

 [image: OpenSSL Cookbook]

Table of Contents

Preface

Feedback

About Bulletproof SSL/TLS and PKI

About the Author

1. OpenSSL Cookbook

Getting Started

Key and Certificate Management

Configuration

A. SSL/TLS Deployment Best Practices

Introduction

1. Private Key and Certificate

2. Configuration

3. Performance

4. Application Design (HTTP)

5. Validation

6. Advanced Topics

Changes

Acknowledgments

About SSL Labs

About Qualys

B. Changes

v1.0 (May 2013)

v1.1 (October 2013)

OpenSSL Cookbook

Ivan Ristić

Version 1.1, published in October 2013.

Copyright © 2013 Feisty Duck Limited. All rights reserved.

First published in May 2013.
ISBN: 978-1907117053

Feisty Duck Limited

www.feistyduck.com

contact@feistyduck.com

Address:

6 Acantha Court

Montpelier Road

London W5 2QP

United Kingdom

Production editor: Jelena
 Girić-Ristić
Copyeditors: Melinda Rankin,
 Nancy Wolfe Kotary

All rights reserved. No part of this publication may be
 reproduced, stored in a retrieval system, or transmitted, in any form or by any
 means, without the prior permission in writing of the publisher.
The author and publisher have taken care in preparation of this
 book, but make no expressed or implied warranty of any kind and assume no
 responsibility for errors or omissions. No liability is assumed for incidental or
 consequential damages in connection with or arising out of the use of the
 information or programs contained herein.

Personal copy of Max Salas <maxtux05@gmail.com>

Preface

For all its warts, OpenSSL is one of the most successful and most important open
 source projects. It’s successful because it’s so widely used; it’s important because the
 security of large parts of the Internet infrastructure relies on it. The project
 consists of a high-performance implementation of key cryptographic algorithms, a
 complete SSL/TLS and PKI stack, and a command-line toolkit. I think it’s safe to say
 that if your job has something to do with security, web development, or system
 administration, you can’t avoid having to deal with OpenSSL on at least some
 level.
This book is intended primarily for OpenSSL users who need to perform routine tasks of
 key and certificate generation and configure programs that rely on OpenSSL for SSL/TLS
 functionality. The majority of the Internet is powered by open source products, and
 virtually all of those projects rely on OpenSSL. Apache httpd has
 long been a favorite, but it’s now being pursued by nginx, which is
 increasingly gaining in popularity. And, even in the Java camp, Apache Tomcat performs
 better when coupled with OpenSSL, replacing the native Java implementation of
 SSL/TLS.
This book is—at least at the moment—built around a chapter from my third
 book, Bulletproof SSL/TLS and PKI. I’m still writing it. I’ve
 decided to make the OpenSSL chapter free because this very successful open source
 project is not very well documented and because the documentation that you can find on
 the Internet is often wrong and outdated. Thus, good documentation is in great
 demand.
Besides, publishers often give away one or more chapters in order to show what the
 book is like, and I thought I should make the most of it by not only making the OpenSSL
 chapter free, but also by committing to continue to maintain and improve it over time. I
 hope that the fates of OpenSSL Cookbook and Bulletproof
 SSL/TLS and PKI become closely intertwined, leading to more free
 content.
Feedback

Reader feedback is always very important, but especially so in this case, because
 this is a living book. In traditional publishing, often years pass before reader
 feedback goes back into the book, and then only if another edition actually sees the
 light of day (which often does not happen for technical books, because of the small
 market size). With this book, you’ll see new content appear in a matter of days.
 Ultimately, what you send to me will affect how the book will evolve.
The best way to contact me is to use my email address,
 ivanr@webkreator.com. Sometimes I may also be able to
 respond via Twitter, where you will find me at @ivanristic.

About Bulletproof SSL/TLS and PKI

Bulletproof SSL/TLS and PKI, the book that I’m working on at
 the moment, is the book I wish I had back when I was starting to get involved with
 SSL. I don’t remember when I started using SSL, but I do remember that when I was
 writing my first book, Apache Security, I began to appreciate
 the complexities of cryptography. I even began to like it. Before that point I
 thought that SSL was simple, but then I realized how vast the world of crypto
 actually is.
In 2009 I began to work on SSL Labs, and for me, the world of cryptography began
 to unravel. Fast-forward a couple of years, and in 2013 I still feel like I’m only
 starting. Cryptography is a unique field in which the more you learn, the less you
 know.
In supporting the SSL Labs users over the years, I’ve realized that there’s a lot
 of documentation on SSL/TLS and PKI, but also that it suffers from two problems: (1)
 it’s not documented in one place, so the little bits and pieces (e.g., RFCs) are
 difficult to find, and (2) it tends to be very detailed and low level. It took me
 years of work and study to begin to understand the entire ecosystem.
Bulletproof SSL/TLS and PKI aims to address the documentation
 gap, as a very practical book that first paints the whole picture and then proceeds
 to discuss the bits and pieces that you need in daily work, going as deep as needed
 to explain what you need to know.

About the Author

Ivan Ristić is a security researcher, engineer, and author, known especially for
 his contributions to the web application firewall field and development of ModSecurity, an open source web
 application firewall, and for his SSL/TLS and PKI research, tools, and guides
 published on the SSL Labs web
 site.
He is the author of two books, Apache Security and
 ModSecurity Handbook, which he publishes via Feisty Duck, his own platform for
 continuous writing and publishing. Ivan is an active participant in the security
 community, and you’ll often find him speaking at security conferences such as Black
 Hat, RSA, OWASP AppSec, and others. He’s currently Director of Application Security
 Research at Qualys.

1 OpenSSL Cookbook

OpenSSL is an open source project that
 consists of a cryptographic library and an SSL toolkit. From the project’s web site:
The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade,
 full-featured, and Open Source toolkit implementing the Secure Sockets Layer (SSL) and
 Transport Layer Security (TLS) protocols as well as a full-strength general purpose
 cryptography library. The project is managed by a worldwide community of volunteers that
 use the Internet to communicate, plan, and develop the OpenSSL toolkit and its related
 documentation.

OpenSSL is a de facto standard in this space and comes with a long history. The code
 initially began its life in 1995 under the name SSLeay,[1] when it was developed by Eric A. Young and Tim J. Hudson. The OpenSSL project
 was born in the last days of 1998, when Eric and Tim stopped their work on SSLeay to work on
 a commercial SSL toolkit called BSAFE SSL-C at RSA Australia.
Today, OpenSSL is ubiquitous on the server side and in many client tools. Interestingly,
 browsers tend to use other libraries. The command-line tools provided by OpenSSL are most
 commonly used to manage keys and certificates.
OpenSSL is dual-licensed under OpenSSL and SSLeay licenses. Both are BSD-like, with an
 advertising clause. The license has been a source of contention for a very long time,
 because neither of the licenses is considered compatible with the GPL family of licenses.
 For that reason, you will often find that GPL-licensed programs favor GnuTLS.
Getting Started

If you’re using one of the Unix platforms, getting started with OpenSSL is easy;
 you’re virtually guaranteed to already have it on your system. The only problem that you
 might face is that you might not have the latest version. In this section, I assume that
 you’re using a Unix platform, because that’s the natural environment for OpenSSL.
Windows users tend to download binaries, which might complicate the situation
 slightly. In the simplest case, if you need OpenSSL only for its command-line utilities,
 the main OpenSSL web site links to Shining Light
 Productions for the Windows binaries. In all other situations, you need to
 ensure that you’re not mixing binaries compiled under different versions of OpenSSL.
 Otherwise, you might experience crashes that are difficult to troubleshoot. The best
 approach is to use a single bundle of programs that includes everything that you need.
 For example, if you want to run Apache on Windows, you can get your binaries from the
 Apache
 Lounge.
Determine OpenSSL Version and Configuration

Before you do any work, you should know which OpenSSL version you’ll be
 using. For example, here’s what I get for version information with openssl
 version on Ubuntu 12.04 LTS, which is the system that I’ll be using
 for the examples in this chapter:
$ openssl version
OpenSSL 1.0.1 14 Mar 2012
At the time of this writing, a transition from OpenSSL 0.9.x to OpenSSL 1.0.x is
 in progress. The version 1.0.1 is especially significant because it is the first
 version to support TLS 1.1 and TLS 1.2. The support for newer protocols is part of a
 global trend, so it’s likely that we’re going to experience a period during which
 interoperability issues are not uncommon.
Note
Various operating systems often modify the OpenSSL code, usually to fix known
 issues. However, the name of the project and the version number generally stay
 the same, and there is no indication that the code is actually a fork of the
 original project that will behave differently. For example, the version of
 OpenSSL used in Ubuntu 12.04 LTS[2] is based on OpenSSL 1.0.1c. At the time of this writing, the full
 name of the package is openssl 1.0.1-4ubuntu5.5, and it adds
 44 patches to OpenSSL 1.0.1c.

To get complete version information, use the -a switch:
$ openssl version -a
OpenSSL 1.0.1 14 Mar 2012
built on: Wed May 23 00:01:41 UTC 2012
platform: debian-amd64
options: bn(64,64) rc4(16x,int) des(idx,cisc,16,int) blowfish(idx)
compiler: cc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -m64 -DL_ENDIAN -DTERMIO -g -O2 -fstack-protector --param=ssp-buffer-size=4 -Wformat -Wformat-security -Werror=format-security -D_FORTIFY_SOURCE=2 -Wl,-Bsymbolic-functions -Wl,-z,relro -Wa,--noexecstack -Wall -DOPENSSL_NO_TLS1_2_CLIENT -DOPENSSL_MAX_TLS1_2_CIPHER_LENGTH=50 -DMD32_REG_T=int -DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM -DVPAES_ASM -DBSAES_ASM -DWHIRLPOOL_ASM -DGHASH_ASM
OPENSSLDIR: "/usr/lib/ssl"
The last line in the output (/usr/lib/ssl) is especially
 interesting because it will tell you where OpenSSL will look for its configuration
 and certificates. On my system, that location is essentially an alias for
 /etc/ssl, where Ubuntu keeps SSL-related files:
lrwxrwxrwx 1 root root 14 Apr 19 09:28 certs -> /etc/ssl/certs
drwxr-xr-x 2 root root 4096 May 28 06:04 misc
lrwxrwxrwx 1 root root 20 May 22 17:07 openssl.cnf -> /etc/ssl/openssl.cnf
lrwxrwxrwx 1 root root 16 Apr 19 09:28 private -> /etc/ssl/private
The misc/ folder contains a few supplementary scripts, the
 most interesting of which are the scripts that allow you to implement a custom
 Certificate Authority (CA).

Building OpenSSL

In most cases, you will be using the operating system–supplied version of OpenSSL,
 but sometimes there are good reasons to upgrade. For example, your current server
 platform may still be using OpenSSL 0.9.x, and you might want to support newer
 protocol versions (available only in OpenSSL 1.0.1). Further, the newer versions may
 not have all the features you need. For example, on Ubuntu 12.04 LTS, there’s no
 support for SSL 2.0 in the s_client command. Although not
 supporting this version of SSL by default is the right decision, you’ll need this
 feature if you’re routinely testing other servers for SSL 2.0 support.
You can start by downloading the most recent version of OpenSSL (in my case,
 1.0.1c):
$ wget http://www.openssl.org/source/openssl-1.0.1c.tar.gz
The next step is to configure OpenSSL before compilation. In most cases, you’ll be
 leaving the system-provided version alone and installing OpenSSL in an another
 location. For example:
$./config --prefix=/opt/openssl --openssldir=/opt/openssl
You can then follow with:
$ make
$ sudo make install
You’ll get the following in /opt/openssl:
drwxr-xr-x 2 root root 4096 Jun 3 08:49 bin
drwxr-xr-x 2 root root 4096 Jun 3 08:49 certs
drwxr-xr-x 3 root root 4096 Jun 3 08:49 include
drwxr-xr-x 4 root root 4096 Jun 3 08:49 lib
drwxr-xr-x 6 root root 4096 Jun 3 08:48 man
drwxr-xr-x 2 root root 4096 Jun 3 08:49 misc
-rw-r--r-- 1 root root 10835 Jun 3 08:49 openssl.cnf
drwxr-xr-x 2 root root 4096 Jun 3 08:49 private
The private/ folder is empty, but that’s normal; you do not
 yet have any private keys. On the other hand, you’ll probably be surprised to learn
 that the certs/ folder is empty too. OpenSSL does not include
 any root certificates; maintaining a trust store is considered outside the scope of
 the project. Luckily, your operating system probably already comes with a trust
 store that you can use. You can also build your own with little effort, as you’ll
 see in the next section.

Examine Available Commands

OpenSSL is a cryptographic toolkit that consists of many different utilities. I
 counted 46 in my version. If it were ever appropriate to use the phrase
 Swiss Army knife of cryptography, this is it. Even though
 you’ll use only a handful of the utilities, you should familiarize yourself with
 everything that’s available, because you never know what you might need in the
 future.
There isn’t a specific help keyword, but help text is displayed whenever you type
 something OpenSSL does not recognize:
$ openssl help
openssl:Error: 'help' is an invalid command.

Standard commands
asn1parse ca ciphers cms
crl crl2pkcs7 dgst dh
dhparam dsa dsaparam ec
ecparam enc engine errstr
gendh gendsa genpkey genrsa
nseq ocsp passwd pkcs12
pkcs7 pkcs8 pkey pkeyparam
pkeyutl prime rand req
rsa rsautl s_client s_server
s_time sess_id smime speed
spkac srp ts verify
version x509
The first part of the help output lists all available utilities. To get more
 information about a particular utility, use the man command
 followed by the name of the utility. For example, man ciphers
 will give you detailed information on how cipher suites are configured.
Help output doesn’t actually end there, but the rest is somewhat less interesting.
 In the second part, you get the list of message digest commands:
Message Digest commands (see the `dgst' command for more details)
md4 md5 rmd160 sha
sha1
And then, in the third part, you’ll see the list of all cipher commands:
Cipher commands (see the `enc' command for more details)
aes-128-cbc aes-128-ecb aes-192-cbc aes-192-ecb
aes-256-cbc aes-256-ecb base64 bf
bf-cbc bf-cfb bf-ecb bf-ofb
camellia-128-cbc camellia-128-ecb camellia-192-cbc camellia-192-ecb
camellia-256-cbc camellia-256-ecb cast cast-cbc
cast5-cbc cast5-cfb cast5-ecb cast5-ofb
des des-cbc des-cfb des-ecb
des-ede des-ede-cbc des-ede-cfb des-ede-ofb
des-ede3 des-ede3-cbc des-ede3-cfb des-ede3-ofb
des-ofb des3 desx rc2
rc2-40-cbc rc2-64-cbc rc2-cbc rc2-cfb
rc2-ecb rc2-ofb rc4 rc4-40
seed seed-cbc seed-cfb seed-ecb
seed-ofb zlib

Building a Trust Store

OpenSSL does not come with any trusted root certificates (also known as a
 trust store), so if you’re installing from scratch you’ll
 have to find them somewhere else. One possibility is to use the trust store built
 into your operating system. This choice is usually fine, but default trust stores
 may not always be up to date. A better choice—but one that involves more work—is to
 turn to Mozilla, which is putting a lot of effort into maintaining a robust trust
 store. For example, this is what I did for my assessment tool on SSL Labs.
Because it’s open source, Mozilla keeps the trust store in the source code
 repository:
https://hg.mozilla.org/mozilla-central/raw-file/tip/security/nss/lib/ckfw/builtins/certdata.txt
Unfortunately, their certificate collection is in a proprietary format, which is
 not of much use to others as is. If you don’t mind getting the collection via a
 third party, the Curl project provides a regularly-updated conversion in
 Privacy-Enhanced Mail (PEM) format, which you can use
 directly:
http://curl.haxx.se/docs/caextract.html
But you don’t have to write a conversion script if you’d rather download directly
 from Mozilla. Conversion scripts are available in Perl or Go. I describe both in the
 following sections.
Note
If you do end up working on your own conversion script, note that Mozilla’s
 root certificate file actually contains two types of certificates: those that
 are trusted and are part of the store and also those that are explicitly
 distrusted. They use this mechanism to ban compromised intermediate CA
 certificates (e.g., DigiNotar’s old certificates). Both conversion tools
 described here are smart enough to exclude distrusted certificates during the
 conversion process.

Conversion Using Perl

The Curl project makes available a Perl script written by Guenter Knauf that
 can be used to convert Mozilla’s trust store:
https://raw.github.com/bagder/curl/master/lib/mk-ca-bundle.pl
After you download and run the script, it will fetch the certificate data from
 Mozilla and convert it to the PEM format:
$./mk-ca-bundle.pl
Downloading 'certdata.txt' ...
Processing 'certdata.txt' ...
Done (156 CA certs processed, 19 untrusted skipped).
If you keep previously downloaded certificate data around, the script will use it to
				determine what changed, and process only the updates.

Conversion Using Go

If you prefer the Go programming language, Adam Langley has a conversion tool
 in it that you can find on GitHub:
https://github.com/agl/extract-nss-root-certs
To kick off a conversion process, first download the tool itself:
$ wget https://raw.github.com/agl/extract-nss-root-certs/master/convert_mozilla_certdata.go
Then download Mozilla’s certificate data:
$ wget https://hg.mozilla.org/mozilla-central/raw-file/tip/security/nss/lib/ckfw/builtins/certdata.txt --output-document certdata.txt
Finally, convert the file with the following command:
$ go run convert_mozilla_certdata.go > ca-certificates
2012/06/04 09:52:29 Failed to parse certificate starting on line 23068: negative serial number
In my case, there was one invalid certificate, but otherwise the conversion
 worked.

Key and Certificate Management

Most users turn to OpenSSL because they wish to configure and run a web server that
 supports SSL. That process consists of three steps: (1) generate a strong private key,
 (2) create a Certificate Signing Request (CSR) and send it to a
 CA, and (3) install the CA-provided certificate in your web server. These steps (and a
 few others) are covered in this section.
Key Generation

The first step in preparing for the use of public encryption is to generate a
 private key. Before you begin, you must make several decisions:
	Key algorithm
	OpenSSL supports RSA, DSA, and ECDSA keys, but not all types are
 practical for use in all scenarios. For example, for SSL keys everyone
 uses RSA, because DSA keys are effectively limited to 1024 bits (Windows
 doesn’t support anything stronger) and ECDSA keys are yet to be widely
 supported by CAs. For SSH, DSA and RSA are widely used, whereas ECDSA
 might not be supported by all clients.

	Key size
	The default key sizes might not be secure, which is why you should
 always explicitly configure key size. For example, the default for RSA
 keys is only 512 bits, which is simply insecure. If you used a 512-bit
 key on your server today, an intruder could take your certificate and
 use brute force to recover your private key, after which he or she could
 impersonate your web site. Today, 2048-bit RSA keys are considered
 secure, and that’s what you should use. Aim also to use 2048 bits for
 DSA keys and at least 224 bits for ECDSA.

	Passphrase
	Using a passphrase with a key is optional, but strongly recommended.
 Protected keys can be safely stored, transported, and backed up. On the
 other hand, such keys are inconvenient, because they can’t be used
 without their passphrases. For example, you might be asked to enter the
 passphrase every time you wish to restart your web server. For most,
 this is either too inconvenient or has unacceptable availability
 implications. In addition, using protected keys in production does not
 actually increase the security much, if at all. This is because, once
 activated, private keys are kept unprotected in program memory; an
 attacker who can get to the server can get the keys from there with just
 a little more effort. Thus, passphrases should be viewed only as a
 mechanism for protecting private keys when they are not installed on
 production systems. In other words, it’s all right to keep passphrases
 on production systems, next to the keys. This, although not ideal, is
 much better than using unprotected keys. If you need better security,
 you should invest in a hardware solution.[3]

To generate an RSA key, use the genrsa command:
$ openssl genrsa -aes128 -out fd.key 2048
Generating RSA private key, 2048 bit long modulus
....+++
...+++
e is 65537 (0x10001)
Enter pass phrase for fd.key: ****************
Verifying - Enter pass phrase for fd.key: ****************
Here, I specified that the key be protected with AES-128. You can also use AES-192
 or AES-256 (switches -aes192 and -aes256,
 respectively), but it’s best to stay away from the other algorithms (DES, 3DES, and
 SEED).
Warning
The e value that you see in the output refers to the public
 exponent, which is set to 65537 by default. This is what’s known as a
 short public exponent, and it significantly improves
 the performance of RSA verification. Using the -3 switch, you
 can choose 3 as your public exponent and make verification even faster. However,
 there are some unpleasant historical weaknesses associated with the use of 3 as
 a public exponent, which is why generally everyone recommends that you stick
 with 65537. The latter choice provides a safety margin that’s been proven
 effective in the past.

Private keys are stored in the so-called PEM format, which is ASCII:
$ cat fd.key
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-256-CBC,717D24945A0CA95E2800B026D9D431CC

vERmFJzsLeAEDqWdXX4rNwogJp+y95uTnw+bOjWRw1+O1qgGqxQXPtH3LWDUz1Ym
mkpxmIwlSidVSUuUrrUzIL+V21EJ1W9iQ71SJoPOyzX7dYX5GCAwQm9Tsb40FhV/
[21 lines removed...]
4phGTprEnEwrffRnYrt7khQwrJhNsw6TTtthMhx/UCJdpQdaLW/TuylaJMWL1JRW
i321s5me5ej6Pr4fGccNOe7lZK+563d7v5znAx+Wo1C+F7YgF+g8LOQ8emC+6AVV
-----END RSA PRIVATE KEY-----
A private key isn’t just a blob of random data, even though that’s what it looks
 like at a glance. You can see a key’s structure using the following
 rsa command:
$ openssl rsa -text -in fd.key
Enter pass phrase for fd.key: ****************
Private-Key: (2048 bit)
modulus:
 00:9e:57:1c:c1:0f:45:47:22:58:1c:cf:2c:14:db:
 [...]
publicExponent: 65537 (0x10001)
privateExponent:
 1a:12:ee:41:3c:6a:84:14:3b:be:42:bf:57:8f:dc:
 [...]
prime1:
 00:c9:7e:82:e4:74:69:20:ab:80:15:99:7d:5e:49:
 [...]
prime2:
 00:c9:2c:30:95:3e:cc:a4:07:88:33:32:a5:b1:d7:
 [...]
exponent1:
 68:f4:5e:07:d3:df:42:a6:32:84:8d:bb:f0:d6:36:
 [...]
exponent2:
 5e:b8:00:b3:f4:9a:93:cc:bc:13:27:10:9e:f8:7e:
 [...]
coefficient:
 34:28:cf:72:e5:3f:52:b2:dd:44:56:84:ac:19:00:
 [...]
writing RSA key
-----BEGIN RSA PRIVATE KEY-----
[...]
-----END RSA PRIVATE KEY-----
If you need to generate the corresponding public key, you can do that with the
 following rsa command:
$ openssl rsa -in fd.key -pubout -out fd-public.key
Enter pass phrase for fd.key: ****************
The public key is much shorter than the private key:
$ cat fd-public.key
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAnlccwQ9FRyJYHM8sFNsY
PUHJHJzhJdwcS7kBptutf/L6OvoEAzCVHi/m0qAA4QM5BziZgnvv+FNnE3sgE5pz
iovEHJ3C959mNQmpvnedXwfcOIlbrNqdISJiP0js6mDCzYjSO1NCQoy3UpYwvwj7
0ryR1F+abARehlts/Xs/PtX3VamrljiJN6JNgFICy3ZvEhLZEKxR7oob7TnyZDrj
IHxBbqPNzeiqLCFLFPGgJPa0cH8DdovBTesvu7wr/ecsf8CYyUCdEwGkZh9DKtdU
HFa9H8tWW2mX6uwYeHCnf2HTw0E8vjtOb8oYQxlQxtL7dpFyMgrpPOoOVkZZW/P0
NQIDAQAB
-----END PUBLIC KEY-----
It’s good practice to verify that the output contains what you’re expecting. For
 example, if you forget to include the -pubout switch on the
 command line, the output will contain your private key instead of the public
 key.
DSA key generation is a two-step process: DSA parameters are created in the first
 step and the key in the second. Rather than execute the steps one at a time, I tend
 to use the following two commands as one:
$ openssl dsaparam -genkey 2048 | openssl dsa -out dsa.key -aes128
Generating DSA parameters, 2048 bit long prime
This could take some time
[...]
read DSA key
writing DSA key
Enter PEM pass phrase: ****************
Verifying - Enter PEM pass phrase: ****************
This approach allows me to generate a password-protected key while avoiding
 leaving any temporary files (DSA parameters) and/or temporary keys on disk.
The process is similar for ECDSA keys, except that it isn’t possible to create
 keys of arbitrary sizes. Instead, for each key you select a named
 curve, which controls key size, but it controls other EC parameters
 as well. The following example creates a 256-bit ECDSA key using the
 secp256r1 named curve:
$ openssl ecparam -genkey -name secp256r1 | openssl ec -out ec.key -aes128
using curve name prime256v1 instead of secp256r1
read EC key
writing EC key
Enter PEM pass phrase: ****************
Verifying - Enter PEM pass phrase: ****************
OpenSSL supports many named curves (you can see the full list if you specify the
 -list_curves switch), but, for web server keys, you’re
 limited to only two curves that are supported by all major browsers:
 secp256r1 (OpenSSL uses the name
 prime256v1) and secp384r1.

Creating Certificate Signing Requests

Once you have a private key, you can proceed to create a Certificate
 Signing Request (CSR). This is a formal request asking a CA to sign a
 certificate, and it contains the public key of the entity requesting the certificate
 and some information about the entity. This data will all be part of the
 certificate.
CSR creation is usually an interactive process that takes the private server key
 as input. Read the instructions given by the openssl tool
 carefully; if you want a field to be empty, you must enter a single dot
 (.) on the line, rather than just hit Return. If you do the
 latter, OpenSSL will populate the corresponding CSR field with the default value.
 (This behavior doesn’t make any sense when used with the default OpenSSL
 configuration, which is what virtually everyone does. It does
 make sense once you realize you can actually change the defaults, either by
 modifying the OpenSSL configuration or by providing your own configuration
 files.)
$ openssl req -new -key fd.key -out fd.csr
Enter pass phrase for fd.key: ****************
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:GB
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:London
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Feisty Duck Ltd
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:www.feistyduck.com
Email Address []:webmaster@feistyduck.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Note
According to section 5.4.1 of
 RFC 2985, challenge password is an optional
 field that was intended for use during certificate revocation as a way of
 identifying the original entity that had requested the certificate. If entered,
 the password will be included verbatim in the CSR and communicated to the CA.
 It’s actually quite rare to find a CA that relies on this field, however. All
 instructions I’ve seen recommend leaving it alone. Having a challenge password
 does not increase the security of the CSR in any way. Further, this field should
 not be confused with the key passphrase, which is a separate feature.

After a CSR is generated, use it to sign your own certificate and/or send it to a
 public CA and ask him or her to sign the certificate. Both approaches are described
 in the following sections. But before you do that, it’s a good idea to double-check
 that the CSR is correct. Here’s how:
$ openssl req -text -in fd.csr -noout
Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: C=GB, L=London, O=Feisty Duck Ltd, CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:b7:fc:ca:1c:a6:c8:56:bb:a3:26:d1:df:e4:e3:
 [16 more lines...]
 d1:57
 Exponent: 65537 (0x10001)
 Attributes:
 a0:00
 Signature Algorithm: sha1WithRSAEncryption
 a7:43:56:b2:cf:ed:c7:24:3e:36:0f:6b:88:e9:49:03:a6:91:
 [13 more lines...]
 47:8b:e3:28

Creating CSRs from Existing Certificates

You can save yourself some typing if you’re renewing a certificate and don’t want
 to make any changes to the information presented in it. With the following command,
 you can create a brand-new CSR from an existing certificate:
$ openssl x509 -x509toreq -in fd.crt -out fd.csr -signkey fd.key
Note
Unless you’re using some form of public key pinning and wish to continue using
 the existing key, it’s best practice to generate a new key every time you apply
 for a new certificate. Key generation is quick and inexpensive and reduces your
 exposure.

Unattended CSR Generation

CSR generation doesn’t have to be interactive. Using a custom OpenSSL
 configuration file, you can both automate the process (as explained in this section)
 and do certain things that are not possible interactively (as discussed in the next
 section).
For example, let’s say that we want to automate the generation of a CSR for
 www.feistyduck.com. We would start by creating a file
 fd.cnf with the following contents:
[req]
prompt = no
distinguished_name = distinguished_name

[distinguished_name]
CN = www.feistyduck.com
emailAddress = webmaster@feistyduck.com
O = Feisty Duck Ltd
L = London
C = GB
Now you can create the CSR directly from the command line:
$ openssl req -new -config fd.cnf -key fd.key -out fd.csr
Enter pass phrase for fd.key: ****************
You’ll be asked for the passphrase only if you used one during key
 generation.

Signing Your Own Certificates

If you’re installing an SSL server for your own use, you probably don’t want to go
 to a CA to get a publicly trusted certificate. It’s much easier to sign your own.
 The fastest way to do this is to generate a self-signed certificate. If you’re a
 Firefox user, on your first visit to the web site you can create a certificate
 exception, after which the site will be as secure as if it were protected with a
 publicly trusted certificate.
If you already have a CSR, create a certificate using the following
 command:
$ openssl x509 -req -days 365 -in fd.csr -signkey fd.key -out fd.crt
Signature ok
subject=/CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com/O=Feisty Duck Ltd/L=London/C=GB
Getting Private key
Enter pass phrase for fd.key: ****************
You don’t actually have to create a CSR in a separate step. The following command
 creates a self-signed certificate starting with a key alone:
$ openssl req -new -x509 -days 365 -key fd.key -out fd.crt

Creating Certificates Valid for Multiple Hostnames

By default, certificates produced by OpenSSL have only one common name and are
 valid for only one hostname. Because of this, even if you have related web sites,
 you are forced to use a separate certificate for each site. In this situation, using
 a single multidomain certificate makes much more sense.
 Further, even when you’re running a single web site, you need to ensure that the
 certificate is valid for all possible paths that end users can take to reach it. In
 practice, this means using at least two names, one with the www
 prefix and one without (e.g., www.feistyduck.com and
 feistyduck.com).
There are two mechanisms for supporting multiple hostnames in a certificate. The
 first is to list all desired hostnames using an X.509 extension called
 Subject Alternative Name (SAN). The second is to use
 wildcards. You can also use a combination of the two approaches when it’s more
 convenient. In practice, for most sites, you can specify a bare domain name and a
 wildcard to cover all the subdomains (e.g., feistyduck.com and
 *.feistyduck.com).
Warning
When a certificate contains alternative names, all common names are ignored.
 Newer certificates produced by CAs may not even include any common names. For
 that reason, include all desired hostnames on the alternative names list.

First, place the extension information in a separate text file. I’m going to call
 it fd.ext. In the file, specify the name of the extension
 (subjectAltName) and list the desired hostnames, as in the
 following example:
subjectAltName = DNS:*.feistyduck.com, DNS:feistyduck.com
Then, when using the x509 command to issue a certificate, refer
 to the file using the -extfile switch:
$ openssl x509 -req -days 365 \
-in fd.csr -signkey fd.key -out fd.crt \
-extfile fd.ext
The rest of the process is no different from before. But when you examine the
 generated certificate afterward, you’ll find that it contains the SAN
 extension:
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 DNS:*.feistyduck.com, DNS:feistyduck.com

Examining Certificates

Most of the time, certificates appear to use what are essentially random arrays of
 bytes. But they contain a great deal of information; you just need to know how to
 unpack it. The x509 command does just that, so let’s look at our
 self-signed certificates.
In the following example, I use the -text switch to print
 certificate contents and -noout to reduce clutter by not printing
 the encoded certificate itself (which is the default behavior):
$ openssl x509 -text -in fd.crt -noout
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number: 13073330765974645413 (0xb56dcd10f11aaaa5)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com, O=Feisty Duck Ltd, L=London, C=GB
 Validity
 Not Before: Jun 4 17:57:34 2012 GMT
 Not After : Jun 4 17:57:34 2013 GMT
 Subject: CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com, O=Feisty Duck Ltd, L=London, C=GB
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:b7:fc:ca:1c:a6:c8:56:bb:a3:26:d1:df:e4:e3:
 [16 more lines...]
 d1:57
 Exponent: 65537 (0x10001)
 Signature Algorithm: sha1WithRSAEncryption
 49:70:70:41:6a:03:0f:88:1a:14:69:24:03:6a:49:10:83:20:
 [13 more lines...]
 74:a1:11:86
Self-signed certificates usually contain only the most basic certificate data, as
 seen in the previous example. By comparison, certificates issued by public CAs are
 much more interesting, as they contain a number of additional fields (via the X.509
 extension mechanism). Let’s go over them quickly.
The Basic Constraints extension is used to mark
 certificates as belonging to a CA, giving them the ability to sign other
 certificates. Non-CA certificates will either have this extension omitted or will
 have the value of CA set to FALSE. This extension is critical,
 which means that all software-consuming certificates must understand its
 meaning.
X509v3 Basic Constraints: critical
 CA:FALSE
The Key Usage (KU) and Extended Key
 Usage (EKU) extensions restrict what a certificate can be used for.
 If these extensions are present, then only the listed uses are allowed. If the
 extensions are not present, there are no use restrictions. What you see in this
 example is typical for a web server certificate, which, for example, does not allow
 for code signing.
X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client Authentication
The CRL Distribution Points extension lists the addresses
 where the CA’s Certificate Revocation List (CRL) information
 can be found. This information is important in cases in which certificates need to
 be revoked. CRLs are CA-signed lists of revoked certificates, published at regular
 time intervals (e.g., seven days).
X509v3 CRL Distribution Points:
 Full Name:
 URI:http://crl.starfieldtech.com/sfs3-20.crl
Note
You might have noticed that the CRL location doesn’t use SSL, and you might be
 wondering if the link is thus insecure. It is not. Because each CRL is signed by
 the CA that issued it, browsers are able to verify its integrity. In fact, if
 CRLs were distributed over SSL, browsers might face a chicken-and-egg problem in
 which they want to verify the revocation status of the certificate used by the
 server delivering the CRL itself!

The Certificate Policies extension is used to indicate the
 policy under which the certificate was issued. For example, this is where
 Extended Validation (EV) indicators can be found (as in
 the example that follows). The indicators are in the form of unique object
 identifiers (OIDs), and they are unique to the issuing CA. In addition, this
 extension often contains one or more Certificate Policy
 Statement (CPS) points, which are usually web pages or PDF
 documents.
X509v3 Certificate Policies:
 Policy: 2.16.840.1.114414.1.7.23.3
 CPS: http://certificates.starfieldtech.com/repository/
The Authority Information Access (AIA) extension usually
 contains two important pieces of information. First, it lists the address of the
 CA’s Online Certificate Status Protocol (OCSP)
 responder, which can be used to check for certificate revocation in real time. The
 extension may also contain a link to where the issuer’s certificate (the next
 certificate in the chain) can be found. These days, server certificates are rarely
 signed directly by trusted root certificates, which means that users must include
 one or more intermediate certificates in their configuration. Mistakes are easy to
 make and will invalidate the certificates. Some clients (e.g., Internet Explorer)
 can use the information provided in this extension to fix an incomplete certificate
 chain, but many don’t.
Authority Information Access:
 OCSP - URI:http://ocsp.starfieldtech.com/
 CA Issuers - URI:http://certificates.starfieldtech.com/repository/sf_intermediate.crt
The Subject Key Identifier and Authority Key
 Identifier extensions establish unique subject and authority key
 identifiers, respectively. The value specified in the Authority Key Identifier
 extension of a certificate must match the value specified in the Subject Key
 Identifier extension in the issuing certificate. This information is very useful
 during the certification path-building process, in which a client is trying to find
 all possible paths from a leaf (server) certificate to a trusted root. Certificate
 authorities will often use one private key with more than one certificate, and this
 field allows software to reliably identify which certificate can be matched to which
 key. In the real world, many certificate chains supplied by servers are invalid, but
 that fact often goes unnoticed because browsers are able to find alternative trust
 paths.
X509v3 Subject Key Identifier:
 4A:AB:1C:C3:D3:4E:F7:5B:2B:59:71:AA:20:63:D6:C9:40:FB:14:F1
X509v3 Authority Key Identifier:
 keyid:49:4B:52:27:D1:1B:BC:F2:A1:21:6A:62:7B:51:42:7A:8A:D7:D5:56
Finally, the Subject Alternative Name extension is used to
 list all the hostnames for which the certificate is valid. This extension is
 optional; if it isn’t present, clients fall back to using the information provided
 in the Common Name (CN), which is part of the
 Subject field.
X509v3 Subject Alternative Name:
 DNS:www.feistyduck.com, DNS:feistyduck.com

Key and Certificate Conversion

Private keys and certificates can be stored in a variety of formats, which means
 that you’ll often need to convert them from one format to another. The most common
 formats are:
	Binary (DER) certificate
	Contains an X.509 certificate in its raw form, using DER ASN.1
 encoding.

	ASCII (PEM) certificate(s)
	Contains a base64-encoded DER certificate, with -----BEGIN
 CERTIFICATE----- used as the header and -----END
 CERTIFICATE----- as the footer. Usually seen with only one
 certificate per file, although some programs allow more than one
 certificate depending on the context. For example, the Apache web server
 requires the server certificate to be alone in one file, with all
 intermediate certificates together in another.

	Binary (DER) key
	Contains a private key in its raw form, using DER ASN.1 encoding.
 OpenSSL creates keys in its own traditional (SSLeay) format. There’s
 also an alternative format called PKCS#8 (defined in RFC 5208), but it’s
 not widely used. OpenSSL can convert to and from PKCS#8 format using the
 pkcs8 command.

	ASCII (PEM) key
	Contains a base64-encoded DER certificate with additional metadata
 (e.g., the algorithm used for password protection).

	PKCS#7 certificate(s)
	A complex format designed for the transport of signed or encrypted
 data, defined in RFC 2315. It’s usually seen with
 .p7b and .p7c extensions and
 can include the entire certificate chain as needed. This format is
 supported by Java’s keytool utility.

	PKCS#12 (PFX) key and certificate(s)
	A complex format that can store a protected server key with the
 corresponding certificate as well as the intermediate certificates. It’s
 commonly seen with .p12 and .pfx
 extensions. This format is commonly used in Microsoft products. These
 days, the PFX name is used as a synonym for PKCS#12, even though PFX
 referred to a different format a long time ago (an early version of
 PKCS#12). It’s unlikely that you’ll encounter the old version
 anywhere.

PEM and DER Conversion

Certificate conversion between PEM and DER formats is performed with the
 x509 tool. To convert a certificate from PEM to DER
 format:
$ openssl x509 -inform PEM -in fd.pem -outform DER -out fd.der
To convert a certificate from DER to PEM format:
$ openssl x509 -inform DER -in fd.der -outform PEM -out fd.pem
The syntax is identical if you need to convert private keys between DER and
 PEM formats, but different commands are used: rsa for RSA
 keys, and dsa for DSA keys.

PKCS#12 (PFX) Conversion

One command is all that’s needed to convert the key and certificates in PEM
 format to PKCS#12:
$ openssl pkcs12 -export -out fd.p12 -inkey fd.key -in fd.crt -certfile fd-chain.crt
Enter Export Password: ****************
Verifying - Enter Export Password: ****************
The reverse conversion isn’t as straightforward. You can use a single command,
 but in that case you’ll get the entire contents in a single file:
$ openssl pkcs12 -in fd.p12 -out fd.pem -nodes
Now, you must open the file fd.pem in your favorite
 editor and manually split it into individual key, certificate, and intermediate
 certificate files. While you’re doing that, you’ll notice additional content
 provided before each component. For example:
Bag Attributes
 localKeyID: E3 11 E4 F1 2C ED 11 66 41 1B B8 83 35 D2 DD 07 FC DE 28 76
subject=/1.3.6.1.4.1.311.60.2.1.3=GB/2.5.4.15=Private Organization/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd/CN=www.feistyduck.com
issuer=/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Autho
-----BEGIN CERTIFICATE-----
MIIF5zCCBM+gAwIBAgIHBG9JXlv9vTANBgkqhkiG9w0BAQUFADCB3DELMAkGA1UE
BhMCVVMxEDAOBgNVBAgTB0FyaXpvbmExEzARBgNVBAcTClNjb3R0c2RhbGUxJTAj
[...]
This additional metadata is very handy to quickly identify the certificates.
 Obviously, you should ensure that the main certificate file contains the leaf
 server certificate and not something else. Further, you should also ensure that
 the intermediate certificates are provided in the correct order, with the
 issuing certificate following the signed one. If you see a self-signed root
 certificate, feel free to delete it or store it elsewhere; it shouldn’t go into
 the chain.
Warning
The final conversion output shouldn’t contain anything apart from the
 encoded key and certificates. Although some tools are smart enough to ignore
 what isn’t needed, other tools are not. Leaving extra data in PEM files
 might result in problems that are difficult to troubleshoot.

It’s possible to get OpenSSL to split the components for you, but doing so
 requires multiple invocations of the pkcs12 command
 (including typing the bundle password each time):
$ openssl pkcs12 -in fd.p12 -nocerts -out fd.key -nodes
$ openssl pkcs12 -in fd.p12 -nokeys -clcerts -out fd.crt
$ openssl pkcs12 -in fd.p12 -nokeys -cacerts -out fd-chain.crt
This approach won’t save you much work. You must still examine each file to
 ensure that it contains the correct contents and to remove the metadata.

PKCS#7 Conversion

To convert from PEM to PKCS#7, use the crl2pkcs7
 command:
$ openssl crl2pkcs7 -nocrl -out fd.p7b -certfile fd.crt -certfile fd-chain.crt
To convert from PKCS#7 to PEM, use the pkcs7 command with
 the -print_certs switch:
openssl pkcs7 -in fd.p7b -print_certs -out fd.pem
Similar to the conversion from PKCS#12, you must now edit the
 fd.pem file to clean it up and split it into the desired
 components.

Configuration

In this section, I discuss two topics relevant for SSL deployment. The first is cipher
 suite configuration, in which you specify which of the many suites available in SSL you
 wish to use for communication. This topic is important because virtually every program
 that uses OpenSSL reuses its suite configuration mechanism. That means that once you
 learn how to configure cipher suites for one program, you can reuse the same knowledge
 elsewhere. The second topic is the performance measurement of raw crypto
 operations.
Cipher Suite Selection

A common task in SSL server configuration is selecting which cipher suites are
 going to be supported. Programs that rely on OpenSSL usually adopt the same approach
 to suite configuration as OpenSSL does, simply passing through the configuration
 options. For example, in Apache httpd, the cipher suite
 configuration may look like this:
SSLHonorCipherOrder On
SSLCipherSuite "RC4-SHA:HIGH:!aNULL"
The first line controls cipher suite prioritization (and configures
 httpd to actively select suites). The second line controls
 which suites will be supported.
Coming up with a good suite configuration can be pretty time consuming, and there
 are a lot of details to consider. The best approach is to use the OpenSSL
 ciphers command to determine which suites are enabled with a
 particular configuration string.
Obtaining the List of Supported Suites

Before you do anything else, you should determine which suites are supported
 by your OpenSSL installation. To do this, invoke the ciphers
 command with the switch -v and the parameter
 ALL:COMPLEMENTOFALL (clearly, ALL does
 not actually mean “all”):
$ openssl ciphers -v 'ALL:COMPLEMENTOFALL'
ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384
ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384
ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1
[106 more lines...]
Tip
If you’re using OpenSSL 1.0.0 or later, you can also use the uppercase
 -V switch to request extra-verbose output. In this
 mode, the output will also contain suite IDs, which are always handy to
 have. For example, OpenSSL does not always use the RFC names for the suites;
 in such cases, you must use the IDs to cross-check.

In my case, there were 111 suites in the output. Each line contains
 information on one suite and the following bits:
	Suite name

	Required minimum protocol version

	Key exchange algorithm

	Authentication algorithm

	Cipher algorithm and strength

	MAC (integrity) algorithm

	Export suite indicator

If you change the ciphers parameter to something other than
 ALL:COMPLEMENTOFALL, OpenSSL will list only the suites
 that match that configuration. For example, you can ask it to list only cipher
 suites that are based on RC4, as follows:
$ openssl ciphers -v 'RC4'
ECDHE-RSA-RC4-SHA SSLv3 Kx=ECDH Au=RSA Enc=RC4(128) Mac=SHA1
ECDHE-ECDSA-RC4-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=RC4(128) Mac=SHA1
AECDH-RC4-SHA SSLv3 Kx=ECDH Au=None Enc=RC4(128) Mac=SHA1
ADH-RC4-MD5 SSLv3 Kx=DH Au=None Enc=RC4(128) Mac=MD5
ECDH-RSA-RC4-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=RC4(128) Mac=SHA1
ECDH-ECDSA-RC4-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=RC4(128) Mac=SHA1
RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1
RC4-MD5 SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5
PSK-RC4-SHA SSLv3 Kx=PSK Au=PSK Enc=RC4(128) Mac=SHA1
EXP-ADH-RC4-MD5 SSLv3 Kx=DH(512) Au=None Enc=RC4(40) Mac=MD5 export
EXP-RC4-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export
The output will contain all suites that match your requirements, even if
 they’re insecure. Clearly, you should choose your configuration strings
 carefully in order to activate only what’s secure. Further, the order in which
 suites appear in the output matters. When you configure your SSL server to
 actively select the cipher suite that will be used for a connection (which is
 the best practice and should always be done), the suites listed first are given
 priority.

Keywords

Cipher suite keywords are the basic building blocks of
 cipher suite configuration. Each suite name (e.g., RC4-SHA)
 is a keyword that selects exactly one suite. All other keywords select groups of
 suites according to some criteria. Normally, I might direct you to the OpenSSL
 documentation for a comprehensive list of keywords, but it turns out that the
 ciphers documentation is not up to date; it’s missing some more recent
 additions. For that reason, I’ll try to document all the keywords in this
 section.
Group keywords are shortcuts that select frequently used cipher suites. For
 example, HIGH will select only very strong cipher
 suites.
Table 1.1. Group keywords
	Keyword	Meaning
	DEFAULT	The default cipher list. This is determined at compile time
 and, as of OpenSSL 1.0.0, is normally
 ALL:!aNULL:!eNULL. This must be the first
 cipher string specified.
	COMPLEMENTOFDEFAULT	The ciphers included in ALL, but not
 enabled by default. Currently, this is ADH.
 Note that this rule does not cover eNULL,
 which is not included by ALL (use
 COMPLEMENTOFALL if necessary).
	ALL	All cipher suites except the eNULL
 ciphers, which must be explicitly enabled.
	COMPLEMENTOFALL	The cipher suites not enabled by ALL,
 currently eNULL.
	HIGH	“High”-encryption cipher suites. This currently means those
 with key lengths larger than 128 bits, and some cipher suites
 with 128-bit keys.
	MEDIUM	“Medium”-encryption cipher suites, currently some of those
 using 128-bit encryption.
	LOW	“Low”-encryption cipher suites, currently those using 64- or
 56-bit encryption algorithms, but excluding export cipher
 suites. Insecure.
	EXP, EXPORT	Export encryption algorithms. Including 40- and 56-bit
 algorithms. Insecure.
	EXPORT40	40-bit export encryption algorithms. Insecure.
	EXPORT56	56-bit export encryption algorithms. Insecure.
	TLSv1, SSLv3, SSLv2	TLS v1.0, SSL v3.0, or SSL v2.0 cipher suites,
 respectively.

Digest keywords select suites that use a particular digest algorithm. For
 example, MD5 selects all suites that rely on MD5 for
 integrity validation.
Table 1.2. Digest algorithm keywords
	Keyword	Meaning
	MD5	Cipher suites using MD5. Obsolete and
 insecure.
	SHA, SHA1	Cipher suites using SHA1 and SHA2 (v1.0+).
	SHA256 (v1.0+)	Cipher suites using SHA-256.
	SHA384 (v1.0+)	Cipher suites using SHA-384.

Note
TLS 1.2 introduced support for authenticated encryption, which bundles
 encryption with integrity checks. When the so-called AEAD (Authenticated
 Encryption with Associated Data) suites are used, the protocol doesn’t need
 to provide additional integrity verification. For this reason, you won’t be
 able to use the digest algorithm keywords to select AEAD suites, even though
 their names include SHA256 and SHA384
 suffixes.

Authentication keywords select suites based on the authentication method they
 use. Today, virtually all public certificates use RSA for authentication. In the
 future, we should see a very slow rise in the use of Elliptic Curve (ECDSA)
 certificates.
Table 1.3. Authentication keywords
	Keyword	Meaning
	aDH	Cipher suites effectively using DH authentication, i.e., the
 certificates carry DH keys. Not
 implemented.
	aDSS, DSS	Cipher suites using DSS authentication, i.e., the
 certificates carry DSS keys.
	aECDH (v1.0+)	Cipher suites that use ECDH authentication.
	aECDSA (v1.0+)	Cipher suites that use ECDSA authentication.
	aNULL	Cipher suites offering no authentication. This is currently
 the anonymous DH algorithms. Insecure.
	aRSA	Cipher suites using RSA authentication, i.e., the
 certificates carry RSA keys.
	PSK	Cipher suites using PSK (Pre-Shared Key)
 authentication.
	SRP	Cipher suites using SRP (Secure Remote Password)
 authentication.

Key exchange keywords select suites based on the key exchange algorithm. When
 it comes to ephemeral Diffie-Hellman suites, OpenSSL is inconsistent in naming
 the suites and the keywords. In the suite names, ephemeral suites tend to have
 an E at the end of the key exchange algorithm (e.g.,
 ECDHE-RSA-RC4-SHA and
 DHE-RSA-AES256-SHA), but in the keywords the
 E is at the beginning (e.g., EECDH and
 EDH). To make things worse, some older suites do have
 E at the beginning of the key exchange algorithm (e.g.,
 EDH-RSA-DES-CBC-SHA).
Table 1.4. Key exchange keywords
	Keyword	Meaning
	ADH	Anonymous DH cipher suites. Insecure.
	AECDH (v1.0+)	Anonymous ECDH cipher suites. Insecure.

	DH	Cipher suites using DH (includes ephemeral and anonymous
 DH).
	ECDH (v1.0+)	Cipher suites using ECDH (includes ephemeral and anonymous
 ECDH).
	EDH (v1.0+)	Cipher suites using ephemeral DH key agreement.
	EECDH (v1.0+)	Cipher suites using ephemeral ECDH.
	kECDH (v1.0+)	Cipher suites using ECDH key agreement.
	kEDH	Cipher suites using ephemeral DH key agreements (includes
 anonymous DH).
	kEECDH (v1.0+)	Cipher suites using ephemeral ECDH key agreement (includes
 anonymous ECDH).
	kRSA, RSA	Cipher suites using RSA key exchange.

Cipher keywords select suites based on the cipher they use.
Table 1.5. Cipher keywords
	Keyword	Meaning
	3DES	Cipher suites using triple DES.
	AES	Cipher suites using AES.
	AESGCM (v1.0+)	Cipher suites using AES GCM.
	CAMELLIA	Cipher suites using Camellia.
	DES	Cipher suites using single DES. Obsolete and insecure.
	eNULL, NULL	Cipher suites that don’t use encryption. Insecure.
	IDEA	Cipher suites using IDEA.
	RC2	Cipher suites using RC2. Obsolete and
 insecure.
	RC4	Cipher suites using RC4.
	SEED	Cipher suites using SEED.

What remains is a number of suites that do not fit into any other category.
 The bulk of them are related to the GOST standards, which are relevant for the
 countries that are part of the Commonwealth of Independent States, formed after
 the breakup of the Soviet Union.
Table 1.6. Miscellaneous keywords
	Keyword	Meaning
	@STRENGTH	Sorts the current cipher suite list in order of encryption
 algorithm key length.
	aGOST	Cipher suites using GOST R 34.10 (either 2001 or 94) for
 authentication. Requires a GOST-capable engine.
	aGOST01	Cipher suites using GOST R 34.10-2001 authentication.
	aGOST94	Cipher suites using GOST R 34.10-94 authentication. Obsolete. Use GOST R 34.10-2001
 instead.
	kGOST	Cipher suites using VKO 34.10 key exchange, specified in the
 RFC 4357.
	GOST94	Cipher suites using HMAC based on GOST R 34.11-94.
	GOST89MAC	Cipher suites using GOST 28147-89 MAC instead of
 HMAC.

Combining Keywords

In most cases, you’ll use keywords by themselves, but it’s also possible to
 combine them to select only suites that meet several requirements, by connecting
 two or more keywords with the + character. In the following
 example, we select suites that use RC4 and SHA:
$ openssl ciphers -v 'RC4+SHA'
ECDHE-RSA-RC4-SHA SSLv3 Kx=ECDH Au=RSA Enc=RC4(128) Mac=SHA1
ECDHE-ECDSA-RC4-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=RC4(128) Mac=SHA1
AECDH-RC4-SHA SSLv3 Kx=ECDH Au=None Enc=RC4(128) Mac=SHA1
ECDH-RSA-RC4-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=RC4(128) Mac=SHA1
ECDH-ECDSA-RC4-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=RC4(128) Mac=SHA1
RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1
PSK-RC4-SHA SSLv3 Kx=PSK Au=PSK Enc=RC4(128) Mac=SHA1

Building Cipher Suite Lists

The key concept in building a cipher suite configuration is that of the
 current suite list. The list always starts empty,
 without any suites, but every keyword that you add to the configuration string
 will change the list in some way. By default, new suites are appended to the
 list. For example, to choose all suites that use RC4 and AES ciphers:
$ openssl ciphers -v 'RC4:AES'
The colon character is commonly used to separate keywords, but spaces and
 commas are equally acceptable. The following command produces the same output as
 the previous example:
$ openssl ciphers -v 'RC4 AES'

Keyword Modifiers

Keyword modifiers are characters you can place at the beginning of each
 keyword in order to change the default action (adding to the list) to something
 else. The following actions are supported:
	Append
	Add suites to the end of the list. If any of the suites are
 already on the list, they will remain in their present position.
 This is the default action, which is invoked when there is no
 modifier in front of the keyword.

	Delete (-)
	Remove all matching suites from the list, potentially allowing
 some other keyword to reintroduce them later.

	Permanently delete (!)
	Remove all matching suites from the list and prevent them from
 being added later by another keyword. This modifier is useful to
 specify all the suites you never want to use, making further
 selection easier and preventing mistakes.

	Move to the end (+)
	Move all matching suites to the end of the list. Works only on
 existing suites; never adds new suites to the list. This modifier is
 useful if you want to keep some weaker suites enabled but prefer the
 stronger ones. For example, the string RC4:+MD5
 enables all RC4 suites, but pushes the MD5-based ones to the
 end.

Sorting

The @STRENGTH keyword is unlike other keywords (I
 assume that’s why it has the @ in the name): It will not
 introduce or remove any suites, but it will sort them in order of descending
 cipher strength. Automatic sorting is an interesting idea, but it makes
 sense only in a perfect world in which cipher suites can actually be
 compared by cipher strength.
Take, for example, the following cipher suite configuration:
$ openssl ciphers -v 'DES-CBC-SHA:DES-CBC3-SHA:RC4-SHA:AES256-SHA:@STRENGTH'
AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1
DES-CBC3-SHA SSLv3 Kx=RSA Au=RSA Enc=3DES(168) Mac=SHA1
RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1
DES-CBC-SHA SSLv3 Kx=RSA Au=RSA Enc=DES(56) Mac=SHA1
In theory, the output is sorted in order of strength. In practice, you’ll
 often want better control of the suite order.
	For example, AES256-SHA (a CBC suite) is
 vulnerable to the BEAST attack when used with TLS 1.0 and earlier
 protocols. If you want to mitigate the BEAST attack server-side,
 you’ll prefer to prioritize the RC4-SHA suite,
 which isn’t vulnerable to this problem.

	3DES is only nominally rated at 168 bits; a so-called
 meet-in-the-middle attack reduces its
 strength to 112 bits,[4] and further issues make the strength as low as 108 bits.[5] This fact makes DES-CBC3-SHA inferior
 to RC4-SHA and any other 128-bit cipher
 suite.

Handling Errors

There are two types of errors you might experience while working on your
 configuration. The first is a result of a simple typo (remember that keywords
 are case sensitive) or an attempt to use a keyword that does not exist:
$ openssl ciphers -v 'HIGH:@STRENGTH'
Error in cipher list
140460843755168:error:140E6118:SSL routines:SSL_CIPHER_PROCESS_RULESTR:invalid command:ssl_ciph.c:1317:
The output is cryptic, but it does contain an error message.
Another possibility is that you end up with an empty list of cipher suites, in
 which case you might see something similar to the following:
$ openssl ciphers -v 'SHA512'
Error in cipher list
140202299557536:error:1410D0B9:SSL routines:SSL_CTX_set_cipher_list:no cipher match:ssl_lib.c:1312:

Putting It All Together

To demonstrate how various cipher suite configuration features come together,
 I will present one complete real-life use case. Please bear in mind that what
 follows is just an example. Because there are usually many aspects to consider
 when deciding on the configuration, there isn’t such a thing as a single perfect
 configuration.
For that reason, before you can start to work on your configuration, you
 should have a clear idea of what you wish to achieve. In my case, I wish to have
 a reasonably secure and efficient configuration, which I define to mean the
 following:
	Use only strong ciphers of 128 effective bits and up (this excludes
 3DES).

	Use only suites that provide strong authentication (this excludes
 anonymous and export suites).

	Do not use any suites that rely on weak primitives (e.g., MD5).

	Implement robust support for Forward Secrecy, no matter what keys and
 protocols are used. With this requirement comes a slight performance
 penalty, because I won’t be able to use the fast RSA key exchange. I’ll
 minimize the penalty by prioritizing ECDHE, which is substantially
 faster than DHE.

	Prefer ECDSA over RSA. This requirement makes sense only in dual-key
 deployments, in which we want to use the faster ECDSA operations
 wherever possible, but fall back to RSA when talking to clients that do
 not yet support ECDSA.

	With TLS 1.2 clients, prefer AES GCM suites, which provide the best
 security TLS can offer.

	Because RC4 was recently found to be weaker than previously thought,[6] we want to push it to the end of the list. That’s almost as
 good as disabling it. Although BEAST might still be a problem in some
 situations, I’ll assume that it’s been mitigated client-side.

Usually the best approach is to start by permanently eliminating all the
 components and suites that you don’t wish to use; this reduces clutter and
 ensures that the undesired suites aren’t introduced back into the configuration
 by mistake.
The weak suites can be identified with the following cipher strings:
	aNULL; no authentication

	eNULL; no encryption

	LOW; low-strength suites

	3DES; effective strength of 108 bits

	MD5; suites that use MD5

	EXP; obsolete export suites

To reduce the number of suites displayed, I’m also going to eliminate all DSA,
 PSK, SRP, and ECDH suites, because they’re used only very rarely:
!aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH
Now we can focus on what we want to achieve. Because Forward Secrecy is our
 priority, we can start with the kEECDH and
 kEDH keywords:
kEECDH kEDH !aNULL !eNULL !LOW !3DES !MD5 !EXP !kEDH !PSK !SRP !kECDH
If you test this configuration, you’ll find that RSA suites are listed first,
 but I said I wanted ECDSA first:
ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384
ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384
ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1
ECDHE-ECDSA-AES256-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1
ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD
[...]
In order to fix this, I’ll put ECDSA suites first, by placing
 kEECDH+ECDSA at the beginning of the
 configuration:
kEECDH+ECDSA kEECDH kEDH !aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA
The next problem is that older suites (SSL 3) are mixed with newer suites (TLS
 1.2). In order to maximize security, I want all TLS 1.2 clients to always
 negotiate TLS 1.2 suites. To push older suites to the end of the list, I’ll use
 the +SHA keyword (TLS 1.2 suites are all using either SHA256
 or SHA384, so they won’t match):
kEECDH+ECDSA kEECDH kEDH +SHA !aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA
At this point, I’m mostly done. I only need to add the remaining secure suites
 to the end of the list; the HIGH keyword will achieve this.
 In addition, I’m also going to make sure RC4 suites are last, using
 +RC4 (to push existing RC4 suites to the end of the list)
 and RC4 (to add to the list any remaining RC4 suites that are
 not already on it):
kEECDH+ECDSA kEECDH kEDH HIGH +SHA +RC4 RC4 !aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA
Let’s examine the entire final output, which consists of 28 suites. In the
 first group are the TLS 1.2 suites:
ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384
ECDHE-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD
ECDHE-ECDSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256
ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384
ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD
ECDHE-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256
DHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(256) Mac=AEAD
DHE-RSA-AES256-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AES(256) Mac=SHA256
DHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(128) Mac=AEAD
DHE-RSA-AES128-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AES(128) Mac=SHA256
AES256-GCM-SHA384 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD
AES256-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA256
AES128-GCM-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=AEAD
AES128-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA256
ECDHE suites are first, followed by DHE suites, followed by all other TLS 1.2
 suites. Within each group, ECDSA and GCM have priority.
In the second group are the suites that are going to be used by TLS 1.0
 clients, using similar priorities as in the first group:
ECDHE-ECDSA-AES256-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1
ECDHE-ECDSA-AES128-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1
ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1
ECDHE-RSA-AES128-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1
DHE-RSA-AES256-SHA SSLv3 Kx=DH Au=RSA Enc=AES(256) Mac=SHA1
DHE-RSA-AES128-SHA SSLv3 Kx=DH Au=RSA Enc=AES(128) Mac=SHA1
DHE-RSA-SEED-SHA SSLv3 Kx=DH Au=RSA Enc=SEED(128) Mac=SHA1
AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1
AES128-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1
Finally, the RC4 suites are at the end:
ECDHE-ECDSA-RC4-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=RC4(128) Mac=SHA1
ECDHE-RSA-RC4-SHA SSLv3 Kx=ECDH Au=RSA Enc=RC4(128) Mac=SHA1
RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1

Performance

As you’re probably aware, computation speed is a significant limiting factor for
 any cryptographic operation. OpenSSL comes with a built-in benchmarking tool that
 you can use to get an idea about a system’s capabilities and limits. You can invoke
 the benchmark using the speed command.
If you invoke speed without any parameters, OpenSSL produces a
 lot of output, little of which will be of interest. A better approach is to test
 only those algorithms that are directly relevant to you. For example, for usage in a
 SSL web server, you might care about RC4, AES, RSA, ECDH, and SHA algorithms:
$ openssl speed rc4 aes rsa ecdh sha
There are three relevant parts to the output. The first part consists of the
 OpenSSL version number and compile-time configuration. This information is useful if
 you’re testing several different versions of OpenSSL with varying compile-time
 options:
OpenSSL 0.9.8k 25 Mar 2009
built on: Wed May 23 00:02:00 UTC 2012
options:bn(64,64) md2(int) rc4(ptr,char) des(idx,cisc,16,int) aes(partial) blowfish(ptr2)
compiler: cc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -m64 -DL_ENDIAN -DTERMIO -O3 -Wa,--noexecstack -g -Wall -DMD32_REG_T=int -DOPENSSL_BN_ASM_MONT -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM
available timing options: TIMES TIMEB HZ=100 [sysconf value]
timing function used: times
The 'numbers' are in 1000s of bytes per second processed.
The second part contains symmetric cryptography benchmarks (i.e., hash functions
 and private cryptography):
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
sha1 29275.44k 85281.86k 192290.28k 280526.68k 327553.12k
rc4 160087.81k 172435.03k 174264.75k 176521.50k 176700.62k
aes-128 cbc 90345.06k 140108.84k 170027.92k 179704.12k 182388.44k
aes-192 cbc 104770.95k 134601.12k 148900.05k 152662.30k 153941.11k
aes-256 cbc 95868.62k 116430.41k 124498.19k 127007.85k 127430.81k
sha256 23354.37k 54220.61k 99784.35k 126494.48k 138266.71k
sha512 16022.98k 64657.88k 113304.06k 178301.77k 214539.99k
Finally, the third part contains the asymmetric (public) cryptography
 benchmarks:
 sign verify sign/s verify/s
rsa 512 bits 0.000120s 0.000011s 8324.9 90730.0
rsa 1024 bits 0.000569s 0.000031s 1757.0 31897.1
rsa 2048 bits 0.003606s 0.000102s 277.3 9762.0
rsa 4096 bits 0.024072s 0.000376s 41.5 2657.4
 op op/s
 160 bit ecdh (secp160r1) 0.0003s 2890.2
 192 bit ecdh (nistp192) 0.0006s 1702.9
 224 bit ecdh (nistp224) 0.0006s 1743.5
 256 bit ecdh (nistp256) 0.0007s 1513.3
 384 bit ecdh (nistp384) 0.0015s 689.6
 521 bit ecdh (nistp521) 0.0029s 340.3
 163 bit ecdh (nistk163) 0.0009s 1126.2
 233 bit ecdh (nistk233) 0.0012s 818.5
 283 bit ecdh (nistk283) 0.0028s 360.2
 409 bit ecdh (nistk409) 0.0060s 166.3
 571 bit ecdh (nistk571) 0.0130s 76.8
 163 bit ecdh (nistb163) 0.0009s 1061.3
 233 bit ecdh (nistb233) 0.0013s 755.2
 283 bit ecdh (nistb283) 0.0030s 329.4
 409 bit ecdh (nistb409) 0.0067s 149.7
 571 bit ecdh (nistb571) 0.0146s 68.4
What’s this output useful for? You should be able to compare how compile-time
 options affect speed or how different versions of OpenSSL compare on the same
 platform. For example, the previous results are from a real-life server that’s using
 the OpenSSL 0.9.8k (patched by the distribution vendor). I’m considering moving to
 OpenSSL 1.0.1c because I wish to support TLS 1.1 and TLS 1.2; will there be any
 performance impact? I’ve downloaded and compiled OpenSSL 1.0.1c for a test. Let’s
 see:
$ openssl-1.0.1c speed rsa
[...]
OpenSSL 1.0.1c 10 May 2012
built on: Mon Oct 15 15:13:24 UTC 2012
options:bn(64,64) rc4(8x,int) des(idx,cisc,16,int) aes(partial) idea(int) blowfish(idx)
compiler: gcc -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -Wa,--noexecstack -m64 -DL_ENDIAN -DTERMIO -O3 -Wall -DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM -DVPAES_ASM -DBSAES_ASM -DWHIRLPOOL_ASM -DGHASH_ASM
 sign verify sign/s verify/s
rsa 512 bits 0.000102s 0.000008s 9793.3 131672.5
rsa 1024 bits 0.000327s 0.000020s 3056.0 49734.5
rsa 2048 bits 0.002218s 0.000068s 450.8 14748.9
rsa 4096 bits 0.015814s 0.000255s 63.2 3921.3
Apparently, OpenSSL 1.0.1c is almost twice as fast on this server for my use case
 (2048-bit RSA key): The performance went from 277 signatures/s to 450 signatures/s.
 This means that I’ll get better performance if I upgrade. Always good news!
Using the benchmark results to estimate deployment performance is not
 straightforward because of the great number of factors that influence performance in
 real life. Further, many of those factors lie outside SSL (e.g., HTTP keep alive
 settings, caching, etc.). At best, you can use these numbers only for a rough
 estimate.
But before you can do that, you need to consider something else. By default, the
 speed command will use only a single process. Most servers
 have multiple cores, so to find out how many SSL operations are supported by the
 entire server, you must instruct speed to use several instances
 in parallel. You can achieve this with the -multi switch. My
 server has four cores, so that’s what I’m going to use:
$ openssl speed -multi 4 rsa
[...]
OpenSSL 0.9.8k 25 Mar 2009
built on: Wed May 23 00:02:00 UTC 2012
options:bn(64,64) md2(int) rc4(ptr,char) des(idx,cisc,16,int) aes(partial) blowfish(ptr2)
compiler: cc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -m64 -DL_ENDIAN -DTERMIO -O3 -Wa,--noexecstack -g -Wall -DMD32_REG_T=int -DOPENSSL_BN_ASM_MONT -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM
available timing options: TIMES TIMEB HZ=100 [sysconf value]
timing function used:
 sign verify sign/s verify/s
rsa 512 bits 0.000030s 0.000003s 33264.5 363636.4
rsa 1024 bits 0.000143s 0.000008s 6977.9 125000.0
rsa 2048 bits 0.000917s 0.000027s 1090.7 37068.1
rsa 4096 bits 0.006123s 0.000094s 163.3 10652.6
As expected, the performance is almost four times better than before. I’m again
 looking at how many RSA signatures can be executed per second, because this is the
 most CPU-intensive operation performed on a server and is thus always the first
 bottleneck. The example number of 1,090 signatures/second tells us that this server
 can handle about 1,000 brand-new SSL connections per second. In my case, that’s
 sufficient—with a very healthy safety margin. Because I also have session resumption
 enabled on the server, I know that I can support many more than 1,000 SSL
 connections per second. I wish I had enough traffic on that server to worry about
 the performance of SSL.

[1] The letters “eay” in the name SSLeay are Eric A. Young’s initials.

[2] Ubuntu: “openssl” source package in Precise

[3] A small number of organizations will have very strict security
 requirements that require the private keys to be protected at
 any cost. For them, the solution is to invest in a
 Hardware Security Module (HSM), which
 is a type of product specifically designed to make key
 extraction impossible, even with physical access to the server.
 To make this work, HSMs not only generate and store keys, but
 also perform all necessary operations (e.g., signature
 generation). HSMs are typically very expensive.

[4] Meet-in-the-middle attack (Citizendium)

[5] Attacking Triple Encryption (Stefan Lucks,
 1998)

[6] On the
 Security of RC4 in TLS (Information Security Group at
 Royal Holloway, University of London, 13 March 2013)

A SSL/TLS Deployment Best Practices

This appendix contains the complete contents of the SSL/TLS Deployment Best
 Practices document (version 1.3, dated 17 September 2013), which is an SSL Labs publication.[7] This document, which I maintain, is a concise, high-level overview of
 everything you need to know about SSL/TLS deployment. Included here with permission from
 Qualys.
Introduction

SSL/TLS is a deceptively simple technology. It is easy to deploy, and it just
 works… except that it does not, really. The first part is true—SSL is easy to
 deploy—but it turns out that it is not easy to deploy
 correctly. To ensure that SSL provides the necessary security,
 users must put extra effort into properly configuring their servers.
In 2009, we began our work on SSL Labs because we wanted to understand how SSL was
 used and to remedy the lack of easy-to-use SSL tools and documentation. We have achieved
 some of our goals through our global surveys of SSL usage, as well as the online
 assessment tool, but the lack of documentation is still evident. This document is a
 first step toward addressing that problem.
Our aim here is to provide clear and concise instructions to help overworked
 administrators and programmers spend the minimum time possible to deploy a secure
 site or web application. In pursuit of clarity, we sacrifice completeness, foregoing
 certain advanced topics. The focus is on advice that is practical and easy to
 understand. For those who want more information, Section 6 gives useful
 pointers.

1. Private Key and Certificate

The quality of the protection provided by SSL depends entirely on the private key,
 which lays down the foundation for the security, and the certificate, which communicates
 the identity of the server to its visitors.
1.1. Use 2048-bit Private Keys

Use 2048-bit RSA or equivalent-strength ECDSA private keys for all your servers.
 Keys of this strength are secure and should stay secure for a considerable amount of
 time. If you already have 1024-bit RSA keys in production, replace them with
 stronger keys as soon as possible. If you believe that you need more than 2048 bits
 of security, give more consideration to ECDSA keys, which have better performance
 characteristics.

1.2. Protect Private Keys

Treat your private keys as an important asset, restricting access to the smallest
 possible group of employees while still keeping the arrangements practical.
 Recommended policies include the following:
	Generate private keys and Certificate Signing Requests (CSRs) on a trusted
 computer. Some CAs offer to generate keys and a CSRs for you, but that’s
 inappropriate.

	Password-protect keys to prevent compromise when they are stored in backup
 systems.

	After compromise, revoke old certificates and generate new keys to use
 with new certificates.

	Renew certificates every year and always with new private keys.

1.3. Ensure Sufficient Hostname Coverage

Ensure that your certificates cover all the names you wish to use with a site. For
 example, your main name is www.example.com, but you may also
 have www.example.net configured. Your goal is to avoid invalid
 certificate warnings, which will confuse your users and weaken their trust.
Even when there is only one name configured on your servers, remember that you
 cannot control how your users arrive at the site or how others link to the site. In
 most cases, you should ensure that the certificate works with and without the
 www prefix (e.g., for both example.com
 and www.example.com). The rule of thumb is this: a secure web
 server should have a certificate that is valid for every DNS name configured to
 point to it.
Wildcard certificates have their uses, but should be avoided if using them means
 exposing the underlying keys to a larger group of people, and especially if crossing
 organizational boundaries. In other words, the fewer people who have access to the
 private keys, the better.

1.4. Obtain Certificates from a Reliable CA

Select a Certificate Authority (CA) that is reliable and
 serious about its certificate business and about security. Consider the following
 criteria when selecting your CA:
	Security posture
	All CAs undergo regular audits (otherwise they would not be able to
 operate as CAs), but some are more serious about security than others.
 Figuring out which ones are better in this respect is not easy, but one
 option is to examine their security history, and, more important, how
 they reacted to compromises and if they learned from their
 mistakes.

	Substantial market share
	A CA that meets this criterion will most likely make it through
 security incidents, which wasn’t the case with some smaller ones in the
 past.

	Business focus
	CAs whose activities constitute a substantial part of their business
 have everything to lose if something goes terribly wrong, and they
 probably won’t neglect their certificate division by chasing
 potentially more lucrative opportunities elsewhere.

	Services offered
	At minimum, your selected CA should provide support for both
 Certificate Revocation List (CRL) and Online Certificate Status Protocol
 (OCSP) revocation and provide an OCSP service with good performance.
 They should offer both domain-validated and Extended Validation
 certificates, ideally with your choice of public key algorithm. (Most
 web sites use RSA today, but ECDSA may become important in the future
 because of its performance advantages.)

	Certificate management options
	If you need a large number of certificates and operate in a complex
 environment, choose a business that will give you good tools to manage
 them.

	Support
	Choose a business that will give you good support if and when you need
 it.

2. Configuration

With correct SSL server configuration, you ensure that your credentials are properly
 presented to the site’s visitors, that only secure cryptographic algorithms are used,
 and that all known weaknesses are mitigated.
2.1. Deploy with Complete and Valid Certificate Chains

In most deployments, the server certificate alone is insufficient; two or more
 certificates are needed to establish a complete chain of trust. A common problem is
 configuring the server certificate correctly but forgetting to include other
 required certificates. Further, although these other certificates are typically
 valid for longer periods of time, they too expire, and when they do, they invalidate
 the entire chain. Your CA should be able to provide you with all the additional
 certificates required.
An invalid certificate chain renders the actual server certificate invalid and
 results in browser warnings. In practice, this problem is sometimes difficult to
 diagnose because some browsers can deal with these problems and reconstruct a
 complete correct chain, and some cannot.

2.2. Use Only Secure Protocols

There are five protocols in the SSL/TLS family: SSL v2, SSL v3, TLS v1.0, TLS
 v1.1, and TLS v1.2. Of these:
	SSL v2 is insecure and must not be used.

	SSL v3 is very old and obsolete. Because it lacks some key features
 and because virtually all clients support TLS 1.0 and better, you should
 not support SSL v3 unless you have a very good
 reason.

	TLS v1.0 is largely still secure; we do not know of major security
 flaws when they are used for protocols other than HTTP. When used with
 HTTP, it can almost be made secure with careful
 configuration.

	TLS v1.1 and v1.2 are without known security issues.

TLS v1.2 should be your main protocol. This version is superior because it offers
 important features that are unavailable in earlier protocol versions. If your server
 platform (or any intermediary device) does not support TLS v1.2, make plans to
 upgrade at an accelerated pace. If your service providers do not support TLS v1.2,
 require that they upgrade.
In order to support older clients, you need to continue to support TLS v1.0 and
 TLS v1.1 for the time being. With some workarounds (explained in subsequent
 sections), these protocols can still be considered secure enough for most web
 sites.

2.3. Use Only Secure Cipher Suites

To communicate securely, you must first ascertain that you are communicating
 directly with the desired party (and not through someone else who will eavesdrop),
 as well as exchanging data securely. In SSL and TLS, cipher suites are used to define
 how secure communication takes place. They are composed from varying building blocks
 with the idea of achieving security through diversity. If one of the building blocks
 is found to be weak or insecure, you should be able to switch to another.
Your goal should be thus to use only suites that provide authentication and
 encryption of 128 bits or stronger. Everything else must be avoided:
	Anonymous Diffie-Hellman (ADH) suites do not provide
 authentication.

	NULL cipher suites provide no encryption.

	Export key exchange suites use authentication that can easily be
 broken.

	Suites with weak ciphers (typically of 40 and 56 bits) use encryption that
 can easily be broken.

	RC4 is weaker than previously thought.[8] You should remove support for this cipher in the near
 future.

	3DES provides only 108 bits of security (or 112, depending on the source),
 which is below the recommended minimum of 128 bits. You should remove
 support for this cipher in the near future.

2.4. Control Cipher Suite Selection

In SSL v3 and later versions, clients submit a list of cipher suites that they
 support, and servers choose one suite from the list to negotiate a secure
 communication channel. Not all servers do this well, however; some will select the
 first supported suite from the list. Having servers select the right cipher suite is
 critical for security (more about that in Section 2.7).

2.5. Support Forward Secrecy

Forward Secrecy[9] is a protocol feature that enables secure conversations that are not
 dependent on the server’s private key. With cipher suites that do not support
 Forward Secrecy, someone who can recover a server’s private key can decrypt all
 earlier encrypted conversations if they have them recorded. You need to support and
 prefer ECDHE suites in order to enable Forward Secrecy with modern web browsers. To
 support a wider range of clients, you should also use DHE suites as fallback after ECDHE.[10]

2.6. Disable Client-Initiated Renegotiation

In SSL/TLS, renegotiation allows parties to stop exchanging data in order to
 renegotiate how the communication is secured. There are some cases in which
 renegotiation needs to be initiated by the server, but there is no known need for
 clients to do so. Further, client-initiated renegotiation may make your servers
 easier to attack using Denial of Service (DoS) attacks.[11]

2.7. Mitigate Known Problems

Nothing is perfectly secure, and at any given time there may be issues with the
 security stack. It is good practice to keep an eye on what happens in the security
 world and to adapt to situations as necessary. At the very least, you should apply
 vendor patches as soon as they become available.
The following issues require your attention:
	Disable insecure renegotiation
	In 2009, the renegotiation feature was found to be insecure and the
 protocols needed to be updated.[12] Most vendors have issued patches by now or, at the very
 least, provided workarounds for the problem. Insecure renegotiation is
 dangerous because it is easy to exploit and has effects similar to
 Cross-Site Request Forgery (CSRF) and, in some cases, Cross-Site
 Scripting (XSS).

	Disable TLS compression
	In 2012, the CRIME attack[13] showed how information leakage introduced by TLS compression
 can be used by attackers to uncover parts of sensitive data (e.g.,
 session cookies). Very few clients supported TLS compression then (and
 even fewer support it now), which means that it is unlikely that you
 will experience any performance issues by disabling TLS compression on
 your servers. Attacks against TLS compression are of low risk.

	Mitigate information leakage stemming from HTTP compression
	Two variations of the CRIME attack were disclosed in 2013. Rather than
 focus on TLS compression (which is what CRIME did), TIME and BREACH
 attacks focus on secrets in HTTP response bodies compressed using HTTP
 compression. Given that HTTP compression is very important to a great
 many companies, these problems are more difficult to address. Mitigation
 might require changes to application code.[14]
TIME and BREACH attacks require significant resources to carry out.
 But if someone is motivated enough to use them, the impact is equivalent
 to CSRF.

	Disable RC4
	The RC4 cipher suite is considered insecure and should be disabled. At
 the moment, the best attacks we know require millions of requests, a lot
 of bandwidth, and time. Thus, the risk is still relatively low, but we
 expect that the attacks will improve in the future.

	Be aware of the BEAST attack
	The 2011 BEAST attack[15] targets a 2004 vulnerability in TLS 1.0 and earlier protocol
 versions, previously thought to be impractical to exploit. For a period
 of time, server-side mitigation of the BEAST attack was considered
 appropriate, even though the weakness is on the client side.
 Unfortunately, to mitigate server-side requires RC4, which we now
 recommend disabling. Because of that, and because the BEAST attack is by
 now largely mitigated client-side, we no longer recommend server-side mitigation.[16]
The impact of a successful BEAST attack is similar to that of session
 hijacking.

3. Performance

Security is our main focus in this guide, but we must also pay attention to
 performance; a secure service that does not satisfy performance criteria will no doubt
 be dropped. However, because SSL configuration does not usually have a significant
 overall performance impact, we are limiting the discussion in this section to the common
 configuration problems that result in serious performance degradation.
3.1. Do Not Use Too-Strong Private Keys

The cryptographic handshake, which is used to establish secure connections, is an
 operation whose cost is highly influenced by private key size. Using a key that is
 too short is insecure, but using a key that is too long will result in “too
 much” security and slow operation. For most web sites, using keys stronger
 than 2048 bits is a waste of CPU power and is likely to impair user
 experience.

3.2. Ensure That Session Resumption Works Correctly

Session resumption is a performance-optimization technique that makes it possible
 to save the results of costly cryptographic operations and to reuse them for a
 period of time. A disabled or nonfunctional session resumption mechanism may
 introduce a significant performance penalty.

3.3. Use Persistent Connections (HTTP)

These days, most of the overhead of SSL comes not from the CPU-hungry
 cryptographic operations but from network latency. An SSL handshake is performed
 after the TCP handshake completes; it requires a further exchange of packets. To
 minimize the cost of latency, you enable HTTP connection persistence (Keep-Alive),
 allowing your users to submit many HTTP requests over a single TCP
 connection.

3.4. Enable Caching of Public Resources (HTTP)

When communicating over SSL, browsers assume that all traffic is sensitive. They
 will typically use memory to cache certain resources, but once you close the
 browser, all the content may be lost. To get a performance boost and enable
 long-term caching of some resources, mark public resources (e.g., images) as public
 by attaching the Cache-Control: public response header to
 them.

4. Application Design (HTTP)

The HTTP protocol and the surrounding platform for web application delivery continued
 to evolve rapidly after SSL was born. As a result of that evolution, the platform now
 contains features that can be used to defeat encryption. In this section, we list those
 features, as well as ways to use them securely.
4.1. Encrypt 100% of Your Web Site

The fact that encryption is optional is probably one of the biggest security
 problems today. We see the following problems:
	No SSL on sites that need it

	Sites that have SSL but do not enforce it

	Sites that mix SSL and non-SSL content, sometimes even within the same
 page

	Sites with programming errors that subvert SSL

Although many of these problems can be mitigated if you know exactly what you’re
 doing, the only way to reliably protect web site communication is to enforce
 encryption throughout—without exception.

4.2. Avoid Mixed Content

Mixed-content pages are those that are transmitted over SSL but include resources
 (e.g., JavaScript files, images, or CSS files) that are not transmitted over SSL.
 Such pages are not secure. An active man-in-the-middle (MITM) attacker can piggyback
 on a single unprotected JavaScript resource, for example, and hijack the entire user
 session. Even if you follow the advice from the previous section and encrypt your
 entire web site, you might still end up retrieving some resources unencrypted from
 third-party web sites.

4.3. Understand and Acknowledge Third-Party Trust

Web sites often use third-party services activated via JavaScript code downloaded
 from another server. A good example of such a service is Google Analytics, which is
 used on large parts of the Web. Such inclusion of third-party code creates an
 implicit trust connection that effectively gives the other party full control over
 your web site. The third party may not be malicious, but large providers of such
 services are increasingly seen as targets. The reasoning is simple: if a large
 provider is compromised, the attacker is automatically given access to all the sites
 that depend on the service.
If you follow the advice from Section 4.2, at least your third-party links will be
 encrypted and thus safe from MITM attacks. However, you should go a step further
 than that: Learn what services your sites use, and either remove them, replace them
 with safer alternatives, or accept the risk of their continued use.

4.4. Secure Cookies

To be properly secure, a web site requires SSL but also requires that all its
 cookies are marked as secure. Failure to secure the cookies makes it possible for an
 active MITM attacker to tease some information out through clever tricks, even on
 web sites that are 100% encrypted.

4.5. Deploy HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a safety net for
 SSL: it was designed to ensure that security remains intact even in the case of
 configuration problems and implementation errors. To activate HSTS protection, you
 set a single response header in your web sites. After that, browsers that support
 HSTS (at this time, Chrome, Firefox, and Opera) will enforce it.
The goal of HSTS is simple: After activation, it does not allow any insecure
 communication with the web site that uses it. It achieves this goal by automatically
 converting all plain-text links to secure ones. As a bonus, it also disables
 click-through SSL certificate warnings. (SSL certificate warnings are an indicator
 of an active MITM attack. Studies have shown that most users click through these
 warnings, so it is in your best interest to never allow them.)
Adding support for HSTS is the single most important improvement you can make for
 the SSL security of your web sites. New sites should always be designed with HSTS in
 mind and the old sites converted to support it whenever possible.

4.6. Disable Caching of Sensitive Content

The goal of this recommendation is to ensure that sensitive content is
 communicated to only the intended parties and that it is treated as sensitive.
 Although proxies do not see encrypted traffic and cannot share content among users,
 the use of cloud-based application delivery platforms is increasing, which is why
 you need to be very careful when specifying what is public and what is not.

4.7. Ensure That There Are No Other Vulnerabilities

This item is a reminder that SSL does not equal security. SSL is designed to
 address only one aspect of security—confidentiality and integrity of the
 communication between you and your users—but there are many other threats that you
 need to deal with (e.g., SQL injection, Cross-Site Scripting, and so on). In most
 cases, that means ensuring that your web site does not have other weaknesses.

5. Validation

With many configuration parameters available for tweaking, it is difficult to know in
 advance what impact certain changes will have. Further, changes are sometimes made
 accidentally; software upgrades can introduce changes silently. For that reason, we
 advise that you use a comprehensive SSL/TLS assessment tool initially to verify your
 configuration and ensure that you start out secure, and then periodically thereafter to
 ensure that you stay secure. For public web sites, our free online assessment tool on the SSL
 Labs web site is hard to beat. The Handshake
 Simulation feature in particular is very useful, because it shows
 exactly what security parameters would be used by a variety of commonly used SSL
 clients.

6. Advanced Topics

The following advanced topics are outside the scope of our guide. They require a
 deeper understanding of SSL/TLS and Public Key Infrastructure (PKI), and they are still
 being debated by experts.
	Extended Validation certificates
	Extended Validation (EV) certificates are
 high-assurance certificates issued only after thorough offline checks.[17] Their purpose is to provide a strong connection between an
 organization and its online identity. EV certificates are more difficult to
 forge, provide slightly better security, and are better treated when
 browsers present them to end users.

	Public key pinning
	Public key pinning is designed to give web site
 operators the means to restrict which Certificate Authorities can issue
 certificates for their web sites. This feature has been deployed by Google
 for some time now (it’s hard-coded into their browser, Chrome) and has
 proven to be very useful in preventing attacks and making the public aware
 of them. Two proposals are currently being developed: Public Key Pinning Extension for HTTP, by the Web
 Security Working Group, and Trust Assertions for
 Certificate Keys, by Marlinspike and
 Perrin.

	ECDSA private keys
	Virtually all web sites rely on RSA private keys. This algorithm is thus
 the key to the security of the Web, which is why attacks against it continue
 to improve. We are currently transitioning from 1024-bit to 2048-bit RSA
 keys for that very reason. There are some concerns, however, that further
 key length increases might lead to performance issues. Elliptic Curve
 cryptography uses different math and provides strong security assurances at
 smaller key lengths. RSA keys can be replaced with ECDSA. They are currently
 supported by only a small number of CAs, but we expect that most will offer
 them in the future.

	OCSP Stapling
	OCSP Stapling is a modification of the OCSP protocol
 that allows revocation information to be bundled with the certificate itself
 and thus served directly from the server to the browser. As a result, the
 browser does not need to contact OCSP servers for out-of-band validation,
 which results in better performance.

Changes

The first release of this guide was on 24 February 2012. This section tracks document
 changes over time, starting with version 1.3.
Version 1.3 (17 September 2013)

The following changes were made in this version:
	Recommend replacing 1024-bit certificates straightaway.

	Recommend against supporting SSL v3.

	Removed the recommendation to use RC4 to mitigate the BEAST attack
 server-side.

	Recommend that RC4 is disabled.

	Recommend that 3DES is disabled in the near future.

	Warned about the CRIME attack variations (TIME and BREACH).

	Recommend supporting Forward Secrecy.

	Added a discussion of ECDSA certificates.

Acknowledgments

Special thanks to Marsh Ray (PhoneFactor), Nasko Oskov (Google), Adrian F. Dimcev, and
 Ryan Hurst (GlobalSign) for their valuable feedback and help in crafting this document.
 Also thanks to many others who generously share their knowledge of security and
 cryptography with the world. The words in this document might be mine, but the
 guidelines given draw on the work of the entire security community.

About SSL Labs

SSL Labs is Qualys’s research
 effort to understand SSL/TLS and PKI as well as to provide tools and documentation to
 assist with assessment and configuration. Since 2009, when SSL Labs was launched,
 hundreds of thousands of assessments have been performed using the free online
 assessment tool. Other projects run by SSL Labs include periodic Internet-wide surveys
 of SSL configuration and SSL Pulse, a
 monthly scan of about 170,000 most popular SSL-enabled web sites in the world.

About Qualys

Qualys, Inc. (NASDAQ: QLYS), is a
 pioneer and leading provider of cloud security and compliance solutions with over 6,000
 customers in more than 100 countries, including a majority of each of the Forbes Global
 100 and Fortune 100. The QualysGuard Cloud Platform and integrated suite of solutions
 help organizations simplify security operations and lower the cost of compliance by
 delivering critical security intelligence on demand and automating the full spectrum of
 auditing, compliance, and protection for IT systems and web applications. Founded in
 1999, Qualys has established strategic partnerships with leading managed service
 providers and consulting organizations, including Accuvant, BT, Dell SecureWorks,
 Fujitsu, NTT, Symantec, Verizon, and Wipro. The company is also a founding member of the
 Cloud Security
 Alliance (CSA).
Qualys, the Qualys logo, and QualysGuard are proprietary trademarks of Qualys, Inc.
 All other products or names may be trademarks of their respective companies.

[7] SSL/TLS
 Deployment Best Practices (Qualys SSL Labs)

[8] On the Security
 of RC4 in TLS and WPA (Nadhem AlFardan et al.; 13 March
 2013)

[9] Deploying Forward Secrecy (Qualys Security Labs; 25 June
 2013)

[10] Increasing DHE strength on Apache 2.4.x (Ivan
 Ristić’s
 blog; 15 August 2013)

[11] TLS Renegotiation and Denial of Service Attacks (Qualys Security
 Labs Blog, 31 October 2011)

[12] SSL and TLS Authentication Gap Vulnerability
 Discovered (Qualys Security Labs Blog; 5 November
 2009)

[13]
 CRIME: Information Leakage Attack against SSL/TLS
 (Qualys Security Labs Blog; 14 September 2012)

[14] Defending against the BREACH Attack (Qualys Security
 Labs; 7 August 2013)

[15] Mitigating the BEAST attack on TLS (Qualys Security
 Labs Blog; 17 October 2011)

[16] Is BEAST Still a Threat? (Qualys Security Labs; 10
 September 2013)

[17] About EV SSL Certificates (CA/Browser Forum web
 site)

B Changes

This appendix tracks the evolution of OpenSSL Cookbook over time. For
 a quick overview, you will find here everything you need to know. If you want to go deeper,
 I suggest that you visit the online version of this
 book, where you will find our unique diff view, which shows
 all the changes between two versions of the text.
v1.0 (May 2013)

First release.

v1.1 (October 2013)

	Updated SSL/TLS Deployment Best Practices to v1.3. This
 version brings several significant changes: (1) RC4 is deprecated, (2) the BEAST
 attack is considered mitigated server-side, (3) Forward Secrecy has been
 promoted to its own category. There are many other smaller improvements
 throughout.

	Reworked the cipher suite configuration example to increase focus on Forward
 Security, making it more relevant.

	Discussed all three key types (RSA, DSA, and ECDSA) and explained when the use
 of each type is appropriate. Added new text to explain how to generate DSA and
 ECDSA keys.

	Marked cipher suite configuration keywords that were introduced in the OpenSSL
 1.x branch.

Thanks to Michael Reschly, Brian Howson, Christian Folini, Karsten Weiss, and Martin
 Carpenter for their feedback.

OEBPS/cover.jpg
OPENSSL
COOKBOOK

A Guide to the Most Frequently Used
OpenSSL Features and Commands

Feist
Duck y

Ivan Risti¢ @ QUALYS ’ H

OEBPS/ad.jpg
The complete guide to using SSL/TLS and PKI
in infrastructure deployment and
web application development

Tahle of Contents
BULLETPROOF
SSL/TLS AND ;PKI Preface

Part I: SSL/TLS and PKI
1. Cryptography
2.SSLand TLS
3. Public Key Infrastructure
4. History of Attacks against PKI
5. Protocol and Implementation Attacks

e
Part II: Deployment and Development
. 6. Deployment
Avallahle I'IOW 7. Performance
www.feistyduck.com 8. Advanced Configuration

9. Secure Application Development

Part Ill: Practical Configuration
10. OpenSSL Cookbook
11. Testing with OpenSSL
12. Configuring Apache
13. Configuring Java and Tomcat
14. Configuring Microsoft Windows and IIS
15. Configuring Nginx

Feisty
Duck

FINE TECHNOLOGY BOOKS

