettydefs file  1173–1175 
gettytab file  1173 
Ghostscript  1068 
GIAC (Global Information Assur-

ance Certification)  945 
gibi- prefix  15 
GIDs see group IDs 
Git  401–404 
git command  401 
GlassFish application server  961 
GLBA (Gramm-Leach-Bliley Act)  

1224 
globbing  14, 51, 148 
Gmail  743 
GNOME  1029–1030

see also X Window System 
Gnu PG (GPG)  925

GNU Software Foundation  8 
GNU Texinfo  18 
GNU/Linux controversy  8 
Google  20, 963 
gparted command  207, 236, 243 
GPG (GNU Privacy Guard)  763 
GPT partitioning  235–236 
Green Grid  1106 
green IT

approaches  1100 
assessment  1099 
benefits of  1097 
consumables  1099 
equipment survey  1099 
metrics  1099 
organizations  1110 
pyramid  1100–1101, 1109 
strategies  1100–1110 
suggested measurements  1099 
user education  1108

Green IT Observatory  1110 
Green IT Promo Council  1110 
Green Standards Trust  1110 
greet_pause feature, sendmail  793 
grep command  36 
groff command  18 
/etc/group file  104, 181, 186–187 
group IDs  186

see also groups 
in ls output  155 
mapping to names  105 
real, effective, and saved  105, 

122 
substitution  106–107

groupadd command  187 
groupdel command  187 
groupmod command  187 
groups

see also /etc/group file 
default  181 
effective  122 
GIDs (group IDs)  105, 186 
/etc/gshadow file  186 
individual  187 
passwords for  186 
of a process  122 
see also group IDs 
vs. RBAC  108 
wheel or system  181

grpck command  187 
GRUB boot loader

multiboot configuration  85 
single-user mode  86

grub.conf file  83, 85

/etc/gshadow file  186 
GTUBE  773

H

halt command  101 
halting the system  100–101 
Hamilton, Bruce  20 
hard carrier  1167 
hard links  149–150, 155 
hardware

see also cables 
see also connectors 
see also Ethernet 
see also networks 
see also PC hardware 
cooling  1087–1091 
environment  1087–1091 
equipment racks  1094 
hubs  537 
kernel adaptation  416, 964 
memory  79, 1114 
power supplies  1091 
probing  79 
routers  539 
switches  534, 538–539, 543 
temperature monitoring  1091 
tools  1095 
wiring  545–547

hardware flow control  1168 
Hazel, Philip  49, 807 
hbvm command suite  1003 
hdparm command  228–230 
head command  36 
HEAT  1194 
heaters, personal  1109 
Hein, Trent R.  1270, 1279 
help desk  1196–1197, 1225 
Hesiod  577 
HIDS (Host Intrusion Detection 

System)  904, 919 
HIPAA (Health Insurance Porta-

bility and Accountability Act)  
1224

history 
of BSD  1268–1273 
of Linux  1271–1273 
of Sun Microsystems (now Ora-

cle America)  1268 
of system administrators  1264–

1273 
of UNIX  1265–1273

  



ptg

Index 1243

home directories  146, 182, 189, 233 
creating  189 
logging in to  182 
missing  182 
removing  198

Host Intrusion Detection System 
(HIDS)  904, 919

HOST_STATUS_DIRECTORY op-
tion, sendmail  803

hostname command  478 
/etc/hostname file  486 
/etc/hostname.* files  495 
hostnames

fully qualified  566 
mapping to IP addresses  456, 

477 
/etc/hosts file  456, 477–478, 494, 

502 
/etc/hosts.allow file  917–918 
/etc/hosts.deny file  917–918 
hot aisle cooling  1089–1091 
Hotmail  743 
hot-pluggable disks  223 
HP  303 
HP-UX  12

disk addition recipe  208 
disk device files  224–226 
disk partitions  237 
documentation  19 
filesystems  256–257 
installation  377–379 
iSCSI support  280 
kernel configuration  431–432 
log files  344 
logical volume management  

251–253 
named  684–685 
network configuration  501–

506 
NFS (Network File System)  

700–701 
security  505–506 
single-user mode  87 
startup scripts  95

HTTP protocol  957–959 
httpd.conf file  965–974 
hubs, Ethernet  537 
humidity  1091 
hung terminals  1179 
HUP signal  125–126 
HVAC see cooling 
HylaFAX  1171

I

I/O channels  31–32 
I/O schedulers  1130–1131 
IANA (Internet Assigned Numbers 

Authority)  451, 567 
IBM 701 computer  1264 
IBM BladeCenter HS20  1093 
ICANN (Internet Corporation for 

Assigned Names and Numbers)  
448, 461, 549, 567

ICMP  450 
error messages  454 
firewall blocking  862, 867 
netstat output  872 
packets  938 
ping and  861 
redirects  467–468, 473, 493, 

499, 505, 508–509, 514–515 
sequence numbers  862 
tracroute and  866 
TTL and  865

IDE interface  213–215 
cables  215 
power connector  215 
secure erase  227–228 
SMART reporting  230–231 
TRIM command  228

idisk command  237 
idle timeout, workstation  1109 
IEEE 802.* standards (Ethernet)  

502, 533, 539–540, 542 
IEEE P1680  1108 
IETF (Internet Engineering Task 

Force)  448 
ifconfig command  458, 478–482, 

495–497, 501–502, 513, 969–970 
ifdown command  485–486 
ifup command  485–486 
IGF (Internet Governance Forum)  

448 
IGMP (Internet Group Manage-

ment Protocol)  456 
IIS web server  1141 
Image Packaging System  394 
IMAP (Internet Message Access 

Protocol)  747 
incident handling, security  950–

952 
incident management  1225 
$INCLUDE directive, DNS  575 
:include: directive, for email aliases  

758

include statement, DNS  602 
indirect maps, NFS automounter  

713 
inetd daemon  506 
info command  18 
information technology (IT) man-

agement 
automation  1205 
budgeting  1184–1185 
community relations  1210 
disaster recovery  1217–1222 
documentation, tools for  1185 
enterprise architecture (EA)  

1197–1199 
firing  1208 
help desk  1196–1197 
hiring  1207 
management, role of  1206–

1215 
operations  1199–1206 
organizational structure  1190–

1196 
personnel management  1207 
policies and procedures  1215–

1217 
policy  1185 
prioritization of work  1188–

1189 
purchasing  1212 
purpose of  1184 
quality control  1209 
rogue users  1214 
service level agreement  1186–

1190 
skill sets  1195 
ticketing systems and processes  

1191–1196 
init process  78, 80–81, 88–89, 123, 

1171–1175
AIX and  96 
bootstrapping and  81 
run levels and  88–91 
Solaris and  97 
startup scripts and  87, 93 
Ubuntu and  94 
zombie processes and  124, 128, 

130 
/etc/init.d directory  87, 89–91, 93 
initlog  353 
inittab file  89, 96, 1171, 1174–1175 
inodes  155, 257 
in-row cooling  1090 
insmod command  435–436

  



ptg

1244 UNIX and Linux System Administration Handbook

installation 
of AIX  380 
of HPUX  377–379 
of Linux see Linux installation 
of Solaris  370–376

installp command  397 
INT signal  125–126 
Integrity virtual machines  1003–

1004 
intent logs  255–256 
/etc/interfaces file  486 
interfaces, network see networks 
International Computer Science 

Institute (ICSI)  918 
International Organization for 

Standardization (ISO)  534 
Internet

Cache Protocol (ICP)  975 
governance  448–450 
history  447 
protocol security (IPsec)  943 
registries  448, 461, 549, 567 
standards and documentation  

449–450 
system administration resourc-

es  20 
Worm  896

Internet Corporation for Assigned 
Names and Numbers (ICANN)  
448, 461, 549, 567

Internet Engineering Task Force 
(IETF)  448

Internet Governance Forum (IGF)  
448

Internet protocol see IP 
Internet Society (ISOC)  448, 957 
Interop  1230 
ioctl  1173 
IOS (Cisco router OS)  525–528 
ioscan command  208, 225–226, 

280, 1169 
iostat command  1127 
IP  447–508

see also IP addresses 
see also IPv6 
see also routing 
broadcast pings  493, 499, 505, 

508 
CIDR (Classless Inter-Domain 

Routing)  458, 460–461 
directed broadcasts  473, 508 
firewalls  474–475, 499–500, 

932–942

IP continued 
forwarding  472, 482, 493, 499, 

505, 508, 511–515 
fragmentation  863 
IPv4 vs. IPv6  451–452 
kernel options  490, 492–493, 

498–499 
loopback interface  457, 467, 

513, 583 
masquerading see NAT 
NAT  462–464, 493–494, 500–

501 
netmasks  458–461, 479, 495 
packet fragmentation  454 
ports  456 
protocol stack  450–452 
routing  465–468, 511–528 
security  467–468, 472–475, 

492–493, 499, 505–506, 508–
509, 514–515

source routing  473, 493, 499, 
505, 508

spoofing  473–474 
subnetting  458–461, 479, 495

IP addresses  454–465 
see also IPv6 
anycast  457 
broadcast  480 
CIDR (Classless Inter-Domain 

Routing)  458, 460–461 
classes  457 
dynamic assignment  469–472, 

477, 480, 484, 497–498, 504 
hostnames and  456, 477 
IPv4 vs. IPv6  451–452 
IPv6  464–465 
leasing  469–472, 477, 480, 484, 

497–498, 504, 510 
loopback  457, 467 
loopback interface  583 
multicast  456–457 
netmasks  458–461, 479, 495 
private  462, 569, 597, 617 
subnetting  458–461, 479, 495

IP Calculator program  460 
ipcalc command  460 
ipf command  500, 942 
ipf.conf file  940 
IPFilter  499, 506, 939–942

host and port filtering  940 
ipf command  942 
keep state keywords  941 
NAT  941 
quick keyword  940

ipfstat command  500 
ipnat command  500–501 
IPsec  277, 943 
IPsec protocol  475 
iptables  935–939 
iptables command  493 
IPv6  451–452, 464–465, 509

DNS support  573, 589 
routing protocols  518–520

IQNs (iSCSI Qualified Names)  277 
IronPort email appliance  755, 853 
ISC (Internet Software Consor-

tium)  470 
ISC cron  287–288 
iSCSI  276–281

AIX  280–281 
HP-UX  280 
Linux  277–279 
Solaris  279–280

iSCSI Qualified Names (IQNs)  277 
iscsiadm command  278–279 
iscsid daemon  278 
/etc/iscsi/iscsid.conf file  278 
iscsiutil command  280 
IS-IS protocol  520, 523 
isisd daemon  523 
iSNS  276 
ISO (International Organization 

for Standardization)  534 
ISO network protocols  520 
ISO/IEC 17799 see ISO/IEC 27002 
ISO/IEC 27001 standard  946, 1215, 

1224 
ISO/IEC 27002 standard  1224 
ISOC (Internet Society)  448, 957 
issue file  1171 
IT Industry Council  1110 
ITIL (Information Technology In-

frastructure Library)  1224–1225

J

Jachim, Ron  1278 
Jacobson, Van  865, 875 
jail, chroot  913 
Jaquith, Mark  1111 
JBOD RAID mode  238 
JBoss application server  961 
Jetmore, John  773 
Jetty application server  961 
JFS filesystem  255, 257 
John the Ripper  916 
Jolitz, Bill  1270

  



ptg

Index 1245

journals (filesystem)  255–256 
Joy, Bill  1268 
JSON (JavaScript Object Notation)  

960 
jukeboxes, tape media  303 
jumbo frames  541 
Jumpstart, Solaris  371–375 
Justman, Ian  765

K

Karels, Mike  1270 
Kaspersky virus scanner  819 
kcweb command  431 
KDE  1029–1030

see also X Window System 
KDEPrint framework  1043–1045 
kdm display manager  1013 
Kerberos  110, 924–925 
Kerio MailServer  853 
/kernel directory  427 
kernel  415–417

AIX configuration  432–434 
and NFS  705 
ARP cache  469 
boot time options  84 
building, Linux  423–425 
.config file, customizing  424–

425 
device drivers  150–151, 415–

418 
device numbers  418 
HP-UX configuration  431–432 
initialization  79 
IP options  490, 492–493, 498–

499 
Linux configuration  421–423 
loadable modules  434–436 
location  146 
logging  352 
monolithic vs micro  416 
options, Linux  421, 423–425 
saved group IDs  122 
Solaris configuration  427–431 
source tree, Linux  424–425 
swappiness parameter  1125 
threads  79 
tuning, AIX  434 
tuning, Linux  421–423 
udev system  437

KEY DNS records  647 
.key DNSSEC key file, DNS  646

key remapping 
backspace key  1177 
delete key  1177

key statement, DNS  609 
keymap file, corrupted  92 
keys, generating BIND  654 
keys, SSH  926 
kibi- prefix  15 
Kickstart  365–367 
Kill A Watt meter  1088, 1099 
kill command  127, 1132 
KILL signal  125–127 
kinit command  1157 
klogd daemon  352 
KMS (kernel mode setting)  1025–

1026 
Kojm, Tomasz  903 
Kolstad, Rob  1270 
konqueror browser  1044 
kprinter command  1044 
kprinter tool  1044 
ks.cfg file  365–367 
Kuhn, Rick  108 
kVA unit conversion  1093–1094 
KVM  995–997

guest installation  996 
live migration  997 
virsh command  997 
virt-install command  996

kW unit conversion  1093–1094

L

LACNIC  462 
lame delegations, DNS  670, 678–

679 
LAMP  956 
LAN (Local Area Network)  532–

539 
lanadmin command  96, 503 
lanscan command  502, 1004 
Large Installation System Adminis-

tration (LISA) conference  1270 
/var/adm/lastlog file  184 
Lawrence Berkeley Laboratories  

1100 
layer 3 switches  539 
LCD monitors  1109 
LCFG (large-scale configuration 

system)  409

LDAP (Lightweight Directory Ac-
cess Protocol)  728–735

389 Directory Server  728, 732– 
733

and Active Directory  202 
administration tools  730 
attribute names  729 
documentation  731 
mail routing architecture  754 
OpenLDAP  731 
query example  734 
security  735 
setup  731–732 
structure of data  728 
use with Exim  809 
use with Postfix  833 
use with sendmail  759, 786–

787 
and user IDs  181 
uses of  730–731, 733

ldap_routing feature, sendmail  
786–787

ldap.conf file  732–733 
ldapsearch command  734 
LDIF (LDAP Data Interchange 

Format)  729 
ldns DNSSEC routines  664 
leadership  1206 
legacy systems  1162, 1180 
Less Watts  1110 
Levy, Stephen  924 
lifespan, equipment  1107, 1110 
Lightweight Directory Access Pro-

tocol see LDAP 
Lightweight Wireless Access Point 

Protocol (LWAPP)  543 
Limelight  978 
limit shell builtin  1133 
links

hard  149–150, 155 
symbolic  148, 151

link-state routing protocols  516 
Linux

disk addition recipe  207–208 
disk device files  224–225 
disk partitions  236 
distributions  9–10 
filesystems  158–159, 255–256 
iSCSI support  277–279 
kernel configuration  421–423 
kernel tuning  421–423 
loadable drivers  435–436 
log files  344

  



ptg

1246 UNIX and Linux System Administration Handbook

Linux continued 
logical volume management  

247–251 
logo  11 
mandatory access control 

(MAC)  109, 923–924 
named  681–684 
network configuration  484–

494 
NFS (Network File System)  

702–705 
RAID  240, 242–245 
reasons to choose  1113 
security  492 
security-enhanced  109, 923–

924 
single-user mode  86 
startup scripts, Red Hat  91–93 
startup scripts, SUSE  93–94 
startup scripts, Ubuntu  94–95 
vendor logos  11 
volume snapshots  249 
vs. UNIX  7–9

Linux Documentation Project  20 
Linux installation

see also system administration 
see also system configuration 
automating with AutoYaST  

367–368 
automating with debconf  368 
automating with debian-in-

staller  368–370 
automating with Kickstart  

365–367 
ks.cfg file  365–367 
netbooting  363–364 
PXE protocol  363–364 
PXELINUX  364 
TFTP protocol  364

Linux Mint  10 
Linux package management  382–

393 
alien conversion tool  382 
APT  387–391 
.deb format  382 
dpkg/APT  382–383 
Red Hat Network  387 
repositories  385 
RPM format  382 
rpm/yum  382–383 
yum  391 
yum/Red Hat Network  382 
Zypper  392

Linux Virtual Server  963

Lions, John  1268 
LISA (Large Installation System 

Administration) conference  
1230

LMTP protocol  830 
ln command  149, 151–152 
load average, sendmail  803 
load averages  1123 
load balancing

disks and filesystems  1114, 
1129

servers  1114 
web server  961–963

loadable drivers  431, 434–437 
Linux  435–436 
Solaris  436–437

loadable modules  434–437 
Local Area Network (LAN)  532–

539 
local delivery agents (LDA), email  

746 
local domain sockets  148, 151 
localhost  457, 467 
localhost zone configuration exam-

ple, BIND  619 
localization

compilation  407 
distribution  408 
/usr/local hierarchy  407 
wrapper scripts  413

locate command  23 
lockd daemon  694 
lockf system call  694 
log files  341–344

see also logging 
see also syslog 
AIX  344 
analyzing and searching  358–

359 
for Apache  966 
finding  341–342 
for cron  284 
HP-UX  344 
Linux  344 
lists of  343 
monitoring  358–359 
rotating  290, 356–358 
Solaris  344 
web hosting  966

/dev/log socket  345 
logcheck  358 
logger command  351

logging 
see also log files 
see also syslog 
for BIND  612, 667–672 
boot-time  352–353 
to central server  350 
for cron  288 
enterprise strategy and policy  

359 
for Exim  826–827 
kernel  352–353 
for NSD  673–674 
for sendmail  806–807 
storage considerations  360 
for sudo  114

logging in from Windows  1135 
logging statement, DNS  612, 667 
logical unit numbers (SCSI)  218 
logical volume management  221–

222, 246–254 
see also ZFS filesystem 
AIX  253–254 
HP-UX  251–253 
inter-system comparison  247 
Linux  247–251

login command  1171 
.login file  189 
/etc/default/login file  194, 907 
login process  1171 
/etc/security/login.cfg file  182, 

185, 195–196, 1172 
/etc/login.defs file  182, 185, 193, 

198–199 
logins see user accounts 
logos, vendor  11 
logrotate  356–358 
/etc/logrotate.conf file  357 
/etc/logrotate.d directory  357 
loopback

address  457, 467 
address, BIND  616 
filesystem  143 
interface  457, 467, 513, 583

LOPSA (League of Professional 
System Administrators)  1230 

lost+found directory  260, 290 
low-power equipment  1108 
ls command  152, 154–155, 167, 

169–171 
lsattr command  159, 178 
lscfg command  1120 
lsdev command  209, 226 
lsmod command  435 
lsof command  145, 708, 902, 1129

  



ptg

Index 1247

lsusb command  441 
lsvg command  209 
lswpar command  1002 
LTO backup tapes  302 
lvchange command  250 
lvcreate command  207–208, 248–

249, 252–253 
lvdisplay command  249 
lvextend command  253 
lvlnboot command  253 
lvm command  247 
LVM see logical volume manage-

ment 
lvmadm command  252 
lvresize command  250 
LWAPP (Lightweight Wireless Ac-

cess Point Protocol)  543

M

m4 command  779–782, 789 
MAC (Mandatory Access Control)  

109 
MAC addresses  454–455, 464 
machinfo command  1120 
Mackerras, Paul  725 
macros, sendmail  782–795 
magic cookies, NFS  693 
magic cookies, X Windows  1016 
mail command  744 
Mail eXchanger (MX) DNS records  

583–584 
mail see email 
mail submission agents (MSAs)  

745 
mail transport agents (MTAs)  746 
mail user agents (MUAs)  744
MAIL_HUB macro, sendmail  787 
mail.local delivery agent  798 
Maildir format  747 
Maildrop  746
MAILER macro, sendmail  784 
mailing lists  758, 760–761 
Mailman  761 
mailq command  806, 830 
.mailrc file  189 
MailScanner  769 
main.cf file  831 
major device numbers  150 
make command  25 
makedbm command  737 
makemap  782–783 
makewhatis command  17

man command  17–18 
man pages  16–18

sections  16 
in Solaris  17

managed email providers  743 
management see information tech-

nology (IT) management 
management standards, networks  

879–880 
Mandatory Access Control (MAC)  

109, 922 
mandb command  17 
Mandriva Linux  10 
manpath command  17 
MANPATH environment variable  

18 
Mantis  1193 
map files, NFS automounter  713–

715 
Martinec, Mark  769 
masks in ACLs  164
MASQUERADE_AS macro, send-

mail  787, 805
masquerading, sendmail  787 
master boot record (MBR)  82, 

233–235 
master name server, DNS  564 
master server, NIS  736–737 
master.cf file  828 
masters statement, DNS  611, 614 
match-clients clause, DNS  617
MAX_DAEMON_CHILDREN op-

tion, sendmail  802
MAX_QUEUE_CHILDREN option, 

sendmail  802
MAX_RUNNERS_PER_QUEUE op-

tion, sendmail  803
MaxDaemonChildren option, 

sendmail  800
MaxMessageSize option, send-

mail  800
MaxRcptsPerMessage option, 

sendmail  800 
mbox format  747 
McCarthy, John  1265 
McClain, Ned  1278 
McIlroy, Doug  1266 
McKusick, Kirk  254, 1270 
md system (Linux RAID)  240, 

242–245 
mdadm command  240, 242–245 
/etc/mdadm.conf file  244 
/proc/mdstat file  243

mean time between failures (MT-
BF)  211 

mebi- prefix  15 
media, backup  299–305

see also tapes 
CD and DVD  299 
comparison of  304 
jukeboxes  303 
labeling  293 
life of  297 
magnetic tape  301 
optical  299 
SSD  300 
summary of types  304 
verifying  297

mediainit command  227 
MediaWiki  1185 
memory

effect on performance  138, 
1114, 1116, 1125–1127

kernel initialization and  79 
paging  1129, 1132 
RAM disks  1129 
usage, analyzing  1125–1127

memory management  1124–1125 
Message Labs  763 
message of the day  1172 
message stores, email  746–747 
/var/log/messages file  349, 352 
Metcalfe, Bob  532 
meter, power  1099 
mgetty process  1171–1176 
Microsoft Exchange, replacements 

for  853 
Microsoft Outlook  745 
Microsoft Windows see Windows 
mii-tool command  489 
Miller, Todd  114 
miltering, email  767 
MIME (Multipurpose Internet 

Mail Extensions)  744 
mingetty process  1171–1176 
minicom command  1181 
minor device numbers  150 
mirroring (RAID 1)  239–240, 248, 

253 
mkboot command  251 
mkfs command  207–208, 254, 

258–259 
mklv command  254 
mknod command  150–151, 419 
mkps command  264 
mkrole command  108 
MKS Toolkit  1141

  



ptg

1248 UNIX and Linux System Administration Handbook

mksf command  1169 
mkswap command  264 
mkuser command  195 
/etc/security/mkuser.default file  

195 
mkvg command  209, 246, 254 
mkwpar command  1002 
mod_perl interpreter  960 
mod_php interpreter  960 
mod_python interpreter  960 
modems  1167 
modinfo command  431, 436–437 
modload command  437 
modprobe command  435 
/etc/modprobe.conf file  436
MODULE_DEVICE_TABLE macro  

427
modunload command  437 
Mondo Rescue  335 
monitoring

environmental  1091 
log files  358–359 
processes  130–135 
temperature  1091

Morreale, Terry  1278 
Morris worm  896 
Morris, Robert, Jr.  896 
motd file  1172 
mount command  143–145, 258, 

260–262, 706–709 
mount points, filesystem  143 
mount.smbfs  1149 
mountd daemon  699 
mountpoint ZFS property  268 
mpstat command  1122 
/var/spool/mqueue directory  806 
MRTG (Multi-Router Traffic Gra-

pher)  886 
MSA (mail submission agent)  745 
MSN Hotmail  743 
mt command  317 
MTA (mail transport agent)  746 
MTBF (mean time between fail-

ures)  211 
MTU (Maximum Transfer Unit)  

453–454 
mtx package  318 
MUAs (mail user agents)  744 
multibooting  85 
multicast addresses  456–457 
multicore processors  990 
Multics  1265 
multimode fiber  536

multiprocessor machines, analyz-
ing performance  1122

Multipurpose Internet Mail Exten-
sions (MIME)  744

multiuser mode  81 
MX DNS records  583–584 
MySQL  318, 320–321, 956, 1193

N

Nagios SNMP monitoring tool  887 
name servers

see also DNS 
see also BIND 
see also named 
authoritative  564, 569 
caching  556–557, 569 
caching-only  564 
delegation  555 
dynamic updates  640–642 
forwarding  606 
hints  566 
lame delegations  670, 678–679 
master  564 
nonauthoritative  564 
recursion  565 
resolver  561–563 
slave  564 
stub  564 
switch file  682 
zone delegation  596–597

name service switch  494 
named

see also BIND 
see also DNS 
see also name servers 
acl statement  609 
ACLs  609, 643–644 
AIX  685–686 
allow-update clause  613, 641 
avoid-v4-udp-ports option  

605 
blackhole option  606 
bogus directive  611 
chrooted  643, 645 
command-line interface see 

named, rndc
compiling with OpenSSL  655 
configuration examples  618–

624 
controls statement  615–616 
debugging  667–681 
directory statement  603

named continued 
domain directive  562 
error messages  670 
file statement  614 
forwarders option  606 
forwarding zone, configuring  

615 
$GENERATE directive  587 
HP-UX  684–685 
$INCLUDE directive  575 
include statement  602 
init scripts  681 
ISC configuration example  623 
key statement  609 
Linux  681–684 
localhost zone configuration 

example  619 
logging  667–672 
logging statement  612, 667 
master server, configuring  613 
masters statement  611, 614 
match-clients clause  617 
/etc/named.conf file  600–624, 

643, 671 
named.run file  672 
named-checkconf command  

600, 648, 679 
named-checkzone command  

600, 679 
notify option  604 
options directive  561 
options statement  602–609 
$ORIGIN directive  575 
provide-ixfr option  639 
recursion option  604 
request-ixfr option  639 
RHEL  684 
rndc command  638, 672, 674 
root server hints  614 
root.cache file  615 
search directive  561 
server statement  610, 639 
slave server, configuring  614 
Solaris  684 
starting  640 
statements, list of  601 
stub zones, configuring  614 
SUSE  683 
testing  667–681 
transfer-source option  623 
$TTL directive  575–576, 581 
Ubuntu  682 
update-policy clause  641 
updating zone files  640–642

  



ptg

Index 1249

named continued 
versions  599 
view statement  617 
zone commands  574–575 
zone statement  612–615 
zone-statistics option  613

named daemon  563 
named pipes  148, 151 
named_dump.db file  674 
/etc/named.conf file  600–624, 643, 

671 
named.run file  672 
named-checkconf command  600, 

648, 679 
named-checkzone command  600, 

679 
nano editor  6 
NAT (Network Address Transla-

tion)  462–464, 493–494, 500– 
501

ncftp command  727 
ndbm library  308 
ndd command  468, 498–499, 504–

505, 970 
nddconf file  95 
neigh directory  491 
Neighbor Discovery Protocol  520 
Nelson, T.J.  847 
Nemeth, Evi  1269, 1279 
NERC (North American Electric 

Reliability Corporation)  1224 
Nessus  916 
net command  1158 
NetBIOS  1142 
netbooting

non-PCs  364 
PCs  363

NetBSD  8 
netconf file  95, 501, 504 
netdaemons file  95 
Netfilter  935–939 
netmasks  458–461, 479, 495 
netmasks file  495 
NeTraverse  1140 
Netscape Directory Server  728 
NET-SNMP  885–886 
netstat command  466, 483, 503, 

512–514, 868–873 
interfaces  868 
monitoring connections  870 
network statistics  868–873 
and NFS UDP overflows  705 
open ports  871 
routing table  871

Network Address Translation 
(NAT)  462–464, 493–494, 500– 
501

Network Appliance, Inc.  711 
Network Auto-Magic  494 
network booting  363–364 
network documentation  1204 
/etc/sysconfig/network file  487 
Network Intrusion Detection Sys-

tem (NIDS)  918 
network printers  1040 
network unreachable error  482 
network wiring

building  545–547 
cable analyzer  545 
cable choices  533–536, 545 
maintenance and documenta-

tion  549 
for offices  546 
Wireshark network sniffer  545

NetworkManager  485–486 
networks

see also Ethernet 
see also IP addresses 
see also network wiring 
see also routing 
see also TCP/IP 
addresses  454–455, 457, 464, 

467 
administrative databases  721, 

736 
AIX configuration  506–508 
broadcast storms  538 
connecting and expanding  

537–539 
design issues  547–549 
firewalls  932–942 
hardware options  481 
host addition  476–484 
HP-UX configuration  501–506 
interface activity reports  873 
interface configuration  478–

481 
IPfilter firewall  939–942 
Linux configuration  484–494 
load balancing  1114 
loopback  457, 467, 513, 583 
management issues  549–550, 

859 
management protocols  879–

883 
management standards  879–

880 
monitoring  869–870

networks continued
MTU  453–454 
ping and  861–863 
port scanning  914–916 
RHEL configuration  487–489 
routing tables  871 
scanner, Nessus  916 
Solaris configuration  494–501 
statistics  868–873 
SUSE configuration  486–487 
tools  860 
troubleshooting  544–545, 860–

873 
Ubuntu configuration  486 
unreachable  482 
virtual interfaces  481 
VLANs  539 
VPNs  475–476 
wireless  541–543 
Wireshark  877

/etc/networks file  483 
network-scripts directory  92, 488 
Neumann, Peter  1266 
newaliases command  290, 760, 

830 
newgrp command  186 
newusers command  197 
NFS (Network File System)  690–

717
ACLs  161, 166–172 
AIX  702–703 
all_squash option  698, 704 
anongid option  704 
anonuid option  704 
as a configuration file distribu-

tion method  721 
buffer sizes  708 
client  706–709 
common options, Linux  704 
configuration, server  698–705 
cookies  693 
dedicated file servers  711 
disk quotas  698 
and dump  309 
entities  168 
export configuration files  700 
exporting filesystems  698–705 
exports  693 
file locking  694 
firewall configuration  696 
hard vs. soft mounts  707 
history of  692 
HP-UX  700–701 
identity mapping  696, 709–710

  



ptg

1250 UNIX and Linux System Administration Handbook

NFS continued 
insecure option  704 
Linux  702–705 
maintaining state  693 
mount command  706–709 
mounting filesystems at boot 

time  708 
nfsd daemon  705 
no_root_squash option  704 
noaccess option  703 
nobody account  118, 697 
performance on wide area net-

works  698 
protocol versions  692 
pseudo-filesystem  693 
Red Hat  717 
root access  697 
secure option  704 
secure_locks option  704–705 
security  695–698, 700, 709 
Solaris  700–701, 708 
statistics  710 
subtree_check option  704 
tuning  708 
using to export email  756 
version 4 features  692 
and ZFS  271–272

nfsd daemon  699, 705 
nfsstat command  710 
nice command  129–130, 1123 
nice value  123 
NIDS (Network Intrusion Detec-

tion System  918 
NIS (Network Information Ser-

vice)  494, 736–738 
architecture  736–738 
commands  738 
database files  736 
files to share  720 
map files  736 
master server  736–737 
slave servers  736–737

NIST (National Institute for Stan-
dards and Technology)  1225– 
1226

NIST 800-34 standard  1226 
NIST 800-53 standard  1226 
nmap port scanner  914–916 
nmbd daemon  1143 
nmon tool  1130 
no command  468, 507–508 
nobody  118, 697 
nodename file  494 
/etc/iscsi/nodes directory  278

nohup command  127 
Nortel  963 
notify option, DNS  604 
Novell  13 
NS DNS records  596 
nscd daemon  740 
nscd.conf file  740 
NSD

architecture  625 
configuration  625 
configuration examples  625, 

627–638 
control programs  674 
differences from BIND  626 
DNSSEC performance  625 
drill command  625 
logging  673–674 
nsd name server daemon  625 
nsdc command  675 
starting the daemon  632 
unbound configuration  632–

633 
unbound performance tuning  

636 
unbound server  625 
unbound.conf file  633 
unbound-control command  

675 
nsdc command  675 
NSEC DNS records  659 
nslookup command  677 
nsswitch.conf file  494, 733, 739, 

776 
nsupdate command  641 
NTP protocol  288 
null modem serial cable  1165, 1180 
nullclient feature, sendmail  788 
nwamd daemon  494

O

O’Reilly Media  1270 
O’Reilly series (books)  19 
O’Reilly, Tim  20, 1270 
IBM Object Data Manager  432 
Object Data Manager (ODM)  115, 

280, 506 
OC4J application server  961 
ODM (Object Data Manager)  115, 

280, 506 
ODMDIR environment variable  

115 
Oetiker, Tobias  410, 886, 1278

office temperature  1109 
office wiring  546 
off-site backup storage  295 
OM1 fiber  537 
OM2 fiber  537 
OM3 fiber  537 
on-demand servers  1104 
open source software  8 
Open Web Application Security 

Project  947 
OpenBSD  8 
Open-iSCSI  277–279 
OpenLDAP  731 
OpenOffice  11, 1140 
openprom prompt  429 
OpenSolaris  8, 12 
OpenSSL  972–973 
openSUSE  10–11 
OpenVPN  475 
operating cost reduction  1098–

1110 
operating system installation see 

installation 
oprofile tool  1131 
options directive, DNS  561 
options statement, DNS  602–609 
Oracle  12 
Oracle Enterprise Linux  10 
$ORIGIN directive, DNS  575 
orphaned processes  124, 128, 130 
OS1 fiber  537 
OSI network protocols  520 
OSPF protocol  519–521, 523 
ospf6d daemon  523 
ospfd daemon  523
OSTYPE macro, sendmail  783–784 
OTRS  1193 
ownership

of files  155, 157 
of processes  105

P

pacadm command  1177 
package management  21–26, 381–

397 
repositories  387

packages see software packages 
packet forwarding  472, 482, 493, 

499, 505, 508, 511–515 
packets  452

dropped  862 
filtering  904, 932

  



ptg

Index 1251

packets  continued 
handling with Netfilter  935–

939 
ICMP  938 
round trip time  863 
sniffers  545, 874–878 
tracing  865–867

PAGER environment variable  17 
paging  1129, 1132 
PAM (Pluggable Authentication 

Modules)  109–110, 201, 721, 
908–912, 1159

paper sizes  1073–1075 
paper, recycled  1110 
parted command  207, 225, 236 
partitions  221–223, 231–237

see also filesystems 
alignment  212 
GPT (EFI) style  235–236 
guidelines  232–233 
HP-UX  237 
Linux  236 
load balancing  1129 
Solaris  232–233, 236–237 
Windows-style  233–235

passphrases  112 
/etc/default/passwd file  194 
/etc/security/passwd file  185 
passwd command  106, 188 
/etc/passwd file  176–183

editing  179, 188 
group ID numbers  155 
security  906–908 
user ID numbers  105, 155

/etc/default/password file  907 
passwords

aging  906 
boot loader  900 
cracking  916 
cryptography  176, 179, 1144 
encryption  176, 179, 1144 
escrow  117–118 
forcing users to change  185 
group  186 
initial  188 
root  111 
Samba  1144 
security  906–908 
selection  111–112, 188 
shadow  183–185 
strength  916 
when to change  112

PAT (Port Address Translation)  
493

PATA interface  213–215 
cables  215 
power connector  215 
secure erase  227–228 
SMART reporting  230–231 
TRIM command  228

patching  901 
path MTU discovery  454 
pathnames  142–143 
pattern matching  36, 48–54 
Paxson, Vern  918 
PC hardware

see also hardware 
BIOSes  82 
boot device priority  82 
bootstrapping  82 
multibooting  85 
vs. UNIX hardware  82

PCI DSS (Payment Card Industry 
Data Security Standard)  295, 
946, 1224

PCL  1069 
PCLinuxOS  10 
PCRE library  49 
PDF  1070 
Pennock, Phil  851 
Pen-pals  756 
performance  1112–1133

see also performance analysis 
tools

analysis methodology  1117 
application  1113 
BIND  680 
common issues  1114 
CPU  1116, 1118, 1121–1123 
of disks  210, 212, 219–220, 

1116, 1127, 1129–1131 
factors affecting  1115–1116 
improving  1112–1117 
load averages  1123 
magic  1113 
measuring and monitoring  886 
memory  138, 1114, 1116, 

1124–1127 
monitoring  1115 
NFS  708 
nice command  129 
SDSC Secure Syslog  352 
sendmail  802–805 
Squid web cache  975–976 
SSD  1115 
st_atime flag  159 
syncing log files  348 
troubleshooting  1131–1133

performance continued 
tuning rules  1113 
web server  959–963, 967

performance analysis tools 
iostat command  1127 
mpstat command  1122 
oprofile command  1131 
sar command  1129 
top command  1123 
uptime command  1123 
vmstat command  1121

Perl  7, 54–66, 956 
add-on modules  65–66 
best practices  73–74 
example scripts  733 
file test operators  62 
as a filter  64–65 
generating passwords  732 
hashes  57–59 
I/O  61 
insecure example  900 
regular expressions in  49, 60 
scripting  54–66 
and swatch  358 
variable types  55–59 
wrapping cron jobs  727

permissions 
on files  105, 110, 152–159, 164–

172 
sendmail  797–798 
umask and  158

PGP (Pretty Good Privacy)  763, 
925

phishing  899, 1226 
phpLDAPadmin  730 
Phusion Passenger  960 
physical volumes see logical volume 

management 
picocom command  1181 
PIDs  121 
Pilgrim, Mark  67 
ping command  473, 861–863 
pinout, connector

DB-25  1164–1165 
DB-9  1166 
RJ-45  1167

pipes, named  148, 151 
PJL  1070 
pkgadd command  430 
pkgutil command  23 
pkutil command  24 
/platform directory  427

  



ptg

1252 UNIX and Linux System Administration Handbook

Pluggable Authentication Modules 
(PAM)  109–110, 201, 721, 908– 
912

pmadm command  1177 
PoE (Power over Ethernet)  540 
policy  1215–1217

flow down  1228 
Postfix policy daemons  841 
user agreement  1227–1228

/etc/security/policy.conf file  194 
pooladm command  999 
poolcfg command  999 
POP (Post Office Protocol)  747, 

1141 
ports, network  456

privileged  456, 914, 933 
scanning  914–916 
well known  914, 933

ports, serial  1163–1165 
POSIX  7

ACLs  160–166 
APIs under Windows  1141 
capabilities  109

Post Office Protocol (POP)  747, 
1141

postalias command  830 
postcat command  830 
postconf command  830, 832 
Postfix  828–845

see also email 
access control  837–839, 845 
architecture  828 
authentication  839 
blacklists  840–841 
chrooted  830 
command-line utilities  830 
configuring  831–839 
content filtering  842 
debugging  844–845 
DKIM  852–853 
local delivery  834 
lookup tables  833 
policy daemons  841 
queues  829–830 
security  830 
sending email  830 
spam control  840–843 
virtual domains  835–837 
virus scanning  842–843

postfix command  830 
Postini  762 
postmap command  830 
PostScript  1069 
postsuper command  830

posture assessment  1215 
power consumption  1099 
power factor  1093 
power management  1091

of hard disks  229–230 
power meter  1099 
Power over Ethernet  540 
power saving, Linux  1104 
power use, measurement of  1099 
PPD (PostScript Printer Descrip-

tion) files  1035, 1072–1073 
PPIDs  121 
PPP protocol  476 
PPPoE  476 
Pratt, Ian  991 
Preston, W. Curtis  337 
Pretty Good Privacy (PGP)  763, 

925 
preventative maintenance  1092 
printcap file  1059–1065 
printer cartridges, recycled  1110 
PRINTER environment variable  

1036, 1054 
printing  1032–1083

see also BSD printing 
see also CUPS 
see also System V printing 
architecture  1033–1034 
BSD printing  1054–1065 
choosing a printer  1075 
CUPS  1034–1043 
duplex  1076 
eDocument campaign  1109 
from desktop environment  

1043–1045 
GDI printers  1076 
history  1065–1066 
languages  1068–1072 
major printing systems  1033–

1034 
network printers  1077 
page description languages 

(PDL)  1068–1072 
paper sizes  1073–1075 
paper, recycled  1110 
parallel printers  1077 
PCL  1069 
PDF  1070 
PJL  1070 
PostScript  1069 
PPD files  1072–1073 
serial printers  1077 
sharing printers using Samba  

1149–1152

printing continued 
spooler  1033–1034 
system identification  1034 
System V printing  1045–1054 
tips  1077–1081 
tools  1067–1068 
troubleshooting  1053–1054, 

1081–1083 
Windows driver installation  

1151–1152 
WinPrinters  1076 
XPS  1070

priority, processes  123, 129–130 
privacy  1226 
.private DNSSEC key file  646 
private IP addresses  462, 569, 597, 

617 
privedit command  108 
privileged ports  456, 914, 933 
privrun command  108 
problem management  1225 
/proc filesystem  135–136, 262, 439, 

490, 1118 
procedures  1215–1217 
processes

control terminal  123 
EGID (effective group ID)  122 
EUID (effective user ID)  122 
execution states  128 
FSUID parameter  122 
GID (group ID)  122 
IDs  121 
init see init process 
monitoring  130–135 
nicing  129–130 
orphaned  124, 128, 130 
ownership  105, 122 
PPID (parent PID)  121 
priority  123, 129–130 
runaway  138–139 
scheduling  105 
sending signals to  127 
spontaneous  79 
standard I/O channels  123 
stopping and starting  128 
tracing  136–137 
UID (user ID)  122 
zombie  124, 128, 130

procmail command  746, 841 
/etc/security/prof_attr file  108 
/etc/profile file  190 
profiler, system  1131 
Project Athena  1011 
provide-ixfr option, DNS  639

  



ptg

Index 1253

proxies, web  974 
prtconf command  430, 1120 
ps command  130–133, 1123, 1132 
pseudo-devices  419 
pseudo-terminals  1162, 1170 
psrinfo command  1120 
pstat command  1125 
PTR DNS records  582, 623 
public key cryptography  927 
PUE  1099 
Punycode  574 
purchasing  1212 
Purdue  1269 
PuTTY  1135 
P-UX Security Containment  922 
pvcreate command  207–208, 246, 

248, 251 
pwdadm command  185, 200 
PXELINUX  364 
pyramid, green IT  1100–1101, 

1109 
Python  7, 66–73

best practices  73–74 
data types  69–70 
indentation  67–68 
loops  71–73 
scripting  66–73

Q

qmgr command  830 
qshape command  844 
quad A DNS records  589 
Quagga routing daemon  523–524 
quaggaadm command  524 
quality control  1209 
queue groups, sendmail  802 
QUIT signal  125, 127 
quota ZFS property  267 
quotas, disk  698

R

rack density  1092 
rack power  1092–1093 
racks, equipment  1094 
RAID  221–222, 234, 237–245, 

1115 
failure recovery  241 
levels  238–241 
Linux  240, 242–245

RAID continued 
RAID 5 write hole  238, 241– 

242
software vs. hardware  237–238 

RAID-Z see ZFS filesystem 
RAM disks  1129 
ramd routing daemon  524 
RANCID router config tool  528 
RBAC (Role Based Access Control)  

108–109, 190 
RBL (Realtime Black Lists) see 

blacklists 
/etc/rc.boot script  95 
/etc/rc.config.d directory  95 
/etc/rc.log file  95 
/etc/rc.serial file  1170 
/etc/event.d/rc-default file  95 
RCPT command, SMTP  763 
rdc command  524 
rdesktop command  1139 
rdist command  290, 722–725 
RDP (Remote Desktop Protocol)  

1138 
/rdsk directory  226 
read errors, disk  227 
real-time scheduling  123 
RealVNC  1138 
reboot command  101 
rebooting  100–101 
Recovery Point Objective (RPO)  

299 
Recovery Time Objective (RTO)  

299 
recursion option, DNS  604 
recycling

equipment  1107, 1110 
in the workplace  1110 
paper  1110

Red Flag Linux  10 
red flag rule  1224 
Red Hat Enterprise Linux see 

RHEL 
redirect feature, sendmail  785 
redirect router, Exim  823 
redirects (ICMP)  467–468, 473, 

493, 499, 505, 508–509, 514–515 
redundant arrays of inexpensive 

disks see RAID 
Reed, Darren  939 
refquota ZFS property  267 
refreservation ZFS property  267 
refresh command  345
REFUSE_LA option, sendmail  800 
regexes see regular expressions

registration of domain names see
domain names, registration

regular expressions  36, 48–54 
capture groups  52–53 
examples  51–52 
failure modes  53–54 
lazy operators  53 
matching process  49 
in Perl  49, 60 
special characters in  50–51

regulations, compliance with  
1222–1229

relatime option  1105 
/etc/mail/relay-domains file  791 
release management  1225 
rem_drv command  437 
remapping

backspace key  1177 
delete key  1177

Remedy  1194 
Remote Desktop Protocol (RDP)  

1138 
remote power control  1094 
renice command  129–130, 1132 
replicated filesystems  715 
repositories, software  385 
reproducible processes  1197 
request-ixfr option, DNS  639 
reservation ZFS property  267 
reset command  1180 
resize2fs command  251 
/etc/resolv.conf file  561–484 
resolver configuration  483–484 
resource records, DNS  555, 576–

596
A  582, 596 
AAAA  589 
ADSP  591–594 
CNAME  585 
DKIM  591–594 
DNSKEY  650 
format  576 
glue  596–597 
KEY  647 
MX  583–584 
NS  596 
NSEC  659 
PTR  582, 623 
quad A  589 
RRSIG  649, 659 
SOA  579–581, 638 
special characters in  576 
SPF  590–591 
SRV  587–588

  



ptg

1254 UNIX and Linux System Administration Handbook

resource records, DNS continued 
SSHFP  594–595 
time to live  576 
trailing dot in names  576 
TXT  588, 603 
WKS  588

restore command  310–314 
retiring equipment  1107 
reverse mapping, DNS  554, 582–

583, 623 
revision control  397–404

Git  401–404 
Subversion  399–401

RFCs  20, 449–450 
DNS-related  688 
email-related  746 
LDAP-related  731 
NFS-related  717 
overview  449–450 
private address space  462 
SNMP-related  893

RHEL  11–12 
documentation  19 
named  684 
network configuration  487–

489 
Richards, Martin  1266 
RightScale  978, 1104 
RIP protocol  516, 518, 521–523 
ripd daemon  523 
RIPE DNSSEC tools  665 
RIPE NCC  462 
RIPng protocol  518 
ripngd daemon  523 
Ritchie, Dennis  1265 
RJ-45 connectors  1166–1167 
rm command  149–151 
rmmod command  435 
rmrole command  108 
rmuser command  195 
rndc command  638, 672, 674 
/etc/rndc.conf file  616 
/etc/rndc.key file  616 
rndc-confgen command  616 
Roesch, Marty  918 
rogue users  1214 
roleadd command  108 
roleadm command  108 
roledel command  108 
rolelist command  108 
rolemod command  108 
root account  105–106, 907

see also RBAC 
accessing  112–118

root account continued 
accessing via NFS  697 
password  111 
user ID  105

root filesystem  81, 146, 232 
backup copy  232

rootkits  904 
rotating log files  356–358 
route command  466, 481–483 
routed daemon  496, 522 
Router Discovery Protocol  520 
routers  539 
routes file  487 
routing, network  465–468, 511–

528 
architecture design  521–522 
autonomous systems  517–518 
CIDR (Classless Inter-Domain 

Routing)  458, 460–461 
Cisco routers  525–528 
cost metrics  517 
daemons  522–525 
default routes  466, 501, 513, 

521 
forwarding  472, 482, 505, 512–

515 
ICMP redirects  467–468, 473, 

493, 499, 505, 508–509, 514–
515

multi-ISP  518 
netmasks  458 
protocols  515–516, 518–523 
source routing  473, 493, 499, 

505, 508 
static routes  466, 481–483, 521 
subnetting  458 
tables  465–467, 511–515, 871 
unreachable networks  482 
XORP (eXtensible Open Router 

Platform)  524 
Rowland, Craig  358 
rpc.mountd daemon  699 
rpc.nfsd daemon  699 
rpm command  382–383 
RPM software package format  382 
RPO (Recovery Point Objective)  

299 
rquotad daemon  698 
RRSIG DNS records  649, 659 
RS-232 standard  1163–1165 
rsync command  290, 335, 725–727 
rsyncd.conf file  726 
rsyncd.secrets file  727 
RT (Request Tracker)  1193

RTO (Recovery Time Objective)  
299

RTS (request to send) signal  1168 
Ruby  7, 66 
Ruby on Rails  960 
run levels  1174

changing  89 
init and  88–91, 1174

RunAsUser sendmail user account  
796

runaway processes  138–139 
running Linux programs from 

Windows  1136–1137 
rxvt command  1141

S

S/MIME  763 
SAAS (software as a service)  987 
sacadm command  1176–1177 
Safe Harbor  1224
SafeFileEnvironment option, 

sendmail  799
SAGE (System Administrators 

Guild)  1230 
SAIT backup tapes  302 
sam sysadmin tool (now smh)  201 
Samba  166, 1142–1160

see also Windows 
Active Directory integration  

1154–1160 
CIFS  1142 
command-line file transfer 

progam  1148 
compiling for Active Directory 

integration  1156 
configuration  1143 
daemons  1143 
debugging  1152–1154 
displaying active connections 

and locked files  1153 
file sharing  1146 
filename encoding  1145 
group shares  1146 
installation  1143–1144 
Kerberos configuration  1156 
listing configuration options  

1144 
log files  1152 
net command  1158 
password encryption  1144 
printer sharing  1149–1152 
security  1143

  



ptg

Index 1255

Samba continued 
setting up passwords  1144 
sharing files  1142 
troubleshooting  1152–1154 
user authentication  1145 
UTF-8 encoding  1145 
winbind  1155

SAN see storage area networks 
SANS Institute  945, 948, 1230, 

1270 
sar command  873, 1125, 1129 
Sarbanes-Oxley Act (SOX)  946, 

1223, 1225 
SAS interface see SCSI interface 
SASL (Simple Authentication and 

Security Layer)  801 
SATA interface  214–216

cables  216 
secure erase  227–228 
SMART reporting  230–231 
TRIM command  228 
vs. SCSI  219–220

savelog  358 
/sbin directory  146 
SCA-2 connector (SCSI)  217 
Scarab  1193 
sched_mc_power_savings kernel 

parameter  1105 
sched_smt_power_savings kernel 

parameter  1105 
schedulers, I/O  1130–1131 
scheduling classes  123 
Schneier, Bruce  948 
Schweikert, David  1278 
scientific method  1117 
scp command  926 
scripting  29–74

see also bash 
see also Perl 
see also Python 
best practices  73–74

SCSI interface  214 
addressing  218 
connector diagrams  217 
connectors  217 
parallel  216–218 
termination  217 
troubleshooting  218 
vs. SATA  219–220

S-DLT backup tapes  301 
SDSC Secure Syslog  352 
search directive, DNS  561 
search path  22 
SEC (Simple Event Correlator)  359

secondary partitions  235 
secure erase  227–228 
Secure Sockets Layer (SSL)  475, 

801 
secure tunnel  942 
/etc/default/security file  195 
security

see also cryptography 
access control  103–118 
AIX  507–508 
of backups  295, 903 
BIND  571 
Bro network intrusion detec-

tion system  918 
buffer overflows  899 
CBK (common body of knowl-

edge)  945 
certifications  944–945 
CGI scripts  960 
chroot and  913 
CISA (Certified Information 

Systems Auditor)  945 
CISSP (Certified Information 

Systems Security Profession-
al)  945

Common Criteria  947 
configuration issues  900 
of credit cards see PCI DSS 

(Payment Card Industry Data 
Security Standard)

cryptography  176, 179, 924, 
1144

denial of service (DOS) attacks  
583, 727, 800–801, 1132 

of discarded disks  227–228 
DNS  571 
DNSSEC  573, 648–667 
DOS attack via syslog  349 
email  763 
email to files  759 
email to programs  759, 798–

799 
encryption see cryptography 
firewalls  932–942 
flaws in UNIX and Linux  897 
GIAC (Global Information As-

surance Certification)  945 
handling attacks  950–952 
hardening practices  901 
HIDS  904, 919 
hints  905 
HP-UX  505–506 
identifying open ports  871, 902 
identity theft  1224

security continued 
information sources  947–950 
IP firewalls  474–475, 499–500, 

932–942 
IPFilter  939–942 
iptables  935–939 
Kerberos  110, 924–925 
LDAP and  735 
Linux  492 
login names, uniqueness  178 
loss from breach  897 
mandatory access control 

(MAC)  922 
monitoring  904–905, 935 
of named  643–645 
NFS  695–698, 700, 709 
NIDS  918 
NIST 800 security standards  

947 
of Exim  810 
of networks  107 
of passwords  906–908 
OSSEC host intrusion detection 

system  919–922 
overview  896–901 
OWASP  947 
packet sniffers  874–878 
PAM  109–110, 201, 721, 908–

912 
of passwd file  906–908 
password encryption algo-

rithms  179 
of passwords  111, 176, 179, 

905, 916 
PCI Data Security Standard  

946 
phishing  899 
port scanning  914–916 
of Postfix  830 
removing unnecessary services  

902 
reporting break-ins  952 
root account  907 
rootkits  904 
Samba  1143 
SDSC Secure Syslog  352 
of search paths  113 
secure tunnel  942 
SELinux  923–924 
of sendmail  795–801 
setuid programs  912–913 
/etc/shadow file  906–908 
shadow passwords  183–185 
SNMP  882

  



ptg

1256 UNIX and Linux System Administration Handbook

security continued 
Snort network intrusion detec-

tion system  918
social engineering  898 
Solaris  499 
SSH  926–930 
SSHFP DNS records  594–595 
SSL  971–974 
standards  945–947 
stunnel  930–932 
sudo command  113–116 
of TCP/IP  467–468, 472–475, 

492–493, 499, 505–506, 508–
509, 514–515

tools  914–932 
Trojan horses  903 
TSIG (transaction signatures)  

623, 645–648 
user account hygiene  175 
vigilance  906 
viruses  825–826, 842–843, 903 
of VPNs  475–476, 942–944 
vs. convenience  898, 900 
web script  960 
of wireless networks  543 
X Window System  1015–1019, 

1137 
security incidents  1222 
SecurityFocus.com  948 
Seeley, Donn  1270 
segmentation violations  126 
SEGV signal  125 
SELinux  109, 923–924 
Sender ID  767 
Sender Policy Framework (SPF)  

750, 767 
sender signing policy (SSP)  768 
sendmail

see also email 
see also spam 
aliases see aliases, email 
authentication and encryption  

795–801 
blacklists  792 
chrooted  800 
command line flags  777 
configuration  778, 789–794 
debugging  805–807 
delivery modes  802 
DKIM  850 
documentation  779 
envelope splitting  802 
headers  748–750 
HP-UX  96

sendmail continued 
Installation and Operation 

Guide  854 
logging  806–807 
m4 and  779–782, 789 
masquerading  787 
ownership, files  796–797 
performance  802–804 
permissions  797–798 
privacy options  799–800 
queue groups  802 
queue runners  802 
queues  777–778, 802, 806 
rate and connection limits  793 
Red Hat  92 
relaying  791–792 
security  795–801 
and the service switch file  776 
slamming  793 
using SMTP to debug  750 
spam control features  789–795 
startup script  93 
statistics  805 
version of  775 
virtusertable feature  786

Sendmail, Inc.  801 
sendmail.cf file  777–778 
serial file  1170 
serial cables  1163–1168

DB-9 to DB-25  1166 
modem  1165 
null modem  1165 
RJ-45 to DB-25  1167 
straight-through  1164–1165

serial connectors 
DB-25  1163–1165 
DB-9  1166 
RJ-45  1166

serial drivers  420 
serial ports  1163–1165

bidirectional  1169 
breakout boxes  1180 
consoles  1180 
DCE vs. DTE  1164–1165 
debugging  1180 
device files  1168–1170 
drivers, special characters  

1177–1180 
flow control  1168 
HP-UX  1169 
parameters, setting  1169–1170 
resetting  1179–1180 
setting options  1178–1180 
Solaris  1176–1177

Server Name Indication (SNI)  968 
server statement, DNS  610, 639 
server utilization  983 
servers

consolidation  1102 
DNS/BIND  563–566 
energy optimization of  1104–

1105 
HTTP  963 
load balancing  1114 
master NIS  736–737 
name see BIND, DNS, and 

named
NFS  698–705, 711 
NIS slave  736–737 
Squid  974–976 
system files  727 
virtualization  1103 
VNC  1138 
web proxy  974 
X Window System for Win-

dows  1137, 1141 
servers on demand  1104 
Service Access Facility  1176 
service level agreements  1186–

1190 
measurement of  1189–1190 
scope  1187

service management facility  97 
fault management resource 

identifiers  97 
manifests and profiles  98 
predictive self-healing  99

service switch file  776 
ServiceDesk  1194 
/etc/services file  456, 933 
setfacl command  165 
setrlimit system call  1133 
/etc/init.d/setserial script  1170 
setserial command  1169 
setuid/setgid bits  106–107, 153–

154, 912–913 
sfdisk command  207 
sh shell see bash 
/etc/shadow file  183–185, 906–

908, 1171 
shadow passwords  183–185 
Shapiro, Gregory  801 
share (Samba)  1142 
share command  271, 699–700 
SHARE user group  1265 
shareall command  699 
shareiscsi ZFS property  272 
sharenfs ZFS property  271

  



ptg

Index 1257

sharesmb ZFS property  271 
sharing a filesystem see NFS 
shebang  37 
shell

see also bash 
globbing  14, 51 
login  182 
startup files  189

SHELL variable  1179 
/etc/shells file  182–183 
Shimpi, Anand  213 
shocking nonsense  111 
showmount command  706 
shred utility  228 
shutdown command  100–101, 349 
signals  124–127

see also individual signal names 
caught, blocked, or ignored  125 
CONT  125–126, 128 
HUP  125–126 
INT  125–126 
KILL  125–127 
list of important  125 
QUIT  125, 127 
sending to a process  127 
STOP  125–126, 128 
TERM  125–127 
TSTP  125–126, 128 
WINCH  125–126

Simple Mail Transport Protocol see 
SMTP 

single mode fiber  537 
single sign-on systems  202

CAS  203 
JOSSO  203 
Likewise Open  203

single-user mode 
AIX  87 
booting to  80, 86 
bypassing  80 
HP-UX  87 
Linux  86 
manual booting  80 
remounting the root filesystem  

81 
Solaris  86

/etc/skel directory  190 
SLA see service level agreement 
Slackware Linux  10 
slamming, controlling in sendmail  

793 
slapd daemon  731 
slave servers, NIS  736–737 
slices see partitions

slurpd daemon  731 
SMART monitoring  230–231
SMART_HOST macro, sendmail  

787
smartctl command  231 
smartd daemon  231 
/etc/smartd.conf file  231 
SMB protocol see Samba 
smb.conf file  1143, 1149, 1153 
smbclient  1148 
smbcontrol  1153 
smbd daemon  1143 
smbfs filesystem  1148 
smbpasswd  1144 
smbstatus  1153 
smh sysadmin tool (HP-UX)  201 
SMP (symmetric multiprocessing)  

1122 
smrsh email delivery agent  798 
SMTP

authentication  752–753, 755 
commands  751 
debugging using swaks  828 
error codes  751–752 
protocol  746, 750–753, 830, 

1141 
snapshots, backups  296 
SNMP  879–889

agents  883–886 
using Cacti  886 
CiscoWorks and  889 
community string  882 
data collection  886 
data organization  881 
HP-UX  96 
MIBs (Management Informa-

tion Bases)  881 
using Nagios  887 
OIDs (object identifiers)  881–

882 
RMON MIB  883 
security  882 
tools  885–888 
traps  882

snmpd daemon  884 
snmpd.conf file  884 
snmpwalk command  885 
Snyder, Garth  1279 
SOA DNS records  579–581, 638 
socket system call  151 
sockets, local domain  151 
soft (symbolic) links  148, 151 
soft carrier  1167, 1180

software 
see also software package tools 
see also software packages 
compilation  25–26 
installation  21–26 
open source  8 
package management  21–26 
sharing over NFS  411 
vulnerabilities  899

software as a service (SAAS)  987 
software flow control  1168 
software licenses  1228–1229 
software package tools

see also package management 
see also software 
see also software packages 
alien  382 
APT  387–391 
apt-get  387–391 
dpkg  383 
high level, Linux  384–387 
rpm  382–383 
/etc/apt/sources.list file  388 
yum  391 
Zypper  392

software packages 
see also software 
see also software package tools 
dependencies  412 
installers  381 
localizations  404 
management  381 
namespaces  411 
repositories  385 
revision control  398–404

Solaris  12
ACL management  172 
disk addition recipe  208 
disk device files  224–225 
disk partitions (slices)  232–

233, 236–237 
documentation  19 
installation  370–376 
iSCSI support  279–280 
kernel configuration  427–431 
loadable drivers  436–437 
log files  344 
mandatory access control 

(MAC)  922 
named  684 
network configuration  494–

501 
NFS (Network File System)  

700–701, 708

  



ptg

1258 UNIX and Linux System Administration Handbook

Solaris continued 
security  499 
service management facility see 

service management facility 
single-user mode  86 
startup scripts  97–100 
trusted extensions  922 
volume manager  246 
ZFS filesystem  161, 166–172, 

208, 222, 232, 240, 242, 264– 
274, 316

solid state disks  206, 209–210, 
212–213, 228

Solstice DiskSuite  246 
Sony  303 
Sophos email appliance  819, 853 
sort command  34 
source routing  473, 493, 499, 505, 

508 
/etc/apt/sources.list file  388 
SOX (Sarbanes-Oxley Act)  946, 

1223, 1225 
spam  761–773

see also DKIM 
see also email 
appliances  853 
backscatter  756, 765, 769 
blacklists  766–792 
danger of replying to  763 
Exim  819–820 
fighting  764–768 
filtering  767 
message checks  754 
outsourcing services for  762 
Pen-pals  756 
Postfix  840–843 
relaying  791–792 
robots  762 
scanning for  761–773 
Sender ID  767 
sendmail  789–795 
SpamAssassin  765 
SPF  750, 767 
whitelists  766

SpamAssassin  765, 769 
SPARC architecture  12 
Sparta DNSSEC tools  664 
Spectra Logic  303 
SPF (Sender Policy Framework)  

590, 750, 767 
SPF DNS records  590–591 
split view DNS  617–618, 620–623 
Squid web cache  974–976 
SRV DNS records  587–588

SSDs (solid state disks)  206, 209– 
210, 212–213, 228, 300

SSH  926–930 
authentication methods  926 
brute-force attacks  930 
forwarding for X  1017–1019 
SSHFP DNS record  928 
tunnels  929 
X forwarding  1137

ssh client  926 
sshd daemon  926 
/etc/sshd_config file  927, 1137 
SSHFP DNS records  594–595 
sshfp utility  928 
SSL (Secure Sockets Layer)  475, 

801, 971–974 
SSP (sender signing policy)  768 
stackers, tape media  303 
standard input  31–32 
standards  1222–1229

application security  1226 
child privacy protection  1223 
CIP (Critical Infrastructure 

Protection)  1224 
CJIS (Criminal Justice Informa-

tion Systems)  1223 
COBIT  1223 
COPPA (Children’s Online Pri-

vacy Protection Act)  1223 
credit card security  1224 
disaster recovery planning  

1226 
DOCSIS  544 
education sector  1223 
EIA-606  546–547 
Ethernet  453, 533 
EU privacy  1224 
FERPA (Family Educational 

Rights and Privacy Act)  1223 
FHS (Filesystem Hierarchy 

Standard)  146 
financial sector  1224 
FISMA (Federal Information 

Security Management Act)  
947, 1223

GLBA (Gramm-Leach-Bliley 
Act)  1224 

government sector  1223 
healthcare sector  1224 
HIPAA (Health Insurance Por-

tability and Accountability 
Act)  1224

identity theft prevention  1224 
IEEE 802.*  533, 539–540, 542

standards continued
Internet  449–450 
ISO/IEC 17799 see ISO/IEC 

27002 
ISO/IEC 27001  946, 1215, 1224 
ISO/IEC 27002  1224 
ITIL (Information Technology 

Infrastructure Library)  1224– 
1225

law enforcement sector  1223 
NERC (North American Elec-

tric Reliability Corporation)  
1224

network management  879–880 
NIST (National Institute for 

Standards and Technology)  
1225–1226

NIST 800-34  1226 
NIST 800-53  1226 
PCI DSS (Payment Card Indus-

try Data Security Standard)  
295, 946, 1224

red flag rule  1224 
Safe Harbor  1224 
security  945–947 
SOX (Sarbanes-Oxley Act)  946, 

1223, 1225 
TIA/EIA-568A  536 
Windows email and web com-

pliance  1141 
wireless  542 
wiring  546–547
X.500  728 

standby generator  1221 
star command  335 
StarOffice  1140 
Start of Authority (SOA) DNS re-

cords  579–581, 638 
startup files  189–190 
startup scripts  87–100

AIX  95–96 
examples  90, 93 
HP-UX  95 
init and  78, 87, 93 
/etc/init.d directory  89–91, 93 
NFS server  699 
Red Hat  91–93 
sendmail  93 
Solaris  97–100 
SUSE  93–94 
Ubuntu  94–95

startwpar command  1002 
startx command  1013 
statd daemon  694

  



ptg

Index 1259

State University of New York (SU-
NY) Buffalo  1269 

stateful inspection firewalls  934 
static routes  466, 481–483, 521 
static_routes file  483 
static-routes file  488–489 
statistics

BIND  676 
CPU  1122 
network  868–873 
NFS  710 
sendmail  805

STD documents  450 
sticky bit  154–155 
STOP signal  125–126, 128 
storage area networks  274–281

AIX  280–281 
benefits of  1103 
HP-UX  280 
iSCSI  276–281 
Linux  277–279 
Solaris  279–280 
utilization  1103

storage management see disks 
Storage Technology  303 
strace command  136 
straight-through serial cables  

1164–1165 
STREAMS  509 
striping (RAID 0)  239–240, 248, 

253 
stty command  1167, 1178, 1180 
stunnel  930–932 
su command  113 
submission agents, email (MSA)  

745 
subnetting  458–461, 479, 495 
Subversion  399–401 
sudo command  113–116 
/etc/sudoers file  114–116 
Sun Microsystems  12 
superblocks (filesystem)  257 
superuser see root account 
SUSE Linux  9, 11

documentation  19 
named  683 
network configuration  486–

487 
svcadm command  98 
svccfg command  99 
svcs command  97, 494 
svn command  400 
svnserve daemon, Subversion  399 
svnserve.conf file  399

swaks command  773, 828 
swap command  264, 1125 
swap space  222, 264 
swapinfo command  264, 1125 
swapon command  261, 264, 1125 
/etc/swapspaces file  264 
swatch  358 
swinstall command  25, 377, 395 
switch file  682 
switches  534, 538–539, 543 
swrole command  108 
symbolic links  148, 151 
symmetric multiprocessing (SMP)  

1122 
Sympa  761 
sync command  101 
sync system call  101, 258 
synchronizing files

copying  721 
rdist  722–725 
rsync  725–727 
wget/ftp/expect  727

/sys directory  438 
/proc/sys directory  421 
/etc/sysconfig directory  92–93, 

487–488 
sysctl command  422 
/etc/sysctl.conf file  422, 492 
syslog  344–351

see also log files 
see also logging 
actions  348 
alternatives  351 
architecture  345 
central server  350 
configuring  345–351, 355 
debugging  351 
and DNS logging  667–672 
DOS attack via  349 
facilities and severity levels  346 
facility names  346 
m4 preprocessor on Solaris  348 
network logging configuration  

349 
restarting  345 
security  349, 352 
severity levels  347 
/etc/syslog.conf file  345–351 
syslogd daemon  345 
time stamps  347

/etc/syslog.conf file  345–351, 807 
syslogd daemon  345 
syslog-ng replacement for syslog  

351

/etc/system file  428–429 
system administration  26

disaster recovery  298 
essential tasks  4–6 
GUI tools  6, 13 
Internet resources  20 
toolbox  1095

system administrator 
conferences  1229–1231 
exit checklist  1209 
firing  1208 
happiness  1186 
hiring  1207 
history  1264–1273 
interviewing  1208 
legal considerations  1226–1229 
priorities  1188–1189 
roles and responsibilities  1189 
skill sets  1195 
time management  1196 
training resources  1229–1231

system administrator management 
see information technology (IT) 
management

system configuration  404–411 
see also hardware 
see also Linux installation 
see also system administration 
cfengine  408 
CIM (Common Information 

Model)  410 
LCFG (large-scale configura-

tion system)  409 
management  408–411 
Template Tree 2  410

System V printing  1045–1054 
see also printing 
accept command  1051 
cancel command  1051 
classes  1046 
configuration  1048–1051 
destinations  1046 
disable command  1052 
enable command  1052 
interface programs  1052–1053 
lp command  1047 
lpadmin command  1048–1050 
lpmove command  1052 
lpsched command  1046 
lpsched daemon  1047 
lpshut command  1048 
lpstat command  1051 
reject command  1051 
troubleshooting  1053–1054

  



ptg

1260 UNIX and Linux System Administration Handbook

System V UNIX  13 
system-config-network com-

mand  487

T

tail command  36 
tape drives, device names  420 
tapes, backup

see also media, backup 
4mm  301 
8mm  301 
AIT  302 
AME  302 
and multiple files  317 
blocking factor  315 
copying  316 
DDS/DAT  301 
device files  309 
DLT/S-DLT  301 
library, robotic  318 
LTO  302 
SAIT  302 
stackers  303 
VXA  302

tar command  315–316 
target numbers (SCSI)  218 
/etc/iscsi/targets file  280 
TCP connection states  870 
TCP wrappers  506 
TCP/IP see IP 
tcpdump command  875 
tee command  35 
telecommuting  1110 
telinit command  89, 1175 
temperature

data center  1087, 1108 
effect on hard disks  211 
office  1109

Template Tree 2  410 
temporary files, removing  289 
TERM environment variable  1178 
TERM signal  125–127 
termcap file  1172 
Terminal Server service, Windows  

1139 
terminals

control  123 
Linux  1175 
pseudo  1170 
setting options  1178–1180 
Solaris  1176–1177 
special characters  1177–1180

terminals continued 
Ubuntu  1176 
unwedging  1179–1180

terminators (SCSI)  217 
terminfo file  1172 
testing, system  406 
testparm  1144 
Texinfo  18 
text editors  6–7 
The Green Grid  1110 
Third Brigade  919 
Thompson, Ken  1265 
threads, kernel  79 
Thunderbird mail client  745 
TIA (Telecommunications Indus-

try Association)  534 
TIA/EIA-568A standard  536 
ticketing systems  1191–1196 
TightVNC  1138 
Time Slider widget  269–270 
time to live (TTL), packets  865 
tip command  1181 
TLS (Transport Layer Security)  

475, 801 
TLT/S-DLT tapes  301 
/tmp directory  146, 232
TO_ICONNECT option, sendmail  

803
Tomcat application server  961 
tools, hardware  1095 
top command  133–135, 1123, 1132 
Torvalds, Linus  1271 
traceroute command  865–867 
Track-It!  1194 
transfer-source option, DNS  623 
transport agents, email  746 
Transport Layer Security (TLS)  

475, 801 
Tridgell, Andrew  725, 1142 
TRIM command (disks)  228 
Troan, Erik  356 
Trojan horses  903 
Trojnara, Michal  930 
Trouble Ticket Express  1193 
troubleshooting

see also performance 
Bacula  334–335 
BIND  667–681 
disk hardware  226–227 
Exim  827–828 
named  667–681 
network hardware, cable ana-

lyzers  545 
network hardware, sniffers  545

troubleshooting continued 
network hardware, T-BERD 

line analyzer  545 
networks  544–545, 860–873 
Postfix  844–845 
printing  1053–1054, 1081–

1083 
runaway processes  138–139 
Samba  1152–1154 
SCSI problems  218 
sendmail  805–807 
serial line  1180 
sluggish system  1131–1133 
Solaris kernel  430 
syslog  351 
wedged terminal  1179 
X Window System  1026–1028 
Xorg X server  1026–1028

Trusted AIX  922 
TrustedUser sendmail user ac-

count  796 
Ts’o, Theodore  255 
tset command  1178, 1180 
TSIG (transaction signatures)  623, 

645–648 
TSM (Tivoli Storage Manager)  336 
TSTP signal  125–126, 128 
TTL (time to live), packets  865 
$TTL directive, DNS  575–576, 581 
TTL for DNS resource records  576 
/dev/tty device  35 
ttyadm command  1177 
ttydefs file  1176 
ttymon command  1177 
ttytype file  1172 
tune2fs command  256, 259 
tuning

AIX kernel  434 
Linux kernel  421–423 
NFS  708

Tux logo  11 
Tweedie, Stephen  255 
TXT DNS records  588, 603 
typeglobs, Perl  64 
typographic conventions  13–14

U

Ubuntu Linux  10–11 
documentation  19 
named  682 
network configuration  486

udev system  419, 437, 439

  



ptg

Index 1261

udevadm command  438–439 
udevd daemon  150, 419 
UDP (User Datagram Protocol)  

450 
UFS filesystem  254 
UIDs see user IDs 
Ultr@VNC project  1138 
umask command  158, 190 
umount command  144–145, 261, 

708 
uname command  435 
unbound-control commands  675 
undeliverable messages, sendmail  

803 
uninterruptible power supplies 

(UPSs)  1086, 1091, 1220 
uniq command  35 
units  14–15 
University of California at Berkeley  

1268 
University of Colorado  1269 
University of Maryland  1269 
University of Utah  1269 
UNIX

history of  1265–1273 
origin of name  1266 
reasons to choose  1113 
vs. Linux  7–9

UNIX File System (UFS)  254 
UNIX package management  393–

397
AIX  396 
HP-UX  394 
Image Packaging System  394 
installp command  397 
pkg tool for Solaris  394 
Solaris  394 
swinstall command for HP-UX  

395 
unlink system call  151 
unshare command  271 
unshielded twisted pair see UTP ca-

bles 
unsolicited commercial email see 

spam 
unwedging terminals  1179 
updatedb command  23 
update-policy clause, DNS  641 
update-rc.d command  94 
updating zone files, DNS  640–642 
upgrades  314–315 
UPSs (uninterruptible power sup-

plies)  1086, 1091, 1220 
Upstart daemon  94, 1176

uptime command  1123, 1132 
Uptime Institute, The  1086 
URI (Uniform Resource Identifier)  

957 
URL (Uniform Resource Locator)  

957–958 
protocols  958

URN (Uniform Resource Name)  
957

USB disks  263, 300 
US-CERT  948 
use_cw_file feature, sendmail  784 
USENIX Association  1229–1230, 

1270 
/etc/security/user file  185, 195 
user accounts

adding by hand  187–191 
adding in bulk (Linux)  197 
adding with useradd  191–197 
AIX options  196 
aliases, global (email)  178 
authentication under Samba  

1145 
centralized management  201 
daemon  118 
disabling  200 
email home  190 
GECOS information  181 
GIDs (group ID)  181 
home directories  146, 182, 189, 

233 
hygiene  175 
LDAP and AD  202 
locking and unlocking  200 
login names  176–178 
login shell  182 
managing with GUI tools  201 
nobody (NFS)  118, 697 
password encryption  179 
passwords  188 
policy agreements  191 
pseudo-users  118, 180 
RBAC  190 
removing  198–199 
roles and administrative privi-

leges  190 
sendmail use of  796 
shared  907 
single sign-on systems  202 
startup files  189 
sys  118 
testing  191 
UIDs (user IDs)  180–181

user accounts continued 
user management config files  

192 
user management tools  175, 

192 
vipw command  188

user agents, email  744 
user IDs  105

in ls output  155 
real, effective, and saved  105

user management tools  175 
user policy agreement  1227–1228 
user workspaces, green strategies 

for  1108–1110 
/etc/user_attr file  108 
/etc/default/useradd file  193, 195 
useradd command  175, 187, 191

example  197 
on AIX  195 
on HP-UX  194 
on Red Hat  193 
on Solaris  194 
on SUSE  193 
on Ubuntu  192

useradd.local script  193 
userdel command  175 
userdel.local script  199 
usermod command  184 
usernames see user accounts 
/usr directory  146 
UTP cables  534–536, 545 
UUIDs, for partitions  262 
UW imapd IMAP server  747

V

van Rossum, Guido  67 
Vantages DNSSEC framework  665 
/var directory  146, 233 
VAX  1268 
vendor logos  11 
vendors we like  550 
Venema, Wietse  828, 1171 
Veritas  246, 251, 256, 336 
/etc/vfstab file  143, 259–260, 263, 

708, 711 
vgcreate command  207–208, 248, 

252 
vgdisplay command  208, 248, 250, 

252–253 
vgextend command  252 
vi editor  6, 30 
view statement, DNS  617

  



ptg

1262 UNIX and Linux System Administration Handbook

.vimrc file  189 
vipw command  188 
virsh command  997 
virt-install command  993, 996 
virt-manager application  993 
virtual domains, Postfix  835–837 
virtual hosts, web  967–971 
virtual memory  1124–1125 
Virtual Network Computing see 

VNC protocol 
virtual network interfaces  481 
virtual terminals and X  1026
VirtualHost clause, Apache  971 
virtualization

see also KVM 
see also Xen 
see also zones and containers 
AIX workload partitions  1001–

1002 
Amazon web services  1005–

1009 
benefits of  988–989, 1103 
challenges  1103 
cloud computing  987 
definition  983 
hardware suggestions  990 
history of  984 
hypervisor  985 
Integrity virtual machines  

1003–1004 
Linux  991–997 
live migration  988 
paravirtualization  986 
types of  984–988

virtusertable feature, sendmail  
786

virus scanning  761–773, 903 
see also email 
amavisd-new  769–773 
testing  773 
using Exim  818–819 
using Postfix  840–843 
using sendmail  794–795

visudo command  116 
Vixie, Paul  287 
Vixie-cron  287–288 
VLANs  539 
vmstat command  1121–1122, 

1126–1127, 1132 
VMware  1005, 1139 
VNC protocol  1138 
vncserver command  1138 
volume groups see logical volume 

management

volume snapshots  249, 259, 269– 
271

VPNs (virtual private networks)  
475–476, 942–944

IPsec tunnels  943 
SSH tunnels  943

VRFY command  763 
VT100 terminal  1175 
vtysh command  524 
VXA backup tapes  302 
VxFS filesystem  256–257

W

wait system call  124 
Wall, Larry  7, 54 
Ward, Grady  111 
WBEM (Web-Based Enterprise 

Management) standard  880 
wc command  35 
Web 2.0  956 
web hosting  957–976

Apache  963–974 
Apache configuration  965–974 
Apache installation  964–966 
application servers  960 
caching server  974–976 
CDN (content distribution net-

work)  978–979 
certificates  972–974 
CGI scripting  959 
and cloud computing  978 
co-location  978 
content distribution network 

(CDN)  978–979 
embedded interpreters  959 
IIS (Windows)  1141 
load balancing  961–963 
log files  966 
performance  961–963, 967 
proxy servers  974–976 
security  960, 971–974 
Squid cache  974–976 
SSL  971–974 
static content  967 
virtual interfaces  967–971

WebLogic application server  961 
WebSense  755 
WebSphere application server  961 
well-known ports  914, 933 
WEP (Wired Equivalent Privacy)  

543 
wget command  23, 727

Whaley, Ben  1279 
wheel group  113, 181 
whereis command  23 
which command  22 
Wi-Fi Protected Access  543 
Wikipedia  8 
Win4Lin  1140 
winbind Samba component  925, 

1155 
WINCH signal  125–126 
Windows

see also Samba 
accessing remote desktops  

1136 
ACLs  1146 
Active Directory authentication  

1154–1160 
automounter  1147 
backups  335 
DFS (Distributed File System)  

1147 
dual booting  1140 
email and web standards com-

pliance  1141 
IMAP  1141 
logging in from  1135 
mounting Windows filesystems  

1148 
multibooting with LINUX  85 
POP (Post Office Protocol)  

1141 
printing  1151–1152 
RDP (Remote Desktop Proto-

col)  1138 
running Linux programs from  

1136–1137 
running under VMware  1139 
running Windows programs 

under Linux  1139 
sharing files  1142 
SMTP  1141 
Terminal Server service  1139 
UNIX software running on  

1141 
VNC servers  1138 
Wine project  1139 
X forwarding  1137 
X Window System servers  

1137, 1141 
xterm for  1141

Windows MBR  82, 233–235 
Wine project  1139 
WinSCP  1136 
Wired Equivalent Privacy 543

  



ptg

Index 1263

wireless networks  541–543 
wireless networks see networks, 

wireless 
wireless standards  542 
Wireshark packet sniffer  545, 877 
wiring see network wiring 
wiring standards  546–547 
WKS DNS records  588 
workload partitions  1001–1002 
workstation

count per user  1109 
sizing  1109 
timeout  1109

World Wide Web 
HTTP protocol  957–959 
URIs  957 
URLs  957 
URNs  957

WPA see Wi-Fi Protected Access 
WPAR see workload partitions 
wrapper scripts for localization  413 
write errors, disk  227 
write hole (RAID 5)  238, 241–242

X

X display manager  1013–1014 
X Window System  1011–1030

see also Xorg X server 
architecture  1012 
client authentication  1016–

1017 
client/server model  1012 
desktop environments  1028–

1030 
DISPLAY environment vari-

able  1015, 1019 
display manager  1013–1014 
history  1011–1012 
killing the X server  1026 
magic cookies  1016 
running an application  1014–

1019 
security  1015–1019 
security under Windows  1137 
SSH and  1017–1019 
startup files  189 
troubleshooting  1026–1028 
virtual terminals  1026 
Windows servers  1137, 1141 
X forwarding  1137 
X server output  1027–1028

X11 see X Window System

xargs command  143 
xauth command  1016 
xdd tool  1129 
.Xdefaults file  189 
xdm directory  1013 
xdpyinfo command  1028 
Xen  991–995

see also virtualization 
configuration files  992 
distribution support  991 
dom0  991 
live migration  994 
virt-install command  993 
virtual block devices  992 
xend daemon  992 
xm command  991, 994

xend daemon  992 
XFree86 X Server  1011 
xhost command  1016–1017 
xinit command  1013 
.xinitrc file  189 
xkcd.com  1087 
xm command  991 
xntpd command  130 
XON/XOFF  1168 
Xorg X server  1019–1024

configuring  1019–1024 
debugging  1026–1028 
logging  1027–1028 
xdpyinfo command  1028 
xorg.conf file  1019–1024 
xorgconfig tool  1019 
xrandr command  1025

xorg.conf file  1019–1024 
xorgconfig tool  1019 
XORP (eXtensible Open Router 

Platform)  524 
XPS  1070 
xrandr command  1025 
Xsession file  1014 
~/.xsession file  1014 
xtab file  699 
xterm console emulator  1141

Y

Yahoo! Mail,  743 
YaST  486 
yast command  24 
Yegge, Steve  7 
Ylönen, Tatu  926 
Yost wiring standard  1167 
Yost, Dave  1167

/var/yp file  736–737 
yp* commands  737–738 
ypupdated daemon  738 
yum command  24, 391

Z

Zebra routing daemon  523 
Zend server  960 
Zeus  963 
zfs command  266–272 
~/.zfs directory  269 
ZFS filesystem  161, 166–172, 208, 

222, 232, 240, 242, 264–274, 316
ACLs  272 
architecture diagram  265 
properties  267–269 
RAID-Z implementation  265–

266 
raw volumes  271 
snapshots and clones  269–271 
storage pools  265, 272–274

Zimbra  745, 747, 853 
Zimmermann, Phil  763, 925 
zombie processes  124, 128, 130 
zone statement, DNS  612–615 
zoneadm command  999 
zonecfg command  999 
zones and containers  997–1001

see also virtualization 
advanced features  1001 
global zone  998 
sparse  998 
whole-root  998

zones, DNS  563 
commands  574–575 
files  574 
linkage  596–597 
transfers  564, 639–640 
updating files  640–642

zone-statistics option, DNS  613 
zpool command  208, 266, 272–274 
zypper command  392

  



ptg

1264

A Brief History of 
System Administration
From the desk of Dr. Peter H. Salus, technology historian

In the modern age, most folks have at least a vague idea what system administra-
tors do: work tirelessly to meet the needs of their users and organizations, plan 
and implement a robust computing environment, and pull proverbial rabbits out 
of many different hats. Although sysadmins are often viewed as underpaid and 
underappreciated, most users can at least identify their friendly local sysadmin— 
in many cases, more quickly than they can name their boss’s boss. 

It wasn’t always this way. Over the last 40 years (and the 20-year history of this 
book), the role of the system administrator has evolved hand-in-hand with UNIX 
and Linux. A full understanding of system administration requires an under-
standing of how we got here and of some of the historical influences that have 
shaped our landscape. Join us as we reflect on the many wonderful years. 

THE DAWN OF COMPUTING: SYSTEM OPERATORS (1952–1960)

The first commercial computer, the IBM 701, was completed in 1952. Prior to the 
701, all computers had been one-offs. In 1954, a redesigned version of the 701 was 
announced as the IBM 704. It had 4,096 words of magnetic core memory and 
three index registers. It used 36-bit words (as opposed to the 701’s 18-bit words) 
and did floating-point arithmetic. It executed 40,000 instructions every second. 

History

  



ptg

A Brief History of System Administration 1265

But the 704 was more than just an update: it was incompatible with the 701. Al-
though deliveries were not to begin until late 1955, the operators of the eighteen 
701s in existence (the predecessors of modern system administrators) were al-
ready fretful. How would they survive this “upgrade,” and what pitfalls lay ahead?

IBM itself had no solution to the upgrade and compatibility problem. It had 
hosted a “training class” for customers of the 701 in August 1952, but there were 
no textbooks. Several people who had attended the training class continued to 
meet informally and discuss their experiences with the system. IBM encouraged 
the operators to meet, to discuss their problems, and to share their solutions. IBM 
funded the meetings and made available to the members a library of 300 com-
puter programs. This group, known as SHARE, is still the place (50+ years later) 
where IBM customers meet to exchange information.1 

FROM SINGLE-PURPOSE TO TIME SHARING (1961–1969)

Early computing hardware was physically large and extraordinarily expensive. 
These facts encouraged buyers to think of their computer systems as tools dedi-
cated to some single, specific mission: whatever mission was large enough and 
concrete enough to justify the expense and inconvenience of the computer.

If a computer was a single-purpose tool—let’s say, a saw—then the staff that main-
tained that computer were the operators of the saw. Early system operators were 
viewed more as “folks that cut lumber” than as “folks that provide what’s neces-
sary to build a house.” The transition from system operator to system administra-
tor did not start until computers began to be seen as multipurpose tools. The ad-
vent of time sharing was a major reason for this change in viewpoint.

John McCarthy had begun thinking about time sharing in the mid-1950s. But it 
was only at MIT (in 1961–62) that he, Jack Dennis, and Fernando Corbato talked 
seriously about permitting “each user of a computer to behave as though he were 
in sole control of a computer.” 

In 1964, MIT, General Electric, and Bell Labs embarked on a project to build an 
ambitious time-sharing system called Multics, the Multiplexed Information and 
Computing Service. Five years later, Multics was over budget and far behind 
schedule. Bell Labs pulled out of the project.

UNIX IS BORN (1969–1973)

Bell Labs’ abandonment of the Multics project left several researchers in Murray 
Hill, NJ, with nothing to work on. Three of them—Ken Thompson, Rudd Cana-
day, and Dennis Ritchie—had liked certain aspects of Multics but hadn’t been 
happy with the size and the complexity of the system. They would gather in front 
of a whiteboard to discuss design philosophy. The Labs had Multics running on 

1. Although SHARE was originally a vendor-sponsored organization, today it is independent.

  



ptg

1266 UNIX and Linux System Administration Handbook

its GE-645, and Thompson continued to work on it “just for fun.” Doug McIlroy, 
the manager of the group, said, “When Multics began to work, the very first place 
it worked was here. Three people could overload it.”

In the summer of 1969, Thompson became a temporary bachelor for a month 
when his wife, Bonnie, took their year-old son to meet his relatives on the west 
coast. Thompson recalled, “I allocated a week each to the operating system, the 
shell, the editor, and the assembler…it was totally rewritten in a form that looked 
like an operating system, with tools that were sort of known; you know, assembler, 
editor, shell—if not maintaining itself, right on the verge of maintaining itself, to 
totally sever the GECOS2 connection…essentially one person for a month.”

Steve Bourne, who joined Bell Labs the next year, described the cast-off PDP-7 
used by Ritchie and Thompson: “The PDP-7 provided only an assembler and a 
loader. One user at a time could use the computer…The environment was crude, 
and parts of a single-user UNIX system were soon forthcoming…[The] assembler 
and rudimentary operating system kernel were written and cross-assembled for 
the PDP-7 on GECOS. The term UNICS was apparently coined by Peter Neu-
mann, an inveterate punster, in 1970." The original UNIX was a single-user sys-
tem, obviously an “emasculated Multics.” But although there were aspects of 
UNICS/UNIX that were influenced by Multics, there were also, as Dennis Ritchie 
said, “profound differences.”

“We were a bit oppressed by the big system mentality,” he said. “Ken wanted to do 
something simple. Presumably, as important as anything was the fact that our 
means were much smaller. We could get only small machines with none of the 
fancy Multics hardware. So, UNIX wasn’t quite a reaction against Multics…Mul-
tics wasn’t there for us anymore, but we liked the feel of interactive computing that 
it offered. Ken had some ideas about how to do a system that he had to work 
out…Multics colored the UNIX approach, but it didn’t dominate it.”

Ken and Dennis’s “toy” system didn’t stay simple for long. By 1971, user com-
mands included as (the assembler), cal (a simple calendar tool), cat (catenate and 
print), chdir (change working directory), chmod (change mode), chown (change 
owner), cmp (compare two files), cp (copy file), date, dc (desk calculator), du
(summarize disk usage), ed (editor), and over two dozen others. Most of these 
commands are still in use.

By February 1973, there were 16 UNIX installations. Two big innovations had 
occurred. The first was a “new” programming language, C, based on B, which was 
itself a “cut-down” version of Martin Richards’ BCPL (Basic Combined Program-
ming Language). The other innovation was the idea of a pipe.

A pipe is a simple concept: a standardized way of connecting the output of one 
program to the input of another. The Dartmouth Time-Sharing System had com-
munication files, which anticipated pipes, but their use was far more specific. The 

2. GECOS was the General Electric Comprehensive Operating System.

  



ptg

A Brief History of System Administration 1267

notion of pipes as a general facility was Doug McIlroy’s. The implementation was 
Ken Thompson’s, at McIlroy’s insistence. (“It was one of the only places where I 
very nearly exerted managerial control over UNIX,” Doug said.)

“It’s easy to say ‘cat into grep into…’ or ‘who into cat into grep’ and so on,” McIl-
roy remarked. “It’s easy to say and it was clear from the start that it would be 
something you’d like to say. But there are all these side parameters… And from 
time to time I’d say ‘How about making something like this?’ And one day I came 
up with a syntax for the shell that went along with piping, and Ken said ‘I’m going 
to do it!’”

In an a orgy of rewriting, Thompson updated all the UNIX programs in one night. 
The next morning there were one-liners. This was the real beginning of the power 
of UNIX—not from the individual programs, but from the relationships among 
them. UNIX now had a language of its own as well as a philosophy:

• Write programs that do one thing and do it well.
• Write programs to work together.
• Write programs that handle text streams as a universal interface.

A general-purpose time-sharing OS had been born, but it was trapped inside Bell 
Labs. UNIX offered the promise of easily and seamlessly sharing computing re-
sources among projects, groups, and organizations. But before this multipurpose 
tool could be used by the world, it had to escape and multiply. Katy bar the door!

UNIX HITS THE BIG TIME (1974–1990)

In October 1973, the ACM held its Symposium on Operating Systems Principles 
(SOSP) in the auditorium at IBM’s new T.J. Watson Research Center in Yorktown 
Heights, NY. Ken and Dennis submitted a paper, and on a beautiful autumn day, 
drove up the Hudson Valley to deliver it. (Thompson made the actual presenta-
tion.) About 200 people were in the audience, and the talk was a smash hit.

Over the next six months, the number of UNIX installations tripled. When the 
paper was published in the July 1974 issue of the Communications of the ACM, the 
response was overwhelming. Research labs and universities saw shared UNIX sys-
tems as a potential solution to their growing need for computing resources.

According to the terms of a 1958 antitrust settlement, the activities of AT&T (par-
ent of Bell Labs) were restricted to running the national telephone system and to 
special projects undertaken on behalf of the federal government. Thus, AT&T 
could not sell UNIX as a product and Bell Labs had to license its technology to 
others. In response to requests, Ken Thompson began shipping copies of the 
UNIX source code. According to legend, each package included a personal note 
signed “love, ken.”

  



ptg

1268 UNIX and Linux System Administration Handbook

One person who received a tape from Ken was Professor Robert Fabry of the Uni-
versity of California at Berkeley. By January 1974, the seed of Berkeley UNIX had 
been planted. 

Other computer scientists around the world also took an interest in UNIX. In 
1976, John Lions (on the faculty of the University of New South Wales in Austra-
lia) published a detailed commentary on a version of the kernel called V6. This 
effort became the first serious documentation of the UNIX system and helped 
others to understand and expand upon Ken and Dennis’s work.

Students at Berkeley enhanced the version of UNIX they had received from Bell 
Labs to meet their needs. The first Berkeley tape (1BSD, short for 1st Berkeley 
Software Distribution) included a Pascal system and the vi editor for the PDP-11. 
The student behind the release was a grad student named Bill Joy. 2BSD came the 
next year, and 3BSD, the first Berkeley release for the DEC VAX, was distributed 
in late 1979. 

In 1980, Professor Fabry struck a deal with the Defense Advanced Research Proj-
ect Agency (DARPA) to continue the development of UNIX. This arrangement 
led to the formation of the Computer Systems Research Group (CSRG) at Berke-
ley. Late the next year, 4BSD was released. It became quite popular, largely because 
it was the only version of UNIX that ran on the DEC VAX 11/750, the commodity 
computing platform of the time. Another big advancement of 4BSD was the intro-
duction of TCP/IP sockets, the generalized networking abstraction that spawned 
the Internet and is now used by most modern operating systems. By the mid-
1980s, most major universities and research institutions were running at least one 
UNIX system.

In 1982, Bill Joy took the 4.2BSD tape with him to start Sun Microsystems (now 
part of Oracle America) and the SunOS operating system. In 1983, the court-or-
dered divestiture of AT&T began. One unanticipated side effect of the divestiture 
was that AT&T was now free to begin selling UNIX as a product. They released 
AT&T UNIX System V, a well-recognized albeit somewhat awkward commercial 
implementation of UNIX.

Now that Berkeley, AT&T, Sun, and other UNIX distributions were available to a 
wide variety of organizations, the foundation was laid for a general computing 
infrastructure built on UNIX technology. The same system that was used by the 
astronomy department to calculate star distances could be used by the applied 
math department to calculate Mandelbrot sets. And that same system was simul-
taneously providing email to the entire university.

THE RISE OF SYSTEM ADMINISTRATORS

The management of general-purpose computing systems demanded a different 
set of skills than those required just two decades earlier. Gone were the days of the 
system operator who focused on getting a single computer system to perform a 

  



ptg

A Brief History of System Administration 1269

specialized task. System administrators came into their own in the early 1980s as 
people who ran UNIX systems to meet the needs of a broad array of applications 
and users.

Because UNIX was popular at universities, and because those environments in-
cluded lots of students who were eager to learn the latest technology, universities 
were early leaders in the development of organized system administration groups. 
Universities such as Purdue, the University of Utah, the University of Colorado, 
the University of Maryland, and the State University of New York (SUNY) Buffalo 
became hotbeds of system administration.

System administrators also developed an array of their own processes, standards, 
best practices, and tools (such as sudo). Most of these products were built out of 
necessity; without them, unstable systems and unhappy users were the result. 

Evi Nemeth became known as the “mother of system administration” by recruit-
ing undergraduates to work as system administrators to support the Engineering 
College at the University of Colorado. Her close ties with folks at Berkeley, the 
University of Utah, and SUNY Buffalo created a system administration commu-
nity that shared tips and tools. Her crew, often called the “munchkins” or “Evi 
slaves” attended USENIX and other conferences and worked as on-site staff in 
exchange for the opportunity to absorb information at the conference. 

It was clear early on that system administrators had to be rabid jacks of all trades. 
A system administrator might start a typical day in the 1980s by using a wire-
wrap tool to fix an interrupt jumper on a VAX backplane. Mid-morning tasks 
might include sucking spilled toner out of a malfunctioning first-generation laser 
printer. Lunch hour could be spent helping a grad student debug a new kernel 
driver, and the afternoon might consist of writing backup tapes and hassling users 
to clean up their home directories to make space in the filesystem. A system ad-
ministrator was, and is, a fix-everything, take-no-prisoners guardian angel.

The 1980s were also a time of unreliable hardware. Rather than living on a single 
silicon chip, the CPUs of the 1980s were made up of several hundred chips, all of 
them prone to failure. It was the system administrator’s job to isolate failed hard-
ware and get it replaced, quickly. Unfortunately, these were also the days before it 
was common to FedEx parts on a whim, so finding the right part from a local 
source was often a challenge.

In one case, our beloved VAX 11/780 was down, leaving the entire campus with-
out email. We knew there was a business down the street that packaged VAXes to 
be shipped to the (then cold-war) Soviet Union “for research purposes.” Desper-
ate, we showed up at their warehouse with a huge wad of cash in our pocket, and 
after about an hour of negotiation, we escaped with the necessary board. At the 
time, someone remarked that it felt more comfortable to buy drugs than VAX 
parts in Boulder.

  



ptg

1270 UNIX and Linux System Administration Handbook

SYSTEM ADMINISTRATION DOCUMENTATION AND TRAINING

As more individuals began to identify themselves as system administrators—and 
as it became clear that one might make a decent living as a sysadmin—requests 
for documentation and training became more common. In response, folks like 
Tim O’Reilly and his team (then called O’Reilly and Associates, now O’Reilly Me-
dia) began to publish UNIX documentation that was based on hands-on experi-
ence and written in a straightforward way. 

See Chapter 32, Man-
agement, Policy, and 
Politics, for more 
pointers to sysadmin 
resources.

As a vehicle for in-person interaction, the USENIX Association held its first con-
ference focused on system administration in 1987. This Large Installation System 
Administration (LISA) conference catered mostly to a west coast crowd. Three 
years later, the SANS (SysAdmin, Audit, Network, Security) Institute was estab-
lished to meet the needs of the east coast. Today, both the LISA and SANS confer-
ences serve the entire U.S. region, and both are still going strong.

In 1989, we published the first edition of this book, then titled UNIX System Ad-
ministration Handbook. It was quickly embraced by the community, perhaps be-
cause of the lack of alternatives. At the time, UNIX was so unfamiliar to our pub-
lisher that their production department replaced all instances of the string “etc” 
with “and so on,” resulting in filenames such as /and so on/passwd. We took ad-
vantage of the situation to seize total control of the bits from cover to cover, but 
the publisher is admittedly much more UNIX savvy today. Our 20-year relation-
ship with this same publisher has yielded a few other good stories, but we’ll omit 
them out of fear of souring our otherwise amicable relationship.

UNIX HUGGED TO NEAR DEATH, LINUX IS BORN (1991–1995)

By late 1990, it seemed that UNIX was well on its way to world domination. It was 
unquestionably the operating system of choice for research and scientific comput-
ing, and it had been adopted by mainstream businesses such as Taco Bell and 
McDonald’s. Berkeley’s CSRG group, then consisting of Kirk McKusick, Mike 
Karels, Keith Bostic, and many others, had just released 4.3BSD-Reno, a pun on 
an earlier 4.3 release that added support for the CCI Power 6/32 (code named 
“Tahoe”) processor. 

Commercial releases of UNIX such as SunOS were also thriving, their success 
driven in part by the advent of the Internet and the first glimmers of e-commerce. 
PC hardware had become a commodity. It was reasonably reliable, inexpensive, 
and relatively high-performance. Although versions of UNIX that ran on PCs did 
exist, all the good options were commercial and closed source. The field was ripe 
for an open source PC UNIX. 

In 1991, a group of developers that had worked together on the BSD releases 
(Donn Seeley, Mike Karels, Bill Jolitz, and Trent R. Hein), together with a few 
other BSD advocates, founded Berkeley Software Design, Inc. (BSDI). Under the 
leadership of Rob Kolstad, BSDI provided binaries and source code for a fully 

  



ptg

A Brief History of System Administration 1271

functional commercial version of BSD UNIX on the PC platform. Among other 
things, this project proved that inexpensive PC hardware could be used for pro-
duction computing. BSDI fueled explosive growth in the early Internet as it be-
came the operating system of choice for early Internet service providers (ISPs).

In an effort to recapture the genie that had escaped from its bottle in 1973, AT&T 
filed a lawsuit against BSDI and the Regents of the University of California in 
1992, alleging code copying and theft of trade secrets. It took AT&T’s lawyers over 
two years to identify the offending code. When all was said and done, the lawsuit 
was settled and three files (out of more than 18,000) were removed from the BSD 
code base.

Unfortunately, this two-year period of uncertainty had a devastating effect on the 
entire UNIX world, BSD and non-BSD versions alike. Many companies jumped 
ship to Microsoft Windows, fearful that they would end up at the mercy of AT&T 
as it hugged its child to near-death. By the time the dust cleared, BSDI and the 
CSRG were both mortally wounded. The BSD era was coming to an end. 

Meanwhile, Linus Torvalds, a Helsinki college student, had been playing with 
Minix and began writing his own UNIX clone.3 By 1992, a variety of Linux distri-
butions (including SuSE and Yggdrasil Linux) had emerged. 1994 saw the estab-
lishment of Red Hat and Linux Pro. 

Multiple factors have contributed to the phenomenal success of Linux. The strong 
community support enjoyed by the system and its vast catalog of software from 
the GNU archive make Linux quite a powerhouse. It works well in production 
environments, and some folks argue that you can build a more reliable and per-
formant system on top of Linux than you can on top of any other operating sys-
tem. It’s also interesting to consider that part of Linux’s success may relate to the 
golden opportunity created for it by AT&T’s action against BSDI and Berkeley. 
That ill-timed lawsuit struck fear into the hearts of UNIX advocates right at the 
dawn of e-commerce and the start of the Internet bubble. 

But who cares, right? What remained constant through all these crazy changes 
was the need for system administrators. A UNIX system administrator’s skill set is 
directly applicable to Linux, and most system administrators guided their users 
gracefully through the turbulent seas of the 1990s. That’s another important char-
acteristic of a good system administrator: calm during a storm.

A WORLD OF WINDOWS (1996–1999)

Microsoft first released Windows NT in 1993. The release of a “server” version of 
Windows, which had a popular user interface, generated considerable excitement 
just as AT&T was busy convincing the world that it might be out to fleece every-
one for license fees. As a result, many organizations adopted Windows as their 

3. Minix is a PC-based UNIX clone developed by Andrew S. Tanenbaum, a professor at the Free Univer-
sity in Amsterdam.

  



ptg

1272 UNIX and Linux System Administration Handbook

preferred platform for shared computing during the late 1990s. Without question, 
the Microsoft platform has come a long way, and for some organizations it is the 
best option. 

Unfortunately, UNIX, Linux, and Windows administrators initially approached 
this marketplace competition in an adversarial stance. “Less filling” vs. “tastes 
great” arguments erupted in organizations around the world.4 Many UNIX and 
Linux system administrators started learning Windows, convinced they’d be put 
out to pasture if they didn’t. After all, Windows 2000 was on the horizon. By the 
close of the millennium, the future of UNIX looked grim.

UNIX AND LINUX THRIVE (2000–PRESENT)

As the Internet bubble burst, everyone scrambled to identify what was real and 
what had been only a venture-capital-fueled mirage. As the smoke drifted away, it 
became clear that many organizations with successful technology strategies were 
using UNIX or Linux along with Windows rather than one or the other. It wasn’t a 
war anymore.

UNIX and Linux system administrators who had augmented their skills with 
Windows became even more valuable. They were able to bridge the gap between 
the two worlds and leverage both for the benefit of the organization. A number of 
evaluations showed that the total cost of ownership (TCO) of a Linux server was 
significantly lower than that of a Windows server, a metric that matters in rough 
economic times.

Today, UNIX and Linux are thriving. Commercial variants of UNIX, including 
AIX, Solaris, and HP-UX, have continued to meet the needs of their respective 
markets. Linux and PC-based UNIX variants have continued to expand their 
market share, with Linux being the only operating system whose market share on 
servers is growing at the time of this writing (spring 2010). Not to be left out, 
Apple’s current operating system, Mac OS X, is also based on UNIX.5

Much of the recent growth in UNIX and Linux has occurred in the domain of 
virtualized and cloud computing. (See Chapter 24, Virtualization, for more infor-
mation about these technologies.) Once again, these environments all share one 
thing in common: systems administrators. Your skills as a system administrator 
apply whether the box is physical or virtual!

UNIX AND LINUX TOMORROW

No matter what developments await UNIX and Linux over the next few years, one 
thing is certain: UNIX and Linux need you! System administrators hold the 

4. Just for the record, Windows is indeed less filling.
5. Even Apple’s iPhone runs a stripped-down cousin of UNIX, and Google’s Android operating system 

includes abstractions from the Linux kernel.

  



ptg

A Brief History of System Administration 1273

world’s computing infrastructure together, solve the hairy problems of efficiency 
and scalability, and provide expert technology advice to users and managers alike. 

We are system administrators. Hear us roar!

RECOMMENDED READING

MCKUSICK, MARSHALL KIRK, KEITH BOSTIC, MICHAEL J. KARELS, AND JOHN S. 
QUARTERMAN. The Design and Implementation of the 4.4BSD Operating System 
(2nd Edition). Reading, MA: Addison-Wesley, 1996.

SALUS, PETER H. A Quarter Century of UNIX. Reading, MA: Addison-Wesley, 
1994.

SALUS, PETER H. Casting the Net: From ARPANET to Internet and Beyond. Read-
ing, MA: Addison-Wesley, 1995.

SALUS, PETER H. The Daemon, the Gnu, and the Penguin. Marysville, WA: Reed 
Media Services, 2008. This book was also serialized at www.groklaw.net.

  

www.groklaw.net


ptg

1274

In Defense of AIX
A dialog with Dan Foster

AIX has been around since the 1980s, but this edition is the first to include it as an 
example system. We considered adding AIX to several previous editions, but al-
ways judged it to be too different from other versions of UNIX—and perhaps a bit 
too peculiar—to fit comfortably alongside them.

We wanted to welcome AIX with open arms. Nevertheless, careful readers may 
notice a certain consistency of tone regarding AIX, a tone that is not altogether 
laudatory. Like an unhousebroken puppy, AIX always seems to be doing some-
thing wrong and never quite understanding why everyone seems so upset.

We feel bad; who likes to yell at a puppy? To help balance the scales, we asked Dan 
Foster, one of our technical reviewers from the AIX world, to weigh in on AIX’s 
good side. Herewith, our indictment against AIX, and Dan’s response.

OUR WILD ACCUSATIONS

AIX is an IBM mainframe operating system of the 1970s that is cruelly trapped in 
the body of a UNIX system. Although the UNIX plumbing keeps the system run-
ning, AIX has no particular interest in being UNIX or in following UNIX conven-
tions. It employs a variety of hairpieces, corsets, and makeup kits to project an 
image more consistent with IBM’s taste. It’s an open, modular system that longs to 
be closed and monolithic.

Those who approach AIX as UNIX will discover a series of impediments. AIX 
does not really trust administrators to understand what they are doing or to di-
rectly modify the system. Instead of simplicity, modularity, and flexibility, AIX 
offers structure. Considerable engineering effort has been spent to catalog admin-
istrative operations and to collect them into the System Management Interface 
Tool (SMIT). If what you need isn’t in the catalog…well, don’t you worry your 
pretty little head about that.

Unfortunately, SMIT isn’t AIX’s only added layer of indirection. SMIT operations 
map to shell commands, so every SMIT operation requires a dedicated command 
that implements it in one step. Hence, the rich profusion of command families 

  



ptg

In Defense of AIX 1275

(such as crfs/chfs/rmfs) that implement predefined recipes. These commands 
add complexity and overhead without creating much value; other UNIX systems 
do just fine without them.

Because administrative operations are mediated through software, AIX sees no 
need to store information in text files. Instead, it’s squirreled away in a variety of 
binary formats and logs, most notably the Object Data Manager. Sysadmins can 
use generic ODM commands to inspect and modify this data, but that’s some-
thing of a black art, and it’s generally discouraged. Overall, the ODM is a dark and 
mysterious continent with many backwaters, much like the Windows registry.

If one persists in cutting away at AIX’s carapace, one does eventually discover a 
sad little UNIX homunculus lying contorted therein. But it’s not a healthy crea-
ture; it’s wrinkled with age, its skin pale from lack of exposure to the outside world 
and to the last few decades of UNIX advancements. Clearly, IBM considers the 
real action to be somewhere other than the UNIX mainstream.

DAN FOSTER’S CASE FOR THE DEFENSE

Ouch! You don’t paint a very charitable picture. However, I think it’s fair to char-
acterize many of your objections as “not invented here” syndrome; in other words, 
as resistance to anything that doesn’t toe the standard UNIX line.

There’s some validity to your general point that AIX aspires to be more than just 
another UNIX clone. That’s not necessarily bad. AIX is not for cowboys. It’s de-
signed to facilitate reliability, consistency, and ease of administration. It has differ-
ent goals from other UNIX systems, so it looks and feels a bit different, too.

AIX draws a variety of useful tools from IBM’s mainframe and AS/400 systems. 
For example, it uses a centralized error logging facility that applications can easily 
hook into through an API. That system facilitates error reporting, administrator 
notification, and problem diagnosis. Syslog tries to implement some of these fea-
tures for UNIX generally, but as this book’s many sections on logging show, it’s not 
consistently used. (Years later, Sun adopted a similar approach with the fault man-
agement daemon, fmd, in Solaris 10.)

Another case in point is hardware management. AIX gives you centralized diag-
nostic tools for just about any supported device. It even logs repair actions (which, 
in some cases, can disable fault LEDs and generate issue-resolution notifications), 
thus providing an audit trail. The system is easy to extend through callback hooks, 
but it doesn’t leave you on your own as most versions of UNIX do.

To address one of your specific complaints, task-specific commands are a feature, 
not a bug! They benefit administrators in several ways.

• As even your own example shows, AIX command sets are named clearly 
and consistently. That can’t be said of UNIX generally. mk* commands 
create entities, rm* commands remove them, ch* commands modify 
them, and ls* commands show you the current state. These structured 

  



ptg

1276 UNIX and Linux System Administration Handbook

command families yield predictable results and reduce the time needed 
for training. They make it less likely that you’ll use the wrong command 
during a 2:00 a.m. emergency while you’re bleary-eyed and new to AIX. 
(SMIT menus help here too, of course.)

• Commands can validate their arguments; configuration files cannot. A 
wrapper command can ensure that a proposed change won’t break the 
system. If it would, the command can complain or refuse to make the 
change. That’s much nicer than discovering problems the hard way when 
things break randomly after a configuration file change.

• Task-specific commands facilitate scripting. Not only do they combine 
functions and validate arguments, but they also relieve scripts of the 
need to parse and manage complex configuration files. That makes 
scripts shorter, more reliable, and easier to maintain (and teach!). Think 
of these commands as a high-level administration library that’s built into 
the operating system and that works with every scripting language.

• The provision of a defined administrative interface reduces dependen-
cies on particular file formats or implementations. It frees IBM to 
change its back ends and to introduce new technologies without break-
ing legacy scripts. For example, the ODM currently stores its data in 
Berkeley DB files. However, IBM could easily change the ODM to use 
LDAP or some other future technology while keeping the ODM com-
mands and user interface the same.

And don’t be a SMIT-hater! SMIT is a flexible system that implements a variety of 
interfaces (X11, web page, command-line client). That flexibility means you can 
use the same general interface whether you’re sitting at a desktop machine or 
working from home late at night.

SMIT simplifies complex procedures and gets novice administrators up to speed 
quickly. It’s been used and maintained for many years and has undergone a variety 
of user interface studies aimed at improving it. It’s easy to use regardless of your 
familiarity with UNIX in general or AIX in particular. And it’s a great learning 
tool, even for experienced administrators. You can fill out a SMIT form with your 
desired values and have SMIT show you the exact command it would run to im-
plement your request. There’s nothing like this on any other system, and it’s great.

As for AIX not “really” being UNIX, that simply isn’t true. AIX was originally 
based on BSD, and some vestiges of that era (such as AIX’s use of mbufs in its 
networking stack) remain even in today’s systems. Later editions were refocused 
on the System V base. AIX has been certified as conforming to the Single Unix 
Specification (SUS), X/Open, and POSIX standards. IBM has also exploited 
UNIX’s legendary portability to bring AIX to systems ranging from PS/2 PCs to 
mainframes. The Deep Blue system (an IBM HPC supercomputing cluster) that 
beat chess grand master and world champion Garry Kasparov in widely publi-
cized human-vs.-computer chess matches in 1996 and 1997 ran AIX!

  



ptg

1277

Colophon

This book was for the most part written and produced on Windows systems. We 
used Adobe FrameMaker for layout and a variety of other Adobe applications for 
illustrations and production. Some contributors ran FrameMaker under Wine on 
Linux systems (see page 1139). One author ran FrameMaker on a virtualized 
Windows system under Mac OS X. (See tinyurl.com/vmwrite for details.) These 
virtualized environments worked well.

Lisa Haney drew the interior cartoons with a 0.05mm Staedtler pigment liner, 
then scanned them and converted them to 1200dpi bitmaps. The cover artwork 
was executed on black Ampersand Clayboard (a scratchboard) with Dr. Martin’s 
Dyes for color. After scanning, the cover art was color-corrected in Photoshop 
and the layout completed in Adobe Illustrator.

The body text is Minion Pro, designed by Robert Slimbach. Headings, tables, and 
illustrations are set in Myriad Pro SemiCondensed by Robert Slimbach and Carol 
Twombly, with Fred Brady and Christopher Slye.

For “code” samples, we have long sought a fixed-width font that looks similar to 
Courier but that lacks Courier’s many typesetting problems. Our search remains 
fruitless. In this book, we use Peter Matthias Noordzij’s proportional-width PMN 
Caecilia and line up columns manually with tabs. Unfortunately, Caecilia is miss-
ing some characters needed for technical typesetting, and its italic version is no-
ticeably slimmer than its roman.

This edition marks the first time that the authors have all worked on a shared tree 
of source files. In the past, the sticking point has been FrameMaker’s binary file 
format, which makes it impossible to merge multiple sets of revisions. For this 
edition, we used an unholy combination of Subversion (page 399), TortoiseSVN 
(page 401), Miramo’s free DZbatcher utility (datazone.com), and home-grown 
Perl scripts to keep the authoritative documents in FrameMaker’s second-class 
MIF format, an XML-like alternative. This scheme sort of works, but it requires 
that everyone use the same version of FrameMaker and that at least one team 
member have a working knowledge of MIF.

  



ptg

1278

About the Contributors

Terry Morreale is a senior engineer and director of client services at Applied 
Trust. She holds a degree in Computer Science from the University of Colorado as 
well as the following industry certifications: CISSP, GIAC Gold Certified Incident 
Handler, and ITILv3 Foundations. When she’s not working, Terry can be found 
reading, running, hanging with her two kids, or enjoying a glass of red wine.

Ned McClain is co-founder and CTO of Applied Trust, where he helps clients of 
all sizes with architecture and operations. His work focuses on performance, 
availability, and security, but a special place in his heart is reserved for system 
administration. Ned has a degree in Computer Science from Cornell University’s 
College of Engineering and carries CISSP, MCP, and ITIL certifications. Ned blogs 
regularly at barkingseal.com.

Ron Jachim received an MS from Wayne State University in Detroit, Michigan, 
where he now serves as an adjunct professor. He leverages his 20 years of real-
world UNIX experience both while teaching and at his position with Ford Motor 
Company. He combines management skills with technical passion to architect re-
silient infrastructure solutions involving thousands of servers and to improve the 
performance of global applications.

David Schweikert is a product manager at Open Systems AG, a managed security 
services provider in Switzerland. His team is responsible for the configuration 
management and monitoring of more than 1,500 UNIX servers in over 100 coun-
tries. David is the developer of Mailgraph (a tool that plots mail statistics) and 
Postgrey (a greylisting implementation for Postfix). See david.schweikert.ch.

Tobi Oetiker is an engineer by education and a system administrator by vocation. 
For ten years he worked for the Swiss Federal Institute of Technology, where he 
spoiled students and staff with a deluxe UNIX environment. Since 2006, he has 
worked for his own company, OETIKER+PARTNER AG, where he manages 
UNIX servers for industry customers, improves his pet open source projects 
(MRTG™, RRDtool, and SmokePing) and applies these tools to solve customers’ 
problems. In November 2006, Tobi received the prestigious SAGE Outstanding 
Achievement Award for his work on MRTG and RRDtool. See tobi.oetiker.ch.

  



ptg

1279

For general comments and bug reports, please contact ulsah@book.admin.com. Be-
cause of the volume of email that this alias receives, we regret that we are unable to 
answer technical questions.

About the Authors

Evi Nemeth (sailingevi@gmail.com) has retired from the 
Computer Science faculty at the University of Colorado. 
She is currently exploring the Pacific on her 40-foot sailboat 
named Wonderland. This is her last edition—it’s impossible 
to keep up with the latest sysadmin toys when anchored in 
paradise with a 30 baud packet radio email connection.

Garth Snyder (garth@garthsnyder.com) has worked at 
NeXT and Sun and holds a BS in Engineering from Swarth-
more College and an MD and an MBA from the University 
of Rochester.

Trent R. Hein (trent@atrust.com) is the co-founder of 
Applied Trust, a company that provides IT infrastructure 
consulting services. Trent holds a BS in Computer Science 
from the University of Colorado.

Ben Whaley (ben@atrust.com) is the Director of Enter-
prise Architecture at Applied Trust, an IT consulting com-
pany based in Boulder, Colorado. Ben earned a BS in Com-
puter Science from the University of Colorado in 2004.

  



ptg

This page intentionally left blank 

  



ptg

Hardware

Hardware model 

Memory 

CPU type

Local disk configuration 

Purchase date 

End-of-life date

Inventory control ID

Disaster recovery

Root password location

Backup system / server 

Nagios coverage

Software

Operating system

Build image 

Update schedule / strategy

Major add-on packages

Basics

FQDN 

Owner

Owner contact info 

Primary function

Critical services

Cu
t o

ut
 a

nd
 ta

pe
 to

 in
di

vid
ua

l s
er

ve
r m

ac
hi

ne
s. 

Se
e a

dm
in

.co
m

 fo
r  

a 
PD

F v
er

sio
n 

of
 th

is 
fo

rm
.

SERVER INFORMATION

  



ptg

This page intentionally left blank 

  



ptg

Hardware

Hardware model 

Memory 

CPU type

Local disk configuration 

Purchase date 

End-of-life date

Inventory control ID

Disaster recovery

Root password location

Backup system / server 

Nagios coverage

Software

Operating system

Build image 

Update schedule / strategy

Major add-on packages

Basics

FQDN 

Owner

Owner contact info 

Primary function

Critical services

Cu
t o

ut
 a

nd
 ta

pe
 to

 in
di

vid
ua

l s
er

ve
r m

ac
hi

ne
s. 

Se
e a

dm
in

.co
m

 fo
r  

a 
PD

F v
er

sio
n 

of
 th

is 
fo

rm
.

SERVER INFORMATION

  



ptg

This page intentionally left blank 

  



ptg

Hardware

Hardware model 

Memory 

CPU type

Local disk configuration 

Purchase date 

End-of-life date

Inventory control ID

Disaster recovery

Root password location

Backup system / server 

Nagios coverage

Software

Operating system

Build image 

Update schedule / strategy

Major add-on packages

Basics

FQDN 

Owner

Owner contact info 

Primary function

Critical services

Cu
t o

ut
 a

nd
 ta

pe
 to

 in
di

vid
ua

l s
er

ve
r m

ac
hi

ne
s. 

Se
e a

dm
in

.co
m

 fo
r  

a 
PD

F v
er

sio
n 

of
 th

is 
fo

rm
.

SERVER INFORMATION

  



ptg

This page intentionally left blank 

  



ptg

Hardware

Hardware model 

Memory 

CPU type

Local disk configuration 

Purchase date 

End-of-life date

Inventory control ID

Disaster recovery

Root password location

Backup system / server 

Nagios coverage

Software

Operating system

Build image 

Update schedule / strategy

Major add-on packages

Basics

FQDN 

Owner

Owner contact info 

Primary function

Critical services

Cu
t o

ut
 a

nd
 ta

pe
 to

 in
di

vid
ua

l s
er

ve
r m

ac
hi

ne
s. 

Se
e a

dm
in

.co
m

 fo
r  

a 
PD

F v
er

sio
n 

of
 th

is 
fo

rm
.

SERVER INFORMATION

  



ptg

This page intentionally left blank 

  



ptg

Hardware

Hardware model 

Memory 

CPU type

Local disk configuration 

Purchase date 

End-of-life date

Inventory control ID

Disaster recovery

Root password location

Backup system / server 

Nagios coverage

Software

Operating system

Build image 

Update schedule / strategy

Major add-on packages

Basics

FQDN 

Owner

Owner contact info 

Primary function

Critical services

Cu
t o

ut
 a

nd
 ta

pe
 to

 in
di

vid
ua

l s
er

ve
r m

ac
hi

ne
s. 

Se
e a

dm
in

.co
m

 fo
r  

a 
PD

F v
er

sio
n 

of
 th

is 
fo

rm
.

SERVER INFORMATION

  



ptg

This page intentionally left blank 

  



ptg

Notes

  



ptgRegister the Addison-Wesley, Exam 
Cram, Prentice Hall, Que, and 
Sams products you own to unlock 
great benefi ts. 

To begin the registration process, 
simply go to informit.com/register
to sign in or create an account. 
You will then be prompted to enter 
the 10- or 13-digit ISBN that appears 
on the back cover of your product.

informIT.com 
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley  |  Cisco Press  |  Exam Cram   

IBM Press   |   Que   |   Prentice Hall   |   Sams 

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS 
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall 

Professional, Que, and Sams. Here you will gain access to quality and trusted content and 

resources from the authors, creators, innovators, and leaders of technology. Whether you’re 

looking for a book on a new technology, a helpful article, timely newsletters, or access to 

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock 
the following benefi ts:

•  Access to supplemental content, 
including bonus chapters, 
source code, or project fi les. 

•  A coupon to be used on your 
next purchase.

Registration benefi ts vary by product.  
Benefi ts will be listed on your Account 
page under Registered Products.

informit.com/register

THIS PRODUCT

  



ptg

InformIT is a brand of Pearson and the online presence 
for the world’s leading technology publishers. It’s your source 
for reliable and qualified content and knowledge, providing 
access to the top brands, authors, and contributors from 
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips?  InformIT has the solution.

•  Learn about new releases and special promotions by 
subscribing to a wide variety of newsletters. 
Visit informit.com/newsletters.

•  Access FREE podcasts from experts at informit.com/podcasts.

•  Read the latest author articles and sample chapters at 
informit.com/articles.

•  Access thousands of books and videos in the Safari Books 
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the 
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook, 

Twitter, YouTube, and more! Visit informit.com/socialconnect.

  



ptg

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top 
technology publishers, including Addison-Wesley Professional, Cisco Press, 
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books, 
Safari’s extensive collection of video tutorials lets you learn from the leading 
video training experts.

 

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the first 
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content 
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY! 

www.informit.com/safaritrial

  

www.informit.com/safaritrial


ptg

 

Your purchase of UNIX® and Linux® System Administration Handbook, Fourth

Edition includes access to a free online edition for 45 days through the Safari Books 
Online subscription service. Nearly every Prentice Hall book is available online through 
Safari Books Online, along with more than 5,000 other technical books and videos from 
publishers such as Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, 
O’Reilly, Que, and Sams. 

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste 
code, download chapters, and stay current with emerging technologies. 

Activate your FREE Online Edition at 

www.informit.com/safarifree

STEP 1: .AFXWLXP:edocnopuoceht retnE 

STEP 2:  .mrof noitartsigerfeirbeht etelpmoc,sresuirafaSweN 
Safari subscribers, just log in.

 If you have difficulty registering on Safari or accessing the online edition, 
please e-mail customer-service@safaribooksonline.com

FREE Online 
Edition

  

www.informit.com/safaritrial

	TABLE OF CONTENTS
	FOREWORD
	PREFACE
	ACKNOWLEDGMENTS
	SECTION ONE: BASIC ADMINISTRATION
	CHAPTER 1 WHERE TO START
	Essential duties of the system administrator
	Suggested background
	Friction between UNIX and Linux
	Linux distributions
	Example systems used in this book
	System-specific administration tools
	Notation and typographical conventions
	Units
	Man pages and other on-line documentation
	Other authoritative documentation
	Other sources of information
	Ways to find and install software
	System administration under duress
	Recommended reading
	Exercises

	CHAPTER 2 SCRIPTING AND THE SHELL
	Shell basics
	bash scripting
	Regular expressions
	Perl programming
	Python scripting
	Scripting best practices
	Recommended reading
	Exercises

	CHAPTER 3 BOOTING AND SHUTTING DOWN
	Bootstrapping
	Booting PCs
	GRUB: The GRand Unified Boot loader
	Booting to single-user mode
	Working with startup scripts
	Booting Solaris
	Rebooting and shutting down
	Exercises

	CHAPTER 4 ACCESS CONTROL AND ROOTLY POWERS
	Traditional UNIX access control
	Modern access control
	Real-world access control
	Pseudo-users other than root
	Exercises

	CHAPTER 5 CONTROLLING PROCESSES
	Components of a process
	The life cycle of a process
	Signals
	kill: send signals
	Process states
	nice and renice: influence scheduling priority
	ps: monitor processes
	Dynamic monitoring with top, prstat, and topas
	The /proc filesystem
	strace, truss, and tusc: trace signals and system calls
	Runaway processes
	Recommended reading
	Exercises

	CHAPTER 6 THE FILESYSTEM
	Pathnames
	Filesystem mounting and unmounting
	The organization of the file tree
	File types
	File attributes
	Access control lists
	Exercises

	CHAPTER 7 ADDING NEW USERS
	The /etc/passwd file
	The /etc/shadow and /etc/security/passwd files
	The /etc/group file
	Adding users: the basic steps
	Adding users with useradd
	Adding users in bulk with newusers (Linux)
	Removing users
	Disabling logins
	Managing users with system-specific tools
	Reducing risk with PAM
	Centralizing account management
	Recommended reading
	Exercises

	CHAPTER 8 STORAGE
	I just want to add a disk!
	Storage hardware
	Storage hardware interfaces
	Peeling the onion: the software side of storage
	Attachment and low-level management of drives
	Disk partitioning
	RAID: redundant arrays of inexpensive disks
	Logical volume management
	Filesystems
	ZFS: all your storage problems solved
	Storage area networking
	Exercises

	CHAPTER 9 PERIODIC PROCESSES
	cron: schedule commands
	The format of crontab files
	Crontab management
	Linux and Vixie-cron extensions
	Some common uses for cron
	Exercises

	CHAPTER 10 BACKUPS
	Motherhood and apple pie
	Backup devices and media
	Saving space and time with incremental backups
	Setting up a backup regime with dump
	Dumping and restoring for upgrades
	Using other archiving programs
	Using multiple files on a single tape
	Bacula
	Commercial backup products
	Recommended reading
	Exercises

	CHAPTER 11 SYSLOG AND LOG FILES
	Finding log files
	Syslog: the system event logger
	AIX logging and error handling
	logrotate: manage log files
	Condensing log files to useful information
	Logging policies
	Exercises

	CHAPTER 12 SOFTWARE INSTALLATION AND MANAGEMENT
	Installing Linux and OpenSolaris
	Installing Solaris
	Installing HP-UX
	Installing AIX with the Network Installation Manager
	Managing packages
	Managing Linux packages
	Using high-level Linux package management systems
	Managing packages for UNIX
	Revision control
	Software localization and configuration
	Using configuration management tools
	Sharing software over NFS
	Recommended reading
	Exercises

	CHAPTER 13 DRIVERS AND THE KERNEL
	Kernel adaptation
	Drivers and device files
	Linux kernel configuration
	Solaris kernel configuration
	HP-UX kernel configuration
	Management of the AIX kernel
	Loadable kernel modules
	Linux udev for fun and profit
	Recommended reading
	Exercises


	SECTION TWO: NETWORKING
	CHAPTER 14 TCP/IP NETWORKING
	TCP/IP and its relationship to the Internet
	Networking road map
	Packet addressing
	IP addresses: the gory details
	Routing
	ARP: the Address Resolution Protocol
	DHCP: the Dynamic Host Configuration Protocol
	Security issues
	PPP: the Point-to-Point Protocol
	Basic network configuration
	System-specific network configuration
	Linux networking
	Solaris networking
	HP-UX networking
	AIX networking
	Recommended reading
	Exercises

	CHAPTER 15 ROUTING
	Packet forwarding: a closer look
	Routing daemons and routing protocols
	Protocols on parade
	Routing strategy selection criteria
	Routing daemons
	Cisco routers
	Recommended reading
	Exercises

	CHAPTER 16 NETWORK HARDWARE
	Ethernet: the Swiss Army knife of networking
	Wireless: ethernet for nomads
	DSL and cable modems: the last mile
	Network testing and debugging
	Building wiring
	Network design issues
	Management issues
	Recommended vendors
	Recommended reading
	Exercises

	CHAPTER 17 DNS: THE DOMAIN NAME SYSTEM
	Who needs DNS?
	How DNS works
	DNS for the impatient
	Name servers
	The DNS namespace
	Designing your DNS environment
	What’s new in DNS
	The DNS database
	The BIND software
	BIND configuration examples
	The NSD/Unbound software
	Updating zone files
	Security issues
	Microsoft and DNS
	Testing and debugging
	Vendor specifics
	Recommended reading
	Exercises

	CHAPTER 18 THE NETWORK FILE SYSTEM
	Introduction to network file services
	The NFS approach
	Server-side NFS
	Client-side NFS
	Identity mapping for NFS version 4
	nfsstat: dump NFS statistics
	Dedicated NFS file servers
	Automatic mounting
	Recommended reading
	Exercises

	CHAPTER 19 SHARING SYSTEM FILES
	What to share
	Copying files around
	LDAP: the Lightweight Directory Access Protocol
	NIS: the Network Information Service
	Prioritizing sources of administrative information
	Recommended reading
	Exercises

	CHAPTER 20 ELECTRONIC MAIL
	Mail systems
	The anatomy of a mail message
	The SMTP protocol
	Mail system design
	Mail aliases
	Content scanning: spam and malware
	Email configuration
	sendmail
	sendmail configuration
	sendmail configuration primitives
	Security and sendmail
	sendmail performance
	sendmail testing and debugging
	Exim
	Postfix
	DKIM Configuration
	Integrated email solutions
	Recommended reading
	Exercises

	CHAPTER 21 NETWORK MANAGEMENT AND DEBUGGING
	Network troubleshooting
	ping: check to see if a host is alive
	SmokePing: gather ping statistics over time
	traceroute: trace IP packets
	netstat: get network statistics
	Inspection of live interface activity
	Packet sniffers
	The ICSI Netalyzr
	Network management protocols
	SNMP: the Simple Network Management Protocol
	The NET-SNMP agent
	Network management applications
	NetFlow: connection-oriented monitoring
	Recommended reading
	Exercises

	CHAPTER 22 SECURITY
	Is UNIX secure?
	How security is compromised
	Security tips and philosophy
	Passwords and user accounts
	PAM: cooking spray or authentication wonder?
	Setuid programs
	Effective use of chroot
	Security power tools
	Mandatory Access Control (MAC)
	Cryptographic security tools
	Firewalls
	Linux firewall features
	IPFilter for UNIX systems
	Virtual private networks (VPNs)
	Certifications and standards
	Sources of security information
	What to do when your site has been attacked
	Recommended reading
	Exercises

	CHAPTER 23 WEB HOSTING
	Web hosting basics
	HTTP server installation
	Virtual interfaces
	The Secure Sockets Layer (SSL)
	Caching and proxy servers
	Scaling beyond your limits
	Exercises


	SECTION THREE: BUNCH O' STUFF
	CHAPTER 24 VIRTUALIZATION
	Virtual vernacular
	Benefits of virtualization
	A practical approach
	Virtualization with Linux
	Solaris zones and containers
	AIX workload partitions
	Integrity Virtual Machines in HP-UX
	VMware: an operating system in its own right
	Amazon Web Services
	Recommended reading
	Exercises

	CHAPTER 25 THE X WINDOW SYSTEM
	The display manager
	Process for running an X application
	X server configuration
	X server troubleshooting and debugging
	A brief note on desktop environments
	Recommended reading
	Exercises

	CHAPTER 26 PRINTING
	Printing-system architecture
	CUPS printing
	Printing from desktop environments
	System V printing
	BSD and AIX printing
	What a long, strange trip it’s
	Common printing software
	Printer languages
	PPD files
	Paper sizes
	Printer practicalities
	Troubleshooting tips
	Recommended reading
	Exercises

	CHAPTER 27 DATA CENTER BASICS
	Data center reliability tiers
	Cooling
	Power
	Racks
	Tools
	Recommended reading
	Exercises

	CHAPTER 28 GREEN IT
	Green IT initiation
	The green IT eco-pyramid
	Green IT strategies: data center
	Green IT strategies: user workspace
	Green IT friends
	Exercises

	CHAPTER 29 PERFORMANCE ANALYSIS
	What you can do to improve performance
	Factors that affect performance
	How to analyze performance problems
	System performance checkup
	Help! My system just got really slow!
	Recommended reading
	Exercises

	CHAPTER 30 COOPERATING WITH WINDOWS
	Logging in to a UNIX system from Windows
	Accessing remote desktops
	Running Windows and Windows-like applications
	Using command-line tools with Windows
	Windows compliance with email and web standards
	Sharing files with Samba and CIFS
	Sharing printers with Samba
	Debugging Samba
	Active Directory authentication
	Recommended reading
	Exercises

	CHAPTER 31 SERIAL DEVICES AND TERMINALS
	The RS-232C standard
	Alternative connectors
	Hard and soft carrier
	Hardware flow control
	Serial device files
	setserial: set serial port parameters under Linux
	Pseudo-terminals
	Configuration of terminals
	Special characters and the terminal driver
	stty: set terminal options
	tset: set options automatically
	Terminal unwedging
	Debugging a serial line
	Connecting to serial device consoles
	Exercises

	CHAPTER 32 MANAGEMENT, POLICY, AND POLITICS
	The purpose of IT
	The structure of an IT organization
	The help desk
	The enterprise architects
	The operations group
	Management
	Policies and procedures
	Disaster recovery
	Compliance: regulations and standards
	Legal issues
	Organizations, conferences, and other resources
	Recommended Reading
	Exercises


	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	A BRIEF HISTORY OF SYSTEM ADMINISTRATION
	IN DEFENSE OF AIX
	COLOPHON
	ABOUT THE CONTRIBUTORS
	ABOUT THE AUTHORS



