

Web Crawling and Data
Mining with Apache Nutch

Perform web crawling and apply data mining in
your application

Dr. Zakir Laliwala

Abdulbasit Shaikh

 BIRMINGHAM - MUMBAI

Web Crawling and Data Mining with Apache Nutch

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1171213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-685-0

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

Credits

Authors
Dr. Zakir Laliwala

Abdulbasit Shaikh

Reviewers
Mark Kerzner

Shriram Sridharan

Acquisition Editors
Neha Nagwekar

Vinay V. Argekar

Commissioning Editor
Deepika Singh

Technical Editors
Vrinda Nitesh Bhosale

Anita Nayak

Harshad Vairat

Copy Editors
Roshni Banerjee

Mradula Hegde

Sayanee Mukherjee

Deepa Nambiar

Project Coordinator
Ankita Goenka

Proofreaders
Ameesha Green

Bernadette Watkins

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Authors

Dr. Zakir Laliwala is an entrepreneur, an open source specialist, and a hands-on
CTO at Attune Infocom. Attune Infocom provides enterprise open source solutions
and services for SOA, BPM, ESB, Portal, cloud computing, and ECM. At Attune
Infocom, he is responsible for product development and the delivery of solutions
and services. He explores new enterprise open source technologies and defines
architecture, roadmaps, and best practices. He has provided consultations and
training to corporations around the world on various open source technologies such
as Mule ESB, Activiti BPM, JBoss jBPM and Drools, Liferay Portal, Alfresco ECM,
JBoss SOA, and cloud computing.

He received a Ph.D. in Information and Communication Technology from Dhirubhai
Ambani Institute of Information and Communication Technology. He was an
adjunct faculty at Dhirubhai Ambani Institute of Information and Communication
Technology (DA-IICT), and he taught Master's degree students at CEPT.

He has published many research papers on web services, SOA, grid computing, and
the semantic web in IEEE, and has participated in ACM International Conferences.
He serves as a reviewer at various international conferences and journals. He has
also published book chapters and written books on open source technologies.
He was a co-author of the books Mule ESB Cookbook and Activiti5 Business Process
Management Beginner's Guide, Packt Publishing.

Abdulbasit Shaikh has more than two years of experience in the IT industry. He
completed his Masters' degree from the Dhirubhai Ambani Institute of Information
and Communication Technology (DA-IICT). He has a lot of experience in open
source technologies. He has worked on a number of open source technologies, such
as Apache Hadoop, Apache Solr, Apache ZooKeeper, Apache Mahout, Apache
Nutch, and Liferay. He has provided training on Apache Nutch, Apache Hadoop,
Apache Mahout, and AWS architect. He is currently working on the OpenStack
technology. He has also delivered projects and training on open source technologies.
He has a very good knowledge of cloud computing, such as AWS and Microsoft
Azure, as he has successfully delivered many projects in cloud computing.

He is a very enthusiastic and active person when he is working on a project or
delivering a project. Currently, he is working as a Java developer at Attune Infocom
Pvt. Ltd. He is totally focused on open source technologies, and he is very much
interested in sharing his knowledge with the open source community.

About the Reviewers

Mark Kerzner holds degrees in Law, Mathematics, and Computer Science. He has
been designing software for many years and Hadoop-based systems since 2008. He
is the President of SHMsoft, a provider of Hadoop applications for various verticals.
He is a co-founder of the Hadoop Illuminated training and consulting firm, and
the co-author of the open source Hadoop Illuminated book. He has authored and co-
authored a number of books and patents.

I would like to acknowledge the help of my colleagues, in particular
Sujee Maniyam, and last but not least, my multitalented family.

Shriram Sridharan is a student at the University of Wisconsin-Madison,
pursuing his Masters' degree in Computer Science. He is currently working in Prof.
Jignesh Patel's research group. His current interests lie in the areas of databases
and distributed systems. He received his Bachelor's degree from the College
of Engineering Guindy, Anna University, Chennai and has two years of work
experience. You can contact him at shrirams@cs.wisc.edu.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Getting Started with Apache Nutch	 7

Introduction to Apache Nutch	 8
Installing and configuring Apache Nutch	 8

Installation dependencies	 8
Verifying your Apache Nutch installation	 13
Crawling your first website	 14
Installing Apache Solr	 15
Integration of Solr with Nutch	 17

Crawling your website using the crawl script	 17
Crawling the Web, the CrawlDb, and URL filters	 19

InjectorJob	 20
GeneratorJob	 21
FetcherJob	 21
ParserJob	 21
DbUpdaterJob	 21
Invertlinks	 22
Indexing with Apache Solr	 22

Parsing and parse filters	 22
Webgraph	 23
Loops	 24
LinkRank	 24
ScoreUpdater	 25
A scoring example	 25

The Apache Nutch plugin	 27
The Apache Nutch plugin example	 27

Modifying plugin.xml	 28
Describing dependencies with the ivy module	 29

Table of Contents

[ii]

The Indexer extension program	 30
The Scoring extension program	 32
Using your plugin with Apache Nutch	 32
Compiling your plugin	 33

Understanding the Nutch Plugin architecture	 34
Summary	 35

Chapter 2: Deployment, Sharding, and AJAX Solr
with Apache Nutch	 37

Deployment of Apache Solr	 37
Introduction of deployment	 38
Need of Apache Solr deployment	 38
Setting up Java Development Kit	 39
Setting up Tomcat	 39
Setting up Apache Solr	 40
Running Solr on Tomcat	 42

Sharding using Apache Solr	 43
Introduction to sharding	 44
Use of sharding with Apache Nutch	 45
Distributing documents across shards	 46

Sharding Apache Solr indexes	 46
Single cluster	 46

Splitting shards with Apache Nutch	 49
Cleaning up with Apache Nutch	 49
Splitting cluster shards	 50
Checking statistics of sharding with Apache Nutch	 50
The final test with Apache Nutch	 52

Working with AJAX Solr	 54
Architectural overview of AJAX Solr	 54
Applying AJAX Solr on Reuters' data	 54
Running AJAX Solr	 54

Summary	 58
Chapter 3: Integration of Apache Nutch with Apache
Hadoop and Eclipse	 59

Integrating Apache Nutch with Apache Hadoop	 60
Introducing Apache Hadoop	 60
Installing Apache Hadoop and Apache Nutch	 61

Downloading Apache Hadoop and Apache Nutch	 61
Setting up Apache Hadoop with the cluster	 61
Installing Java	 62
Downloading Apache Hadoop	 63
Configuring SSH	 64
Disabling IPv6	 66

Table of Contents

[iii]

Installing Apache Hadoop	 66
Required ownerships and permissions	 67
The configuration required for Hadoop_HOME/conf/*	 68
Formatting the HDFS filesystem using the NameNode	 71

Setting up the deployment architecture of Apache Nutch	 75
Installing Apache Nutch	 75
Key points of the Apache Nutch installation	 77
Starting the cluster	 77
Performing crawling on the Apache Hadoop cluster	 78

Configuring Apache Nutch with Eclipse	 81
Introducing Apache Nutch configuration with Eclipse	 82
Installation and building Apache Nutch with Eclipse	 82
Crawling in Eclipse	 84

Summary	 89
Chapter 4: Apache Nutch with Gora, Accumulo, and MySQL	 91

Introduction to Apache Accumulo	 92
Main features of Apache Accumulo	 92

Introduction to Apache Gora	 93
Supported data stores	 93

Use of Apache Gora	 93
Integration of Apache Nutch with Apache Accumulo	 93

Configuring Apache Gora with Apache Nutch	 94
Setting up Apache Hadoop and Apache ZooKeeper	 99
Installing and configuring Apache Accumulo	 102
Testing Apache Accumulo	 106
Crawling with Apache Nutch on Apache Accumulo	 108

Integration of Apache Nutch with MySQL	 109
Introduction to MySQL	 109
Benefits of integrating MySQL with Apache Nutch	 110
Configuring MySQL with Apache Nutch	 110
Crawling with Apache Nutch on MySQL	 112

Summary	 115
Index	 117

Preface
Apache Nutch is an open source web crawler software that is used for crawling
websites. It is extensible and scalable. It provides facilities for parsing, indexing, and
scoring filters for custom implementations. This book is designed for making you
comfortable in applying web crawling and data mining in your existing application.
It will demonstrate real-world problems and give the solutions to those problems
with appropriate use cases.

This book will demonstrate all the practical implementations hands-on so readers
can perform the examples on their own and make themselves comfortable. The
book covers numerous practical implementations and also covers different types
of integrations.

What this book covers
Chapter 1, Getting Started with Apache Nutch, covers the introduction of Apache Nutch,
including its installation, and guides you for crawling, parsing, and creating plugins
with Apache Nutch. By the end of this chapter, you will be able to install Apache
Nutch in your own environment, and also be able to crawl and parse websites.
Additionally, you will be able to create a Nutch plugin.

Chapter 2, Deployment, Sharding, and AJAX Solr with Apache Nutch, covers the
deployment of Apache Nutch on a particular server; that is, Apache Tomcat and
Jetty. It also covers how sharding can take place with Apache Nutch using Apache
Solr as a search tool. By the end of this chapter, you will be able to deploy Apache
Solr on a server that contains the data crawled by Apache Nutch and also be able
to perform sharding using Apache Nutch and Apache Solr. You will also be able
to integrate AJAX with your running Apache Solr instance.

Preface

[2]

Chapter 3, Integrating Apache Nutch with Apache Hadoop and Eclipse, covers integration
of Apache Nutch with Apache Hadoop and also covers how we can integrate
Apache Nutch with Eclipse. By the end of this chapter, you will be able to set up
Apache Nutch running on Apache Hadoop in your own environment and also be
able to perform crawling in Apache Nutch using Eclipse.

Chapter 4, Apache Nutch with Gora, Accumulo, and MySQL, covers the integration
of Apache Nutch with Gora, Accumulo, and MySQL. By the end of this chapter,
you will be able to integrate Apache Nutch with Apache Accumulo as well as
with MySQL. After that, you can perform crawling using Apache Nutch on Apache
Accumulo and also on MySQL. You can also get the results of your crawled pages
on Accumulo as well as on MYSQL. You can integrate Apache Solr too, as we have
discussed before, and get your crawled pages indexed onto Apache Solr.

What you need for this book
You will require the following software to be installed before starting with the book:

•	 Java 6 or higher; Apache Nutch requires JDK 6 or a later version. JDK 6
can be downloaded from http://www.oracle.com/technetwork/java/
javase/downloads/jdk6downloads-1902814.html

•	 Apache Nutch 2.2.1, which can be downloaded from http://nutch.
apache.org/downloads.html

•	 Apache Hbase 0.90.4, which can be downloaded from http://archive.
apache.org/dist/hbase/hbase 0.90.4/

•	 Apache Solr 3.6.2, which can be downloaded from http://archive.
apache.org/dist/lucene/solr/

•	 Apache Tomcat 7.0.41, which can be downloaded from http://tomcat.
apache.org

•	 Apache Solr 4.3.0, which can be downloaded from http://archive.
apache.org/dist/lucene/solr/4.3.0/

•	 Reuters.data.tar.gz, which can be downloaded from https://github.com/
downloads/evolvingweb/ajax-solr/reuters_data.tar.gz

•	 Apache Hadoop, which can be downloaded from http://www.apache.org/
dyn/closer.cgi/hadoop/common/

•	 Apache Nutch 1.4, which can be downloaded from http://nutch.apache.
org/downloads.html

•	 Eclipse Juno, which can be downloaded from http://www.eclipse.org/
downloads/packages/release/juno/r

Preface

[3]

•	 Subclipse, which can be downloaded from http://subclipse.tigris.org/
•	 IvyDE plugin, which can be downloaded from http://ant.apache.org/

ivy/ivyde/download.cgi

•	 M2e plugin, which can be downloaded from http://marketplace.
eclipse.org/content/maven-integration-eclipse

•	 Apache ZooKeeper, which can be downloaded from http://zookeeper.
apache.org/releases.html

•	 Apache Accumulo, which can be downloaded from http://accumulo.
apache.org/downloads/

Who this book is for
This book is for those who are looking to integrate web crawling and data mining into
their existing applications as well as for the beginners who want to start with web
crawling and data mining. It will provide complete solutions for real-time problems.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Go to the solr directory, which you will find in /usr/local/SOLR_HOME."

A block of code is set as follows:

<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="sku" type="text_en_splitting_tight" indexed="true"
stored="true" omitNorms="true"/>

Any command-line input or output is written as follows:

curl 'http://localhost:8983/solr/collection1/update' --data-binary
'<commit/>' -H 'Content-type:application/xml'

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/
support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Getting Started with
Apache Nutch

Apache Nutch is a very robust and scalable tool for web crawling; it can be
integrated with the scripting language Python for web crawling. You can use it
whenever your application contains huge data and you want to apply crawling on
your data.

This chapter covers the introduction to Apache Nutch and its installation, and also
guides you on crawling, parsing, and creating plugins with Apache Nutch. It will
start from the basics of how to install Apache Nutch and then will gradually take you
to the crawling of a website and creating your own plugin.

In this chapter we will cover the following topics:

•	 Introducing Apache Nutch
•	 Installing and configuring Apache Nutch
•	 Verifying your Nutch installation
•	 Crawling your first website
•	 Setting up Apache Solr for search
•	 Integrating Solr with Nutch
•	 Crawling websites using crawl script
•	 Crawling the web, URL filters, and the CrawlDb
•	 Parsing and parsing filters
•	 Nutch plugins and Nutch plugin architecture

Getting Started with Apache Nutch

[8]

By the end of this chapter, you will be comfortable playing with Apache Nutch as
you will be able to configure Apache Nutch yourself in your own environment and
you will also have a clear understanding about how crawling and parsing take place
with Apache Nutch. Additionally, you will be able to create your own Nutch plugin.

Introduction to Apache Nutch
Apache Nutch is open source WebCrawler software that is used for crawling
websites. You can create your own search engine like Google, if you understand
Apache Nutch clearly. It will provide you with your own search engine, which can
increase your application page rank in searching and also customize your application
searching according to your needs. It is extensible and scalable. It facilitates parsing,
indexing, creating your own search engine, customizing search according to needs,
scalability, robustness, and ScoringFilter for custom implementations. ScoringFilter
is a Java class that is used while creating the Apache Nutch plugin. It is used for
manipulating scoring variables.

We can run Apache Nutch on a single machine as well as on a distributed
environment such as Apache Hadoop. It is written in Java. We can find broken links
using Apache Nutch and create a copy of all the visited pages for searching over,
for example, while building indexes. We can find web page hyperlinks in an
automated manner.

Apache Nutch can be integrated with Apache Solr easily and we can index all the
web pages that are crawled by Apache Nutch to Apache Solr. We can then use
Apache Solr for searching the web pages which are indexed by Apache Nutch.
Apache Solr is a search platform that is built on top of Apache Lucene. It can be
used for searching any type of data, for example, web pages.

Installing and configuring Apache Nutch
In this section, we are going to cover the installation and configuration steps of
Apache Nutch. So we will first start with the installation dependencies in Apache
Nutch. After that, we will look at the steps for installing Apache Nutch. Finally, we
will test Apache Nutch by applying crawling on it.

Installation dependencies
The dependencies are as follows:

•	 Apache Nutch 2.2.1
•	 HBase 0.90.4

Chapter 1

[9]

•	 Ant
•	 JDK 1.6

Apache Nutch comes in different branches, for example, 1.x, 2.x, and so on. The key
difference between Apache Nutch 1.x and Apache Nutch 2.x is that in the former,
we have to manually type each command step-by-step for crawling, which will be
explained later in this chapter. In the latter, Apache Nutch developers create a crawl
script that will do crawling for us by just running that script; there is no need to type
commands step-by-step.

There may be more differences but I have covered just one.

I have used Apache Nutch 2.2.1 because it is the latest version at the time of
writing this book. The steps for installation and configuration of Apache Nutch
are as follows:

1.	 Download Apache Nutch from the Apache website. You may download
Nutch from http://nutch.apache.org/downloads.html.

2.	 Click on apache-nutch-2.2.1-src.tar.gz under the Mirrors column in the
Downloads tab. You can extract it by typing the following commands:
#cd $NUTCH_HOME

tar –zxvf apache-nutch.2.2.1-src.tar.gz

Here $NUTCH_HOME is the directory where your Apache Nutch resides.

3.	 Download HBase. You can get it from
http://archive.apache.org/dist/hbase/hbase-0.90.4/.
HBase is the Apache Hadoop database that is distributed, a big data store,
scalable, and is used for storing large amounts of data. You should use
Apache HBase when you want real-time read/write accessibility of your big
data. It provides modular and linear scalability. Read and write operations
are very consistent. Here, we will use Apache HBase for storing data, which
is crawled by Apache Nutch. Then we can log in to our database and access it
according to our needs.

4.	 We now need to extract HBase, for example, Hbase.x.x.tar.gz. Go to the
terminal and reach up to the path where your Hbase.x.x.tar.gz resides.
Then type the following command for extracting it:
tar –zxvf Hbase.x.x.tar.gz

It will extract all the files in the respective folder.

http://nutch.apache.org/downloads.html
http://nutch.apache.org/downloads.html
http://www.apache.org/dyn/closer.cgi/nutch/2.2.1/apache-nutch-2.2.1-src.tar.gz
http://www.apache.org/dyn/closer.cgi/nutch/2.2.1/apache-nutch-2.2.1-src.tar.gz

Getting Started with Apache Nutch

[10]

5.	 Now we need to do HBase configuration. First, go to hbase-site.xml,
which you will find in <Your HBase home>/conf and modify it as follows:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>hbase.rootdir</name>
<value><Your path></value>
<!— You need to create one directory and assign a path up to that
directory. That directory will be used by Apache Hbase to store
all relevant information. à</property>
<property>
<name>hbase.zookeeper.property.dataDir</name>
<value><Your path></value>
<!— You need to create one directory and assign a path up to
that directory. That directory will be used by Apache Hbase
to store all relevant information related to Apache zookeeper
which comes inbuilt with Apache Hbase. Apache Zookeeper is an
open source server which is used for distributed coordination.
You can learn more about Apache Zookeeper from
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index
</property>
</configuration>

Just make sure that the hosts file under etc contains the loop back address,
which is 127.0.0.1 (in some Linux distributions, it might be 127.0.1.1).
Otherwise you might face an issue while running Apache HBase.

6.	 Specify Gora backend in nutch-site.xml. You will find this file at $NUTCH_
HOME/conf.
<property>
<name>storage.data.store.class</name>
<value>org.apache.gora.hbase.store.HBaseStore</value>
<description>Default class for storing data</description>
</property>

The explanation of the preceding configuration is as follows:

°° Find the name of the data store class for storing data of
Apache Nutch:
<name>storage.data.store.class</name>

°° Find the database in which all the data related to HBase will reside:

<value>org.apache.gora.hbase.store.HBaseStore</value>

Chapter 1

[11]

7.	 Make sure that the HBasegora-hbase dependency is available in ivy.xml.
You will find this file in <Your Apache Nutch home>/ivy. Put the following
configuration into the ivy.xml file:
<!-- Uncomment this to use HBase as Gora backend. -->
<dependency org="org.apache.gora" name="gora-hbase" rev="0.2"
conf="*-
>default" />

The last line would be commented by default. So you need to uncomment it.

8.	 Make sure that HBaseStore is set as the default data store in the gora.
properties file. You will find this file in <Your Apache Nutch home>/conf.
Put the following configuration into gora.properties:
gora.datastore.default=org.apache.gora.hbase.store.HBaseStore

The preceding line would be commented by default. So uncomment it.

9.	 Go to Apache Nutch home directory. This directory would be <Your Apache
Nutch home directory>. Go there and type the following command from
your terminal:
ant runtime

This will build your Apache Nutch and create the respective directories in
the Apache Nutch's home directory. It is needed because Apache Nutch 2.x is
only distributed as source code. The Apache Nutch 1.x branch is distributed
as binary. So in that, this stage is not required. The tree structure of the
generated directories would be as shown in the following diagram:

Apache-nutch-2.2.1

build
conf
docs
ivy
lib
runtime
src

Getting Started with Apache Nutch

[12]

The preceding diagram shows the directory structure of Apache Nutch,
which we built in the preceding step. The runtime and build directories
will be newly generated after building apache-nutch-2.2.1. The rest of
the directories already exist in apache-nutch-2.2.1. The following
directories are listed:

°° The build directory contains all the required JAR files that Apache
Nutch has downloaded at the time of building

°° The conf directory contains all the configuration files which are
required for crawling

°° The docs directory contains the documentation that will help the
user to perform crawling

°° The ivy directory contains the required configuration files in which
the user needs to add certain configurations for crawling

°° The runtime directory contains all the necessary scripts which are
required for crawling

°° The src directory contains all the Java classes on which Apache
Nutch has been built

Ant is the tool which is used for building your project and which will resolve
all the dependencies of your project. It will fetch the required JAR files from
the Internet by running the build.xml file that is required for running Ant.
You need to define all the dependencies in build.xml. So when you type ant
at runtime, it will search for the build.xml file in the directory from where
you have hit this command, and once found, it will fetch all the required JAR
files that you have mentioned in build.xml. You have to install Ant if it is
not installed already. You can refer to http://www.ubuntugeek.com/how-
to-install-ant-1-8-2-using-ppa-on-ubuntu.html for a guide to the
installation of Ant.

10.	 Make sure HBase is started and is working properly. To check whether
HBase is running properly, go to the home directory of Hbase. Type the
following command from your terminal:
./bin/hbase shell

If everything goes well, you will get an output as follows:

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version: 0.90.4, r1001068, Fri Sep 24 13:55:42 PDT 2010

Chapter 1

[13]

11.	 This completes your installation of Apache Nutch. Now you should be able
to use it by going to the bin directory of Apache Nutch. You will find this
directory at <Your Apache Nutch home>/runtime/local.

The local directory contains all the configuration files which are required to perform
crawling. The script for crawling also resides inside this directory. The runtime
directory contains the local directory and the deploy directory. You should find
more details in the logs at <Your Apache Nutch home>/runtime/local/logs/
hadoop.log.

Verifying your Apache Nutch installation
Once Apache Nutch is installed, it is important to check whether it is working up
to the mark or not. For this, a verification process is required. The steps for verifying
Apache Nutch installation are as follows:

1.	 Go to the local directory of Apache Nutch from your terminal. You will
find this directory at <Your Apache Nutch home directory>/runtime.
Type the following command here:
bin/nutch

If everything is successful, you will get the output as follows:

Usage: nutch COMMAND

..

..

..

Most commands will print help when invoked w/o parameters.

2.	 Run the following command if you see a Permission denied message:
chmod +x bin/nutch

3.	 Set up JAVA_HOME if it's not set already. On your Mac system, you can run
the following command or add it to ~/.bashrc. You can open ~/.bashrc by
going to the root directory from your terminal and typing gedit~/.bashrc.
export JAVA_HOME=<Your Java path>

Getting Started with Apache Nutch

[14]

Crawling your first website
We have now completed the installation of Apache Nutch. It's now time to move
to the key section of Apache Nutch, which is crawling. Crawling is driven by the
Apache Nutch crawling tool and certain related tools for building and maintaining
several data structures. It includes web database, the index, and a set of segments.
Once Apache Nutch has indexed the web pages to Apache Solr, you can search for
the required web page(s) in Apache Solr. The steps for crawling are as follows:

1.	 Add your agent name in the value field of the http.agent.name property
in the nutch-site.xml file. The nutch-site.xml file is the configuration
file from where Apache Nutch will fetch the necessary details at the time
of crawling. We will define different properties in this file, as you will see
in the following code snippet. You will find this file located at <Your Apache
Nutch home>/runtime/local/conf. Add the following configuration into
nutch-site.xml:
<configuration>
<property>
<name>http.agent.name</name>
<value>My Nutch Spider</value>
</property>
</configuration>

The explanation of the preceding configuration is as follows:

°° Find HTTP agent name as follows:
<name>http.agent.name</name>

°° Find HTTP agent value as follows. You can specify any value here.
Apache Nutch requires this value while crawling the website.

<value>My Nutch Spider</value>

2.	 Go to the local directory of Apache Nutch. You will find this directory
located at <Your Apache Nutch home>/runtime. Create a directory called
urls inside it by following these steps:

a.	 Find the command for creating the urls directory as follows:
#mkdir –p urls

b.	 If you are a Windows user, the following command should be used:
#mkdir urls

c.	 The following command will take you inside the urls directory:

#cd urls

Chapter 1

[15]

3.	 Now create the seed.txt file inside the urls directory and put the
following content:
http://nutch.apache.org/

4.	 This is the URL which is used for crawling. You can put n number of URLs
but one URL per line. The format of the URL would be http://<Respective
url>. You can comment by putting # at the start of the line. An example
would be as follows:
Your commented text is here.

5.	 Edit the regex-urlfilter.txt file. This file is used for filtering URLs for
crawling. So whenever crawling is performed for the URL, Apache Nutch
will match the respective URL that we are putting inside seed.txt, with the
pattern defined in this file for that URL and crawl accordingly. As you will
see shortly, we have applied crawling on http://nutch.apache.org and
we have set the pattern inside this file. So it will tell Apache Nutch that all
the URLs which end up with nutch.apache.org need to be crawled. You
will find this file located at <Your Apache Nutch home>/conf; replace the
following lines with a regular expression matching the domain you wish to
crawl:

accept anything else
+.

6.	 For example, if you wish to limit the crawl to the nutch.apache.org
domain, this line should read as follows:
+^http://([a-z0-9]*\.)*nutch.apache.org/

Installing Apache Solr
Apache Solr is a search platform which is built on top of Apache Lucene. It can be
used for searching any type of data, for example, web pages. It's a very powerful
searching mechanism and provides full-text search, dynamic clustering, database
integration, rich document handling, and much more. Apache Solr will be used for
indexing URLs which are crawled by Apache Nutch and then one can search the
details in Apache Solr crawled by Apache Nutch. Follow these steps for installation
of Apache Solr:

1.	 Download Apache Solr from
http://archive.apache.org/dist/lucene/solr/.

Getting Started with Apache Nutch

[16]

2.	 Extract it by typing the following commands:
cd /usr/local

$ sudo tar xzf apache-solr-3.6.2/

$ sudo mv apache-solr-3.6.2/ solr

This will extract all the files of Apache Solr in the respective folder.

3.	 Now we need to set the path of the JAVA_HOME variable in the ~/.bashrc file.
To open this file, go to the root directory from your terminal and type the
following command:
gedit ~/.bashrc

Put the following configuration into the ~/.bashrc file:

 #Set SOLR home
export SOLR_HOME=/usr/local/solr/example/solr

This creates an environment variable called SOLR_HOME. This classpath
variable is required for Apache Solr to run. When you start Apache Solr, it
will search for this variable inside your .bashrc file for locating your Apache
Solr and it will give an error if something goes wrong in the configuration.

4.	 Go to the example directory from your terminal. You will find this directory
located in your Apache Solr's home directory. Type the following command
to start Apache SOLR:
java -jar start.jar

If all succeeds, you will get following output:

5.	 Verify Apache Solr installation by hitting the following URL on your
browser:

http://localhost:8983/solr/admin/

You will get the image of Running Apache Solr on your browser, as shown
in the following screenshot:

http://localhost:8983/solr/admin/
http://localhost:8983/solr/admin/
http://localhost:8983/solr/admin/

Chapter 1

[17]

Integration of Solr with Nutch
In the above steps, we have installed Apache Nutch and Apache Solr correctly.
Integration is required for indexing URLS to Apache Solr crawled by Apache Nutch.
So once Apache Nutch finishes with crawling and indexing URLs to Apache Solr,
you can search for particular documents on Apache Solr and get the expected results.
The steps for integrating Apache Solr with Apache Nutch are as follows:

1.	 Copy the schema.xml file. You will find this file at <Your Apache Nutch
home>/conf. Put it into the conf directory of Apache SOLR. You will find
this directory in your Apache Solr's home directory. Enter the following
command:
cp<Respective Directory where Apache Nutch Resides>/conf/schema.
xml <Respective Directory where Apache SOLR resides>/example/solr/
conf/

2.	 Go to the example directory. You will find this directory in your Apache
Solr's home directory. Type the following command to restart Apache SOLR:

java-jar start.jar

Crawling your website using the crawl
script
Apache Nutch 2.2.1 comes with the crawl script facility which does crawling by
just executing one single script. In the earlier version, we had to manually perform
the steps of generating data, fetching data, parsing data, and so on for performing
crawling. I have installed both the Apache Nutch and Apache Solr setups correctly.
The steps for crawling your website using the crawl script are as follows:

Getting Started with Apache Nutch

[18]

1.	 Go to the home directory of HBase from your terminal. You will find this
directory located at the same location where your HBase resides. Start HBase
by typing the following command:
./bin/start-hbase.sh

If all succeeds, you will get the following output:

Starting Master, logging on to logs/hbase-user-master-example.org.
out.

2.	 If you get the following output, it means HBase is already started. No need to
start it.
master running as process 2948. Stop it first.

3.	 Now go to the local directory of Apache Nutch from your terminal and
perform some operations by typing the following command. You will find
the local directory in <Your Apache Nutch home>/runtime.
cd<Respective directory where Apache Nutch resides>/runtime

bin/crawl urls/seed.txt TestCrawl http://localhost:8983/solr/2

If all succeeds, you will get the following output:

The command is explained as follows:

°° urls/seed.txt: seed.txt is the file which contains urls for
crawling.

°° TestCrawl: This is the crawl data directory which will be
automatically created inside Apache Hbase with the name
TestCrawl_Webpage, which will contain information on all the URLs
which are crawled by Apache Nutch.

Chapter 1

[19]

°° http://localhost:8983/solr/: This is the URL of running
Apache Solr.

°° 2: This is the number of iterations, which will tell Apache Nutch
in how many iterations this crawling will end.

You can modify the parameters according to your requirements. The crawl script
has a lot of parameters to be set; it would be good to understand the parameters
before setting up big crawls. Because you can use these parameters according to
your requirements, you have to first study these parameters and then apply them.

Crawling the Web, the CrawlDb, and URL
filters
Crawling the Web is already explained above. You can add more URLs in the seed.
txt file and crawl the same.

When a user invokes a crawling command in Apache Nutch 1.x, CrawlDB is
generated by Apache Nutch which is nothing but a directory and which contains
details about crawling. In Apache 2.x, CrawlDB is not present. Instead, Apache
Nutch keeps all the crawling data directly in the database. In our case, we have used
Apache HBase, so all crawling data would go inside Apache HBase. The following
are details of how each function of crawling works.

A crawling cycle has four steps, in which each is implemented as a Hadoop
MapReduce job:

•	 GeneratorJob

•	 FetcherJob

•	 ParserJob (optionally done while fetching using 'fetch.parse')
•	 DbUpdaterJob

Additionally, the following processes need to be understood:

•	 InjectorJob

•	 Invertlinks

•	 Indexing with Apache Solr

First of all, the job of an Injector is to populate initial rows for the web table. The
InjectorJob will initialize crawldb with the URLs that we have provided. We need
to run the InjectorJob by providing certain URLs, which will then be inserted into
crawlDB.

http://localhost:8983/solr/

Getting Started with Apache Nutch

[20]

Then the GeneratorJob will use these injected URLs and perform the operation. The
table which is used for input and output for these jobs is called webpage, in which
every row is a URL (web page). The row key is stored as a URL with reversed host
components so that URLs from the same TLD and domain can be kept together and
form a group. In most NoSQL stores, row keys are sorted and give an advantage.
Using specific rowkey filtering, scanning will be faster over a subset, rather than
scanning over the entire table.

Following are the examples of rowkey listing:

•	 org.apache..www:http/

•	 org.apache.gora:http/

Let's define each step in depth so that we can understand crawling step-by-step.

Apache Nutch contains three main directories, crawlDB, linkdb, and a set of
segments. crawlDB is the directory which contains information about every URL
that is known to Apache Nutch. If it is fetched, crawlDB contains the details when
it was fetched. The linkdatabase or linkdb contains all the links to each URL
which will include source URL and also the anchor text of the link. A set of segments
is a URL set, which is fetched as a unit. This directory will contain the following
subdirectories:

•	 A crawl_generate job will be used for a set of URLs to be fetched
•	 A crawl_fetch job will contain the status of fetching each URL
•	 A content will contain the content of rows retrieved from every URL

Now let's understand each job of crawling in detail.

InjectorJob
The Injector will add the necessary URLs to the crawlDB. crawlDB is the directory
which is created by Apache Nutch for storing data related to crawling. You need
to provide URLs to the InjectorJob either by downloading URLs from the Internet
or by writing your own file which contains URLs. Let's say you have created one
directory called urls that contains all the URLs needed to be injected in crawlDB;
the following command will be used for performing the InjectorJob:

#bin/nutch inject crawl/crawldb urls

urls will be the directory which contains all the URLs that are needed to be injected
in crawlDB. crawl/crawldb is the directory in which injected URLs will be placed.
After performing this job, you will have a number of unfetched URLs inside your
database (crawlDB).

Chapter 1

[21]

GeneratorJob
Once we are done with the InjectorJob, it's time to fetch the injected URLs from
CrawlDB. So for fetching the URLs, you need to perform the GeneratorJob first.
The following command will be used for GeneratorJob:

#bin/nutch generate crawl/crawldb crawl/segments

crawldb is the directory from where URLs are generated. segments is the directory
which is used by the GeneratorJob to fetch the necessary information required
for crawling.

FetcherJob
The job of the fetcher is to fetch the URLs which are generated by the GeneratorJob.
It will use the input provided by GeneratorJob. The following command will be
used for the FetcherJob:

#bin/nutch fetch –all

Here I have provided input parameters—this means that this job will fetch all
the URLs that are generated by the GeneratorJob. You can use different input
parameters according to your needs.

ParserJob
After the FetcherJob, the ParserJob is to parse the URLs that are fetched by
FetcherJob. The following command will be used for the ParserJob:

bin/nutch parse –all

I have used input parameters—all of which will parse all the URLs fetched by the
FetcherJob. You can use different input parameters according to your needs.

DbUpdaterJob
Once the ParserJob has completed its task, we need to update the database by
providing results of the FetcherJob. This will update the respective databases with
the last fetched URLs. The following command will be used for the DbUpdaterJob:

bin/nutch updatedb crawl/crawldb –all

Getting Started with Apache Nutch

[22]

I have provided input parameters, all of which will update all the URLs that are
fetched by the FetcherJob. You can use different input parameters according to
your needs. After performing this job, the database will contain updated entries of
all the initial pages and the new entities which correspond to the newly discovered
pages that are linked from the initial set.

Invertlinks
Before applying indexing, we need to first invert all the links. After this we will be
able to index incoming anchor text with the pages. The following command will be
used for Invertlinks:

bin/nutch invertlinks crawl/linkdb -dir crawl/segments

Indexing with Apache Solr
At the end, once crawling has been performed by Apache Nutch, you can index all
the URLs that are crawled by Apache Nutch to Apache Solr, and after that you can
search for the particular URL on Apache Solr. The following command will be used
for indexing with Apache Solr:

#bin/nutch solrindex http://127.0.0.1:8983/solr/ crawl/crawldb -linkdb
crawl/linkdb crawl/segments/*

Parsing and parse filters
Parsing is a task or process by which a parse object is created and populated within
the data. Parsing contains the parsed text of each URL, the outlink URLs used to
update crawldb, and outlinks and metadata parsed from each URL. Parsing is also
done by crawl script, as explained earlier; to do it manually, you need to first execute
inject, generate, and fetch commands, respectively:

For generating, the following command will be used:

bin/nutch generate -topN 1

For fetching, the following command will be used:

bin/nutch fetch -all

For parsing, the following command will be used:

bin/nutch parse -all

Chapter 1

[23]

The preceding commands are the individual commands required for parsing. To
perform these, go to the Apache Nutch home directory. This directory would be
where Apache Nutch resides. Then type the following commands:

For generating records, the following command will be used:

bin/nutch generate -topN 1

For fetching records, the following command will be used:

bin/nutch fetch all

For parsing records, the following command will be used:

bin/nutch parse -all

The HtmlParseFilter permits one to add additional metadata to HTML parses.

Webgraph
Webgraph is a component which is used for creating databases. It will create
databases for inlinks, outlinks, and nodes that are used for holding the number of
outlinks and inlinks to a URL and for the current score of the URL. You need to go
for Apache Nutch 1.x to use this, as Apache 2.x will not work. Webgraph will run
once all the segments are fetched and ready to be processed. It can be found at org.
apache.nutch.scoring.webgraph.WebGraph. Just go to the bin directory, which
you will find in $NUTCH_HOME/runtime/local, and fire the following command:

#bin/nutch webgraph (-segment <segment> | -segmentDir <segmentDir> |
-webgraphdb <webgraphdb>) [-filter -normalize] | -help

If you only type #bin/nutch webgraph, it will show you the usage as follows:

usage: WebGraph

-help

show this help message

-segment <segment>

the segment(s) to use

-webgraphdb<webgraphdb> the web graph database to use

Getting Started with Apache Nutch

[24]

Loops
Loops is used for determining spam sites by determining link cycles in a Webgraph.
So once the Webgraph is completed, we can start the process of link analysis. An
example of a link cycle is, P is linked to Q, Q is linked R, R is linked S, and then
again S is linked to P. Due to its large expense and time and space requirements, it
cannot be run on more than four levels. Its benefit to cost ratio is very low. It helps
the LinkRank program to identify spam sites, which can then be discounted in later
LinkRank programs. There can be another way to perform this function with a
different algorithm. It is just placed here for the purpose of completeness. Its usage
in the current large Webgraph is discouraged. Loops can be found at org.apache.
nutch.scoring.webgraph.Loops. The usage details of loops are as follows:

usage: Loops

-help

show this help message

-webgraphdb<webgraphdb> the web graph database to use

LinkRank
LinkRank is used for performing an iterative link analysis. It is used for converging
to stable global scoring for each URL. It starts with a common scoring for each
URL like PageRank. It creates a global score for each and every URL based on the
number of incoming links and also scores for those links and total outgoing links
from the page. It is an iterative process and scores converge after a given number of
iterations. It differs from PageRank in the way that links internal to a website and
reciprocal links in between websites could be ignored. One can configure iterations
too. The default number of iterations to be performed is 10. Unlike the OPIC scoring,
the LinkRank program doesn't track scores from one processing time to another.
Both Webgraph and link scores are recreated on each processing run. So we do not
have any problems in increasing scores. LinkRank wants the Webgraph program
to be completed successfully and stores the output scoring of each URL in the node
database of the Webgraph. LinkRank is found at org.apache.nutch.scoring.
webgraph.LinkRank. A printout of the program's usage is as follows:

usage: LinkRank

-help show this help message

-webgraphdb<webgraphdb> the web graph db to use

Chapter 1

[25]

ScoreUpdater
After completing the LinkRank program and link analysis, your scores must
be updated inside the crawl database working with the current Apache Nutch
functionality. The ScoreUpdater program stores the scores in the node database of
the Webgraph and updates them inside crawldb.

usage: ScoreUpdater

 -crawldb<crawldb> the crawldb to use

 -help show this help message

 -webgraphdb<webgraphdb> the webgraphdb to use

A scoring example
This example runs the new scoring and indexing systems from start to end. The
new scoring functionality can be found at org.apache.nutch.scoring.webgraph.
The package contains multiple programs that will build web graphs, performing a
stable convergent link analysis, and updating crawldb with those scores. For doing
scoring, go to the local directory from the terminal. You will find this directory in
<Respective directory where Apache Nutch resides>/runtime and type
the following commands:

bin/nutch inject crawl/crawldb crawl/urls/

bin/nutch generate crawl/crawldb/ crawl/segments

bin/nutch fetch crawl/segments/20090306093949/

bin/nutchupdatedb crawl/crawldb/ crawl/segments/20090306093949/

bin/nutchorg.apache.nutch.scoring.webgraph.WebGraph -segment

crawl/segments/20090306093949/ -webgraphdb crawl/webgraphdb

Apache Nutch 2.2.1 does not support this. So I have configured it with
apache-nutch-1.7. You can install apache-nutch-1.7 in the
same way as apache-nutch-2.2.1.

Webgraph will be used on larger web crawls to create web graphs. The following
options are interchangeable with their corresponding configuration options:

<!--linkrank scoring properties -->
<property>

Getting Started with Apache Nutch

[26]

<name>link.ignore.internal.host</name>
<value>true</value>
<description>Ignore outlinks to the same hostname.</description>
</property>
<property>
<name>link.ignore.internal.domain</name>
<value>true</value>
<description>Ignore outlinks to the same domain.</description>
</property>

<property>
<name>link.ignore.limit.page</name>
<value>true</value>
<description>Limit to only a single outlink to the same page.</
description>
</property>

<property>
<name>link.ignore.limit.domain</name>
<value>true</value>
<description>Limit to only a single outlink to the same domain.</
description>
</property>

But by default, if you are doing only crawling of pages inside a domain or inside
a set of subdomains, all the outlinks will be ignored and you come up having an
empty Webgraph. Type the following commands:

bin/nutchorg.apache.nutch.scoring.webgraph.Loops -webgraphdb crawl/
webgraphdb/

bin/nutchorg.apache.nutch.scoring.webgraph.LinkRank -webgraphdb crawl/
webgraphdb/

bin/nutchorg.apache.nutch.scoring.webgraph.ScoreUpdater -crawldb crawl/
crawldb -webgraphdb crawl/webgraphdb/

bin/nutchorg.apache.nutch.scoring.webgraph.NodeDumper -scores -topn 1000
-webgraphdb crawl/webgraphdb/ -output crawl/webgraphdb/dump/scores

bin/nutchreaddb crawl/crawldb/ -stats

Use the GenericOptionsParser for parsing the arguments. Applications should
implement tools to process these.

The command shown in the following screenshot will be used for showing statistics
for CrawlDbcrawl/crawldb/:

Chapter 1

[27]

The Apache Nutch plugin
The plugin system displays how Nutch works and allows us to customize Apache
Nutch to our personal needs in a very flexible and maintainable manner. Everyone
wants to use Apache Nutch for crawling websites. But writing an own plugin will be
a challenge at one point or another. There are many changes in the nutch-site.xml
and schema.xml files stored at apache-nutch-2.2.1/conf/. But simply imagine
you would like to add a new field to the index by doing some custom analysis of
a parsed web page content to Solr as an additional field.

The Apache Nutch plugin example
This example will focus on the urlmeta plugin. In this example we will use
Apache Nutch 1.7. Its aim is to provide a comprehensive knowledge of the
Apache Nutch plugin.

This example covers the integral components required to develop and use a plugin.
As you can see, inside the plugin directory located at $NUTCH_HOME/src/, the folder
urlmeta contains the following:

•	 A plugin.xml file that tells Nutch about your plugin
•	 A build.xml file that tells Ant how to build your plugin
•	 An ivy.xml file containing either the description of the dependencies of a

module, its published artifacts and its configurations, or else the location
of another file which specifies this information

Getting Started with Apache Nutch

[28]

•	 A /src directory containing the source code of our plugin with the directory
structure is shown in the hierarchical view, as follows:

°° plugin.xml

°° build.xml

°° ivy.xml

°° src/java/org/apache/nutch/indexer/urlmeta/$

°° package.html

°° URLMetaIndexingFilter.java

°° src/java/org/apache/nutch/indexer/urlmeta/$

°° Scoring

°° package.html

°° URLMetaScoringFilter.java

Now we need to configure the plugin.xml, build.xml, and ivy.xml files.

Modifying plugin.xml
Your plugin.xml file should look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<plugin
id="urlmeta"
name="URL Meta Indexing Filter"
version="1.0.0"
provider-name="sgonyea">

The preceding code defines ID, name, version, and provider name of your plugin.

<runtime>
<library name="urlmeta.jar">
<export name="*"/>
</library>
</runtime>

The preceding code defines the library, which is a JAR file and export command
of your plugin.

<requires>
<import plugin="nutch-extensionpoints"/>
</requires>

Chapter 1

[29]

The preceding code is used for importing nutch-extension points for your plugin.

<extension id="org.apache.nutch.indexer.urlmeta"
name="URL Meta Indexing Filter"
point="org.apache.nutch.indexer.IndexingFilter">
<implementation id="indexer-urlmeta"
 class="org.apache.nutch.indexer.urlmeta.
URLMetaIndexingFilter"/>
</extension>

The preceding code is used for defining extension ID, extension name, extension
point, implementation ID, and implementation class for your plugin.

<extension id="org.apache.nutch.scoring.urlmeta"
name="URL Meta Scoring Filter"
point="org.apache.nutch.scoring.ScoringFilter">
<implementation id="scoring-urlmeta"
class="org.apache.nutch.scoring.urlmeta.URLMetaScoringFilter" />
</extension>
</plugin>

The preceding configuration is written to tell Apache Nutch about your plugin and
register your plugin with Apache Nutch.

In its simplest form, the preceding configuration looks as follows:

<?xml version="1.0"?>

<project name="recommended" default="jar-core">

<import file="../build-plugin.xml"/>
</project>

The preceding code will be used for building your plugin using Ant.

Describing dependencies with the ivy module
The ivy.xml file is used to describe the dependencies of the plugin on other libraries:

<ivy-module version="1.0">
<info organisation="org.apache.nutch" module="${ant.project.name}">
<license name="Apache 2.0"/>
<ivyauthor name="Apache Nutch Team" url="http://nutch.apache.org"/>
<description>
 Apache Nutch

Getting Started with Apache Nutch

[30]

</description>
</info>

<configurations>
<include file="${nutch.root}/ivy/ivy-configurations.xml"/>
</configurations>

<publications>
<!--get the artifact from our module name-->
<artifact conf="master"/>
</publications>

<dependencies>
</dependencies>

</ivy-module>

The preceding configuration contains either the description of the dependencies of
a module, its published artifacts and its configurations, or else the location of another
file which specifies this information.

The Indexer extension program
This is the source code for the URLMetaIndexingFilter. IndexingFilter is the
extension point and an interface for adding metadata into the search index.

packageorg.apache.nutch.indexer.urlmeta;
importorg.apache.commons.logging.Log;
importorg.apache.commons.logging.LogFactory;
importorg.apache.hadoop.conf.Configuration;
importorg.apache.hadoop.io.Text;
importorg.apache.nutch.crawl.CrawlDatum;
importorg.apache.nutch.crawl.Inlinks;
importorg.apache.nutch.indexer.IndexingException;
importorg.apache.nutch.indexer.IndexingFilter;
importorg.apache.nutch.indexer.NutchDocument;
importorg.apache.nutch.parse.Parse;

public class URLMetaIndexingFilter implements IndexingFilter {

private static final Log LOG = LogFactory
 .getLog(URLMetaIndexingFilter.class);
private static final String CONF_PROPERTY = "urlmeta.tags";
private static String[] urlMetaTags;
private Configuration conf;

Chapter 1

[31]

 /**
 * This will take the metatags that you have listed in your
"urlmeta.tags"
 * property, and looks for them inside the CrawlDatum object.
If they exist,
 * this will add it as an attribute inside the NutchDocument.
 *
 * @see IndexingFilter#filter
 */
publicNutchDocument filter(NutchDocument doc, Parse parse, Text url,
CrawlDatum datum, Inlinksinlinks) throws IndexingException {
if (conf != null)
this.setConf(conf);

if (urlMetaTags == null || doc == null)
return doc;

for (String metatag : urlMetaTags) {
 Text metadata = (Text) datum.getMetaData().
get(new Text(metatag));

if (metadata != null)
doc.add(metatag, metadata.toString());
 }

return doc;
 }

 /** Boilerplate */
public Configuration getConf() {
returnconf;
 }

 /**
 * handles conf assignment and pulls the value assignment from
the
 * "urlmeta.tags" property
 */
public void setConf(Configuration conf) {
this.conf = conf;

if (conf == null)
return;

urlMetaTags = conf.getStrings(CONF_PROPERTY);
 }
}

Getting Started with Apache Nutch

[32]

The Scoring extension program
This is the source code for the URLMetaScoringFilter extension. If the document
being indexed has a recommended metatag, this extension adds a Lucene text field to
the index called recommended with the content of that metatag.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Using your plugin with Apache Nutch
So the plugin has already been created. Now it's time to make it active. For that
you need to make certain configurations with Apache Nutch. It will configure your
plugin with Apache Nutch and after that you are able to use it as and when required.
For that you need to edit your nutch-site.xml file by in putting the following
content, which you will find in $NUTCH_HOME/conf.

<property>
<name>plugin.includes</name>
<value>protocol-http|urlfilter-regex|parse-(html|tika)|index-
(basic|anchor)|scoring-opic|urlnormalizer-(pass|regex|basic)|urlmeta</
value>
<description>
As you can see above, I have added urlmeta. Same way you can create
Apache Nutch plugin according to your needs. Regular expression naming
plugin directory names to
include. Any plugin not matching this expression is excluded.
 In any case you need at least include the nutch-extensionpoints
plugin. By
defaultNutch includes crawling just HTML and plain text via HTTP,
and basic indexing and search plugins.
</description>
</property>

Chapter 1

[33]

Compiling your plugin
And the last step of creating the Apache Nutch plugin is to compile your plugin.
Once it is compiled, your newly created plugin will be indexed to Apache Solr and
then you can search for the field, which is added as your plugin on Apache Solr;
Apache Solr will give you the result as a separate document. So you need to compile
and deploy your plugin by Ant. For that, you need to edit build.xml by in putting
the following content. You will find this file in $NUTCH_HOME/src/plugin.

<ant dir="urlmeta" target="deploy" />

Now run the Ant command in the $NUTCH_HOME directory. It will get everything
compiled and jarred up. Then execute the following command for crawling:

bin/nutch crawl ./urls/seed.txt/ -solr http://localhost:8983/solr/ -depth
3 -topN

Both scoring and indexing extensions will be used, which will enable us to search for
metatags within our Solr index. You can go to Apache Solr on the browser by typing
localhost:<PORT> and do an all query search. You will get your plugin indexed
into the Apache Solr as follows:

<doc>
 ...
 ...
 ...
</doc>

The following screenshot shows that the plugin has been successfully created:

Getting Started with Apache Nutch

[34]

Understanding the Nutch Plugin
architecture
The following diagram illustrates the Apache Nutch plugin architecture which
will show you how Apache Nutch functions. It will elaborate on searcher, indexer,
web DB, and fetcher. It will provide you with the flow, how data is flowing from
one stage to the next. It's a very key component of Apache Nutch. Therefore,
understanding this architecture is a must to understanding the functioning of
Apache Nutch. So, have a look at the image below and you will get an overview
of Apache Nutch plugin architecture.

Apache Nutch Plugin Architecture

web db

updatesfetch lists

fetchers
content

indexers

indexes

web servers

searchers

I have also explained each component in detail, which will help you to understand
them in depth:

•	 Searcher: Solr comes with a web interface. Solr allows you to run test
searches. Access it at http://localhost:8983/solr/admin/. Enter some
text into the QueryString box and click on Search. If your query matches
any result, you should see an XML file containing the indexed pages of your
websites.

•	 Indexer: This creates the inverted index from which the searcher extracts
results. It uses Lucene storing indexes.

Chapter 1

[35]

•	 Web DB: Web DB stores the document contents for indexing and later
summarization by the searcher, along with information such as the link
structure of the document space and the time each document was last fetched.

•	 Fetcher: Fetcher requests web pages, parses them, and extracts links from
them. Nutch robot has been written entirely from scratch.

Summary
So that's the end of the first chapter. Let's discuss briefly what you have learned in
this chapter. We started with the introduction of Apache Nutch. Then we moved
on to the installation and verification of Apache Nutch and saw how crawling takes
place with Apache Nutch. Then we had an introduction to Apache Solr and saw
how Apache Solr can be integrated with Apache Nutch to index the data crawled
by Apache Nutch. We covered crawling, crawling the web, and CrawlDB, as well
as parsing and parse filters. And finally we saw how the Apache Nutch plugin
can be created and also learned the Apache Nutch plugin architecture.

So that's all about the basics of Apache Nutch. Now let's see how deployment of
Apache Nutch takes place and how we can apply sharding on Apache Solr in the
next chapter.

Deployment, Sharding, and
AJAX Solr with Apache Nutch
We have discussed the installation of Apache Nutch, crawling websites, and
creating a plugin with Apache Nutch in the first chapter. This chapter covers
deployment of Apache Solr on a particular server, such as Apache Tomcat, Jetty.
Also, this chapter covers how sharding can take place with Apache Nutch using
Apache Solr as a searcher.

In this chapter, we are going to cover following topics:

•	 Deployment of Apache Solr
•	 Sharding with Apache Solr
•	 Working with AJAX Solr

By the end of this chapter, you will be able to deploy Apache Solr on a server
which contains the data crawled by Apache Nutch. You will also be able to
perform sharding with data of Apache Nutch using Apache Solr. You will
also be able to integrate AJAX with your running Apache Solr instance.

Deployment of Apache Solr
This part covers all the necessary steps which are required for performing
deployment of Apache Solr.

Deployment, Sharding, and AJAX Solr with Apache Nutch

[38]

Introduction of deployment
Installing, testing, and implementing a computer system or application is called
deployment. This term can be used for any installation and testing, such as setting
up a new network in an enterprise, installing a server farm, or implementing a new
application on a distributed computing network. So after successful deployment of
Apache Solr on Apache Tomcat, it's quite possible that by starting Apache Tomcat,
Apache Solr will automatically start. No need to start it manually. It's a very
important process because once Apache Nutch has crawled all the web pages for
you and indexed them to Apache Solr, then the process needs to be started which
will deploy Apache Solr on Apache Tomcat. After successful deployment of Apache
Solr with Apache Tomcat, you can iterate on Apache Solr over a browser and can
start searching on web pages which are crawled by Apache Nutch. You can search
for any particular webpage. You can customize the search according to your needs.
In short, you can make your own search engine by customizing Apache Solr. This
is a very basic need for any web-based application because every application needs
this type of scenario. You can integrate the deployed Apache Solr with your running
application and get the benefit out of it.

Need of Apache Solr deployment
We are going to see how to deploy Apache Solr on Apache Tomcat. But the question
is what is the need for that? I will give you an answer. Let's say you have crawled
a number of websites using Apache Nutch. So, Apache Nutch has crawled a lot of
pages for you. Now what? Here is when this deployment of Apache Solr comes into
the picture. I will cover the sharding part in a later section. It's a kind of mechanism
that divides the total number of URLs to different shards for bringing efficiency in
Apache Solr searching. So, it's a very good concept that we are going to discuss in
a further section. But for now, I can say that it's very much compulsory for Apache
Solr to be deployed on any server as Apache Tomcat.

The prerequisites for deployment are as follows:

•	 JDK
•	 Tomcat
•	 Solr

For this deployment, I have used JDK 1.6, Apache Tomcat 7.0.41,
and Solr 4.3.0.

Chapter 2

[39]

Setting up Java Development Kit
The Java Development Kit (JDK) was developed by Oracle for Java developers.
The JDK is an implementation of either Java SE, Java EE, or Java ME platforms.
These platforms were released by Oracle Corporation in the form of binary products
aimed at Java developers on Solaris, Linux, Mac OS X, or Windows. This is needed
for running any Java-based application. So be sure you have JDK installed on
your system. If not, please refer to http://docs.oracle.com/javase/7/docs/
webnotes/install/. It will help you to set up the JDK and JAVA_HOME variable.

Setting up Tomcat
Apache Tomcat or Tomcat is an open source web server and Servlet container
developed by Apache Software Foundation (ASF). It implements the Java Servlet
and JavaServer Pages (JSP) specifications provided by Sun Microsystems and also
provides a pure Java HTTP web server environment for Java code to run. It includes
tools for configuration and management, but you can configure it by editing the XML
configuration files. The following steps are given for the set up of Apache Tomcat:

1.	 Download the Apache Tomcat server from its official website at
http://tomcat.apache.org.

2.	 Start Apache Tomcat by going to the bin directory of Apache Tomcat
by executing the following commands:
cd <Directory where your Apache Tomcat resides>/bin

./startup.sh

If successful, you will get the following output:

3.	 Test it by opening http://localhost:8080 on your browser, as Apache
Tomcat is by default running on port 8080. If you have changed the port,
then you need to put that port number instead of 8080.

http://docs.oracle.com/javase/7/docs/webnotes/install/
http://docs.oracle.com/javase/7/docs/webnotes/install/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://localhost:8080/

Deployment, Sharding, and AJAX Solr with Apache Nutch

[40]

4.	 You can stop Apache Tomcat by executing the following commands:

cd <Directory where your Apache Tomcat resides>/bin

./shutdown.sh

If successful, you will get the following output:

The other method for stopping Apache Tomcat is by typing the following
command on the terminal where your Apache Tomcat is currently running:

Ctrl + c

Setting up Apache Solr
As I already covered the introduction of Apache Solr in Chapter 1, Getting Started
with Apache Nutch, I will not cover that part here. I have used Apache Solr 4.3.0
for this deployment.

The following steps are given for setting up Apache Solr:

1.	 Download Apache Solr 4.3.0 from the Apache official website at
http://archive.apache.org/dist/lucene/solr/4.3.0/.

2.	 Unzip Solr 4.3.0 to your respective directory. Let's say I have extracted it
into /usr/local. So, the path of my Solr 4.3.0 is /usr/local/solr-4.3.0.
So, follow the next steps accordingly.

3.	 Make a folder with the name SOLR_HOME in the respective folder of your
choice. Let's say I have created the SOLR_HOME directory in /usr/local. So,
the path of my SOLR_HOME directory would be /usr/local/SOLR_HOME.

4.	 Go to the solr directory which you will find in /usr/local/solr-4.3.0/
examples/solr. Copy all the files which are inside it and paste them into /
usr/local/SOLR_HOME. If you have started your Apache Solr already, then
you will get a server-shutting-down exception. So, we have set up Apache
Solr in the SOLR_HOME directory. We have also copied all the necessary files
to this directory.

http://archive.apache.org/dist/lucene/solr/4.3.0/
http://archive.apache.org/dist/lucene/solr/4.3.0/

Chapter 2

[41]

5.	 Go to the solr directory which you will find in /usr/local/SOLR_HOME.
You will see two directories called collection1 and bin. Copy these two
directories and paste them in the Solr_Home directory. If Solr has already
started and if lib directory is not copied, you will get an exception as the
server error filterstart. The collection1 and bin directories contain the
necessary configuration files.

6.	 Copy JAR files called log4j-1.2.16.jar, slf4j-api-1.6.6.jar, and
slf4j-log4j12-1.6.6.jar, which you will find in /usr/local/solr-
4.3.0/example/lib/ext and also copy the log4j.properties file, which
you will find in /usr/local/solr-4.3.0/example/resources and paste
them in the lib directory which you will find in <Respective directory
where your Apache Tomcat resides>/lib. You also need to download
commons-logging-1.1.3.jar or any other respective version of commons-
logging jar and paste it in the same lib directory. Otherwise, a logging
error will appear. The log4j-1.2.16.jar, slf4j-api-1.6.6.jar, and
slf4j-log4j12-1.6.6.jar files are used for logging mechanism. So when
you run Apache Solr, if these JARs are not present, then you will not get any
logs. The log4j.properties file contains the required properties for the
logging configuration. The commons-logging-1.1.3.jar file is also used for
logging mechanism.

7.	 Copy the solr-4.3.0.war file which you will find in /usr/local/solr-
4.3.0/dist and paste it in the webapps directory which you will find in
<Respected directory where your Apache Tomcat resides>. Make
sure that you rename solr-4.3.0.war as solr. We are doing this for
running Apache Solr in Tomcat. So, this WAR file will be deployed into
Apache Tomcat when Apache Tomcat starts for the first time, and it will
create the directory called solr-4.3.0 inside the webapps directory, which is
called an application of Apache Solr.

8.	 If Apache Tomcat has already started, then it will create a directory called
solr in <Respected directory where your Apache Tomcat resides>/
webapps. If Apache Tomcat has not started, then just start it as mentioned in
the preceding Setting up Tomcat section.

9.	 Edit the web.xml file which you will find in <Respected directory where
your Apache Tomcat resides>/webapps/solr/WEB-INF by adding the
following content:
<env-entry>
 <env-entry-name>solr/home</env-entry-name>
 <env-entry-value>Path to your solr home</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
</env-entry>

Deployment, Sharding, and AJAX Solr with Apache Nutch

[42]

10.	 The above configuration will be commented by default. So uncomment it and
give your Solr directory path which you will find in /usr/local/Solr_Home
in <env-entry-value>Path to your solr home</env-entry-value>. So
this configuration will tell Apache Tomcat where Apache Solr resides and it
will use that path of Apache Solr whenever Apache Tomcat starts.

11.	 After modification, your preceding configuration will look as follows:

<env-entry>
 <env-entry-name>solr/home</env-entry-name>
 <env-entry-value>/usr/local/solr_home/solr</env-entry
 -value>
 <env-entry-type>java.lang.String</env-entry-type>
</env-entry>

Running Solr on Tomcat
We are done with all the configurations of Apache Solr for deploying it on Apache
Tomcat. Now, it's time to actually run Apache Solr on Apache Tomcat and check
whether it's functioning properly or not. You need to make sure that all the logs
related to Apache Solr need to appear on the Apache Tomcat console when you
start working on Apache Solr on the browser. If it's not appearing, then you need
to check your configuration once again for what you have missed:

1.	 Finally, start your Apache Solr which is deployed on Apache Tomcat
by entering http//localhost:8080/solr on your browser.

2.	 If successful, you will get an output like the following:

Chapter 2

[43]

3.	 Check the logs on the Apache Tomcat console to see whether they are
appearing or not. If yes, then you have configured it correctly. The following
screenshot will be the output of Apache Tomcat logs:

4.	 If not, then you need to check your configuration once again to find out what
you have missed.

So, that's all for the deployment of Apache Solr on Apache Tomcat. Now, let's move
over to the next section.

Sharding using Apache Solr
This section is going to describe all the necessary steps which are required to perform
sharding using Apache Solr.

Deployment, Sharding, and AJAX Solr with Apache Nutch

[44]

Introduction to sharding
When your data becomes too large for a single node, you can break it down into a
number of sections by creating one or more shards. Each shard will be a portion of
the logical index or core. A shard is the terminology which means splitting a core
data over a number of servers or nodes. Take an example of representing each state;
you might have a shard available for data which represents each state or it might
be different categories which you want to make them search independently, but
they are actually often combined. Load balancing comes into the picture whenever
load increases in your application. Load means that the number of requests/hits
is increased and your application is not able to handle that many requests. At this
time, load balancing is required which will balance your application load and divide
the load among machines, so that your application can run smoothly. Division of a
load happens by transferring an incoming request to different machines. Whenever
any request comes to the master machine, it will transfer that request to any slave
machine. The master machine is not responsible for handling all requests. Load will
decrease from the master machine and it will be divided among the slave machines.
Scalability means whenever load increases, the number of servers increases. This
is a simple definition of scalability. Scalability is a very basic requirement for any
application. Your application must be scalable enough whenever load increases
on it. So, scalability is required for handling load on your application. So, it's
very important functionality of Apache Solr which is highly used in real-time
applications. With this, handling load is almost a trivial task.

If users are limited in performing indexing on your application, then you can apply
sharding. But if the number of users is increased, then sharding might not be a good
option. In case many users are performing indexing simultaneously, then sharding
isn't the answer to handling high traffic. You should use Solr replication. This will
distribute complete copies of the master server to one or more slave servers. The job
of the master server will be to update the index and all the queries will be handled by
the slave servers. This division will make Apache Solr scalable and Apache Solr can
provide quick responses against queries over large search volumes. Whenever load
increases, more and more servers will be required to handle this load. This involves a
master-slave configuration in which one server would be the master Solr server and
the rest are the slave Solr servers. So, the master server will divide that load among
the slave Solr severs whenever load increases on it. This increases Apache Solr's
efficiency. You should use replication instead of sharding. In this case, we would like
to set up with multiple Solr instances. They all need to have constant configuration.
For configuring, we are going to use the schema.xml file which resides inside $SOLR_
HOME which is a directory where your Apache Solr resides.

Chapter 2

[45]

The following figure shows how load is divided from the master machine to the
slave machines:

Replication

Master

slave2slave1 slave3

Replicating the entire index on multiple servers

A request will be first handled by the master server. The master server will decide to
which slave server the request needs to be sent. Then, the master server will send the
particular request to the particular slave server. The slave server will give response
to that request. This is how Solr replication works. Update commands are sent to any
server with distributed indexing organized properly. Whenever a new document
needs to be added or deleted, then that request would be forwarded to that slave
machine which has the support of a hash function of the distinctive document ID.
The commit and deleteByQuery commands are sent to each server in shards.

Use of sharding with Apache Nutch
We are going to see how sharding takes place with Apache Nutch using Apache Solr.
But before that, let's discuss why it is required. At this point, you must be aware of
deployment of Apache Solr on Apache Tomcat. Now let's have a look at a practical
scenario. Let's say you have crawled one million URLs and indexed them to Apache
Solr. Now to make Apache Solr efficient in searching, you need to apply some
mechanism on it. This is where sharding will be used. Sharding will divide the traffic
by dividing the total number of URLs into different shards, which makes Apache
Solr efficient in searching and, in addition, Apache Solr gives the higher throughput
while searching. So in real-time applications, all these components will be integrated
and this makes your application efficient in a web environment.

Deployment, Sharding, and AJAX Solr with Apache Nutch

[46]

Distributing documents across shards
As explained previously, the total number of documents will be divided among
a number of shards and each shard will be responsible for a certain amount of
documents.

You can get all the documents indexed on every shard of your server. Solr doesn't
embody out of the box support for distributed indexing. But our technique will be
straightforward and you can send documents to any shard for indexing. A simple
hashing system would additionally work. The formula would be as follows:

uniqueId.hashCode() % numServers

By using this approach, you will get an idea that a document needs to be updated
or deleted.

Sharding Apache Solr indexes
Now, we'd like to pick the right quantity of shards. A group that is supposed
to be designed is one among those variables that we must have before the final
deployment. After making our collection, we can't modify the number of shards. We
can only add a lot of replicas. Of course this comes with consequences—if we have
chosen the number of shards incorrectly, we might find ourselves with a very low
shards count. The only way to go would be making a brand new assortment with the
correct number of shards and re-index our knowledge. With the release of Apache
Solr 4.3, we are currently ready to split shards of our collections.

Single cluster
Now we tend to check the new shard-split functionality. We try and run a tiny
low and single cluster containing a single Apache Solr instance with embedded
ZooKeeper and use the instance assortment given with Apache Solr. The following
steps are given for this setup:

1.	 Start your Apache Solr by going to the example directory which you will find
in <Respective directory where your Apache Solr resides> and by
executing following command:
java -Dbootstrap_confdir=./solr/collection1/conf -
 Dcollection.configName=collection1 -DzkRun -DnumShards=1 -
 DmaxShardsPerNode=2 -DreplicationFactor=1 -jar start.jar

Chapter 2

[47]

If successful, you will get an output like the following:

An explanation of the preceding command is as follows:

°° For defining the name of the collection, the following argument will
be provided:
Dcollection.configName=collection1

°° For starting embedded ZooKeeper, the following argument will be
provided:
-DzkRun

°° For defining the number of shards, the following argument will be
provided:
-DnumShards=1

°° You can increase the number of shards by providing an incremented
value in the following argument:
–DnumShards

°° For defining the maximum number of shards per node, the following
argument will be provided:
-DmaxShardsPerNode=2

°° For defining the replication factor, the following argument will be
used:
DreplicationFactor=1

Deployment, Sharding, and AJAX Solr with Apache Nutch

[48]

°° For starting Apache Solr, the following argument will be provided:

-jar start.jar

In the preceding command, –jar is an argument for defining JAR and
start.jar is the actual JAR which will start Apache Solr.

2.	 Go to the exampledocs directory which you will find in <Respective
directory where your Apache Solr resides>/example and execute
the following command:
java -jar post.jar *.xml

If successful, you will get an output as follows:

The preceding command will index all XML files which reside in the
exampledocs directory of Apache Solr. Apache Solr needs these XML
files to perform sharding on them.

3.	 The number of indexed documents can be checked with the
following command:
curl 'http://localhost:8983/solr/
 collection1/select?q=*:*&rows=0'

Chapter 2

[49]

The response returned by Solr is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader"><int name="status">0</int><int
 name="QTime">5</int><lst name="params"><str
 name="q">*:*</str><str
 name="rows">0</str></lst></lst><result name="response"
 numFound="32" start="0"></result>
</response>

As you can see, we have got 32 documents in our collection.

Splitting shards with Apache Nutch
In this section, we will divide a whole shard into a number of shards. So, the total
number of documents will be divided into this number of shards. And after that
instead of having one collection, we will have a different number of shards. The
following command is given to divide the shards:

curl 'http://localhost:8983/solr/admin/collections?
 action=SPLITSHARD&collection=collection1&shard=shard1'

If successful, we will get an output as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
...
</lst>
</response>

Cleaning up with Apache Nutch
First of all in order to see the data in new shards, we need to run the commit
command against our collection. This can be done by using the following command:

curl 'http://localhost:8983/solr/collection1/update'
 --data-binary '<commit/>' -H 'Content-type:application/xml'

If successful, you will get an output as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader"><int name="status">0</int><int
 name="QTime">173</int></lst>
</response>

http://localhost:8983/solr/admin/collections?action=SPLITSHARD&collection=collection1&shard=shard1
http://localhost:8983/solr/admin/collections?action=SPLITSHARD&collection=collection1&shard=shard1

Deployment, Sharding, and AJAX Solr with Apache Nutch

[50]

Splitting cluster shards
After splitting a shard cluster, we will get an output on Apache Solr on the browser
as follows:

collection1 shard1 192.168.15.119

Cluster shard before splitting

The preceding screenshot shows the single shard cluster before splitting. You
can see that traffic is passing from only one shard. You will see in the following
screenshot, which shows the multiple shard clusters, in which traffic is going
from multiple shards.

collection1 shard1_1 192.168.15.119

shard1 192.168.15.119

shard1_0 192.168.15.119

Cluster shard after splitting

As you see in the first diagram on this page, we have one collection point before
cluster shard splitting. After cluster shard splitting, it's divided into three completely
different shards: shard1, shard1_0, and shard_1, as you can see in the preceding
screenshot. Every shard will contain a portion of documents from the original
shard1. Some documents would go to shard1_1 and some of them should be placed
in shard1_0 and the total number of shards will be displayed in the main shard, that
is shard1. So this is how the division of documents is done in Apache Solr sharding.

Checking statistics of sharding with Apache Nutch
Now, it's time to see the output on Apache Solr on the browser. It will show you the
statistics of every shard such as how many documents each shard contains and the
details related to that shard will be displayed.

For checking statistics of the main shard, that is shard1, use the following URL:

http://localhost:8983/solr/#/collection1

http://localhost:8983/solr/#/collection1
http://localhost:8983/solr/#/collection1

Chapter 2

[51]

If successful, you will get an output as follows:

You can see that the total number of documents is 32 represented by Num Docs: 32
in the Statistics tab.

For checking statistics of shard1_0, use the following URL:

http://localhost:8983/solr/#/collection1_shard1_0_replica1

If successful, you will get an output as follows:

http://localhost:8983/solr/#/collection1_shard1_0_replica1
http://localhost:8983/solr/#/collection1_shard1_0_replica1

Deployment, Sharding, and AJAX Solr with Apache Nutch

[52]

You can see that the total number of documents is 14 represented by Num Docs: 14
in the Statistics tab.

For checking statistics of shard1_1, use the following URL:

http://localhost:8983/solr/#/collection1_shard1_1_replica1

If successful, you will get an output as follows:

You can see that the total number of documents is 18 represented by Num Docs:
18 in the Statistics tab.

So, 32 documents are divided into two shards. shard1_0 contains 14 documents
and shard1_1 contains 18 documents. This division of documents is handled by
Apache Solr internally. So, we might not be able to predict which shard contains
how many documents.

The final test with Apache Nutch
This is the final step for sharding with Apache Solr. You have to check whether your
documents are available in the shards created by the SPLITSHARD action. Use the
following URL to check the availability of documents in shards:

http://localhost:8983/solr/collection1/select?q=*:*&rows=100&fl=id,[s
hard]&indent=true

http://localhost:8983/solr/#/collection1_shard1_1_replica1
http://localhost:8983/solr/#/collection1_shard1_1_replica1

Chapter 2

[53]

If successful, you will get an output as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">7</int>
 <lst name="params">
 <str name="fl">id,[shard]</str>
 <str name="q">*:*</str>
 <str name="rows">100</str>
 </lst>
</lst>
<result name="response" numFound="32" start="0" maxScore="1.0">
 <doc>
 <str name="id">GB18030TEST</str>
 <str name="[shard]">192.168.56.1:8983
 /solr/collection1_shard1_0_replica1/</str></doc>
...
...
...
 <doc>
 <str name="id">100-435805</str>
 <str name="[shard]">192.168.56.1:8983
 /solr/collection1_shard1_1_replica1/</str></doc>
</result>
</response>

As you can see, documents are coming from both shards, that is shard1_1 and
shard1_0 ,which is again what we expected. So just check the output, whether the
documents which you indexed to Apache Solr are appearing or not.

So that's the end of the sharding with Apache Nutch using Apache Solr. It's a very
useful technique when you work in real-time applications. So the basic agenda
behind this implementation is that you should use this technique in your real-time
applications where you have crawled millions of web pages using Apache Nutch
and indexed them to Apache Solr. Apply sharding on them and get the best result
from Apache Solr.

Deployment, Sharding, and AJAX Solr with Apache Nutch

[54]

Working with AJAX Solr
AJAX Solr is a JavaScript library for making user interfaces for Apache Solr. It is
JavaScript framework-agnostic, however, it needs an AJAX implementation to
communicate with Apache Solr. As such, you'll use the library whether or not you
develop jQuery, MooTools, Prototype, Dojo, or any other framework. You will have
to define only a manager object that extends the provided abstract manager object,
and define the function executeRequest() in the object. A jQuery-compatible
manager is provided at managers/Manager.jquery.js.

AJAX Solr began as a fork of SolrJS created by Matthias Epheser. We need to
understand it very clearly to integrate this with our running Apache Solr.

Architectural overview of AJAX Solr
AJAX Solr loosely follows the Model-View-Controller (MVC) pattern. The
Parameter Store is the model, that stores the Solr parameters and thus, the state of
the appliance. The Manager is the controller; it connects to the Parameter Store and
asks for the required details, sends requests to Solr, and delegates the response to the
widgets for rendering. The widgets are used to view data.

Applying AJAX Solr on Reuters' data
Reuters is actually a dataset on which we are going to apply the AJAX Solr
mechanism. You can download the Reuters' data from http://kdd.ics.uci.edu/
databases/reuters21578/reuters21578.html. Before we begin, we tend to write
the Hypertext Mark-up Language (HTML) to the JavaScript widgets that can be
integrated with each other. In order to proceed further, this HTML can typically be
the non-JavaScript version of your search interface that we would like to improve
with unobtrusive JS. Here we use jQuery and jQuery UI.

Running AJAX Solr
If you want to integrate AJAX with your Apache Solr, you need to do a certain
configuration. It's a very good feature provided by this library. It will make the user
UI-rich and user-friendly. So, it's a very useful technique in real-time applications
that will load your data on Apache Solr without refreshing the whole web page.

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

Chapter 2

[55]

The following steps are given for integrating AJAX Solr with your running local
instance of Apache Solr:

1.	 Download this tarball reuters_data.tar.gz which can be downloaded
from https://github.com/downloads/evolvingweb/ajax-solr/
reuters_data.tar.gz, which contains a Solr index of the Reuters
information. Replace the data directory of Apache Solr which you will find
in <Respected directory where your Apache Solr resides>/example/
solr/collection1 of your Solr instance with this data directory of tarball
which you will find in <Respected directory where your reuters_data
resides>.

2.	 Put the following configuration in the schema.xml file which you will find in
<Respected directory where your Apache Solr resides>/example/
solr/collection1/conf:
<field name="id" type="string" indexed="true" stored="true"
 required="true" multiValued="false" />
<field name="sku" type="text_en_splitting_tight"
 indexed="true" stored="true" omitNorms="true"/>
<field name="name" type="text_general" indexed="true"
 stored="true"/>
<field name="manu" type="text_general" indexed="true"
 stored="true" omitNorms="true"/>
<field name="cat" type="string" indexed="true"
 stored="true" multiValued="true"/>
<field name="features" type="text_general" indexed="true"
 stored="true" multiValued="true"/>
<copyField source="title" dest="text"/>
<copyField source="author" dest="text"/>
<copyField source="description" dest="text"/>
<copyField source="keywords" dest="text"/>
<copyField source="content" dest="text"/>
<copyField source="content_type" dest="text"/>
<copyField source="resourcename" dest="text"/>
<copyField source="url" dest="text"/>
<field name="date" type="pdate" indexed="true"
 stored="true" multiValued="true" omitNorms="true"
 termVectors="true" />
<field name="dateline" type="string" indexed="true"
 stored="true" multiValued="true" omitNorms="true"
 termVectors="true" />
<copyField source="dateline" dest="allText"/>

https://github.com/downloads/evolvingweb/ajax-solr/reuters_data.tar.gz
https://github.com/downloads/evolvingweb/ajax-solr/reuters_data.tar.gz

Deployment, Sharding, and AJAX Solr with Apache Nutch

[56]

3.	 Modify reuters.js which you will find in <Respected directory where
your ajax-solr-master directory resides>/examples/reuters/js by
putting the following configuration into it:

°° Find the solrUrl field in reuters.js and set your running Apache
Solr URL there which will be http://localhost:8983/solr by
default if you haven't changed anything.

°° Find facet.field in reuters.js and update it with the fields you
want to facet. For example, title.

°° Remove f.topics.facet.limit and f.countrycodes.facet.
limit from reuters.js unless you have used these fields in your
Apache Solr.

°° Remove all facet.date parameters unless you have used the date
field to facet in your Apache Solr.

You can update or remove tag cloud, autocomplete, country code, and
calendar widgets from reuters.js. You can set the associated Solr fields
for the tag cloud by changing the value of var fields in reuters.js. For
example, title, url, content.

4.	 Apache Nutch uses a content field instead of a text field as Reuters. Modify
ResultWidget.js which you will find in examples/reuters/widgets.
Replace all occurrences of doc.text with doc.content in the template
method. Apache Nutch is not using any dateline field. So remove all
occurrences of doc.dateline + ' ' +.

http://localhost:8983/solr
http://localhost:8983/solr

Chapter 2

[57]

5.	 Just open the index.html file in your browser which you will find in
examples/reuters/index.html. If successful, you will get an output
as follows:

Now you can enjoy playing with AJAX on Apache Solr. So this ends the integration
of AJAX with your running instance of Apache Solr.

Deployment, Sharding, and AJAX Solr with Apache Nutch

[58]

Summary
So, that's the end of this chapter. Let's quickly revise what we have learned. We
started with deployment of Apache Solr on Apache Tomcat. In this, we started with
an introduction on deployment and then we moved over to the installation steps
and got an idea of JDK, Apache Tomcat, and what the prerequisites for Apache
Solr deployment are. Then, we covered sharding on Apache Solr. In this, we started
with an introduction on sharding and then we covered how sharding takes place on
Apache Solr. And finally, we saw a very key concept called AJAX Solr which can be
highly used in real-time applications. In this, we covered AJAX Solr, architectural
overview of AJAX Solr, AJAX Solr Reuters, and finally running AJAX Solr.

I hope you enjoyed reading this chapter. In the next chapter, we will discuss how
Apache Nutch can be integrated with Apache Hadoop and how Apache Nutch can
be integrated with Eclipse in the same way.

Integration of Apache
Nutch with Apache

Hadoop and Eclipse
We have discussed in Chapter 2, Deployment, Sharding, and AJAX Solr with Apache
Nutch, how deployment takes place with Apache Solr and how we can apply
Sharding using Apache Solr. We have also covered integrating AJAX with our
running Apache Solr instance. In this chapter, we will see how we can integrate
Apache Nutch with Apache Hadoop, and we will also see how we can integrate
Apache Nutch with Eclipse. Apache Hadoop is a framework which is used for
running our applications in a cluster environment. Eclipse will be used as an
Integrated Development Environment (IDE) for performing crawling operations
with Apache Nutch. We will discuss in detail about this in the coming sections. So,
we will first start with the integration of Apache Nutch with Apache Hadoop. And
then, we will move towards the integration of Apache Nutch with Eclipse. So let's
get started.

In this chapter, we are going to cover the following topics:

•	 Integrating Apache Nutch with Apache Hadoop
°° Introducing Apache Hadoop
°° Introducing Apache Nutch integration with Apache Hadoop
°° Installing Apache Hadoop and Apache Nutch
°° Setting up the deployment architecture of Apache Nutch

Integration of Apache Nutch with Apache Hadoop and Eclipse

[60]

•	 Configuring Apache Nutch with Eclipse

°° Introducing the Apache Nutch configuration with Eclipse
°° Installing and building Apache Nutch with Eclipse
°° Crawling in Eclipse

By the end of this chapter, you will be able to set up Apache Nutch on Apache
Hadoop in your own environment. You will also be able to perform crawling in
Apache Nutch by using Eclipse.

Integrating Apache Nutch with Apache
Hadoop
In this section, we will see how Apache Nutch can be integrated with Apache
Hadoop. So, we will start by introducing Apache Hadoop. Then, we will have some
basic introduction of integration of Apache Nutch with Apache Hadoop. Lastly, we
will move over to the configuration part of Apache Hadoop and Apache Nutch. We
will also see how we can deploy Apache Nutch on multiple machines.

Introducing Apache Hadoop
Apache Hadoop is designed for running your application on servers where there
will be a lot of computers, one of them will be the master computer and the rest
will be the slave computers. So, it's a huge data warehouse. Master computers are
the computers that will direct slave computers for data processing. So, processing
is done by slave computers. This is the reason why Apache Hadoop is used for
processing huge amounts of data. The process is divided into the a number of slave
computers, which is why Apache Hadoop gives the highest throughput for any
processing. So, as data increases, you will need to increase the number of slave
computers. That's how the Apache Hadoop functionality runs.

Apache Nutch can be easily integrated with Apache Hadoop, and we can make
our process much faster than running Apache Nutch on a single machine. After
integrating Apache Nutch with Apache Hadoop, we can perform crawling on the
Apache Hadoop cluster environment. So, the process will be much faster and we
will get the highest amount of throughput.

Chapter 3

[61]

Installing Apache Hadoop and Apache Nutch
In this section, we will see how we can configure Apache Hadoop and Apache
Nutch in our own environment. After installing these, you can perform the
crawling operation in Apache Nutch, which will be run on the Apache Hadoop
cluster environment.

Downloading Apache Hadoop and Apache Nutch
Both Apache Nutch and Apache Hadoop can be downloaded from the Apache
websites. You need to check out the newest version of Nutch from the source after
downloading. As an alternative, you can pick up a stable release from the Apache
Nutch website.

Setting up Apache Hadoop with the cluster
Apache Hadoop with Cluster setup does not require a huge hardware to be
purchased to run Apache Nutch and Apache Hadoop. It is designed in such a way
that it makes the maximum use of hardware. So, we are going to use six computers
to set up Apache Nutch with Apache Hadoop. My computer configuration in the
cluster will have Ubuntu 10.04 installed. The names of our computers are
as follows:

•	 reeshucluster01

•	 reeshucluster02

•	 reeshucluster03

•	 reeshucluster04

•	 reeshucluster05

•	 reeshucluster06

To start our master node we use the reeshucluster01 computer. By master node,
I mean that this will run the Hadoop services, which will coordinate with the slave
nodes (the rest of the computers). In this case, all the remaining nodes will be the
slave nodes, that is, reeshucluster02, reeshucluster03, and so on. And it's the
machine on which we will perform our crawl. We have to set up Apache Hadoop
on each of the above clusters. The steps for setting up Apache Hadoop on these
clusters are described in the following sections.

Integration of Apache Nutch with Apache Hadoop and Eclipse

[62]

Installing Java
Java is a programming language by Sun Microsystems. It is fast, secure, and
reliable. Java is used everywhere—in laptops, data centers, game consoles, scientific
supercomputers, cell phones, Internet, and so on. My cluster configuration consists of
Java 6, that's why I have explained just Java 6. If your cluster configuration has Java
7 installed, you need to change it accordingly. You can refer to http://askubuntu.
com/questions/56104/how-can-i-install-sun-oracles-proprietary-java-
6-7-jre-or-jdk for installing Java 7. The steps for installing Java 6 are given as
follows. You can always refer to http://www.oracle.com/technetwork/java/
javase/install-linux-self-extracting-138783.html if you are facing any
difficulty in installing:

1.	 Download the 32-bit or 64-bit Linux compressed binary file from http://
www.oracle.com/technetwork/java/javase/downloads/index.html. It
has a .bin file extension.

2.	 Give it permissions to execute and extract it using the following command:
#chmod a+x [version]-linux-i586.bin
./[version]-linux-i586.bin

3.	 During installation, it will ask you to register—press Enter. Firefox will
open with the registration page. Registration is optional. JDK 6 package is
extracted into the ./jdk1.6.0_x directory, for example, ./jdk1.6.0_30.

4.	 Let's rename it as:
#mv jdk1.6.0_30 java-6-oracle

5.	 Now, move the JDK 6 directory to/usr/lib.
#sudo mkdir /usr/lib/jvm
#sudo mv java-6-oracle /usr/lib/jvm

6.	 Run the self-extracting binary.
7.	 Execute the downloaded file, which is prepended by the path to it.

For example, if the file is in the current directory, prepend it with ./
(necessary if . is not in the PATH environment variable):
./jdk-6u <version>-linux-i586.bin

8.	 The binary code license is displayed, and you are prompted to agree
to its terms.

9.	 The JDK files are installed in a directory called jdk1.6.0_<version>
in the current directory.

10.	 Delete the bin file if you want to save disk space.

Chapter 3

[63]

11.	 Finally, test it by using the following command:
#java -version
#javac –version

12.	 The preceding commands should display the Oracle version installed.
For example, 1.6.0_30.

13.	 If all succeeds, you will get following output:

The preceding screenshot will show you that your JDK is successfully installed and
your Java is running correctly.

Downloading Apache Hadoop
I have used Apache Hadoop 1.1.2 for this configuration. I have tried to cover
everything correctly. Still, you can always refer to http://www.michael-noll.
com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/ for
running Apache Hadoop on Ubuntu Linux for single-node clusters. Refer to http://
www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-
node-cluster/ for running Apache Hadoop on Ubuntu Linux for multi-node cluster.

The steps for downloading Apache Hadoop are given as follows:

1.	 Download Apache Hadoop 1.1.2 branch distribution from http://www.
apache.org/dyn/closer.cgi/hadoop/common/. Unzip Apache Hadoop
using the relevant commands. If you're using Windows, you will have to
use an archive program, such as WinZip or WinRar, for extracting. Fire
the following command by going to the directory where your downloaded
Apache Hadoop resides:
$tar hadoop-1.1.2.tar.gz

I have configured Apache Hadoop by taking a separate new user on my
system as it's a good practice to do it. I have created a new user and given
permission to Apache Hadoop to allow only this user to access Apache
Hadoop. It's for security purposes (so that no other user can access Apache
Hadoop). Not even the root user is able to access Apache Hadoop. You
have to log in as this user to access Apache Hadoop.

Integration of Apache Nutch with Apache Hadoop and Eclipse

[64]

2.	 The following command will add a new group called hadoop:
$ sudo addgroup hadoop

3.	 The following command will add new user called hduser,
and then adds this user to the hadoop group:

$ sudo adduser --ingroup hadoop hduser

Configuring SSH
Apache Hadoop needs SSH, which stands for Secure Shell, to manage its nodes, that
is, remote machines and your local machine. It is used to log into the remote system
or the local system, and also performs necessary operations on a particular machine.
So, you need to configure this in your local environment as well as in your remote
environment for running Apache Hadoop. The commands and steps for configuring
SSH are given as follows:

1.	 The following command will be used for logging into the hduser:
user@ubuntu:~$ su - hduser

It will ask for a password, if one is set. Enter the password and you will be
logged into that user.

2.	 The following command will be used for generating a key. This key will be
used to provide authentication at the time of login. Make sure you are logged
in as an hduser before firing the following command.
hduser@ubuntu:~$ ssh-keygen -t rsa -P ""

3.	 You will get a result as follows:
Generating public/private rsa key try.
Enter move into that to save lots of the key
(/home/hduser/.ssh/id_rsa):

4.	 Press Enter and you will get a result as follows:
Created directory '/home/hduser/.ssh'.
Your identification has been saved in /home/hduser/.ssh/id_rsa.
Your public key has been saved in /home/hduser/.ssh/id_rsa.pub.
The key fingerprint is:
9b:82:ea:58:b4:e0:35:d7:ff:19:66:a6:ef:ae:0e:d2 hduser@ubuntu
The key's random art image is:

Chapter 3

[65]

The preceding screenshot is showing the generated key image.
The second line will make an RSA key pair with an empty password.
Generally, using a blank password isn't recommended.

5.	 The following command will copy the generated key to the authorized_
keys directory that you will find in $HOME/.ssh, where $HOME will be your
home directory (that is, /home/reeshu). It's required for authentication at
the time of SSH login.
$hduser@ubuntu:~$ cat $HOME/.ssh/id_rsa.pub >>
$HOME/.ssh/authorized_keys

6.	 The final step is to test the SSH setup by connecting to your local machine
as the hduser. The following command will be used for testing:
hduser@ubuntu:~$ ssh localhost

7.	 You will get an output as follows:
The authenticity of host 'localhost (::1)' can't be established.
RSA key fingerprint is d7:87:25:47:ae:02:00:eb:1d:75:4f:bb:44
:f9:36:26.
Are you sure you want to continue connecting (yes/no)?
Just type yes and press enter. You will get as follows:
Warning: Permanently added 'localhost' (RSA) to the list of known
hosts.
Linux ubuntu 2.6.32-22-generic #33-Ubuntu SMP Wed Apr 28 13:27:30
UTC 2010 i686 GNU/Linux
Ubuntu 10.04 LTS
hduser@ubuntu:~$

Integration of Apache Nutch with Apache Hadoop and Eclipse

[66]

Disabling IPv6
Internet Protocol version 6 (IPv6) is the latest revision of Internet Protocol (IP). It is
also the communication protocol which provides the location and an identification
for routers and computers on networks. Sometimes this address creates problems
in configuring Apache Hadoop. So, it is better to disable it. The configuration for
disabling IPv6 is discussed next.

Sometimes, using 0.0.0.0 for various networking-related Apache Hadoop
configuration results in Apache Hadoop binding to the address of IPv6 of the
Ubuntu box. IPv6 may not be required when you are not connected to the IPv6
network. So at that time, you can disable it.

For disabling IPv6, open sysctl.conf (which you will find in /etc) and put the
following configuration at the end of the file:

disable ipv6
net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
net.ipv6.conf.lo.disable_ipv6 = 1

Reboot your machine to apply the effect. To check whether IPv6 is enabled or not on
your machine, the following command will be used:

$ cat /proc/sys/net/ipv6/conf/all/disable_ipv6

If it returns 0, IPv6 is enabled; and if it returns 1, IPv6 is disabled. And that's what
we want. Another way of disabling IPv6 is by changing hadoop-env.sh, which you
will find in <Respected directory where your Apache Hadoop resides>/conf.
Open hadoop-env.sh and put the following line into it:

export HADOOP_OPTS=-Djava.net.preferIPv4Stack=true

Installing Apache Hadoop
To install Apache Hadoop, download Apache Hadoop as discussed, and extract it
to your preferred directory. I have used the /usr/local directory. So, I will follow
this directory for the installation. You have to follow your directory. The following
commands will be used to change the owner of all the files to the hduser user and
the hadoop group cluster. So, we will assign permission to Apache Hadoop such
that only hduser is able to access Apache Hadoop and not any other user:

•	 The following command will take you to the directory where Apache
Hadoop resides:
$ cd /usr/local

Chapter 3

[67]

•	 The following command will extract Apache Hadoop:
$ sudo tar xzf hadoop-1.0.3.tar.gz

•	 The following command will rename Apache Hadoop to hadoop:
$ sudo mv hadoop-1.0.3 hadoop

•	 The following command will give hduser permission to access Apache
Hadoop:
$ sudo chown -R hduser:hadoop hadoop

•	 Open the bashrc file by going to the root directory, and type the following
command:

gedit ~/.bashrc

I have created HADOOP_HOME and JAVA_HOME where my Apache Hadoop and Java
reside. You need to also create a location where your Apache Hadoop and Java will
reside. It will set the Apache Hadoop and Java to our classpath, which is required
for this configuration. Put the following configuration at the end of the file:

export HADOOP_HOME=/usr/local/hadoop
export JAVA_HOME=/usr/lib/jvm/java-6-sun
unalias fs &> /dev/null
alias fs="hadoop fs"
unalias hls &> /dev/null
alias hls="fs -l
export PATH=$PATH:$HADOOP_HOME/bin:$JAVA_HOME/bin

Required ownerships and permissions
In this section, we are going to cover configuration of data files, the network ports
of Apache Hadoop on which Apache Hadoop listens, and so on. This setup will use
Hadoop Distributed File System (HDFS), though there is only a single machine
in our cluster. We need to create three directories. We will create directories called
app, hadoop, and tmp. So, this will be like /app/hadoop/tmp. Apache Hadoop will
use the tmp directory for its operations. Hadoop default configurations use hadoop.
tmp.dir. It is a property that you will find in core-site.xml, which resides in /
usr/local/hadoop/conf for local file system and HDFS. Therefore, you should not
get surprised if, at some later point, you see Hadoop making the required directory
mechanically on HDFS. The following command is used for creating this directory:

$ sudo mkdir -p /app/hadoop/tmp

Integration of Apache Nutch with Apache Hadoop and Eclipse

[68]

The following command will allow the /app/hadoop/tmp directory to be accessed
only by hduser:

$ sudo chown hduser:hadoop /app/hadoop/tmp

And if you want to tighten up security, change the value of chmod from 755 to 750,
using the following command:

$ sudo chmod 750 /app/hadoop/tmp

The configuration required for Hadoop_HOME/
conf/*
In this section, we will modify core-site.xml, hdfs-site.xml and mapred-site.
xml, which reside inside the conf directory that you will find in /usr/local/
hadoop. This configuration is required for Apache Hadoop to perform its operations:

•	 core-site.xml: The fs.default.name property is used by Apache Nutch to
check the filesystem which it's attempting to use. Since we are working with
the Apache Hadoop filesystem, we've pointed this to the hadoop master or
name node. In this case it's hdfs://reeeshu:54311t, which is the location
of our master name node. You must put your master node accordingly. This
will provide information about our master node to Apache Hadoop. Put the
following configuration into it:
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://reeeshu:54311</value>
 <description>
 Where to find the Hadoop Filesystem through the network.
 Note 54311 is not the default port.
 (This is slightly changed from previous versions which
didnt have "hdfs")
 </description>
 </property>
</configuration>

Chapter 3

[69]

•	 hdfs-site.xml: This file will be used to tell Apache Hadoop how many
replications Apache Hadoop should use. The dfs.replication property
will tell Apache Hadoop about the number of replications to be used. By
default, the value is 1. It means that there is no replication, that is, it is using
only a single machine in a cluster. It should usually be three or more—in
fact you should have a minimum in that range of operating nodes in your
Hadoop cluster. The dfs.name.dir property will be used as the Apache
Nutch name directory. The dfs.data.dir data directory is used by Apache
Nutch for its operations. You must create these directories manually and give
the proper path of those directories. Put the following configuration into it:
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>

<property>
 <name>dfs.name.dir</name>
 <value>/nutch/filesystem/name</value>
</property>

<property>
 <name>dfs.data.dir</name>
 <value>/nutch/filesystem/data</value>
</property>

<property>
 <name>dfs.replication</name>
 <value>1</value>
</property>

</configuration>

The dfs.name.dir property is the directory used by the name node for
storing, following, and coordinating the data for the info nodes. The dfs.
data.dir property is the directory used by the data nodes for storing the
particular filesystem's data blocks. This should often be expected to be
similar on each node.

Integration of Apache Nutch with Apache Hadoop and Eclipse

[70]

•	 mapred-site.xml: The distributed file system has name nodes and
information nodes. When a client wants to govern a file in the filesystem, it
will contact the name node. The name node will indicate which data node to
contact for accepting the file. The name node is the organizer and will store
what blocks area unit on what computers, and what must be replicated to
completely different data nodes. The data node's area units are simply the
workhorses. They are storing the particular files, serving them up on request,
and so on. If you're running a name node and a data node on the same PC,
it will still act over sockets as if the information node was on a different PC.
Put the following configuration into it:

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>

<property>
 <name>mapred.job.tracker</name>
 <value>reeeshu:54310</value>
 <description>
 The host and port that the MapReduce job tracker runs at. If
 "local", then jobs are run in-process as a single map and
 reduce task.
 Note 54310 is not the default port.
 </description>
</property>

<property>
 <name>mapred.map.tasks</name>
 <value>2</value>
 <description>
 define mapred.map tasks to be number of slave hosts
 </description>
</property>

<property>
 <name>mapred.reduce.tasks</name>
 <value>2</value>
 <description>
 define mapred.reduce tasks to be number of slave hosts
 </description>
</property>

Chapter 3

[71]

<property>
 <name>mapred.system.dir</name>
 <value>/nutch/filesystem/mapreduce/system</value>
 <description>
 Define system directory. You have to manually create the
directory and give the proper path to the value property.
 </description>
</property>

<property>
 <name>mapred.local.dir</name>
 <value>/nutch/filesystem/mapreduce/local</value>
 <description>
 Define local directory. You have to manually create the
directory and give the proper path to the value property.
 </description>
</property>

</configuration>

The mapred.system.dir property stores the name of the directory that the
mapreduce tracker uses to store its data. This is often only on the tracker and
not on the mapreduce hosts.

Formatting the HDFS filesystem using the
NameNode
HDFS is a directory used by Apache Hadoop for storage purposes. So, it's the
directory that stores all the data related to Apache Hadoop. It has two components:
NameNode and DataNode. NameNode manages the filesystem's metadata and
DataNode actually stores the data. It's highly configurable and well-suited for many
installations. Whenever there are very large clusters, this is when the configuration
needs to be tuned.

The first step for getting your Apache Hadoop started is formatting the Hadoop
filesystem, which is implemented on top of the local filesystem of your cluster (which
will include only your local machine if you have followed). The HDFS directory will
be the directory that you specified in hdfs-site.xml with the property dfs.data.
dir explained previously.

Integration of Apache Nutch with Apache Hadoop and Eclipse

[72]

To format the filesystem, go to the respective directory where your Apache Hadoop
resides by terminal. In my case, it is in /usr/local. Make sure that you are logged in
as a hduser before hitting the following command:.

hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoop namenode -format

If all succeeds, you will get an output as follows:

The preceding screenshot shows that your HDFS directory is formatted successfully.

Chapter 3

[73]

Starting your single-node cluster
Now, we are done with the setup of the single-node cluster of Apache Hadoop. It's
time to start Apache Hadoop and check whether it is running up to the mark or not.
So, run the following command for starting your single-node cluster. Make sure you
are logged in as hduser before hitting the following command:.

hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh

If all succeeds, you will get the output as follows:

The preceding screenshot shows all the components which have started; they're
listed one by one.

Once started, you need to check whether all the components are running perfectly or
not. For that, run the following command:

hduser@ubuntu:/usr/local/hadoop$ jps

If all succeeds, you will get the following output:

The preceding screenshot shows the number of components running in Apache
Hadoop. You can always refer to http://docs.hortonworks.com/HDPDocuments/
HDP1/HDP-Win-1.3.0/bk_getting-started-guide/content/ch_hdp1_getting_
started_chp2_1.html for any additional information:

•	 JobTracker: This is a component that will keep track of the number of jobs
running in Apache Hadoop and divide each job into the number of tasks
that are performed by TaskTracker.

Integration of Apache Nutch with Apache Hadoop and Eclipse

[74]

•	 TaskTracker: This is used for performing tasks given by JobTracker.
So, each task tracker has multiple tasks to be performed. And once it is
completed with a particular task, it will inform the JobTracker. That's
how JobTracker will get an update that tasks are being performed in
the desired manner.

•	 Namenode: This keeps track of the directories created inside HDFS. You can
iterate to those directories using Namenode. The responsibility of Namenode
is to transfer data to Datanodes. So, Namenode itself will not store any data.
Rather, it will transfer all the data to the DataNode.

•	 SecondaryNameNode: This is a backup of Namenode. So, whenever any
Namenode fails, we can back up our data from SecondaryNamenode.

•	 DataNode: This is the component which actually stores the data transferred
from NameNode. So, the responsibility of DataNode is to store all the data
of Apache Hadoop.

•	 jps: This is not an Apache Hadoop component. It's a command that is
a part of Sun Java since v1.5.0.

Just check on your browser by hitting the following URL:

http://localhost:50070

where, 50070 is the port on which namenode is running.

Stopping your single-node cluster
If you want to stop your running cluster, hit the following command. Make sure you
are logged in as a hduser before hitting this command.:

hduser@ubuntu:~$ /usr/local/hadoop/bin/stop-all.sh

If all succeeds, you will get an output as follows:

The preceding screenshot shows the number of components in Apache Hadoop that
are being stopped.

So that's all for installation of Apache Hadoop on a single machine. Now, we will
move over to setting up the deployment architecture of Apache Nutch.

Chapter 3

[75]

Setting up the deployment architecture of
Apache Nutch
We have to set up Apache Nutch on each of the machines that we are using. In this
case, we are using a six-machine cluster. So, we have to set up Apache Nutch on all
of the machines. If there are a small number of machines in our cluster configuration,
we can set it up manually on each machine. But when there are more machines, let's
say we have 100 machines in our cluster environment, we can't set it up on each
machine manually. For that, we require a deployment tool such as Chef or at least
distributed SSH. You can refer to http://www.opscode.com/chef/ for getting
familiar with Chef. You can refer to http://www.ibm.com/developerworks/aix/
library/au-satdistadmin/ for getting familiar with distributed SSH. I will just
demonstrate running Apache Hadoop on Ubuntu for a single-node cluster. If you
want to run Apache Hadoop on Ubuntu for a multi-node cluster, I have already
provided the reference link. You can follow that and configure it from there. Once we
are done with the deployment of Apache Nutch to a single machine, we will run this
start-all.sh script that will start the services on the master node and data nodes.
This means that the script will begin the Hadoop daemons on the master node. So,
we are able to login to all the slave nodes using the SSH command as explained, and
this will begin daemons on the slave nodes.

The start-all.sh script expects that Apache Nutch should be put on the same
location on each machine. It is also expecting that Apache Hadoop is storing the
data at the same file path on each machine. The start-all.sh script that starts the
daemons on the master and slave nodes are going to use password-less login by
using SSH.

Installing Apache Nutch
Download Apache Nutch from http://nutch.apache.org/downloads.html
and extract the contents of the Apache Nutch package to your preferred location.
I picked the /usr/local directory for Apache Nutch. You need to assign permission
to Apache Nutch so that only hduser can access it. This is for security purposes.
The commands that will be used are given as follows:

•	 The following command will take you to the local directory:
$ cd /usr/local

•	 The following command will be used for extracting the contents
of Apache Nutch:
$ sudo tar xzf apache-nutch-1.4-bin.tar.gz

Integration of Apache Nutch with Apache Hadoop and Eclipse

[76]

•	 The following command will rename apache-nutch-1.4-bin.tar.gz to
nutch:
$ sudo mv apache-nutch-1.4-bin.tar.gz nutch

•	 The following command will assign permission to the nutch directory that
can be accessed only by hduser:
$ sudo chown -R hduser:hadoop nutch

•	 Now, we need to modify the bashrc file. To open this file, go to the root
directory from your terminal. Then, hit the following command:
gedit ~/.bashrc

Put the following configuration at the end of the file. It will set your
classpath for Apache Nutch.

export NUTCH_HOME=/usr/local/nutch
export PATH=$PATH:$NUTCH_HOME/bin

•	 Modify nutch-site.xml that you will find in $NUTCH_HOME/conf by
inserting the following content:
<property>
<name>plugin.folders</name>
<value>/usr/local/nutch/build/plugins</value>
</property

Search the http.agent.name key in nutch-site.xml, and set its value to the
crawler name.

•	 Copy hadoop-env.sh, core-site.xml, hdfs-site.xml, mapred-site.
xml, master, and slaves from $HADOOP_HOME/conf to $NUTCH_HOME/conf by
hitting the following command:
$ cd $HADOOP_HOME/conf
$ cp hadoop-env.sh core-site.xml hdfs-site.xml mapred-site.xml
master slaves $NUTCH_HOME/nutch/conf/

•	 Copy the conf directory from $NUTCH_HOME to $NUTCH_HOME/runtime/
local/conf by hitting the following command:

$ cd $NUTCH_HOME

$ cp conf/* runtime/local/conf/

Chapter 3

[77]

Key points of the Apache Nutch installation
We need to rebuild Apache Nutch by using the ant command. Otherwise it will give
a fatal error as http.agent.name doesn't work even when we edit the nutch-site.
xml file. And, we also need to set the classpath in hadoop-env.sh, which you will
find in $HADOOP_HOME/conf by putting the following configuration into it:

Hadoop_classpath=/usr/local/nutch/runtime/lib/*:/usr/local/nutch/
runtime/deploy/apache-nutch-2.2.1.job

After this, go to the $NUTCH_HOME directory and type the following command for
rebuilding Apache Nutch:

/usr/local/nutch/$ ant

Once rebuild is finished, copy the nutch-2.2.1.job and nutch-2.2.1.jar to the
deploy and local directory of Apache Nutch respectively, by typing the following
command:

$ cp $NUTCH_HOME/build/nutch-2.2.1.job $NUTCH_HOME/runtime/deploy
$ cp $NUTCH_HOMEbuild/nutch-2.2.1.jar
$NUTCH_HOME/runtime/local/lib/

We have successfully set up Apache Nutch on the Apache Hadoop cluster. Now, we
can start Apache Hadoop and perform the tasks of Apache Nutch on that.

Starting the cluster
We've configured Apache Hadoop. It's time to start up Apache Hadoop on a single
node and check whether it's working properly or not. To start up all of the Hadoop
components on the local machine (NameNode, DataNode, TaskTracker, JobTracker,
and SecondaryNameNode), the following command will be used:

HADOOP_HOME$bin/start-all.sh

If you want to stop all components, the following command should be used:

HADOOP_HOME$bin/stop-all.sh

Integration of Apache Nutch with Apache Hadoop and Eclipse

[78]

Performing crawling on the Apache Hadoop cluster
We are going to perform crawling in Apache Nutch on the Apache Hadoop Cluster.
It will perform crawling on the Apache Hadoop cluster and give us the result. The
steps for performing this job are given as follows:

1.	 Create the seed.txt file by hitting the following commands. This file
will contain the list of URLs to be crawled on the Apache Hadoop Cluster.
$cd $NUTCH_HOME/runtime
$mkdir urlsdir
$ vi urls/seed.txt

2.	 The preceding command will create the seed.txt file and open it up.
Put the following configuration into it:
http://nutch.apache.org
http://apache.org

The preceding URLs are used for crawling. You can enter n number of URLs,
but one URL per line.

3.	 Now we need to add the urls directory to the HDFS directory as Apache
Hadoop will use this directory for crawling. The following command will
be used for adding this directory. Make sure you are logged in as an hduser
before hitting the following command:
HADDOP_HOME$bin/hadoop dfs -put
/usr/local/nutch/runtime/local/urls urls

4.	 For checking whether it's correctly put or not, type the following command.
It will list all the directories that are inside the given directory.
$bin/hadoop dfs –ls

5.	 Modify regex-urlfilter.txt, which sets the filter to crawl only the
webpages as *.apache.org. So, any web URL that ends with apache.org
will be crawled. Fire the following commands to perform this:

$cd $NUTCH_HOME/runtime
$ vi conf/regex-urlfilter.txt

6.	 The preceding command will open up regex-urlfilter.txt. Replace the
line +^http://([a-z0-9]*\.)*MY.DOMAIN.NAME/ with +^http://([a-z0-
9]*\.)*apache.org/.

Chapter 3

[79]

We have added our urls directory to the Hadoop distributed filesystem and we also
have edited our regex-urlfilter.txt. Now, it's time to start crawling. To begin
with Apache Nutch crawling, first copy your apache-nutch-2.2.1.job jar file
(you will find in $NUTCH_HOME/build) to $HADOOP_HOME. Then use the following
command to perform crawling. Make sure that you are logged in as an hduser
before hitting the following commands:

•	 The following command will take you to the HADOOP_HOME directory:
$cd $HADOOP_HOME

•	 The following commands will actually perform crawling:
$hadoop jar apache-nutch-${version}.job
org.apache.nutch.crawl.Crawl urls -dir crawl -depth 3 -topN5

°° hadoop: This is a command for running Hadoop.
°° jar: This is a command for defining the JAR files.
°° apache-nutch-${version}.job: This is an Apache Nutch job jar

file, which is used for crawling.
°° apache.nutch.crawl.Crawl: This is a command for crawling.
°° urls: This is a directory that Apache Hadoop will use for fetching

the URLs that will be crawled. This is the directory which we put
in the HDFS.

°° dir: This is a command for defining the directory.
°° crawl: This is the actual directory where Apache Hadoop keeps

the output of crawling.
°° depth: This is a command that is used for setting the number

of iterations Apache Nutch will take to crawl. You can give any
integer value to it.

°° topN: This is a command that is used by Apache Nutch to define
the number of top-most URLs that need to be crawled. So, only
those URLs will be crawled from the urls directory. You can
give any integer value to it, but with the condition that topN
should be greater than or equal to the total number of URLs
in the urls directory.

Integration of Apache Nutch with Apache Hadoop and Eclipse

[80]

So, there are many arguments which you can apply according to your needs.
If all succeeds, you will get the following output:

The preceding screenshot is showing that Apache Hadoop crawled URLs for you. Its
showing the last three lines of the output. You can also keep track of your crawling
from the browser by opening the Jobtracker component of Apache Hadoop. It will
show you the statistics of the running jobs, and also the number of tasks per job. Hit
the following URL to check this:

http://localhost:50030/jobtracker.jsp

If all succeeds, you will get an output as follows:

The preceding screenshot will show you the number of jobs and their statuses for the
crawling that you have performed.

You can also check the detailed statistics of your tasks per job by opening the
Tasktracker component of Apache Hadoop. Hit the following URL to check this:

http://localhost:50060/tasktracker.jsp

Chapter 3

[81]

If all succeeds, you will get an output as follows:

The preceding screenshot is showing the task tracker that will keep track of the
number of tasks for the particular job.

You could take the dump of the crawled URLs by copying the directory from HDFS,
which contains data about all the crawled URLs. Copy that directory and paste
it to your preferred location for backup. So, now we have completed integration
of Apache Nutch with Apache Hadoop. We have successfully crawled URLs in
Apache Nutch on Apache Hadoop Cluster. Now we will move over to Apache
nutch configuration with eclipse in the next section. So let's see what it is.

Configuring Apache Nutch with Eclipse
In this section, we will see how we can integrate Apache Nutch with Eclipse. So,
just like we performed crawling in Apache Nutch using the command line, we can
perform crawling using Java API.

Integration of Apache Nutch with Apache Hadoop and Eclipse

[82]

Introducing Apache Nutch configuration with
Eclipse
Apache Nutch can be easily configured with Eclipse. After that, we can perform
crawling easily using Eclipse. So, we need to perform crawling from the command
line. We can use eclipse for all the operations of crawling that we are doing from
the command line. Instructions are provided for fixing a development environment
for Apache Nutch with Eclipse IDE. It's supposed to give a comprehensive starting
resource for configuring, building, crawling, and debugging of Apache Nutch.

The prerequisites for Apache Nutch integration with Eclipse are given as follows:

•	 Get the latest version of Eclipse from http://www.eclipse.org/
downloads/packages/release/juno/r

•	 All the required components are available from them Eclipse Marketplace.
You can download the from this link: http://marketplace.eclipse.org/
marketplace-client-intro

•	 Once you've configured Eclipse, download as per here
http://subclipse.tigris.org/.

If you have faced a problem with the 1.8.x release, try 1.6.x. This
may resolve compatibility issues.

•	 Download the IvyDE plugin for Eclipse from the following link:
http://ant.apache.org/ivy/ivyde/download.cgi

•	 Download the m2e plugin for Eclipse from the following link: http://
marketplace.eclipse.org/content/maven-integration-eclipse

Installation and building Apache Nutch with
Eclipse
Here, we will define the installation steps for configuring Apache Nutch with
Eclipse. The steps for configuring Apache Nutch with Eclipse are given as follows:

Chapter 3

[83]

1.	 Get the latest source code of Apache Nutch by using SVN, which is a
subversion repository. Go to your terminal and fire the following commands:

°° For Apache Nutch 2.2.1, the following command will be used:
$svn co https://svn.apache.org/repos/asf/nutch/trunk

$ cd trunk

°° For Apache Nutch 2.x, the following command will be used:

$svn co https://svn.apache.org/repos/asf/nutch/branches/2.x

$ cd 2.x

2.	 You need to decide which data store you are going to use for this integration.
See Apache Gora Documentation from http://gora.apache.org/ for more
information. Some of the choices of storage classes are given as follows:

°° org.apache.gora.hbase.store.HBaseStore

°° org.apache.gora.cassandra.store.CassandraStore

°° org.apache.gora.accumulo.store.AccumuloStore

°° org.apache.gora.avro.store.AvroStore

°° org.apache.gora.avro.store.DataFileAvroStore

3.	 Modify nutch-site.xml, which you will find in <Respected directory
where your Apache Nutch resides>/conf, by putting the following
configuration into it. I am taking Hbase as the datastore here.
<property>
 <name>storage.data.store.class</name>
 <value>org.apache.gora.hbase.store.HBaseStore</value>
 <description>Default class for storing data</description>
 </property>

4.	 Modify ivy.xml, which you will find in <Respected directory where
your Apache Nutch resides>/ivy, by uncommenting the following line
if you have taken hbase as the data store. Otherwise, you have to search for
your datastore and uncomment it if it is commented accordingly.
<dependency org=""org.apache.gora"" name=""gora-hbase""
rev=""0.3"" conf=""*->default"" />

Integration of Apache Nutch with Apache Hadoop and Eclipse

[84]

5.	 Modify gora.properties, which you will find in <Respected directory
where your Apache Nutch resides>/conf, by in putting the following
line if you have taken Hbase as your datastore. Otherwise you have to find
out that line for your datastore and in put it accordingly.
gora.datastore.default=org.apache.gora.hbase.store.HBaseStore

6.	 Modify nutch-site.xml by putting http.agent.name (as explained before)
and http.robots.agent (same as http.agent.name) into it. Also, set the
plugin.folders property by putting the following configuration into it:
<property>
 <name>plugin.folders</name>
 <value>/home/tejas/Desktop/2.x/build/plugins</value>
 </property>

The value of the plugin.folders would be <Respected directory
where your Apache Nutch resides>/build/plugins.

7.	 Run the following command for building Eclipse:

$cd <Respected directory where your Apache Nutch resides>

$ant eclipse

We have configured this successfully. Now, we shall move to the Crawling in
Eclipse section.

Crawling in Eclipse
In this section, we will see how we can import Apache Nutch into Eclipse and
perform crawling. The steps are given as follows:

1.	 Open your Eclipse IDE.
2.	 In Eclipse, navigate to File | Import.
3.	 Select Existing Projects into Workspace as shown in the following

screenshot:

Chapter 3

[85]

4.	 In the next window, set the root directory to the place where you have done
the checkout of Apache Nutch 2.1.1, and then click on Finish.

5.	 You are currently seeing a new project named 2.1.1, which is being added
within the workspace. Wait for some time until Eclipse refreshes its SVN
cache and builds its workspace. You'll get the status at the end point of the
corner of the Eclipse window, as shown in the next screenshot:

Integration of Apache Nutch with Apache Hadoop and Eclipse

[86]

6.	 In the Package Explorer, right-click on the project 2.1.1 and navigate to
Build Path | Configure Build Path as shown below:

7.	 In the Order and Export tab, scroll down and choose 2.x/conf. Click on the
Top button. Sadly, Eclipse will take one more build of the workspace, but
this time it won't take much time.

How to create an Eclipse launcher? Let's start with the inject operation. The steps
for this are given as follows:

1.	 Right-click on the project by navigating to Package Explorer | Run As |
Run Configurations. Make a new configuration. Name it inject,
as shown below:

°° For Apache version 1.x: Set the main class value as org.apache.
nutch.crawl.Injector

°° For Apache version 2.x: Set the main class as org.apache.nutch.
crawl.InjectorJob

Chapter 3

[87]

2.	 In the Arguments tab for program arguments, give the path of the input dir,
which has the seed URLs. Set VM Arguments to -Dhadoop.log.dir=logs
-Dhadoop.log.file=hadoop.log, as shown in the following screenshot:

Integration of Apache Nutch with Apache Hadoop and Eclipse

[88]

3.	 Click on Apply and then click on Run. If everything was done perfectly, then
you will see the inject operation progressing on the console as shown in the
following screenshot:

If you want to find out the Java class related to any command, just go inside the
src/bin/nutch script; at the bottom, you will find a switch-case code with a case
corresponding to each command. The important classes corresponding to the crawl
cycle are given as follows:

Operation Class in Nutch 1.x (that is, trunk) Class in Nutch 2.x
inject org.apache.nutch.crawl.

Injector
org.apache.nutch.crawl.
InjectorJob

generate org.apache.nutch.crawl.
Generator

org.apache.nutch.crawl.
GeneratorJob

fetch org.apache.nutch.fetcher.
Fetcher

org.apache.nutch.fetcher.
FetcherJob

parse org.apache.nutch.parse.
ParseSegment

org.apache.nutch.parse.
ParserJob

updated org.apache.nutch.crawl.
CrawlDb

org.apache.nutch.crawl.
DbUpdaterJob

In the same way, you can perform all the jobs that are listed in the preceding table.
You can take the respective Java class of a particular job and run that within Eclipse.
So that's how crawling occurs in Apache Nutch using Eclipse.

So, now we have successfully integrated Apache Nutch with Eclipse. So that's the
end of this chapter. Let's go to the Summary section now and revise what you have
learned from this chapter.

Chapter 3

[89]

Summary
We started with the integration of Apache Nutch with Apache Hadoop. In that,
we have covered an introduction to Apache Hadoop, what do we mean by
integrating Apache Nutch with Apache Hadoop, and what are the benefits of that.
Then, we moved on to the configuration steps, and we configured Apache Nutch
with Apache Hadoop successfully. We also performed a crawling job by installing
Apache Nutch on a machine, and confirmed the output—Apache Hadoop cluster
is running properly and is performing the crawling job correctly. Then, we started
with integration of Apache Nutch with Eclipse. We also had a little introduction
to what is integration of Apache Nutch with Eclipse. Then, we looked at the
configuration of Apache Nutch with Eclipse. We have successfully integrated
Apache Nutch with Eclipse and performed one InjectorJob example.

I hope you have enjoyed reading this chapter. Now, let's see how we can integrate
Apache Nutch with Gora, Accumulo, and MySQL in the next chapter.

Apache Nutch with Gora,
Accumulo, and MySQL

This chapter covers the integration of Apache Nutch with Gora, Accumulo, and
MySQL. Gora, Accumulo, and MySQL are mainly used as databases. This chapter
covers each of these in detail. First, we will start with the integration of Apache
Nutch with Apache Accumulo using Gora and then we will move on to the
integration of Nutch with MySQL using Gora.

In this chapter we will cover the following topics:

•	 Introduction to Apache Accumulo
•	 Introduction to Apache Gora
•	 Integration of Nutch with Apache Accumulo

°° Configuring Gora with Apache Nutch
°° Setting up Hadoop and Apache ZooKeeper
°° Installing and configuring Accumulo
°° Testing Apache Accumulo
°° Crawling with Apache Nutch on Apache Accumulo

•	 Integration of Nutch with MySQL

°° Introduction to MySQL
°° Need for integrating MySQL with Nutch
°° Configuring MySQL with Nutch
°° Crawling with Nutch on MySQL

Apache Nutch with Gora, Accumulo, and MySQL

[92]

By the end of this chapter, you will be able to integrate Nutch with Apache
Accumulo as well as with MySQL. After that, you can perform crawling using
Apache Nutch on Apache Accumulo and also on MySQL, and you can get the results
of your crawled pages on Accumulo as well as on MYSQL. You can also perform the
integration of Apache Solr as discussed earlier and get your crawled pages indexed
onto the Apache Solr.

Introduction to Apache Accumulo
Accumulo is basically used as the data store for storing data the same way we use
different databases such as MySQL and Oracle. The key point of Apache Accumulo
is that it runs on the Apache Hadoop Cluster environment, which is a very good
feature of Accumulo. With Accumulo sorted, the distributed key/value store could
be a strong, scalable, high-performance information storage and retrieval system.
Apache Accumulo depends on Google's BigTable design and is built on top of
Apache Hadoop, Thrift, and ZooKeeper. Apache Accumulo features some novel
improvement on the BigTable design in the form of cell-based access management
and the server-side programming mechanism, which will perform modification in
the key/value pairs at varied points within the data management process.

Main features of Apache Accumulo
The following are the two main features of Accumulo:

•	 Security at cell level: Apache Accumulo extends a BigTable data model,
adding a new component called Column Visibility to the key. This
component stores a logical combination of security labels that need to be
satisfied at query time in order for the key and value to be returned as a part
of the user request. This enables data of varying security levels to be stored
within the same table and allows users to see only those keys and values for
which they are authorized.

•	 Programming at the server side: In addition to the security at the cell level,
Apache Accumulo provides a programming mechanism at the server side
called Iterators, which enables users to perform extra process at the table
server. The range of operations that may be applied is equivalent to those
that can be implemented within a MapReduce Combiner function, which
produces an aggregate value for several key/value pairs.

Chapter 4

[93]

Introduction to Apache Gora
Apache Gora's open source framework provides an in-memory data model and
persistence for large data. Apache Gora supports persisting to column stores,
key-value stores, document stores, and RDBMS, and analyzing the data with
extensive Apache Hadoop MapReduce support.

Supported data stores
Apache Gora presently supports the following data stores:

•	 Accumulo Prophets
•	 Apache Hbase
•	 Amazon DynamoDB

Use of Apache Gora
Although there are many excellent ORM frameworks for relational databases and
data modeling, data stores in NoSQL are profoundly different from their relative
cousins. Data model agnostic frameworks such as JDO aren't easy for use cases,
where one has to use the complete power of data models in column stores. Gora fills
the gap giving users an easy-to-use in-memory data model plus persistence for large
data framework, providing data store-specific mappings and also in-built Apache
Hadoop support.

Integration of Apache Nutch with Apache
Accumulo
In this section, we are going to cover the integration process for integrating Apache
Nutch with Apache Accumulo. Apache Accumulo is basically used for a huge
data storage. It is built on the top of Apache Hadoop, ZooKeeper, and Thrift. So,
a potential use of integrating Apache Nutch with Apache Accumulo is when our
application has huge data to process and we want to run our application in a cluster
environment. At such times, we can use Apache Accumulo for data storage purposes.
As Apache Accumulo only runs with Apache Hadoop, the maximum use of Apache
Accumulo would be in a cluster-based environment. We will first start with the
configuration of Apache Gora with Apache Nutch. Then, we will set up Apache
Hadoop and ZooKeeper. After this, we will do the installation and configuration of
Apache Accumulo. Following this, we will test Apache Accumulo, and at the end we
will see the process of crawling with Apache Nutch on Apache Accumulo.

Apache Nutch with Gora, Accumulo, and MySQL

[94]

Configuring Apache Gora with Apache Nutch
In this section, we are going to configure Apache Gora with Apache Nutch.

I have used Nutch 2.2.1.

So, you have to get Apache Nutch as explained before. Here, you have to configure
Apache Gora for integration of Apache Nutch with Apache Accumulo. The following
are the steps for doing this:

1.	 Modify the ivy.xml file that you will find in $NUTCH_HOME, which will be the
path where your Apache Nutch resides. Change revised versions of gora-
core and gora-sql dependencies from 0.1.1, incubating to "0.2-SNAPSHOT".
Also, add the subsequent lines:
<dependency org="org.apache.accumulo" name="accumulo-core"
rev="1.5.0" />
<dependency org="org.apache.accumulo" name="cloudtrace"
rev="1.4.0" />
<dependency org="org.apache.thrift" name="libthrift" rev="0.6.1"
/>
<dependency org="org.apache.gora" name="gora-accumulo" rev="0.2"
/>
<dependency org="org.apache.zookeeper" name="zookeeper"
rev="3.4.3" />

2.	 The preceding configuration defines all the necessary components that are
used for this integration. Modify the ivysettings.xml file that you will find
in $$NUTCH_HOME/ivy. It will configure ant/ivy to use your local Maven
repository and resolving dependencies. This is required because the patched
version of Gora and the latest Accumulo version are not present in any
public Maven repository. Add the following lines under the <resolvers>
section at the top:
<ibiblio name="local"root="file://${user.home}/.m2/repository/"
 pattern="${maven2.pattern.ext}"m2compatible="true"/>

This configuration will set your Maven repository. By default, your Maven
repository resides inside your home directory. That's why I have given the
path in the root property. If you have changed the path, you will have to
make changes in the directory accordingly.

Chapter 4

[95]

3.	 Patch the following code into StorageUtils.java, which you will find in
<Respected directory where your Apache Nutch resides>/src/java/
org/apache/nutch/storage/:
diff --git a/src/java/org/apache/nutch/storage/StorageUtils.java
b/src/java/org/apache/nutch/storage/StorageUtils.java
index de740b5..19b37ad 100644
--- a/src/java/org/apache/nutch/storage/StorageUtils.java
+++ b/src/java/org/apache/nutch/storage/StorageUtils.java
@@ -40,8 +40,9 @@ public class StorageUtils {
 Class<K> keyClass, Class<V> persistentClass) throws
ClassNotFoundException, GoraException {
 Class<? extends DataStore<K, V>> dataStoreClass =
 (Class<? extends DataStore<K, V>>) getDataStoreClass(conf);
+
 return DataStoreFactory.createDataStore(dataStoreClass,
- keyClass, persistentClass);
+ keyClass, persistentClass, conf);
 }

 @SuppressWarnings("unchecked")
@@ -56,8 +57,9 @@ public class StorageUtils {

 Class<? extends DataStore<K, V>> dataStoreClass =
 (Class<? extends DataStore<K, V>>) getDataStoreClass(conf);
+
 return DataStoreFactory.createDataStore(dataStoreClass,
- keyClass, persistentClass, schema);
+ keyClass, persistentClass, conf, schema);
 }

 @SuppressWarnings("unchecked")

The preceding configuration will configure StorageUtils.java. This is the
class that will process the data crawled by Apache Nutch and store it inside
the table.

4.	 Create the gora-accumulo-mapping.xml file in <Respected directory
where your Apache Nutch resides>/conf and include the following
content:
<gora-orm>
<table name="webpage">
<config key="table.file.compress.blocksize" value="32K"/>
</table>

Apache Nutch with Gora, Accumulo, and MySQL

[96]

<class table="webpage" keyClass="java.lang.String"
name="org.apache.nutch.storage.WebPage">
<!-- fetch fields -->
<field name="baseUrl" family="f" qualifier="bas"/>
<field name="status" family="f" qualifier="st"/>
<field name="prevFetchTime" family="f" qualifier="pts"/>
<field name="fetchTime" family="f" qualifier="ts"/>
<field name="fetchInterval" family="f" qualifier="fi"/>
<field name="retriesSinceFetch" family="f" qualifier="rsf"/>
<field name="reprUrl" family="f" qualifier="rpr"/>
<field name="content" family="f" qualifier="cnt"/>
<field name="contentType" family="f" qualifier="typ"/>
<field name="protocolStatus" family="f" qualifier="prot"/>
<field name="modifiedTime" family="f" qualifier="mod"/>
<!-- parse fields -->
<field name="title" family="p" qualifier="t"/>
<field name="text" family="p" qualifier="c"/>
<field name="parseStatus" family="p" qualifier="st"/>
<field name="signature" family="p" qualifier="sig"/>
<field name="prevSignature" family="p" qualifier="psig"/>
<!-- score fields -->
<field name="score" family="s" qualifier="s"/>
<field name="headers" family="h"/>
<field name="inlinks" family="il"/>
<field name="outlinks" family="ol"/>
<field name="metadata" family="mtdt"/>
<field name="markers" family="mk"/>
</class>
</gora-orm>

The preceding configuration will create a table called webpage, which is
used for storing your data crawled by Apache Nutch. This table will be
automatically created at the time of crawling. Whatever fields are defined by
the <field> tag, those many number of fields will be created with the same
name provided in the name attribute.

5.	 Now, we need to edit gora.properties by adding the following lines at the
end of the file:
gora.datastore.default=org.apache.gora.accumulo.store.
AccumuloStore
gora.datastore.accumulo.mock=false
gora.datastore.accumulo.instance=accumulo

Chapter 4

[97]

gora.datastore.accumulo.zookeepers=localhost
gora.datastore.accumulo.user=root
gora.datastore.accumulo.password=root
gora.datastore.accumulo.zookeepers=127.0.0.1:2181

An explanation of the preceding configuration is as follows:

°° gora.datastore.default will set up AccumuloStore as the
default datastore

°° gora.datastore.accumulo.instance will create an instance of
Apache Accumulo

°° gora.datastore.accumulo.zookeepers will set up the host for
ZooKeeper

°° gora.datastore.accumulo.user will set up the username of
Apache Accumulo for accessing databases

°° gora.datastore.accumulo.password will set up the password
of Apache Accumulo for accessing databases

°° gora.datastore.accumulo.zookeepers will set a port for hosts
and a port for ZooKeepers

6.	 Edit nutch-site.xml, which you will find under <Respected directory
where your Apache Nutch resides>/conf by adding the following
properties:
<configuration>
<property>
<name>storage.data.store.class</name>
<value>org.apache.gora.accumulo.store.AccumuloStore</value>
</property>

<property>
<name>http.agent.name</name>
<value>Nutch</value>
</property>

</configuration>

The preceding configuration will set up AccumuloStore by defining the
<name>storage.data.store.class</name> property. It will also set
up http.agent.name by defining the <name>http.agent.name</name>
property. This is required by Apache Nutch for crawling.

Apache Nutch with Gora, Accumulo, and MySQL

[98]

7.	 Edit ivy-1.1.3.xml, which you will find inside $HOME/.ivy2/cache/
jaxen/jaxen/, by commenting out the following lines. Here, $HOME
would be your home directory:
<!--
<dependency org="maven-plugins" name="maven-cobertura-
plugin" rev="1.3" force="true" conf="compile-
>compile(*),master(*);runtime->runtime(*)">
 <artifact name="maven-cobertura-plugin" type="plugin"
ext="plugin" conf=""/>
 </dependency>
 <dependency org="maven-plugins" name="maven-
findbugs-plugin" rev="1.3.1" force="true" conf="compile-
>compile(*),master(*);runtime->runtime(*)">
 <artifact name="maven-findbugs-plugin" type="plugin"
ext="plugin" conf=""/>
 </dependency>
-->

The preceding configuration will be commented by default. So just
uncomment it. It is a Maven dependency. Hence, Apache Nutch is using
this dependency while building the code. If you have not configured it yet,
it will give an error at the time of building Apache Nutch.

8.	 Run the following commands for building Apache Nutch:

cd $NUTCH_HOME

ant

The preceding command will build Apache Nutch and set up the necessary
configuration for this integration. This is compulsory whenever you do any
changes in the Apache Nutch configuration.

We have configured Apache Gora successfully. Now, let's move to our next section,
which shows how to set up Apache Hadoop and ZooKeeper.

Chapter 4

[99]

Setting up Apache Hadoop and Apache
ZooKeeper
As Apache Hadoop has already been covered earlier, I am not going to cover that
again. Apache ZooKeeper is a centralized service, which is used for maintaining
configuration information and provides distributed synchronization, naming,
and group services. All of these services are used by distributed applications in
one manner or another. All these services are provided by the ZooKeeper, so
you don't have to write these services from scratch. You can use these services
for implementing consensus, management, group, leader election, and presence
protocols, and you can also build it for your own requirements.

Apache Accumulo is built on the top of Apache Hadoop and ZooKeeper. So, we
must configure Apache Accumulo within Apache Hadoop and Apache ZooKeeper.
You can refer to http://www.covert.io/post/18414889381/accumulo-nutch-
and-gora for any queries related to the setup. The following are the steps for
the configuration:

1.	 Configure and Start Hadoop. We have discussed this already in Chapter 3,
Integration of Apache Nutch with Apache Hadoop and Eclipse. So, I will not cover
this part here; instead, I will directly start Apache Hadoop. The command for
starting Apache Hadoop is as follows:
#usr/local/hadoop/bin$./start-all.sh

2.	 Configure and Start ZooKeeper. While you are making an attempt to start
Apache ZooKeeper for the first time, the simple thing to do is run it in the
standalone mode with the single ZooKeeper server. You can try this on a
development machine for example. Apache ZooKeeper requires Java 6 to
run, so you have to make sure that you have it installed. There is no need
for Cygwin to run Apache ZooKeeper on Windows since Windows versions
of Apache ZooKeeper scripts are available. (Windows supports only as a
development platform and not as a production platform.)

3.	 Download ZooKeeper. We can download a stable release of Apache
ZooKeeper from the Apache ZooKeeper releases page at http://
zookeeper.apache.org/releases.html, and unpack it in a suitable
location. I have kept it in /usr/local. The following command will be
used for unpacking and giving permission to ZooKeeper:
cd /usr/local

tar zxf zookeeper-x.x.x.tar.gz

mv zookeeper-x.x.x zookeeper

chown -R hduser:hadoop zookeeper

Apache Nutch with Gora, Accumulo, and MySQL

[100]

The commands are explained as follows:

°° cd /usr/local will take you inside the local directory
°° tar zxf zookeeper-x.x.x.tar.gz will extract ZooKeeper
°° mv zookeeper-x.x.x zookeeper will rename zookeeper-x.x.x

to zookeeper
°° chown -R hduser:hadoop zookeeper will assign the permission

to the zookeeper directory that only hduser can access this directory

4.	 Setting the .bashrc file. To open this file, go to your root directory and type
the following command:
#gedit ~/.bashrc

It will open up your .bashrc file. Now, set up a classpath entry inside your
.bashrc file for Apache ZooKeeper by adding the following configuration.
This is required for running Apache ZooKeeper.

export ZK_HOME=/usr/local/zookeeper
export PATH=$PATH:$ZK_HOME/bin

5.	 For checking all the files of ZooKeeper, the following commands need to be
used:
#cd $ZK_HOME/conf

#ZK_HOME/conf#ls

6.	 Create a directory called zookeeper. This directory would be used by
Apache Hadoop while Apache Nutch performs crawling. The following
commands will be used for creating this directory:
#mkdir -p /app/zookeeper

#chown hduser:hadoop /app/zookeeper

7.	 If you want more tightened security, the following command will be used:
#chmod 750 /app/zookeeper

8.	 Modify zoo.cfg, which you will find in <Respected directory where
your zookeeper resides>/conf/ by adding the following configuration
to the file:
The number of milliseconds of each tick
tickTime=2000
The number of ticks that the initial
synchronization phase can take
initLimit=10

Chapter 4

[101]

The number of ticks that can pass between
sending a request and getting an acknowledgement
syncLimit=5
the directory where the snapshot is stored.
dataDir=/app/zookeeper

the port at which the clients will connect
clientPort=2181
maxClientCnxns=100

9.	 Create the zookeeper logs directory by entering the following commands:
cd zookeeper-3.4.3

export ZOO_LOG_DIR=$HOME/blogpost/zookeeper-3.4.3/logs

mkdir $ZOO_LOG_DIR

10.	 Edit zkEnv.sh, which you will find in $ZK_HOME/bin/zkEnv.sh, right after
the following lines:
ZOOBINDIR=${ZOOBINDIR:-/usr/bin}

ZOOKEEPER_PREFIX=${ZOOBINDIR}/..

And add the following line:
export ZOO_LOG_DIR=${ZK_HOME}/logs

We have configured Apache ZooKeeper successfully. Now, it's time to start
Apache ZooKeeper, which can be done using the following commands:
cd $ZK_HOME

#./bin/zkServer.sh start

If you have configured Apache ZooKeeper and if it has started properly, you
will be able to check it using the following command:
./bin/zkCli.sh -server 127.0.0.1:2181

It will give the output as a bunch of logging messages, which is fine. Press
Enter and then you must be inside a shell. This will look as follows:
[zk: 127.0.0.1:2181(CONNECTED) 0]

Then, type ls / and press Enter. You must see a single line of output
(followed again by a prompt) that looks as follows:

[zookeeper]

Apache Nutch with Gora, Accumulo, and MySQL

[102]

The following screenshot shows that your ZooKeeper is running successfully:

The preceding screenshot shows only the last lines as the output. If you face any
error, you need to check the whole output.

If no errors occur, you have configured Apache ZooKeeper properly. When you run
the zkCli.sh command for the first time and if you see stack traces as follows:

java.net.ConnectException: Connection refused

 at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)

 at sun.nio.ch.SocketChannelImpl.
finishConnect(SocketChannelImpl.java:701)

 at org.apache.zookeeper.ClientCnxnSocketNIO.
doTransport(ClientCnxnSocketNIO.java:286)

 at org.apache.zookeeper.ClientCnxn$SendThread.run(ClientCnxn.
java:1035)

This means that Apache ZooKeeper failed to start due to some reason and isn't
listening on 127.0.0.1:2181, or you may have a local firewall blocking access
to that port.

Installing and configuring Apache Accumulo
The numbers of tools required for Apache Accumulo are as follows:

•	 Java (1.6 and higher)
•	 Apache Hadoop
•	 Apache ZooKeeper (3.3.3 and higher)

I have used Java Version 1.7.0, Apache Hadoop Version 1.1.2, and
ZooKeeper Version 3.3.

Chapter 4

[103]

The following are the steps for the installation and configuration of Apache
Accumulo:

1.	 Download Apache Accumulo. You can download Apache Accumulo from
http://accumulo.apache.org/downloads/ and unpack it in a suitable
location. I have kept Apache Accumulo in the /usr/local directory.
The following commands will be used for unpacking it and giving access
permission to it:
$ cd /usr/local

$ tar zxf accumulo-x.x.x.tar.gz

$ mv accumulo-x.x.x accumulo

$ chown -R hduser:hadoop accumulo

2.	 Set the .bashrc file. To open this file, go to your root directory from the
terminal and type the following command:
gedit ~/.bashrc

It will open up the .bashrc file. Now set up a classpath entry in your
.bashrc file for Apache Accumulo by including the following configuration
into it:

 export ACCUMULO_HOME=/usr/local/accumulo
export PATH=$PATH:$ACCUMULO_HOME/bin

3.	 Create directories for Apache Accumulo with the following commands:
mkdir -p /tmp/walogs

mkdir -p /app/accumulo

chown hduser:hadoop /app/accumulo

chmod 750 /app/accumulo

chown hduser:hadoop /tmp/walogs

chmod 750 /tmp/walogs

4.	 Now we need to copy the $Accumulo_Home/conf folder in the Accumulo
directory, and copy one of the configurations available in the conf/examples
folder to the conf folder with the following commands:
#user/local/accumulo/conf$ cp conf/examples/512MB/native-
standalone/* conf

Apache Nutch with Gora, Accumulo, and MySQL

[104]

5.	 If you are configuring a larger cluster, you need to create the configuration
files yourself and include the changes to the $ACCUMULO_HOME/conf directory
as follows:

°° Make a slaves.txt file in $ACCUMULO_HOME/conf/ and write
localhost inside it. This is the configuration on which tablet servers
and loggers will run.

°° Create a masters.txt file in $ACCUMULO_HOME/conf/ and write
localhost in it. This is the configuration of machines where the
master server will run.

6.	 Now create the accumulo-env.sh file in $Accumulo_Home/conf/ by
following the template of $Accumulo_home/conf/example/3GB/native
standalone/accumulo-env.sh, and edit JAVA_HOME, HADOOP_HOME and
ZOOKEEPER_HOME inside the conf/accumulo-env.sh as follows:
The following command will increase the memory of Apache Accumulo:

test -z "$ACCUMULO_HOME" && export ACCUMULO_HOME=/usr/local/
accumulo/src/assemble/accumulo-1.5.0/

test -z "$ACCUMULO_TSERVER_OPTS" && export ACCUMULO_TSERVER_
OPTS="${POLICY} -Xmx1g -Xms1g -Xss512k"

test -z "$ACCUMULO_TSERVER_OPTS" && export ACCUMULO_TSERVER_
OPTS="${POLICY} -Xmx2g -Xms2g -Xss512k"

°° The following will be the path where Java resides
 export JAVA_HOME=/usr/lib/jvm/java-7-oracle

°° The following will be the path where ZooKeeper resides
 export ZOOKEEPER_HOME=/usr/local/zookeeper

°° The following will be the path of the Accumulo log directory

 export ACCUMULO_LOG_DIR=/tmp/walogs/logs

The preceding paths would be different for different users based on their
system settings.

7.	 Edit accumulo-site.xml in $Accumulo_home/conf/ by setting up the
ZooKeeper servers in the instance.zookeeper.host property, and set the
logger.dir.walog property as follows:

Chapter 4

[105]

<property>
 <name>instance.zookeeper.host</name>
 <value>localhost:2181</value>
 <description>comma separated list of zookeeper servers</
description>
 </property>
<property>
 <name>logger.dir.walog</name>
 <value>$HOME/tmp/walogs</value>
</property>
Set the instance.secret property.
<property>
 <name>instance.secret</name>
 <value>SOME-PASSWORD-OF-YOUR-CHOOSING</value>
</property>
<property>
 <name>instance.dfs.dir</name>
 <value>$HOME/app/accumulo/</value>
</property>

At this point we have configured Accumulo successfully. It's time to initialize
it and start it. Start Accumulo using the following command:
#ACCUMULO_HOME$/bin$./accumulo init

It will show the output as follows:

23 08:15:26,635 [util.Initialize] INFO : Hadoop Filesystem is
hdfs://127.0.0.1/

23 08:15:26,637 [util.Initialize] INFO : Accumulo data dir is /
accumulo

23 08:15:26,637 [util.Initialize] INFO : Zookeeper server is
localhost:2181

Warning!!! Your instance secret is still set to the default, this
is not secure. We highly recommend you change it.

You can change the instance secret in accumulo by using: bin/
accumulo org.apache.accumulo.server.util.ChangeSecret oldPassword
newPassword.

You will also need to edit your secret in your configuration file
by adding the property

instance.secret to your conf/accumulo-site.xml. Without this
accumulo will not operate correctly

Apache Nutch with Gora, Accumulo, and MySQL

[106]

Instance name : inst

Enter initial password for root: ******

Confirm initial password for root: *****

23 08:15:34,100 [util.NativeCodeLoader] INFO : Loaded the native-
hadoop library

23 08:15:34,337 [security.ZKAuthenticator] INFO : Initialized root
user with

username: root at the request of user !SYSTEM

Here, I set my instance name to inst and my password to root. You can do this in
the same way, or make sure that you set the right configuration parameters later.

Testing Apache Accumulo
You can start Accumulo using the following command:

#ACCUMULO_HOME$./bin/start-all.sh

If all succeeds, it will give the output as shown in the following screenshot:

After completing this, you will be able to open http://127.0.0.1:50095/ in
your web browser, and you will see a page as shown in the following screenshot:

http://127.0.0.1:50095/

Chapter 4

[107]

The preceding screenshot shows that your Apache Accumulo is running on the
browser successfully.

Now, before starting crawling, you have to start the Apache Accumulo server.
You can do this with the following command:

$ACCUMULO_HOME/bin$./accumulo tserver

If all succeeds, you will get the output as shown in the following screenshot:

The preceding screenshot shows that the server in Apache Accumulo is running
successfully.

Apache Nutch with Gora, Accumulo, and MySQL

[108]

Crawling with Apache Nutch on Apache
Accumulo
By this time, you must have a fully functional version of Apache Hadoop,
Zookeeper, and Apache Accumulo installed. So, we are ready to run Apache
Nutch web crawler. The following are the steps to do this:

1.	 Make a file called seed.txt in $NUTCH_HOME/local/runtime/urls. If the
urls directory isn't created already, you have to create that directory. Put
one URL per line as follows:
http://projects.apache.org/indexes/alpha.html
http://www.dmoz.org/Arts/People/

2.	 Now, we need to go to the $NUTCH_HOME directory and run the following
command:
#NUTCH_HOME$./runtime/local/bin/nutch crawl file://$NUTCH_HOME/
seeds.txt -depth 1

You may see some log messages print to the console, but hopefully no stack
traces. If you are seeing stack traces, you must go back and check your
configuration to make sure they match with the ones we made earlier.

3.	 After the crawler has completed its run, you are able to explore it using
the Apache Accumulo shell. To start Apache Accumulo, type the following
command:

#ACCUMULO_HOME/bin$./accumulo shell -u root -p secret

If all succeeds, you will get an output as follows:

Chapter 4

[109]

The preceding screenshot shows the Apache Accumulo shell.

To check the table, you need to look inside the table with the following commands:

root@reeshu1> table webpage

root@reeshu1 webpage> scan

It will give the output as follows:

org.apache.projects:http/categories.html f:fi [] \x00'\x8D\x00

org.apache.projects:http/categories.html f:st [] \x00\x00\x00\x01

org.apache.projects:http/categories.html f:ts []

...

...

...

We have successfully integrated Apache Nutch with Apache Accumulo. Now, let's
move to our next section that shows how to integrate Apache Nutch with MySQL.

Integration of Apache Nutch with MySQL
In this section, we are going to integrate Apache Nutch with MySQL. After the
integration, you can crawl web pages in Apache Nutch that will be stored in MySQL.
So, you can go to MySQL and check your crawled web pages and also perform the
necessary operations. We will start with the introduction of MySQL and then we will
cover the benefits of integrating MySQL with Apache Nutch. After that, we will see
the configuration of MySQL with Apache Nutch, and finally, we will perform crawling
with Apache Nutch on MySQL. So, let's start with an introduction to MySQL.

Introduction to MySQL
MySQL is a relational database which is used for data storage. You can store any
type of data (text, numeric, and alphanumeric). MySQL is used to store your
applications data and retrieve it whenever your applications need it. You can update
as well as delete the data. So, that's all about the introduction. Now let's see some of
the reasons for integrating MySQL with Apache Nutch.

Apache Nutch with Gora, Accumulo, and MySQL

[110]

Benefits of integrating MySQL with Apache
Nutch
MySQL provides rich querying functionality which other NoSQL stores don't provide.
Whichever web pages are crawled by Apache Nutch need to be stored in MySQL. You
can use MySQL as a data store with Apache Nutch. As many other data stores are also
available, you can use MySQL in the same way. It's a very good data storage option
with Apache Nutch. So, that's the benefits of integrating MySQL with Apache Nutch.
Now, let's find out about configuration of MySQL with Apache Nutch.

Configuring MySQL with Apache Nutch
In this section, we are going to cover the configuration steps that are required for
configuring MySQL with Apache Nutch:

1.	 Install MySQL Server and MySQL client from the Ubuntu software center,
or type the following command:
#sudo apt-get install mysql-server mysql-client

2.	 Modify my.cnf in /etc/mysql/ for changing MySQL from the default
value to Latin using the following command:
#sudo vi /etc/mysql/my.cnf

3.	 Put the following configuration under [mysqld]:
innodb_file_format=barracuda
innodb_file_per_table=true
innodb_large_prefix=true
character-set-server=utf8mb4
collation-server=utf8mb4_unicode_ci
max_allowed_packet=500M

4.	 The innodb options help in dealing with the small, primary key size
restriction of MySQL. The character and the collation settings are for
handling Unicode correctly. The max_allowed_packet settings is optional
and only necessary for very large sizes. You need to restart your machine
for changes to take effect.

Chapter 4

[111]

5.	 Check whether MySQL is running by entering the following command:
sudo netstat -tap | grep mysql

You should get the output as follows:

tcp 0 0 localhost:mysql *:* LISTEN

6.	 We need to set up the Nutch database in MySQL manually because the
current Apache Nutch/Apache Gora/MySQL generated database schema is
set to Latin. Log in to MySQL by entering the command using the MySQL ID
and password which you have set for MySQL:
mysql –u <username> -p

7.	 Hit Enter. It will ask for a password. Just type your password, and you will
be logged in to MySQL.

8.	 Create the nutch database by entering the following command:
CREATE DATABASE nutch;

9.	 Hit Enter and then to select the nutch database, enter the following command:
use nutch;

10.	 Hit Enter and then create the webpage table with the following command:
CREATE TABLE 'webpage' (

'id' varchar(767) NOT NULL,

'headers' blob,

'text' longtext DEFAULT NULL,

'status' int(11) DEFAULT NULL,

'markers' blob,

'parseStatus' blob,

'modifiedTime' bigint(20) DEFAULT NULL,

'prevModifiedTime' bigint(20) DEFAULT NULL,

'score' float DEFAULT NULL,

'typ' varchar(32) CHARACTER SET latin1 DEFAULT NULL,

'batchId' varchar(32) CHARACTER SET latin1 DEFAULT NULL,

'baseUrl' varchar(767) DEFAULT NULL,

'content' longblob,

Apache Nutch with Gora, Accumulo, and MySQL

[112]

'title' varchar(2048) DEFAULT NULL,

'reprUrl' varchar(767) DEFAULT NULL,

'fetchInterval' int(11) DEFAULT NULL,

'prevFetchTime' bigint(20) DEFAULT NULL,

'inlinks' mediumblob,

'prevSignature' blob,

'outlinks' mediumblob,

'fetchTime' bigint(20) DEFAULT NULL,

'retriesSinceFetch' int(11) DEFAULT NULL,

'protocolStatus' blob,

'signature' blob,

'metadata' blob,

PRIMARY KEY ('id')

) ENGINE=InnoDB

ROW_FORMAT=COMPRESSED

11.	 Hit Enter. You have successfully created the MySQL database for Nutch.

Now, let's understand how to crawl with Apache Nutch on MySQL.

Crawling with Apache Nutch on MySQL
In this section, we are going to integrate Apache Nutch with MySQL, and we will
then perform the crawling operation and check whether our crawled web pages
come to MySQL database or not. The following are the steps required to do this:

I have used Apache Nutch 2.2.1.

1.	 Get Apache Nutch 2.2.1 as discussed earlier.
2.	 Modify ivy.xml in $NUTCH_HOME/ivy/ by changing the following command:

<dependency org="org.apache.gora" name="gora-core" rev="0.3″
conf="*->default"/>

to

<dependency org="org.apache.gora" name="gora-core" rev="0.2.1″
conf="*->default"/>

Chapter 4

[113]

3.	 Uncomment gora-sql and mysql-connector-java as follows:
<dependency org="org.apache.gora" name="gora-sql" rev="0.1.1-
incubating" conf="*->default" />
<!– Uncomment this to use MySQL as database with SQL as Gora
store. –>
<dependency org="mysql" name="mysql-connector-java" rev="5.1.18″
conf="*->default"/>

4.	 Modify gora.properties in $NUTCH_HOME/conf/ by deleting or using #
for commenting out the default SqlStore properties. Add the following
configuration for MySQL by replacing xxxxx with your username and
password that you set up for MySQL:
###############################
MySQL properties
###############################
gora.sqlstore.jdbc.driver=com.mysql.jdbc.Driver
gora.sqlstore.jdbc.url=jdbc:mysql://localhost:3306/nutch?createDat
abaseIfNotExist=true
gora.sqlstore.jdbc.user=xxxxx
gora.sqlstore.jdbc.password=xxxxx

5.	 Modify the gora-sql-mapping.xml file in $NUTCH_HOME/conf/ by changing
the length of the primary key from 512 to 767 as follows. You need to make
the change at two places. Just find and change it.
<primarykey column="id" length="767″/>

6.	 Modify nutch-site.xml in $NUTCH_HOME/conf/ by adding the following
configuration to it:
<property>
<name>http.agent.name</name>
<value>YourNutchSpider</value>
</property>
<property>
<name>http.accept.language</name>
<value>ja-jp, en-us,en-gb,en;q=0.7,*;q=0.3</value>
<description>Value of the "Accept-Language" request header field.
This allows selection of non-English language as the default one
to retrieve.
It is a useful setting for search engines built for certain
national groups.
</description>
</property>
<property>

Apache Nutch with Gora, Accumulo, and MySQL

[114]

<name>parser.character.encoding.default</name>
<value>utf-8</value>
<description>The character encoding to fall back to when no other
information
is available</description>
</property>
<property>
<name>storage.data.store.class</name>
<value>org.apache.gora.sql.store.SqlStore</value>
<description>The Gora DataStore class for storing and retrieving
data.
Currently the following stores are available: ….
</description>
</property>

7.	 Install Ant if it's not installed already from the Ubuntu software center or by
typing the following command:
sudo apt-get install ant

8.	 Build Apache Nutch with the following commands:
#cd $NUTCH_HOME

#ant runtime

9.	 It will take some time to compile.
10.	 Create the seed.txt file and put URLs in it by entering the following

commands:
#cd $NUTCH_HOME/runtime/local

#mkdir -p urls

#echo 'http://nutch.apache.org/' > urls/seed.txt

11.	 Start your Apache Solr, which needs to be integrated with Apache Nutch as
discussed in Chapter 1, Getting Started with Apache Nutch, and then type the
following commands for crawling:
#Cd $NUTCH_HOME/runtime/local

bin/crawl urls/seed.txt TestCrawl http://localhost:8983/solr/ 2

12.	 If all succeeds, a table will be created in MySQL with the name TestCrawl.
webpage as TestCrawl is the ID provided in the preceding command and
web page is the table name which we have defined earlier.

Chapter 4

[115]

13.	 Check your crawled pages' records inside the table by entering the following
commands:
#mysql -u <username> -p

#use nutch;

#SELECT * FROM TestCrawl.webpage;

14.	 You can also use the MYSQL Query browser to do this. You will get around
320 rows. It will be difficult to read the columns, so you might want to install
MySQL Workbench with the following command:
sudo apt-get install mysql-workbench

15.	 The following command is used for viewing the data. You might also want
to run the following SQL command to limit the number of rows in the
TestCrawl.webpage table to only select the URLs that were actually parsed:
select * from webpage where status = 2;

16.	 You can easily add more URLs to search by hand in seed.txt in $NUTCH_
HOME/runtime/local/urls if you want, and you can then use the following
command for injecting URLs:

bin/nutch inject urls

You have successfully integrated Apache Nutch with MySQL. Now you can use
these records and perform whatever operations you require.

Summary
That's the end of this chapter. Let's revise quickly what we have discussed and
learned. We started with Apache Accumulo by covering its introduction and other
related components—Apache Gora, Apache ZooKeeper, and Apache Hadoop.
We saw in detail how we can configure Apache Accumulo with the help of all
these mentioned components. We have covered the configuration part of Apache
Accumulo and also performed crawling using Apache Nutch on Apache Accumulo.
After that, we started with the integration of Apache Nutch with MySQL, where
we covered the introduction of MySQL. Then, we covered how MySQL can
be integrated with Apache Nutch. We configured MySQL with Apache Nutch
successfully, and we also performed crawling using Apache Nutch on MySQL.

Index
A
Accumulo Prophets 93
AJAX Solr

about 54
applying, on Reuters data 54
architectural overview 54
executing 54-57
integrating, with Apache Solr 55-57

Amazon DynamoDB 93
Ant 9
ant command 77
Apache Accumulo

about 92
Apache Nutch, integrating with 93
configuring 102-106
crawling 108, 109
features 92
installing 102-106
testing 106, 107
URL, for downloading 103

Apache Gora
about 93
configuring, with Apache Nutch 94-98
data stores 93
URL, for documentation 83
usage 93

Apache Hadoop
about 59, 60
Apache Nutch, integrating with 60
downloading 61-63
Hadoop_HOME/conf/*, configuring 68
HDFS filesystem, formatting 71, 72
installing 61, 66, 67

IPv6, disabling 66
Java, installing 62
ownerships 67
permissions 67
setting up 99-102
setup, with Cluster 61
SSH, configuring 64, 65
URL, for downloading 63

Apache Hadoop 1.1.2
URL, for downloading 63

Apache Hadoop cluster
crawling, performing 78-81

Apache Hadoop Version 1.1.2 102
Apache Nutch

about 7, 8
Apache Gora, configuring 94-98
Apache Hadoop, setting up 99-102
Apache Solr, integrating 17
Apache Solr used, for sharding 45
Apache ZooKeeper, setting up 99-102
building, with Eclipse 82-84
cleaning up with 49
cluster shard, splitting 50
configuring 8
configuring, with Eclipse 81, 82
deployment architecture, setting up 75
downloading 61
installing 8, 61, 75, 76
installing, with Eclipse 82-84
integrating, with Apache Accumulo 93
integrating, with Apache Hadoop 60
integrating, with MySQL 109
MySQL, configuring with 110, 112
sharding, final test 52, 53
sharding statistics, checking 50, 52

[118]

shard, splitting 49
single-node cluster, starting 77
URL 9
URL, for downloading 75

Apache Nutch 1.7 27
Apache Nutch 2.2.1 9, 83, 112
Apache Nutch installation

Apache Solr, installing 15, 16
dependencies 8-13
key points 77
verifying 13
website, crawling 14, 15

Apache Nutch plugin
about 27
architecture 34
compiling 33
indexer extension program 30
scoring extension program 32
used, with Apache Nutch 32

Apache Nutch plugin example
about 27
dependencies, describing with

ivy module 29
plugin.xml, modifying 28, 29

Apache Software Foundation (ASF) 39
Apache Solr

AJAX Solr, integrating with 55-57
indexing with 22
installing 15, 16
integrating, with Apache Nutch 17
setting up 40-42
URL 15
used, for sharding 43-45
used, for sharding with

Apache Nutch 45, 46
Apache Solr 4.3.0

URL, for downloading 40
Apache Solr deployment

about 38
Apache Solr, setting up 40-42
JDK, setting up 39
need for 38
on Tomcat 42, 43
prerequisites 38
Tomcat, setting up 39, 40

Apache Solr indexes
sharding 46

Apache Tomcat. See Tomcat
Apache version 1.x 86
Apache version 2.x 86
Apache ZooKeeper

setting up 99-102
URL 99

architecture, Apache Nutch plugin 34

C
Chef

URL 75
cluster shard

splitting 50
Column Visibility 92
commit command 45
configuration, Apache Accumulo 102-106
configuration, Apache Nutch 8
configuration, Hadoop_HOME/conf/* 68
configuration, MySQL 110, 112
configuration, SSH 64, 65
core-site.xml

modifying 68
CrawlDB 19
crawling

about 14, 19, 20
DbUpdaterJob 19, 21
FetcherJob 19, 21
GeneratorJob 19, 21
InjectorJob 19, 20
Invertlinks 19, 22
on Apache Accumulo 108, 109
ParserJob 19, 21
performing, on Apache Hadoop

cluster 78-81
with, Apache Nutch on MySQL 112, 113,

114, 115
crawling, Eclipse 84-88
crawl script

used, for crawling website 17-19

D
data stores, Apache Gora 93
DbUpdaterJob 19, 22

[119]

deleteByQuery command 45
deployment architecture, Apache Nutch

setting up 75
documents

distributing, among shards 46

E
Eclipse

Apache Nutch, building 82-84
Apache Nutch, configuring 81, 82
Apache Nutch, installing 82-84
crawling 84-88
URL 82

Eclipse Marketplace
URL 82

F
Fetcher 35
FetcherJob 19, 21

G
GeneratorJob 19, 21

H
Hadoop Distributed File System. See HDFS
Hadoop_HOME/conf/*

configuring 68
HBase

about 93
URL, for downloading 9

HBase 0.90.4 8
HDFS 67
HDFS filesystem

formatting, NameNode used 71, 72
single-node cluster, starting 73
single-node cluster, stopping 74

hdfs-site.xml
modifying 69

Hypertext Mark-up Language (HTML) 54

I
Indexer 34
indexing

with Apache Solr 22
InjectorJob 19, 20
installation, Apache Accumulo 102-106
installation, Apache Hadoop 66, 67
installation, Apache Nutch 8, 75, 76
installation, Apache Solr 15, 16
installation, Java 62
Integrated Development Environment

(IDE) 59
Internet Protocol (IP) 66
Internet Protocol version 6. See IPv6
Invertlinks 19, 22
IPv6

about 66
disabling 66

Iterators 92
IvyDE plugin

URL, for downloading 82
ivy.xml file 29

J
Java

installing 62
Java Development Kit. See JDK
JavaServer Pages (JSP) 39
Java Version 1.7.0 102
JDK

about 39
setting up 39

JDK 1.6 9

L
LinkRank

about 24
URL 24

loops
about 24
URL 24

[120]

M
m2e plugin

URL, for downloading 82
Manager 54
mapred-site.xml

modifying 70, 71
Model-View-Controller (MVC) 54
MySQL

about 109
Apache Nutch, integrating 109
configuring, with Apache Nutch 110, 112
crawling on 112-115
integrating, with Apache Nutch 110

N
NameNode

used, for formatting HDFS filesystem 71, 72

P
Parameter Store 54
parse filters 22, 23
ParserJob 21
parsing

about 22, 23
LinkRank 24
loops 24
ScoreUpdater 25
scoring example 25, 26
Webgraph 23

R
Reuters 54
Reuters data

AJAX Solr, applying on 54

S
ScoreUpdater 25
ScoringFilter 8
Searcher 34
seed.txt file 19

shard
about 44, 45
documents, distributing among 46
splitting, with Apache Nutch 49

sharding
Apache Solr, used for 43-45
final test 52, 53
statistics, checking 50, 52
with Apache Nutch, Apache Solr used 45

single-node cluster
about 46-48
starting 73, 77
stopping 74

SSH
configuring 64, 65

T
Tomcat

setting up 39, 40
URL 39

U
URL filters 19, 20

W
Web DB 35
Webgraph

about 23
URL 23

website
crawling, crawl script used 17, 19

Z
zkCli.sh command 102
ZooKeeper Version 3.3. 102

Thank you for buying
Web Crawling and Data Mining with

Apache Nutch

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant PHP Web Scraping
ISBN: 978-1-78216-476-0 Paperback: 60 pages

Get up and running with the basic techniques of
web scraping using PHP

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Build a re-usable scraping class to expand
on for future projects

3.	 Scrape, parse, and save data from any
website with ease

Alfresco 3 Web Content
Management
ISBN: 978-1-84719-800-6 Paperback: 440 pages

Enterprise Web Content Management made easy
and affordable

1.	 A complete guide to Web Content Creation
and Distribution

2.	 Understand the concepts and advantages
of Publishing-style Web CMS

3.	 Leverage a single installation to manage
multiple websites

4.	 Integrate Alfresco web applications with
external systems

Please check www.PacktPub.com for information on our titles

Apache Solr 3.1 Cookbook
ISBN: 978-1-84951-218-3 Paperback: 300 pages

Over 100 recipes to discover new ways to work with
Apache's Enterprise Search Server

1.	 Improve the way in which you work with
Apache Solr to make your search engine
quicker and more effective

2.	 Deal with performance, setup, and
configuration problems in no time

3.	 Discover little-known Solr functionalities and
create your own modules to customize Solr
to your company's needs

Scaling Big Data with Hadoop and
Solr
ISBN: 978-1-78328-137-4 Paperback: 144 pages

Learn exciting new ways to buid efficient, high
performance enterprise search repostories for Big
Data using Hadoop and Solr

1.	 Understand the different approaches of making
Solr work on Big Data as well as the benefits
and drawbacks

2.	 Learn from interesting, real-life use cases for
Big Data search along with sample code

3.	 Work with the Distributed Enterprise Search
without prior knowledge of Hadoop and Solr

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Apache Nutch
	Introduction to Apache Nutch
	Installing and configuring Apache Nutch
	Installation dependencies
	Verifying your Apache Nutch installation
	Crawling your first website
	Apache Solr installation
	Solr integration with Nutch

	Crawling your website using the crawl script
	Crawling the Web, the CrawlDb, and URL filters
	InjectorJob
	GeneratorJob
	FetcherJob
	ParserJob
	DbUpdaterJob
	Invertlinks
	Indexing with Apache Solr

	Parsing and parse filters
	Webgraph
	Loops
	LinkRank
	ScoreUpdater
	A scoring example

	Apache Nutch plugin
	Apache Nutch plugin example
	Modifying plugin.xml
	Describing dependencies with the ivy module

	Indexer extension program
	Scoring extension program
	Using your plugin with Apache Nutch
	Compiling your plugin

	Understanding the Nutch Plugin architecture
	Summary

	Chapter 2: Deployment, Sharding, and AJAX Solr with Apache Nutch
	Deployment of Apache Solr
	Introduction of deployment
	Need of Apache Solr deployment
	Setting up Java Development Kit
	Setting up Tomcat
	Setting up Apache Solr
	Running Solr on Tomcat

	Sharding using Apache Solr
	Introduction to sharding
	Use of sharding with Apache Nutch
	Distributing documents across shards
	Sharding Apache Solr indexes
	Single cluster

	Splitting shard with Apache Nutch
	Cleaning up with Apache Nutch
	Splitting cluster shard
	Checking statistics of sharding with Apache Nutch
	Final test with Apache Nutch

	Working with AJAX Solr
	Architectural overview of AJAX Solr
	Applying AJAX Solr on Reuters' data
	Running AJAX Solr

	Summary

	Chapter 3: Integration of Apache
Nutch with Apache
Hadoop and Eclipse
	Integrating Apache Nutch with Apache Hadoop
	Introducing Apache Hadoop
	Installation of Apache Hadoop and Apache Nutch
	Downloading Apache Hadoop and Apache Nutch
	Apache Hadoop Setup with Cluster
	Installing Java
	Downloading Apache Hadoop
	Configuring SSH
	Disabling IPv6
	Installing Apache Hadoop
	Required ownerships and permissions
	The configuration required for Hadoop_HOME/conf/*
	Formatting the HDFS filesystem using the NameNode

	Setting up the deployment architecture of Apache Nutch
	Installing Apache Nutch
	Key points of Apache Nutch Installation
	Starting the cluster
	Performing crawling on the Apache Hadoop cluster

	Configuring Apache Nutch with Eclipse
	Introducing Apache Nutch configuration with Eclipse
	Installation and building Apache Nutch with Eclipse
	Crawling in Eclipse

	Summary

	Chapter 4: Apache Nutch with Gora, Accumulo, and MySQL
	Introduction to Apache Accumulo
	Main features of Apache Accumulo

	Introduction to Apache Gora
	Supported data stores

	Use of Apache Gora
	Integration of Apache Nutch with Apache Accumulo
	Configuration of Apache Gora with Apache Nutch
	Setting up Apache Hadoop and Apache Zookeeper
	Installing and configuring Apache Accumulo
	Testing Apache Accumulo
	Crawling with Apache Nutch on Apache Accumulo

	Integration of Apache Nutch with MySQL
	Introduction to MySQL
	Benefits of integrating MySQL with Apache Nutch
	Configuring MySQL with Apache Nutch
	Crawling with Apache Nutch on MySQL

	Summary

	Index

