

Mastering Node.js

Expert techniques for building fast servers and scalable,
real-time network applications with minimal effort

Sandro Pasquali

BIRMINGHAM - MUMBAI

Mastering Node.js

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing and its dealers and distributors, will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1191113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-632-0

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

Credits

Author
Sandro Pasquali

Reviewers
Alex Kolundzija

Abhijeet Sutar

Kevin Faaborg

Acquisition Editors
Edward Gordan

Gregory Wild

Lead Technical Editor
Sweny M. Sukumaran

Technical Editors
Tanvi Bhatt

Jalasha D'costa

Akashdeep Kundu

Nikhil Potdukhe

Tarunveer Shetty

Sonali Vernekar

Project Coordinator
Kranti Berde

Proofreader
Amy Johnson

Indexer
Hemangini Bari

Graphics
Valentina D'Silva

Disha Haria

Yuvraj Manari

Production Coordinator
Kirtee Shingan

Cover Work
Kirtee Shingan

About the Author

Sandro Pasquali began writing games on a Commodore PET in grade school,
and hasn't looked back. A polyglot programmer, who started with BASIC and
assembly, his journey through C, Perl, and PHP led to JavaScript and the browser
in 1995. He was immediately hooked on a vision of browsers as the software delivery
mechanism of the future. By 1997 he had formed Simple.com, a technology company
selling the world's first JavaScript-based application development framework,
patenting several technologies and techniques that have proven prescient. Node
represents for him only the natural next step in an inevitable march towards the
day when all software implementations, and software users, are joined within
a collaborative information network.

He has led the design of enterprise-grade applications for some of the largest
companies in the world, including Nintendo, Major League Baseball, Bang and
Olufsen, LimeWire, and others. He has displayed interactive media exhibits during
the Venice Biennial, won design awards, built knowledge management tools for
research institutes and schools, and has started and run several startups. Always
seeking new ways to blend design excellence and technical innovation, he has
made significant contributions across all levels of software architecture, from data
management and storage tools to innovative user interfaces and frameworks.

He now works to mentor a new generation of developers also bitten by the
collaborative software bug, especially the rabid ones.

Acknowledgments

Many people are responsible for the writing of this book. The team at Packt is owed
many thanks for their diligent editing and guidance, not to mention their patience
as my work evolved…slowly. Several dear colleagues and friends contributed ideas,
feedback, and support. Heartfelt thanks go out to Kevin Faaborg, Michael Nutt,
and Ernie Yu, whose insights regarding technology, software, society, and of course
Node.js were invaluable in guiding me through the development of this book,
and of my work in general. The reinforcing encouragement of Dre Labre, Stuart
McDonald, David Furfero, John Politowski, Andy Ross, Alex Gallafent, Paul Griffin,
Diana Barnes-Brown, and the others who listened politely while I thought out loud
will remain with me as fond memories of this long process. I thank Joseph Werle for
his energy and commitment, which was of great help as I grappled with some of the
more obscure nuances of the Node.js platform.

In particular I would like to thank Alexander Kolundzija, whose early advocacy began
this process, and who is, as T.S. Eliot once said of Ezra Pound, "il miglior fabbro".

The writing of this book kept me away from my family and friends for many days and
nights, so I thank them all for putting up with my absences. Most importantly, to my
darling wife Elizabeth, who faithfully supported me throughout, I send my love.

About the Reviewers

Kevin Faaborg is a professional software developer and avid software hobbyist.
Along with JavaScript and Node.js, his work and interests include event-driven
programming, open source software development, and peer-to-peer technology.

Alex Kolundzija is a full stack web developer with over a decade of experience at
companies including Google, Meebo, and MLB.com. He's the founder and principal
developer of Blend.io, a music collaboration network built with Node.js and a part
of the Betaworks Studio of companies.

He has previously reviewed Kito Mann's Java Server Faces in Action (Manning).

Abhijeet Sutar is a computer science graduate from Mumbai University. He is
a self-taught software developer, and enthusiastic about learning new technologies.
His goto language is Java. He has mainly worked on middleware telephony
applications for contact centers. He has also successfully implemented a highly
available data store with MongoDB NoSQL database for a contact center application.
He is currently moving onto Node.js platform for development of the next
generation Operational Technology (OT). He blogs at http://blog.ajduke.in,
codes at http://github.com/ajduke and tweets via handle @_ajduke.

I would like to thank the people at Packt Publishing, Krunal,
Sweny, for providing reviewing opportunity for new technology,
Node. I also want to thank Kranti for providing the chapters and
putting reminders on due date, and promptly providing necessary
information.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Understanding the Node Environment	 7

Extending JavaScript	 9
Events	 10
Modularity	 12
The Network	 13

V8	 15
Memory and other limits	 16
Harmony	 18

The process object	 19
The Read-Eval-Print Loop and executing a Node program	 21
Summary	 23

Chapter 2: Understanding Asynchronous
Event-Driven Programming	 25

Broadcasting events	 26
Collaboration	 28
Queueing	 29

Listening for events	 30
Signals	 30
Forks	 32
File events	 34
Deferred execution	 35

process.nextTick	 36
Timers	 38

setTimeout	 38
setInterval	 39
unref and ref	 40

Table of Contents

[ii]

Understanding the event loop	 41
Four sources of truth	 42

Callbacks and errors	 44
Conventions	 45
Know your errors	 45
Building pyramids	 47
Considerations	 48

Listening for file changes	 49
Summary	 53

Chapter 3: Streaming Data Across Nodes and Clients	 55
Exploring streams	 57

Implementing readable streams	 59
Pushing and pulling	 61

Writable streams	 62
Duplex streams	 65
Transforming streams	 65
Using PassThrough streams	 66

Creating an HTTP server	 67
Making HTTP requests	 69
Proxying and tunneling	 70

HTTPS, TLS(SSL), and securing your server	 72
Creating a self-signed certificate for development	 72
Installing a real SSL certificate	 73

The request object	 73
The URL module	 74
The Querystring module	 76

Working with headers	 77
Using cookies	 78
Understanding content types	 80
Handling favicon requests	 81

Handling POST data	 82
Creating and streaming images with Node	 83

Creating, caching, and sending a PNG representation	 84
Summary	 87

Chapter 4: Using Node to Access the Filesystem	 89
Directories, and iterating over files
and folders	 90

Types of files	 91
File paths	 92
File attributes	 94

Table of Contents

[iii]

Opening and closing files	 95
fs.open(path, flags, [mode], callback)	 96
fs.close(fd, callback)	 97

File operations	 97
fs.rename(oldName, newName, callback)	 97
fs.truncate(path, len, callback)	 97
fs.ftruncate(fd, len, callback)	 97
fs.chown(path, uid, gid, callback)	 98
fs.fchown(fd, uid, gid, callback)	 98
fs.lchown(path, uid, gid, callback)	 98
fs.chmod(path, mode, callback)	 98
fs.fchmod(fd, mode, callback)	 98
fs.lchmod(path, mode, callback)	 99
fs.link(srcPath, dstPath, callback)	 99
fs.symlink(srcPath, dstPath, [type], callback)	 99
fs.readlink(path, callback)	 100
fs.realpath(path, [cache], callback) 	 100
fs.unlink(path, callback)	 101
fs.rmdir(path, callback)	 101
fs.mkdir(path, [mode], callback)	 101
fs.exists(path, callback)	 101
fs.fsync(fd, callback)	 101

Synchronicity	 102
Moving through directories	 103

Reading from a file	 105
Reading byte by byte	 106

fs.read(fd, buffer, offset, length, position, callback)	 106
Fetching an entire file at once	 107

fs.readFile(path, [options], callback)	 107
Creating a readable stream	 107

fs.createReadStream(path, [options])	 108
Reading a file line by line	 108

The Readline module	 109
Writing to a file	 110

Writing byte by byte	 110
fs.write(fd, buffer, offset, length, position, callback)	 110

Writing large chunks of data	 112
fs.writeFile(path, data, [options], callback)	 112
fs.appendFile(path, data, [options], callback)	 112

Creating a writable stream	 113
fs.createWriteStream(path, [options])	 113

Caveats	 113
Serving static files	 114

Redirecting requests	 114
Location	 115

Implementing resource caching 	 116

Table of Contents

[iv]

Handling file uploads	 118
Putting it all together	 120

Summary	 121
Chapter 5: Managing Many Simultaneous Client Connections	 123

Understanding concurrency	 126
Concurrency is not parallelism	 126

Routing requests	 127
Understanding routes	 129
Using Express to route requests	 131

Using Redis for tracking client state	 132
Storing user data	 134

Handling sessions	 135
Cookies and client state	 135
A simple poll	 136
Centralizing states	 138

Authenticating connections	 140
Basic authentication	 141
Handshaking	 143

Summary	 146
Further reading	 146

Chapter 6: Creating Real-time Applications	 147
Introducing AJAX	 149

Responding to calls	 151
Creating a stock ticker	 152

Bidirectional communication with
Socket.IO	 156

Using the WebSocket API	 157
Socket.IO	 159
Drawing collaboratively	 161

Listening for Server Sent Events	 165
Using the EventSource API	 166
The EventSource stream protocol	 169
Asking questions and getting answers	 171

Building a collaborative document editing application	 178
Summary	 182

Chapter 7: Utilizing Multiple Processes	 183
Node's single-threaded model	 185

The benefits of single-threaded programming	 186
Multithreading is already native and transparent	 189

Creating child processes	 190

Table of Contents

[v]

Spawning processes	 192
Forking processes	 195
Buffering process output	 197

Communicating with your child	 198
Sending messages to children	 199

Parsing a file using multiple processes	 200
Using the cluster module	 203
Cluster events	 205
Worker object properties	 205
Worker events	 206

Real-time activity updates of multiple worker results	 206
Summary	 212

Chapter 8: Scaling Your Application	 213
When to scale?	 214

Network latency	 215
Hot CPUs	 216
Socket usage	 218
Many file descriptors	 218
Data creep	 218
Tools for monitoring servers	 220

Running multiple Node servers	 220
Forward and reverse proxies	 220
Nginx as a proxy	 222
Using HTTP Proxy	 225

Message queues – RabbitMQ	 227
Types of exchanges	 228

Using Node's UDP module	 230
UDP multicasting with Node	 233

Using Amazon Web Services in your application	 236
Authenticating	 237
Errors	 238
Using S3 to store files	 239

Working with buckets	 239
Working with objects	 240
Using AWS with a Node server	 243

Getting and setting data with DynamoDB	 244
Searching the database	 247

Sending mail via SES	 248
Authenticating with Facebook Connect	 250
Summary	 253

Table of Contents

[vi]

Chapter 9: Testing Your Application	 255
Why testing is important	 256

Unit tests	 257
Functional tests	 257
Integration tests	 258

Native Node testing and debugging tools	 259
Writing to the console	 259

Formatting console output	 261
The Node debugger	 263
The assert module	 267
Sandboxing	 270

Distinguishing between local scope and execution context	 271
Using compiled contexts	 272

Errors and exceptions	 272
The domain module	 275

Headless website testing with ZombieJS and Mocha	 277
Mocha	 278
Headless web testing	 279

Using Grunt, Mocha, and PhantomJS to test and deploy projects	 281
Working with Grunt	 283

Summary	 284
Appendix A: Organizing Your Work	 285

Loading and using modules	 286
Understanding the module object	 287
Resolving module paths	 288

Using npm	 290
Initializing a package file	 290
Using scripts	 291
Declaring dependencies	 292
Publishing packages	 293
Globally installing packages and binaries	 294
Sharing repositories	 295

Appendix B: Introducing the Path Framework	 297
Managing state	 299
Bridging the client/server divide	 300
Sending and receiving	 302
Achieving a modular architecture	 303

Appendix C: Creating Your Own C++ Add-ons	 307
Hello World	 309
Creating a calculator	 311

Table of Contents

[vii]

Implementing callbacks	 313
Closing thoughts	 314
Links and resources	 315

Index	 317

Preface
The Internet is no longer a collection of static websites to be passively consumed.
The browser user has come to expect a much richer, interactive experience. Over the
last decade or so, network applications have come to resemble desktop applications.
Also, recognition of the social characteristics of information has inspired the
development of new kinds of interfaces and visualizations modeling dynamic
network states, where the user is viewing change over real time rather than fading
snapshots trapped in the past.

Even though our expectations for software have changed, the tools available to us as
software developers developers have not changed much. Computers are faster, and
multicore chip architectures are common. Data storage is cheaper, as is bandwidth.
Yet we continue to develop with tools designed before billion-user websites and
push-button management of cloud-based clusters of virtual machines.

The development of network applications remains an overly expensive and slow
process because of this. Developers use different languages, programming styles,
complicating code maintenance, debugging, and more. Too regularly, scaling issues
arrive too early, overwhelming the ability of what is often a small and inexperienced
team. Popular modern software features, such as real-time data, multiplayer games,
and collaborative editing spaces, demand systems capable of carrying thousands of
simultaneous connections without bending. Yet we remain restricted to frameworks
designed to assist us in building CRUD applications binding a single relational
database on a single server to a single user running a multipage website
in a browser on a desktop computer.

Node helps developers build more resilient network applications at scale. Built
on C++ and bundled with Google's V8 engine, Node is fast, and it understands
JavaScript. Node has brought together the most popular programming language in
the world and the fastest JavaScript compiler around, and has given that team easy
access to an operating system through C++ bindings. Node represents a change in
how network software is designed and built.

Preface

[2]

What this book covers
Chapter 1, Understanding the Node Environment, gives a brief description of the
particular problems Node attempts to solve, with a focus on how its single-threaded
event-loop is designed, implemented, and used. We will also learn about how
Google's V8 engine can be configured and managed, as well as best practices when
building Node programs.

Chapter 2, Understanding Asynchronous Event-Driven Programming, digs deep into
the fundamental characteristic of Node's design: event-driven, asynchronous
programming. By the end of this chapter you will understand how events, callbacks,
and timers are used in Node, as well as how the event loop works to enable high-speed
I/O across filesystems, networks, and processes.

Chapter 3, Streaming Data Across Nodes and Clients, describes how streams of I/O data
are knitted through most network software, emitted by file servers or broadcast in
response to an HTTP GET request. Here we learn how Node facilitates the design,
implementation, and composition of network software, using examples of HTTP
servers, readable and writable file streams, and other I/O focused Node modules
and patterns.

Chapter 4, Using Node to Access the Filesystem, lays out what you need to know when
accessing the filesystem with Node, along with techniques for handling file uploads
and other networked file operations.

Chapter 5, Managing Many Simultaneous Client Connections, shows you how Node helps
in solving problems accompanying the high volume, high concurrency environments
that contemporary, collaborative web applications demand. Through examples,
learn how to efficiently track user state, route HTTP requests, handle sessions,
and authenticate requests using the Redis database and Express web application
framework.

Chapter 6, Creating Real-Time Applications, explores AJAX, Server-Sent-Events, and
the WebSocket protocol, discussing their pros and cons, and how to implement each
using Node. We finish the chapter by building a collaborative document editing
application.

Chapter 7, Utilizing Multiple Processes, teaches how to distribute clusters of Node
processes across multi-core processors, and other techniques for scaling Node
applications. An investigation of the differences between programming in single
and multithreaded environments leads to a discussion of how to spawn, fork,
and communicate with child processes in Node, and we build an analytics tool
that records, and displays, the mouse actions of multiple, simultaneous clients
connected through a cluster of web sockets.

Preface

[3]

Chapter 8, Scaling Your Application, outlines some techniques for detecting when to
scale, deciding how to scale, and scaling Node applications across multiple servers
and cloud services, with examples including: how to use RabbitMQ as a message
queue, using NGINX to proxy Node servers, and using Amazon Web Services in
your application.

Chapter 9, Testing Your Application, explains how to implement unit, functional, and
integration tests with Node. We will explore several testing libraries, including native
Node assertion, sandboxing, and debugging modules. Examples using Grunt, Mocha,
PhantomJS, and other build and testing tools accompany the discussion.

Appendix A, Organizing Your Work, gives tips on using the npm package management
system. Learn how create packages, publish packages, and manage packages.

Appendix B, Introducing the Path Framework, demonstrates how to use this powerful
full-stack application framework to build your next web application using only
JavaScript, thanks to Node and its ability to handle thousands of simultaneously
connected clients.

Appendix C, Creating Your Own C++ Add-ons, provides a brief introduction on how
to build your own C++ add-ons, and how to use them from within Node.

What you need for this book
You will need to have some familiarity with JavaScript, and have a copy of Node
installed on your development machine or server, Version 0.10.21 or higher. You
should know how to install programs on this machine, as you will need to install
Redis, along with other libraries, like PhantomJS. Having Git installed, and learning
how to clone GitHub repositories, will greatly improve your experience.

You should install RabbitMQ so that you can follow with the examples using
message queues. The sections on using NGINX to proxy Node servers will of course
require that you can install and use that web server. To build C++ add-ons you will
need to install the appropriate compiler on your system.

The examples in this book are built and tested within UNIX-based environments
(including Mac OS X), but you should be able to run all Node examples on
Windows-based operating systems as well. You can obtain installers for your system,
and binaries, from http://www.nodejs.org.

Preface

[4]

Who this book is for
This book is for developers who want to build high-capacity network applications,
such as social networks, collaborative document editing environments, real time
data-driven web interfaces, networked games, and other I/O-heavy software. If you're
a client-side JavaScript developer, reading this book will teach you how to become
a server-side programmer using a language you already know. If you're a C++ hacker,
Node is an open-source project built using that language, offering you an excellent
opportunity to make a real impact within a large and growing community, even
gaining fame, by helping to develop this exciting new technology.

This book is also for technical managers and others seeking an explanation of the
capabilities and design philosophy of Node. The book is filled with examples
of how Node solves the problems modern software companies are facing in terms
of high-concurrency, real-time applications pushing enormous volumes of data
through growing networks. Node has already been embraced by the enterprise,
and you should consider it for your next project.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To import modules into your Node program use the require directive."

A block of code is set as follows:

var EventEmitter = require('events').EventEmitter;
var Counter = function(init) {
 this.increment = function() {
 init++;
 this.emit('incremented', init);
 }

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

var size = process.argv[2];
var totl = process.argv[3] || 100;
var buff = [];
for(var i=0; i < totl; i++) {

Preface

[5]

 buff.push(new Buffer(size));
 process.stdout.write(process.memoryUsage().heapTotal + "\n");
}

Any command-line input or output is written as follows:

> node process.js 1000000 100 > out.file

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so,
you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be
uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Understanding the Node
Environment

Node's goal is to provide an easy way to build scalable network programs.

— Ryan Dahl, creator of Node.js

The WWW (World Wide Web) makes it possible for hypermedia objects on the
Internet to interconnect, communicating through a standard set of Internet protocols,
commonly HTTP (Hyper Text Transfer Protocol). The growth in the complexity,
number, and type of web applications delivering curated collections of these objects
through the browser has increased interest in technologies that aid in the construction
and management of intricate networked applications. Node is one such technology.
By mastering Node you are learning how to build the next generation of software.

The hold that any one person has on information is tenuous. Complexity follows
scale; confusion follows complexity. As resolution blurs, errors happen.

Similarly, the activity graph describing all expected I/O (Input/Output)
interactions an application may potentially form between clients and providers
must be carefully planned and managed, lest the capacity of both the system and
its creator be overwhelmed. This involves controlling two dimensions
of information: volume and shape.

As a network application scales, the volume of information it must recognize,
organize, and maintain increases. This volume, in terms of I/O streams, memory
usage, and CPU (Central Processing Unit) load, expands as more clients connect,
and even as they leave (in terms of persisting user-specific data).

Understanding the Node Environment

[8]

This expansion of information volume also burdens the application developer, or
team of developers. Scaling issues begin to present themselves, usually demonstrating
a failure to accurately predict the behavior of large systems from the behavior of small
systems. Can a data layer designed for storing a few thousand records accommodate
a few million? Are the algorithms used to search a handful of records efficient enough
to search many more? Can this server handle 10,000 simultaneous client connections?
The edge of innovation is sharp and cuts quickly, presenting less time for deliberation
precisely when the cost of error is being magnified. The shape of objects comprising
the whole of an application becomes amorphous and difficult to understand,
particularly as ad hoc modifications are made, reactively, in response to dynamic
tension in the system. What is described in a specification as a small subsystem
may have been patched into so many other systems that its actual boundaries are
misunderstood. It becomes impossible to accurately trace the outline of the composite
parts of the whole.

Eventually an application becomes unpredictable. It is dangerous when one
cannot predict all future states of an application, or the side effects of change. Any
number of servers, programming languages, hardware architectures, management
styles, and so on, have attempted to subdue the intractable problem of risk
following growth, of failure menacing success. Oftentimes systems of even greater
complexity are sold as the cure.

Node chose clarity and simplicity instead. There is one thread, bound to an event
loop. Deferred tasks are encapsulated, entering and exiting the execution context
via callbacks. I/O operations generate evented data streams, these piped through
a single stack. Concurrency is managed by the system, abstracting away thread pools
and simplifying memory management. Dependencies and libraries are introduced
through a package management system, neatly encapsulated, and easy to distribute,
install, and invoke.

Experienced developers have all struggled with the problems that Node aims to solve:

•	 How to serve many thousands of simultaneous clients efficiently
•	 Scaling networked applications beyond a single server
•	 Preventing I/O operations from becoming bottlenecks
•	 Eliminating single points of failure, thereby ensuring reliability
•	 Achieving parallelism safely and predictably

As each year passes, we see collaborative applications and software responsible
for managing levels of concurrency that would have been considered rare just
a few years ago. Managing concurrency, both in terms of connection handling
and application design, is the key to building scalable web architectures.

Chapter 1

[9]

In this book we will study the techniques professional Node developers use to
tackle these problems. In this chapter, we will explore how a Node application
is designed, the shape and texture of its footprint on a server, and the powerful
base set of tools and features Node provides for developers. Throughout we will
examine progressively more intricate examples demonstrating how Node's simple,
comprehensive, and consistent architecture solves many difficult problems well.

Extending JavaScript
When he designed Node, JavaScript was not Ryan Dahl's original language choice.
Yet, after exploring it, he found a very good modern language without opinions
on streams, the filesystem, handling binary objects, processes, networking, and
other capabilities one would expect to exist in a system's programming language.
JavaScript, strictly limited to the browser, had no use for, and had not implemented,
these features.

Dahl was guided by a few rigid principles:

•	 A Node program/process runs on a single thread, ordering execution
through an event loop

•	 Web applications are I/O intensive, so the focus should be on making I/O fast
•	 Program flow is always directed through asynchronous callbacks
•	 Expensive CPU operations should be split off into separate parallel processes,

emitting events as results arrive
•	 Complex programs should be assembled from simpler programs

The general principle is, operations must never block. Node's desire for speed
(high concurrency) and efficiency (minimal resource usage) demands the reduction
of waste. A waiting process is a wasteful process, especially when waiting for I/O.

JavaScript's asynchronous, event-driven design fits neatly into this model.
Applications express interest in some future event and are notified when that event
occurs. This common JavaScript pattern should be familiar to you:

Window.onload = function() {
 // When all requested document resources are loaded,
 // do something with the resulting environment
}

element.onclick = function() {
 // Do something when the user clicks on this element
}

Understanding the Node Environment

[10]

The time it will take for an I/O action to complete is unknown, so the pattern is to
ask for notification when an I/O event is emitted, whenever that may be, allowing
other operations to be completed in the meantime.

Node adds an enormous amount of new functionality to JavaScript. Primarily, the
additions provide evented I/O libraries offering the developer system access not
available to browser-based JavaScript, such as writing to the filesystem or opening
another system process. Additionally, the environment is designed to be modular,
allowing complex programs to be assembled out of smaller and simpler components.

Let's look at how Node imported JavaScript's event model, extended it, and used
it in the creation of interfaces to powerful system commands.

Events
Many of the JavaScript extensions in Node emit events. These events are instances
of events.EventEmitter. Any object can extend EventEmitter, providing
the developer with an elegant toolkit for building tight asynchronous interfaces
to object methods.

Work through this example demonstrating how to set an EventEmitter object
as the prototype of a function constructor. As each constructed instance now has
the EventEmitter object exposed to its prototype chain, this provides a natural
reference to the event API (Application Programming Interface). The counter
instance methods can therefore emit events, and these can be listened for. Here we
emit the latest count whenever the counter.increment method is called, and bind
a callback to the incremented event, which simply prints the current counter value
to the command line:

var EventEmitter = require('events').EventEmitter;
var Counter = function(init) {
 this.increment = function() {
 init++;
 this.emit('incremented', init);
 }
}
Counter.prototype = new EventEmitter();
var counter = new Counter(10);
var callback = function(count) {
 console.log(count);
}
counter.addListener('incremented', callback);

counter.increment(); // 11
counter.increment(); // 12

Chapter 1

[11]

To remove the event listeners bound to counter, use counter.
removeListener('incremented', callback). For consistency with browser-based
JavaScript, counter.on and counter.addListener are interchangeable.

The addition of EventEmitter as an extensible object greatly increases the
possibilities of JavaScript on the server. In particular, it allows I/O data streams
to be handled in an event-oriented manner, in keeping with the Node's principle
of asynchronous, non-blocking programming:

var Readable = require('stream').Readable;
var readable = new Readable;
var count = 0;

readable._read = function() {
 if(++count > 10) {
 return readable.push(null);
 }
 setTimeout(function() {
 readable.push(count + "\n");
 }, 500);
};
readable.pipe(process.stdout);

In this program we are creating a Readable stream and piping any data pushed into
this stream to process.stdout. Every 500 milliseconds we increment a counter and
push that number (adding a newline) onto the stream, resulting in an incrementing
series of numbers being written to the terminal. When our series has reached its
limit (10), we push null onto the stream, causing it to terminate. Don't worry if you
don't fully understand how Readable is implemented here—streams will be fully
explained in the following chapters. Simply note how the act of pushing data onto
a stream causes a corresponding event to fire, how the developer can assign a custom
callback to handle this event, and how newly added data can be redirected to other
streams. Node is designed such that I/O operations are consistently implemented
as asynchronous, evented data streams.

It is also important to note the importance of this style of I/O. Because Node's event
loop need only commit resources to handling callbacks, many other instructions can
be processed in the down time between each interval.

As an exercise, re-implement the previous code snippet such that the emitted data
is piped to a file. You'll need to use fs.createWriteStream:

var fs = require('fs');
var writeStream = fs.createWriteStream("./counter", {
 flags : 'w',
 mode: 0666
});

Understanding the Node Environment

[12]

Modularity
In his book The Art of Unix Programming, Eric Raymond proposed the Rule
of Modularity:

Developers should build a program out of simple parts connected by well defined
interfaces, so problems are local, and parts of the program can be replaced in
future versions to support new features. This rule aims to save time on debugging
complex code that is complex, long, and unreadable.

This idea of building complex systems out of small pieces, loosely joined is seen
in the management theory, theories of government, physical manufacturing, and
many other contexts. In terms of software development, it advises developers to
contribute only the simplest and most useful component necessary within a larger
system. Large systems are hard to reason about, especially if the boundaries of its
components are fuzzy.

One of the primary difficulties when constructing scalable JavaScript programs
is the lack of a standard interface for assembling a coherent program out of many
smaller ones. For example, a typical web application might load dependencies using
a sequence of <script> tags in the <head> section of an HTML document:

<head>
<script src="fileA.js"></script>
<script src="fileB.js"></script>
</head>

There are many problems with this sort of solution:

1.	 All potential dependencies must be declared prior to being needed—
dynamic inclusion requires complicated hacks.

2.	 The introduced scripts are not forcibly encapsulated—nothing stops code
in both files from writing to the same global object. Namespaces can easily
collide, making arbitrary injection dangerous.

3.	 fileA cannot address fileB as a collection—an addressable context such as
fileB.method isn't available.

4.	 The <script> method itself isn't systematic, precluding the design of useful
module services, such as dependency awareness or version control.

5.	 Scripts cannot be easily removed, or overridden.
6.	 Because of these dangers and difficulties, sharing is not effortless,

diminishing opportunities for collaboration in an open ecosystem.

Ambivalently inserting unpredictable code fragments into an application frustrates
attempts to predictably shape functionality. What is needed is a standard way to
load and share discreet program modules.

Chapter 1

[13]

Accordingly, Node introduced the concept of the package, following the CommonJS
specification. A package is a collection of program files bundled with a manifest
file describing the collection. Dependencies, authorship, purpose, structure, and
other important meta-data are exposed in a standard way. This encourages the
construction of large systems from many small, interdependent systems. Perhaps
even more importantly, it encourages sharing:

What I'm describing here is not a technical problem. It's a matter of people getting
together and making a decision to step forward and start building up something
bigger and cooler together.

— Kevin Dangoor, creator of CommonJS

In many ways the success of Node is due to growth in the number and quality
of packages available to the developer community, distributed via Node's package
management system, npm. The design choices of this system, both social and
technical, have done much to help make JavaScript a viable professional option
for systems programming.

More extensive information on creating and managing Node packages can be found
in Appendix A, Organizing Your Work. The key point is this: build programs out of
packages where possible, and share those packages when possible. The shape of
your applications will be clearer and easier to maintain. Importantly, the efforts of
thousands of other developers can be linked into applications via npm, directly by
inclusion, and indirectly as shared packages are tested, improved, refactored, and
repurposed by members of the Node community.

Contrary to popular belief, npm is not an abbreviation for Node Package
Manager (or even an acronym):

https://npmjs.org/doc/faq.html#If-npm-is-an-acronym-
why-is-it-never-capitalized

The Network
I/O in the browser is mercilessly hobbled, for very good reasons—if the JavaScript
on any given website could access your filesystem, or open up network connections
to any server, the WWW would be a less fun place.

For Node, I/O is of fundamental importance, and its focus from the start was to
simplify the creation of scalable systems with high I/O requirements. It is likely
that your first experience with Node was in writing an HTTP server.

Understanding the Node Environment

[14]

Node supports several standard network protocols in addition to HTTP, such
as TLS/SSL (Transport Layer Security/Secure Sockets Layer), and UDP (User
Datagram Protocol). With these tools we can easily build scalable network programs,
moving well beyond the somewhat dated AJAX (Asynchronous JavaScript And
Xml) techniques familiar to the JavaScript developer.

Let's create a simple program that allows the user to send data between two
UDP servers:

var dgram = require('dgram');
var client = dgram.createSocket("udp4");
var server = dgram.createSocket("udp4");

var message = process.argv[2] || "message";

message = new Buffer(message);

server
.on("message", function (msg) {
 process.stdout.write("Got message: " + msg + "\n");
 process.exit();

})
.bind(41234);

client.send(message, 0, message.length, 41234, "localhost");

Assuming a program file name of udp.js a message can be sent via UDP by running
this program from the terminal like so:

node udp.js "my message"

Which will result in the following output:

Got message: my message

We first establish our UDP servers, one working as a broadcaster, the other as
a listener. process.argv contains useful command information, including
command-line arguments commencing at index(2), which in this case would
contain "my message". UDP requires messages to be Buffer objects, so we ensure
that some message exists and convert it.

A UDP server is an instance of EventEmitter, emitting a message event when
messages are received on the port it is bound. This server simply echoes the received
message. All that is left to do is send the message, which action is performed by
the client, passing along our message to port #41234.

Chapter 1

[15]

Moving streams of data around the I/O layer of your application is simplified within
Node. It isn't difficult to share data streams across differing protocol servers, as data
streams are standardized via Node's interfaces. Protocol details are handled for you.

Let's continue to explore I/O, the process object, and events. First, let's dig into the
machine powering Node's core.

V8
V8 is Google's JavaScript engine, written in C++. It compiles and executes JavaScript
code inside of a VM (Virtual Machine). When a webpage loaded into Google
Chrome demonstrates some sort of dynamic effect, like automatically updating
a list or news feed, you are seeing JavaScript, compiled by V8, at work.

While Node itself will efficiently manage I/O operations, its process object
refers to the V8 runtime. As such, it is important to understand how to configure
the V8 environment, especially as your application grows in size.

By typing node -h into a console, something like the following will be displayed:

We can see how a list of V8 options is accessible via the –-v8-options flag.

The list of configuration options for V8 is a long one, so we're not going to cover
each option here. As we progress through the book, relevant options will be
discussed with more depth. It is nevertheless useful to summarize some of the
options provided for managing system limits and memory, as well as those used
to configure JavaScript's command set, introducing some of the new features in
ES6 (EcmaScript6), often referred to as Harmony.

The version of V8 used by your Node installation can be viewed by typing:

node –e "console.log(process.versions.v8)"

Understanding the Node Environment

[16]

Memory and other limits
One very powerful V8 configuration option is important enough to make it into Node's
own collection: --max-stack-size. Let's look into some of the new powers a Node
developer has been given in being able to configure a specific JavaScript runtime.

Trying to break a system is an excellent way to discover its limits and shape. Let's
write a program that will crash V8:

var count = 0;
(function curse() {
 console.log(++count);
 curse();
})()

This self-contained, self-executing function will recursively call itself forever, or until
it is forced to stop. Each iteration of curse adds another frame to the call stack. This
uncontrolled growth will eventually cause the JavaScript runtime to collapse, citing
a RangeError: Maximum call stack size exceeded.

The purpose of --max-stack-size should now be clear. The direct V8 option
equivalent is –-stack_size, which is passed a value, in KB (Kilobytes), to raise this
limit. Experiment with the above program, noting the number of iterations possible
at different settings.

While it is likely that hitting this limit represents an incorrectly designed algorithm,
being able to expand the width of the operating space available to a Node process
adds to the collection of solutions available to developers.

On 32 bit and 64 bit machines V8's memory allocation defaults are, respectively,
700 MB and 1400 MB. In newer versions of V8, memory limits on 64 bit systems are
no longer set by V8, theoretically indicating no limit. However, the OS (Operating
System) on which Node is running can always limit the amount of memory V8 can
take, so the true limit of any given process cannot be generally stated.

V8 makes available the --max_old_space_size option, which allows control over
the amount of memory available to a process, accepting a value in MB. Should you
need to increase memory allocation, simply pass this option the desired value when
spawning a Node process.

It is often an excellent strategy to reduce the available memory allocation for a
given Node instance, especially when running many instances. As with stack limits,
consider whether massive memory needs are better delegated to a dedicated storage
layer, such as an in-memory database or similar.

Chapter 1

[17]

An informative discussion with the V8 team regarding their views
on how memory should be allocated can be found here:

http://code.google.com/p/v8/issues/detail?id=847

One of the key advantages of modern high-level languages such as JavaScript is the
automatic management of memory through GC (Garbage Collection). GC strategies
are many and complex, yet all follow a simple core idea: every so often, free allocated
memory that is no longer being used.

The drawback of automatic GC is that it puts a slight brake on process speed. While
the clear advantages of automatic GC outweigh its drawbacks in the majority of
cases, there remains for the Node developer an opportunity to control some of its
behavior. This is primarily done via the flags –-nouse_idle_notification and
–-expose_gc.

Passing the –-nouse_idle_notification flag will tell V8 to ignore idle notification
calls from Node, which are requests to V8 asking it to run GC immediately, as
the Node process is currently idle. Because Node is aggressive with these calls
(efficiency breeds clean slates), an excess of GC may slow down your application.
Note that using this flag does not disable GC; GC simply runs less often. In the right
circumstances this technique can increase performance.

--expose_gc introduces a new global method to the Node process, gc(), which
allows JavaScript code to manually start the GC process. In conjunction with
–-nouse_idle_notification the developer can now control to some degree how
often GC runs. At any point in my JavaScript code I can simply call gc() and start
the collector.

Being able to adjust memory usage and GC is certainly useful. Remember that
application volume can rapidly rise in unpredictable ways. If the memory footprint
of your application holds steady near the very limits of V8's allocation, you should
begin to think about scaling horizontally. Use memory wisely, and split off new
Node instances where appropriate.

Understanding the Node Environment

[18]

Harmony
JavaScript has never stopped evolving and it is now experiencing something of a
renaissance, helped in no small part by the popularity of Node. The language's next
version, named Harmony, introduces some significant new features and concepts.

More information on ES6 Harmony can be found at:
http://wiki.ecmascript.org/doku.php?id=harmony:harmony.

The available Harmony options are:

Flag Description
--harmony_typeof Enable semantics for typeof
--harmony_scoping Enable block scoping
--harmony_modules Enable modules (implies block scoping)
--harmony_proxies Enable proxies
--harmony_collections Enable collections (sets, maps, and weak maps)
--harmony Enable all features (except typeof)

It is beyond the scope of this book to discuss these new features in any depth.
Nonetheless, it should be stated that this ability to use the very latest JavaScript
features, now, through Node, offers the developer a great advantage—there is no
browser war on a server to hold back innovation.

For example, ES6's weakMap allows the use of non-strings as keys in a HashMap:

"use strict"
let owners = new WeakMap();
let task = {
 title 	 : "Big Project"
};
owners.set(task, 'John');
function owner(task) {
 if(owners.has(task)) {
 return console.log(owners.get(task));
 }
 console.log("No owner for this task.");
}
owner(task); // "John"
owner({}); // "No owner for this task"

As an exercise, the reader might map (fixed) input streams to (variable) output
streams in a similar manner.

Chapter 1

[19]

The process object
By now it should be clear as to how Node is structured, in terms of V8, the event
loop, and so forth. We are now going to discuss, in detail, how instructions that you
write (a JavaScript program) are compiled by V8 into a list of instructions whose
execution context is accessible via the native Node process object.

The single thread forming the spine of Node's event loop is V8's event loop. When
I/O operations are initiated within this loop they are delegated to libuv, which
manages the request using its own (multi-threaded, asynchronous) environment.
libuv announces the completion of I/O operations, allowing any callbacks waiting
on this event to be re-introduced to the main V8 thread for execution:

V8 delegate /0 to libI uv Thread Pool multi threaded async

Filesystem

Network

Function call

callback

Understanding the Node Environment

[20]

Node's process object provides information on and control over the current running
process. It is an instance of EventEmitter, is accessible from any scope, and exposes
very useful low-level pointers. Consider the following program:

var size = process.argv[2];
var totl = process.argv[3] || 100;
var buff = [];
for(var i=0; i < totl; i++) {
 buff.push(new Buffer(size));
 process.stdout.write(process.memoryUsage().heapTotal + "\n");
}

Downloading the example code:

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Assuming the program file is named process.js, it would be executed like so:

> node process.js 1000000 100

This execution context first fetches the two command-line arguments via process.
argv, builds a looping construct that grows memory usage depending on these
arguments, and emits memory usage data as each new allocation is made. The
program sends output to stdout, but could alternatively stream output to other
processes, or even a file:

> node process.js 1000000 100 > out.file

In fact, the familiar console.log is implemented in the Node core as a wrapper
around process.stdout.write:

console.log = function (d) {
 process.stdout.write(d + '\n');
};

A Node process begins by constructing a single execution stack, with the global
context forming the base of the stack. Functions on this stack execute within their
own, local, context (sometimes referred to as scope), which remains enclosed within
the global context (which you'll hear referred to as closure). Because Node is evented,
any given execution context can commit the running thread to handling an eventual
execution context. This is the purpose of callback functions.

Chapter 1

[21]

Consider the following schematic of a simple interface for accessing the filesystem:

Var fs = require(' fs ') ;

function filesystem() {

fs.readdir(dir, function(err, list) {

}

Execution Context(l/O callback)

Global context

Execution context

Execution context

function filesystem() {

...

}
});

If we were to instantiate Filesystem and call readDir a nested execution context
structure would be created: (global (fileSystem (readDir (anonymous function)))
). The concomitant execution stack is introduced to Node's single process thread.
This stack remains in memory until libuv reports that fs.readdir has completed,
at which point the registered anonymous callback fires, resolving the sole pending
execution context. As no further events are pending, and the maintenance of
closures no longer necessary, the entire structure can be safely torn down (in reverse,
beginning with anonymous), and the process can exit, freeing any allocated memory.
This method of building up and tearing down a single stack is what Node's event
loop is ultimately doing.

We'll explore the full suite of commands and attributes contained by the process
object as we continue to develop examples and libraries in this book.

The Read-Eval-Print Loop and executing
a Node program
Node's REPL (Read-Eval-Print-Loop) represents the Node shell. To enter the shell
prompt, enter Node via your terminal without passing a filename:

> node

You now have access to a running Node process, and may pass JavaScript
commands to this process. For example, after entering 2+2 the shell would send 4 to
stdout. Node's REPL is an excellent place to try out, debug, test, or otherwise play
with JavaScript code.

Understanding the Node Environment

[22]

Because the REPL is a native object, programs can also use instances as a context in
which to run JavaScript interactively. For example, here we create our own custom
function sayHello, add it to the context of a REPL instance, and start the REPL,
emulating a Node shell prompt:

require('repl').start("> ").context.sayHello = function() {
 return "Hello"
};

Entering sayHello() at the prompt will result in Hello being sent to stdout.

Let's take everything we've learned in this chapter and create an interactive REPL
which allows us to execute JavaScript on a remote server.

Create two files, repl_client.js and repl_server.js, using the following code,
and run each in its own terminal window, such that both terminal windows are
visible to you.

/*	 repl_client.js */
var net = require('net');
var sock = net.connect(8080);
process.stdin.pipe(sock);
sock.pipe(process.stdout);

/*	 repl_server.js */
var repl = require('repl')
var net = require('net')
net.createServer(function(socket) {
 repl
 .start({
 prompt : '> ',
 input : socket,
 output : socket,
 terminal : true
 })
 .on('exit', function () {
 socket.end()
 })
}).listen(8080)

repl_client simply creates a new socket connection to port 8080 through net.
connect, and pipes any data coming from stdin (your terminal) through that socket.
Similarly, any data arriving from the socket is piped to stdout (your terminal).
It should be clear that we have created a way to take input and send it via a socket
to port 8080, listening for any data that the socket may send back to us.

Chapter 1

[23]

repl_server closes the loop. We first create a new TCP (Transmission Control
Protocol) server with net.createServer, binding to port 8080 via .listen. The
callback passed to net.createServer will receive a reference to the bound socket.
Within the enclosure of that callback we instantiate a new REPL instance, giving it
a nice prompt (> here, but could be any string), indicating that it should both listen
for input from, and broadcast output to, the passed socket reference, indicating that
the socket data should be treated as terminal data (which has special encoding).

We can now type something like console.log("hello") into the client terminal,
and see hello displayed.

To confirm that the execution of our JavaScript commands is occurring in the server
instance, type console.log(process.argv) into the client, and the server will display
an object containing the current process path, which will be repl_server.js.

It should be clear from this demonstration that we have created a way to remotely
control Node processes. It is a short step from here to multi-node analytics tools,
remote memory management, automatic server administration, and so forth.

Summary
In this chapter we've outlined the key problems Node's designers sought to solve,
and how their solution has made the creation of easily scalable, high-concurrency
networked systems easier for an open community of developers. We've seen how
JavaScript has been given very useful new powers, how its evented model has been
extended, and how V8 can be configured to further customize the JavaScript runtime.

Through examples, we've learned how I/O is handled by Node, how to program the
REPL, as well as how to manage inputs and outputs to the process object. The goal
of demonstrating how Node allows applications to be intelligently constructed out
of well-formed pieces in a principled way has begun. In the next chapter, we will
delve deeper into asynchronous programming, learn how to manage more complex
event chains, and develop more powerful programs using Node's model.

Understanding Asynchronous
Event-Driven Programming

The best way to predict the future is to invent it.

— Alan Kay

Eliminating blocking processes through the use of event-driven, asynchronous I/O
is Node's primary organizational principle. We've learned how this design helps
developers in shaping information and adding capacity: lightweight, independent,
and share-nothing processes communicating through callbacks synchronized within
a predictable event loop.

Accompanying the growth in the popularity of Node is a growth in the number
of well-designed evented systems and applications. For a new technology to be
successful, it must eliminate existing problems and/or offer to consumers a better
solution at a lower cost in terms of time or effort or price. In its short and fertile
lifespan, the Node community has collaboratively proven that this new development
model is a viable alternative to existing technologies. The number and quality of
Node-based solutions powering enterprise-level applications provide further proof
that these new ideas are not only novel, but preferred.

In this chapter we will delve deeper into how Node implements event-driven
programming. We will begin by unpacking the ideas and theories that event-driven
languages and environments derive from and grapple with, in an effort to clear away
misconceptions and encourage mastery. Following this introduction, more detail on
how timers, callbacks, I/O events, flow control, and the event loop are implemented
and used will be laid out. Theory will be practiced as we build up a simple but
exemplary file and data-driven applications, highlighting Node's strengths, and how
it is succeeding in its ambition to simplify network application designs.

Understanding Asynchronous Event-Driven Programming

[26]

Broadcasting events
It is always good to have an accurate understanding of the total eventual cost of
asking for a service to be performed.

I/O is expensive. In the following chart (taken from Ryan Dahl's original presentation
on Node) we can see how many clock cycles typical system tasks consume. The
relative cost of I/O operations is striking.

L1 cache 3 cycles

L2 cache 14 cycles

RAM 250 cycles

Disk 41,000,000 cycles

Network 240,000,000 cycles

The reasons are clear enough: a disk is a physical device, a spinning metal platter
that buses data at a speed that cannot possibly match the speed of an on-chip or
near-chip cache moving data between the CPU and RAM (Random Access Memory).
Similarly, a network is bound by the speed in which data can travel through its
connecting "wires", modulated by its controllers. Even through fiber optic cables,
light itself needs 0.1344 seconds to travel around the world. In a network used by
billions of people regularly interacting across great distances, this sort of latency
builds up.

In the traditional marketplace described by an application running on a blocking
system the purchase of a file operation requires a significant expenditure of resources,
as we can see in the preceding table. Primarily this is due to scarcity: a fixed number
of processes, or "units of labor" are available, each able to handle only a single task,
and as the availability of labor decreases, its cost (to the client) increases.

The breakthrough in thinking reflected by Node's design is simple to understand
once one recognizes that most worker threads spend their time waiting—for more
instructions, a sub-task to complete, and so on. For example, a process assigned
to service the command format my hard drive will dedicate all of its allotted resources
to managing a workflow something like the following:

•	 Communicate to a device driver that a format request has been made
•	 Idle, waiting for an "unknowable" length of time
•	 Receive the signal format is complete
•	 Notify the client
•	 Clean up; shut down

Chapter 2

[27]

In the preceding figure we see that an expensive worker is charging the client a
fixed fee per unit of time regardless of whether any useful work is being done (the
client is paying equally for activity and idleness). Or to put it another way, it is not
necessarily true, and most often simply not true, that the sub-tasks comprising a total
task each require identical effort or expertise, and therefore it is wasteful to pay a
premium price for such cheap labor.

Sympathetically, we must also recognize that this worker can do no better even if
ready and able to handle more work—even the best intentioned worker cannot do
anything about I/O bottlenecks. The worker here is I/O bound.

A blocking process is therefore better understood as an idle process, and idle
processes are bottlenecks within the particular task and for the overall application
flow. What if multiple clients could share the same worker, such that the moment a
worker announces availability due to an I/O bottleneck, another job from another
client could be started?

Node has commoditized I/O through the introduction of an environment
where system resources are (ideally) never idle. Event-driven programming as
implemented by Node reflects the simple goal of lowering overall system costs
by encouraging the sharing of expensive labor, mainly by reducing the number of
I/O bottlenecks to zero. We no longer have a powerless chunk of rigidly-priced
unsophisticated labor; we can reduce all effort into discrete units with precisely
delineated shapes and therefore admit much more accurate pricing. Identical outlays
of capital can fund a much larger number of completed transactions, increasing the
efficiency of the market and the potential of the market in terms of new products and
new product categories. Many more concurrent transactions can be handled on the
same infrastructure, at the same cost.

If the start, stop, and idle states of a process are understood as being events that can be
subscribed to and acted upon we can begin to discuss how extremely complex systems
can be constructed within this new, and at heart quite simple to grasp, model.

What would an environment within which many client jobs are cooperatively
scheduled look like? And how is this message passing between events handled?

Understanding Asynchronous Event-Driven Programming

[28]

Collaboration
The worker flow described in the previous section is an example of a blocking server.
Each worker is assigned a task or process, with each process able to accept only one
request for work. They'll be blocking other requests, even if idling:

Process

ProcessI/O

Process Process Process I/O

BLOCKED

BLOCKED

What would be preferable is a collaborative work environment, where workers
could be assigned new tasks to do, instead of idling. In order to achieve such
a goal what is needed is a virtual switchboard, where requests for services could be
dispatched to available workers, and where workers could notify the switchboard
of their availability.

One way to achieve this goal would be to maintain the idea of having a pool of
available labors, but improving efficiency by delegating tasks to different workers
as they come in:

Worker

Worker

Worker

DispatcherClient

Chapter 2

[29]

One drawback to this method is the amount of scheduling and worker surveillance
that needs to be done. The dispatcher must field a continuous stream of requests,
while managing messages coming from workers about their availability, neatly
breaking up requests into manageable tasks and efficiently sorting them such that
the fewest number of workers are idling.

Perhaps most importantly, what happens when all workers are fully booked? Does
the dispatcher begin to drop requests from clients? Dispatching is resource-intensive
as well, and there are limits even to the dispatcher's resources. If requests continue
to arrive and no worker is available to service them what does the dispatcher do?
Manage a queue? We now have a situation where the dispatcher is no longer doing
the right job (dispatching), and has become responsible for bookkeeping and keeping
lists, further diminishing operational efficiency.

Queueing
In order to avoid overwhelming anyone, we might add a buffer between the clients
and the dispatcher.

This new worker is responsible for managing customer relations. Instead of speaking
directly with the dispatcher, the client speaks to the services manager, passing the
manager requests, and at some point in the future getting a call that their task has
been completed. Requests for work are added to a prioritized work queue (a stack
of orders with the most important one on top), and this manager waits for another
client to walk through the door. The following figure describes the situations:

Client Client Client

Prioritized queue of
client tasks is

managed

Dispatcher fetches from
queue and passes back

completed packages

Worker Worker Worker

Understanding Asynchronous Event-Driven Programming

[30]

When a worker is idle the dispatcher can fetch the first item on the stack, pass
along any package workers have completed, and generally maintain a sane work
environment where nothing gets dropped or lost. If it comes to a point where all the
workers are idle and the task queue is empty, the office can sleep for a while, until
the next client arrives.
This last model inspires Node's design. The primary modification is to occupy the
workers' pool solely with I/O tasks and delegate the remaining work to the single
thread of V8. If a JavaScript program is understood as the client, Node is the services
manager running through the provided instructions and prioritizing them. When
a potentially blocking task is encountered (I/O, timers, and streams) it is handed
over to the dispatcher (the libuv thread pool). Otherwise, the instruction is queued
up for the event loop to pop and execute.

Listening for events
In the previous chapter we were introduced to the EventEmitter interface. This is
the primary event interface we will be encountering as we move chapter to chapter,
as it provides the prototype class for the many Node objects exposing evented
interfaces, such as file and network streams. Various close, exit, data, and other
events exposed by different module APIs signal the presence of an EventEmitter
interface, and we will be learning about these modules and use cases as we progress.

Instead, the primary purpose of this section is to discuss some lesser-known event
sources—signals, child process communication, filesystem change events, and
deferred execution.

Signals
In many ways, evented programming is like hardware interrupt programming.
Interrupts do exactly what their name suggests. They use their ability to interrupt
whatever a controller or the CPU or any other device is doing, demanding that their
particular need be serviced immediately.

In fact, the Node process object exposes standard Portable Operating System
Interface (POSIX) signal names, such that a node process can subscribe to these
system events.

A signal is a limited form of inter-process communication used in Unix, Unix-like,
and other POSIX-compliant operating systems. It is an asynchronous notification
sent to a process or to a specific thread within the same process in order to notify it
of an event that occurred.

—http://en.wikipedia.org/wiki/POSIX_signal

Chapter 2

[31]

This is a very elegant and natural way to expose a Node process to operating system
(OS) signal events. One might configure listeners to catch signals instructing a Node
process to restart or update some configuration files or simply clean up and shut down.

For example, the SIGINT signal is sent to a process when its controlling terminal
detects a Ctrl-C (or equivalent) keystroke. This signal tells a process that an interrupt
has been requested. If a Node process has bound a callback to this event, that
function might log the request prior to terminating, do some other cleanup work,
or even ignore the request:

setInterval(function() {}, 1e6);
process.on('SIGINT', function() {
 console.log('SIGINT signal received');
 process.exit(1);
})

Here we have set up a far future interval such that the process does not immediately
terminate, and a SIGINT listener. When a user sends a Ctrl-C interrupt to the
terminal controlling this process, the message SIGINT signal received will be
written on the terminal and the process will terminate.

Now consider a situation in which a Node process is doing some ongoing work,
such as parsing logs. It might be useful to be able to send that process a signal, such
as update your configuration files or restart the scan. You may want to send such signals
from the command line. You might prefer to have another process do so—a practice
known as Inter-Process Communication (IPC).

Create a file named ipc.js containing the following code:

setInterval(function() {}, 1e6);
process.on('SIGUSR1', function() {
 console.log('Got a signal!');
});

SIGUSR1 (and SIGUSR2) are user-defined signals (they are triggered by no specific
action). This makes them ideal signals for custom functionality.

To send a command to a process you must determine its process ID (PID). With
a PID in hand, processes can be addressed, and therefore communicated with. If the
PID assigned to ipc.js after being run through Node is 123, then we can send that
process a SIGUSR1 signal using the following command line:

kill –s SIGUSR1 123

Understanding Asynchronous Event-Driven Programming

[32]

A simple way to find the PID for a given Node process in UNIX is to
search the system process list for the name of the program that says the
process is running. If ipc.js is currently executing, its PID is found by
entering the following command line in the console/terminal:

ps aux | grep ipc.js

Try it.

Forks
A fundamental part of Node's design is to create or fork processes when parallelizing
execution or scaling a system—as opposed to creating a thread pool, for instance. We
will be using child processes in various ways throughout this book, and learn how to
create and use them. Here the focus will be on understanding how communication
events between child processes are to be handled.

To create a child process one need simply call the fork method of the child_process
module, passing it the name of a program file to execute within the new process:

var cp = require('child_process');
var child = cp.fork(__dirname + '/lovechild.js');

In this way any number of subprocesses can be kept running. Additionally, on
multicore machines, forked processes will be distributed (by the OS) to different
cores. Spreading node processes across cores (even other machines) and managing
IPC is (one) way to scale a Node application in a stable, understandable, and
predictable way.

Extending the preceding, we can now have the forking process (parent) send, and
listen for, messages from the forked process (child):

child.on('message', function(msg) {
 console.log('Child said: ', msg);
});
child.send("I love you");

Similarly, the child process (its program is defined in lovechild.js) can send and
listen for messages:

// lovechild.js
process.on('message', function(msg) {
 console.log('Parent said: ', msg);
 process.send("I love you too");
});

Chapter 2

[33]

Running parent.js should fork a child process and send that child a message. The
child should respond in kind:

Parent said: I love you

Child said: I love you too

Another very powerful idea is to pass a network server an object to a child. This
technique allows multiple processes, including the parent, to share the responsibility
for servicing connection requests, spreading load across cores.

For example, the following program will start a network server, fork a child process,
and pass this child the server reference:

var child = require('child_process').fork('./child.js');
var server = require('net').createServer();
server.on('connection', function(socket) {
 socket.end('Parent handled connection');
});
server.listen(8080, function() {
 child.send("The parent message", server);
});

In addition to passing a message to a child process as the first argument to send, the
preceding code also sends the server handle to itself as a second argument. Our child
server can now help out with the family's service business:

// child.js
process.on('message', function(msg, server) {
 console.log(msg);
 server.on('connection', function(socket) {
 socket.end('Child handled connection');
 });
});

This child process should print out the sent message to your console, and begin
listening for connections, sharing the sent server handle. Repeatedly connecting to
this server at localhost:8080 will result in either Child handled connection or Parent
handled connection being displayed; two separate processes are balancing the
server load. It should be clear that this technique, when combined with the simple
inter-process messaging protocol discussed previously, demonstrates how Ryan
Dahl's creation succeeds in providing an easy way to build scalable network programs.

Understanding Asynchronous Event-Driven Programming

[34]

We will discuss Node's new cluster module, which expands (and
simplifies) the previously discussed technique in later chapters. If you
are interested in how server handles are shared, visit the cluster
documentation at the following link:

http://nodejs.org/api/cluster.html

For those who are truly curious, examine the cluster code itself at:

https://github.com/joyent/node/blob/
c668185adde3a474585a11f172b8387e270ec23b/lib/cluster.
js#L523-558

File events
Most applications make some use of the filesystem, in particular those that function
as web services. As well, a professional application will likely log information about
usage, cache pre-rendered data views, or make other regular changes to files and
directory structures.

Node allows developers to register for notifications on file events through the
fs.watch method. The watch method will broadcast changed events on both files
and directories.

watch accepts three arguments, in order:

1.	 The file or directory path being watched. If the file does not exist an
ENOENT (no entity) error will be thrown, so using fs.exists at some prior
useful point is encouraged.

2.	 An optional options object:
°° persistent (Boolean): Node keeps processes alive as long as there

is "something to do". An active file watcher will by default function
as a persistence flag to Node. Setting this option to false flags not
keeping the general process alive if the watcher is the only activity
keeping it running.

3.	 The listener function, which receives two arguments:

°° The name of the change event (one of rename or change).
°° The filename that was changed (important when watching directories).

Some operating systems will not return this argument.

Chapter 2

[35]

This example will set up a watcher on itself, change its own filename, and exit:

var fs = require('fs');

fs.watch(__filename, { persistent: false }, function(event, filename)
{
 console.log(event);
 console.log(filename);
})

setImmediate(function() {
 fs.rename(__filename, __filename + '.new', function() {});
});

Two lines, rename and the name of the original file, should have been printed to the
console.

Watcher channels can be closed at any time using the following code snippet:

var w = fs.watch('file', function(){})
w.close();

It should be noted that fs.watch depends a great deal on how the host OS handles
file events, and according to the Node documentation:

"The fs.watch API is not 100% consistent across platforms, and is unavailable
in some situations."

The author has had very good experiences with the module across many different
systems, noting only that the filename argument is null in callbacks on OS X
implementations. Nevertheless, be sure to run tests on your specific architecture—
trust, but verify.

Deferred execution
One occasionally needs to defer the execution of a function. Traditional JavaScript
uses timers for this purpose, the well-known setTimeout and setInterval
functions. Node introduces another perspective on defers, primarily as means of
controlling the order in which a callback executes in relation to I/O events, as well
as timer events properly.

We'll learn more about this ordering in the event loop discussion that follows. For
now we will examine two types of deferred event sources that give a developer the
ability to schedule callback executions to occur either before, or after, the processing
of queued I/O events.

Understanding Asynchronous Event-Driven Programming

[36]

process.nextTick
A method of the native Node process module, process.nextTick is similar to the
familiar setTimeout method in which it delays execution of its callback function
until some point in the future. However, the comparison is not exact; a list of all
requested nextTick callbacks are placed at the head of the event queue and is
processed, in its entirety and in order, before I/O or timer events and after execution
of the current script (the JavaScript code executing synchronously on the V8 thread).

The primary use of nextTick in a function is to postpone the broadcast of result
events to listeners on the current execution stack until the caller has had an
opportunity to register event listeners—to give the currently executing program
a chance to bind callbacks to EventEmitter.emit events. It may be thought of as
a pattern used wherever asynchronous behavior should be emulated. For instance,
imagine a lookup system that may either fetch from a cache or pull fresh data from
a data store. The cache is fast and doesn't need callbacks, while the data I/O call
would need them. The need for callbacks in the second case argues for emulation
of the callback behavior with nextTick in the first case. This allows a consistent
API, improving clarity of implementation without burdening the developer with
the responsibility of determining whether or not to use a callback.

The following code seems to set up a simple transaction; when an instance
of EventEmitter emits a start event, log "Started" to the console:

var events = require('events');

function getEmitter() {
 var emitter = new events.EventEmitter();
 emitter.emit('start');
 return emitter;
}

var myEmitter = getEmitter();

myEmitter.on("start", function() {
 console.log("Started");
});

However, the expected result will not occur. The event emitter instantiated within
getEmitter emits "start" previous to being returned, wrong-footing the subsequent
assignment of a listener, which arrives a step late, missing the event notification.

To solve this race condition we can use process.nextTick:

var events = require('events');

function getEmitter() {

Chapter 2

[37]

 var emitter = new events.EventEmitter();
 process.nextTick(function() {
 emitter.emit('start');
 });
 return emitter;
}
var myEmitter = getEmitter();
myEmitter.on('start', function() {
 console.log('Started');
})

Here the attachment of the on(start handler is allowed to occur prior to the
emission of the start event by the emitter instantiated in getEmitter.

Because it is possible to recursively call nextTick, which might lead to an infinite
loop of recursive nextTick calls (starving the event loop, preventing I/O), there
exists a failsafe mechanism in Node which limits the number of recursive nextTick
calls evaluated prior to yielding the I/O: process.maxTickDepth. Set this value
(which defaults to 1000) if such a construct becomes necessary—although what you
probably want to use in such a case is setImmediate.

setImmediate
setImmediate is technically a member of the class of timers (setInterval,
setTimeout). However, there is no sense of time associated with it—there is no number
of milliseconds to wait argument to be sent. This method is really more of a sister to
process.nextTick, differing in one very important way; while callbacks queued
by nextTick will execute before I/O and timer events, callbacks queued by
setImmediate will be called after I/O events.

The naming of these two methods is confusing:
nextTick occurs before setImmediate.

This method does reflect the standard behavior of timers in that its invocation will
return an object which can be passed to cancelImmediate, cancelling setImmediate
in the same way cancelTimeout cancels timers set with setTimeout.

Understanding Asynchronous Event-Driven Programming

[38]

Timers
Timers are used to schedule events in the future. They are used when one seeks to
delay the execution of some block of code until a specified number of milliseconds
have passed, to schedule periodic execution of a particular function, or to slot some
functionality immediately to the following.

JavaScript provides two asynchronous timers: setInterval() and setTimeout().

It is assumed that the reader is fully aware of how to set (and cancel) these timers,
so very little time will be spent discussing the syntax. We'll instead focus more
on "gotchas" and "less well-known" details about timeouts and intervals.

The key takeaway will be this: when using timers one should make no assumptions
about the amount of actual time that will expire before the callback registered for this
timer fires, or about the ordering of callbacks. Node timers are not interrupts. Timers
simply promise to execute as close as possible to the specified time (though never
before), beholden, as with every other event source, to event loop scheduling.

At least one thing you may not know about timers...

We are all familiar with the standard arguments to setTimeout:
a callback function and timeout interval. Did you know that many
additional arguments are passed to the callback function?

setTimeout(callback, time, [passArg1, passArg2…])

setTimeout
Timeouts are used to defer the execution of a function until some number of
milliseconds into the future:

Consider the following code:

setTimeout(a, 1000);
setTimeout(b, 1001);

One would expect that function b would execute after function a. However, this
cannot be guaranteed—a may follow b, or the other way around.

Now, consider the subtle difference present in the following code snippet:

setTimeout(a, 1000);
setTimeout(b, 1000);

Chapter 2

[39]

The execution order of a and b are predictable in this case. Node essentially
maintains an object map grouping callbacks with identical timeout lengths. Isaac
Schlueter, the current leader of the Node project, puts it this way:

[N]ode uses a single low level timer object for each timeout value. If you attach
multiple callbacks for a single timeout value, they'll occur in order, because
they're sitting in a queue. However, if they're on different timeout values, then
they'll be using timers in different threads, and are thus subject to the vagaries
of the [CPU] scheduler.

—https://groups.google.com/forum/#!msg/nodejs-dev/kiowz4iht4Q/T0RuSwAeJV0J

The ordering of timer callbacks registered within an identical execution scope does
not predictably determine the eventual execution order in all cases.

Additionally, there exists a minimum wait time of one millisecond for a timeout.
Passing a value of zero, -1, or a non-number will be translated into this
minimum value.

setInterval
One can think of many cases where being able to periodically execute a function would
be useful. Polling a data source every few seconds and pushing updates is a common
pattern. Running the next step in an animation every few milliseconds is another use
case, as is collecting garbage. For these cases setInterval is a good tool:

var intervalId = setInterval(function() { ... }, 100);

Every 100 milliseconds the sent callback function will execute, a process that can
be cancelled with clearInterval(intervalId).

Unfortunately, as with setTimeout, this behavior is not always reliable. Importantly,
if a system delay (such as some badly written blocking while loop) occupies the
event loop for some period of time, intervals set prior and completing within that
interim will have their results queued on the stack. When the event loop becomes
unblocked and unwinds, all the interval callbacks will be fired in sequence,
essentially immediately, losing any sort of timing delays they intended.

Luckily, unlike browser-based JavaScript, intervals are rather more reliable in Node,
generally able to maintain expected periodicity in normal use scenarios.

Understanding Asynchronous Event-Driven Programming

[40]

unref and ref
A Node program does not stay alive without a reason to do so. A process will keep
running for as long as there are callbacks still waiting to be processed. Once those are
cleared, the Node process has nothing left to do, and it will exit.

For example, the following silly code fragment will keep a Node process running
forever:

Var intervalId = setInterval(function() {}, 1000);

Even though the set callback function does nothing useful or interesting, it continues
to be called—and this is the correct behavior, as an interval should keep running
until clearInterval is used to stop it.

There are cases of using a timer to do something interesting with external I/O, or
some data structure, or a network interface where once those external event sources
stop occurring or disappear, the timer itself stops being necessary. Normally one
would trap that irrelevant state of a timer somewhere else in the program and cancel
the timer from there. This can become difficult or even clumsy, as an unnecessary
tangling of concerns is now necessary, an added level of complexity.

The unref method allows the developer to assert the following instructions: when
this timer is the only event source remaining for the event loop to process, go ahead and
terminate the process.

Let's test this functionality to our previous silly example, which will result in the
process terminating rather than running forever:

var intervalId = setInterval(function() {}, 1000);
intervalId.unref();

Note that unref is a method of the opaque value returned when starting a timer
(which is an object).

Now let's add an external event source, a timer. Once that external source gets
cleaned up (in about 100 milliseconds), the process will terminate. We send
information to the console to log what is happening:

setTimeout(function() {
 console.log("now stop");
}, 100);
var intervalId = setInterval(function() {
 console.log("running")
}, 1);
intervalId.unref();

Chapter 2

[41]

You may return a timer to its normal behavior with ref, which will undo
an unref method:

var intervalId = setInterval(function() {}, 1000);
intervalId.unref();
intervalId.ref();

The listed process will continue indefinitely, as in our original silly example.

Understanding the event loop
Node processes JavaScript instructions using a single thread. Within your JavaScript
program no two operations will ever execute at exactly the same moment, as might
happen in a multithreaded environment. Understanding this fact is essential to
understanding how a Node program, or process, is designed and runs.

This does not mean that only one thread is being used on the machine hosting this
a Node process. Simply writing a callback does not magically create parallelism!
Recall Chapter 1, Understanding the Node Environment, and our discussion about the
process object—Node's "single thread" simplicity is in fact an abstraction created for
the benefit of developers. It is nevertheless crucial to remember that there are many
threads running in the background managing I/O (and other things), and these
threads unpredictably insert instructions, originally packaged as callbacks, into the
single JavaScript thread for processing.

Node executes instructions one by one until there are no further instructions
to execute, no more input or output to stream, and no further callbacks waiting
to be handled.

Even deferred events (such as timeouts) require an eventual interrupt in the event
loop to fulfill their promise.

For example, the following while loop will never terminate:

var stop = false;
setTimeout(function() {
 stop = true;
}, 1000);

while(stop === false) {};

Understanding Asynchronous Event-Driven Programming

[42]

Even though one might expect, in approximately one second, the assignment of
a Boolean true to the variable stop, tripping the while conditional and interrupting
its loop, this will never happen. Why? This while loop starves the event loop by running
infinitely, greedily checking and rechecking a value that is never given a chance
to change, as the event loop is never given a chance to schedule our timer callback
for execution.

As such, programming Node implies programming the event loop. We've previously
discussed the event sources that are queued and otherwise arranged and ordered on
this event loop—I/O events, timer events, and so on.

When writing non-deterministic code it is imperative that no assumptions about
eventual callback orders are made. The abstraction that is Node masks the
complexity of the thread pool on which the straightforward main JavaScript thread
floats, leading to some surprising results.

We will now refine this general understanding with more information about how,
precisely, the callback execution order for each of these types is determined within
Node's event loop.

Four sources of truth
We have learned about the four main groups of deferred event sources, whose
position and priority on the stack we will now demonstrate:

•	 Execution blocks: The blocks of JavaScript code comprising the Node
program, being expressions, loops, functions, and so on. This includes
EventEmitter events emitted within the current execution context.

•	 Timers: Callbacks deferred to sometime in the future specified in
milliseconds, such as setTimeout and setInterval.

•	 I/O: Prepared callbacks returned to the main thread after being delegated to
Node's managed thread pool, such as filesystem calls and network listeners.

•	 Deferred execution blocks: Mainly the functions slotted on the stack
according to the rules of setImmediate and nextTick.

We have learned how the deferred execution method setImmediate slots its
callbacks after I/O callbacks in the event queue, and nextTick slots its callbacks
before I/O and timer callbacks.

A challenge for the reader
After running the following code, what is the expected order of
logged messages?

Chapter 2

[43]

var fs = require('fs');
var EventEmitter = require('events').EventEmitter;
var pos = 0;
var messenger = new EventEmitter();
// Listener for EventEmitter
messenger.on("message", function(msg) {
 console.log(++pos + " MESSAGE: " + msg);
});
// (A) FIRST
console.log(++pos + " FIRST");
// (B) NEXT
process.nextTick(function() {
 console.log(++pos + " NEXT")
})
// (C) QUICK TIMER
setTimeout(function() {
 console.log(++pos + " QUICK TIMER")
}, 0)
// (D) LONG TIMER
setTimeout(function() {
 console.log(++pos + " LONG TIMER")
}, 10)
// (E) IMMEDIATE
setImmediate(function() {
 console.log(++pos + " IMMEDIATE")
})
// (F) MESSAGE HELLO!
messenger.emit("message", "Hello!");
// (G) FIRST STAT
fs.stat(__filename, function() {
 console.log(++pos + " FIRST STAT");
});
// (H) LAST STAT
fs.stat(__filename, function() {
 console.log(++pos + " LAST STAT");
});
// (I) LAST
console.log(++pos + " LAST");

The output of is program is:

1.	 FIRST (A).
2.	 MESSAGE: Hello! (F).
3.	 LAST (I).

Understanding Asynchronous Event-Driven Programming

[44]

4.	 NEXT (B).
5.	 QUICK TIMER (C).
6.	 FIRST STAT (G).
7.	 LAST STAT (H).
8.	 IMMEDIATE (E).
9.	 LONG TIMER (D).

Let's break the preceding code down:

A, F, and I execute in the main program flow and as such they will have the first
priority in the main thread (this is obvious; your JavaScript executes its instructions
in the order they are written, including the synchronous execution of the
emit callback).

With the main call stack exhausted, the event loop is now almost reading to process
I/O operations. This is the moment when nextTick requests are honored slotting in at
the head of the event queue. This is when B is displayed.

The rest of the order should be clear. Timers and I/O operations will be processed
next, (C, G, H) followed by the results of the setImmediate callback (E), always
arriving after any I/O and timer responses are executed.

Finally, the long timeout (D) arrives, being a relatively far-future event.

Notice that re-ordering the expressions in this program will not change the output
order (outside of possible re-ordering of the STAT results, which only implies that
they have been returned from the thread pool in different order, remaining as a
group in the correct order as relates to the event queue).

Callbacks and errors
Members of the Node community develop new packages and projects every day.
Because of Node's evented nature, callbacks permeate these codebases. We've
considered several of the key ways in which events might be queued, dispatched,
and handled through the use of callbacks. Let's spend a little time outlining the
best practices, in particular about conventions for designing callbacks and handling
errors, and discuss some patterns useful when designing complex chains of events
and callbacks.

Chapter 2

[45]

Conventions
Luckily, Node creators agreed upon sane conventions on how to structure callbacks
early on. It is important to follow this tradition. Deviation leads to surprises,
sometimes very bad surprises, and in general to do so automatically makes an API
awkward, a characteristic other developers will rapidly tire of.

One is either returning a function result by executing a callback, handling the
arguments received by a callback, or designing the signature for a callback within
your API. Whichever situation is being considered, one should follow the convention
relevant to that case:

•	 The first argument returned to a callback function is any error message,
preferably in the form of an error object. If no error is to be reported, this slot
should contain a null value.

•	 When passing a callback to a function it should be assigned the last slot of the
function signature. APIs should be consistently designed this way.

•	 Any number of arguments may exist between the error and the callback slots.

To create an error object:

new Error("Argument must be a String!")

Know your errors
It is excellent that the Node community has automatically adopted a convention that
compels developers to be diligent and report errors. However, what does one do
with errors once they are received?

It is generally a very good idea to centralize error handling in a program. Often,
a custom error handling system will be designed, which may send messages to clients,
add to a log, and so on. Sometimes it is best to throw errors, halting the process.

Node provides more advanced tools for error handling. In particular, Node's
domain system helps with a problem that evented systems have: how can a stack
trace be generated if the full route of a call has been obliterated as it jumped from
callback to callback?

The goal of domain is simple: fence and label an execution context such that all
events that occur within it are identified as such, allowing more informative stack
traces. By creating several different domains for each significant segment of your
program, a chain of errors can be properly understood.

Understanding Asynchronous Event-Driven Programming

[46]

Additionally, this provides a way to catch errors and handle them, rather than
allowing your entire Node process to collapse.

In the following example we're going to create two domains: appDomain and fsDomain.
The goal is to be able to trace which part of our application is in an error state:

var domain = require("domain");
var fs = require("fs");

var fsDomain = domain.create();
fsDomain.on("error", function(err) {
 console.error("FS error", err);
});

var appDomain = domain.create();
appDomain.on('error', function(err) {
 console.log("APP error", err);
});

We now wrap the main program in appDomain, and the filesystem calls in fsDomain.
We then create an error in fsDomain by trying to open a non-existent file:

appDomain.run(function() {
 process.nextTick(function() {
 fsDomain.run(function() {
 fs.open('no_file_here', 'r', function(err, fd) {
 if(err) {
 throw err;
 }
 appDomain.dispose();
 });
 });
 });
});

When the preceding code executes, something resembling this should be echoed to
the terminal:

FS error { [Error: ENOENT, open 'non-existent file']
 errno: 34,
 code: 'ENOENT',
 path: 'non-existent file',
 domain:
 { domain: null,
 _events: { error: [Function] },
 _maxListeners: 10,
 members: [] },
 domainThrown: true }

Chapter 2

[47]

Now let's create an error in appDomain by adding this code, which will produce a
reference error (as no b is defined):

appDomain.run(function() {
 a = b;
 process.nextTick(function() {
...

An error similar to that in the precious code should be generated and reported by
appDomain.

Notice the command appDomain.dispose. As maintaining these error contexts will
consume some memory, it is best to dispose of them when no longer needed—after
the code they contain has successfully executed, for example. We'll learn more
advanced uses of this tool as we progress into more complex territories.

As an application grows in complexity it will become more and more useful to be
able to trap errors and handle them properly, perhaps restarting only one part of
an application when it fails rather than the entire system.

Building pyramids
Simplifying control flows has been a concern of the Node community since the very
beginning of the project. Indeed, this potential criticism was one of the very first
anticipated by Ryan Dahl, who discussed it at length during the talk in which he
introduced Node to the JavaScript developer community.

Because deferred code execution often requires the nesting of callbacks within
callbacks a Node program can sometimes begin to resemble a sideways pyramid,
also known as "The Pyramid of Doom".

Accordingly, there are several Node packages available which take the problem on,
employing strategies as varied as futures, fibers, even C++ modules exposing system
threads directly. The reader is encouraged to experiment with these:

Async https://github.com/caolan/async

Tame https://github.com/maxtaco/tamejs

Fibers https://github.com/laverdet/node-
fibers

Promises https://github.com/kriskowal/q

Understanding Asynchronous Event-Driven Programming

[48]

A more interesting general point is available here for us to consider regarding API
choices in Node. Dahl might have reacted to this criticism by, for example, making
one of the listed libraries part of Node's core, or indeed changing the entire way
JavaScript is written. Instead, it was left to the community to determine the best
practices, and to write the relevant packages. This is the Node way.

Mikeal Rogers, in discussing why Promises were removed from the Node
core, makes a strong argument in the following link for why leaving
feature development to the community leads to a stronger core product:

http://www.futurealoof.com/posts/broken-promises.html

Considerations
Any developer is regularly making decisions with a far-reaching impact. It is very
hard to predict all the possible consequences resulting from a new bit of code or
a new design theory. For this reason, it may be useful to keep the shape of your code
simple, and to force yourself to consistently follow the common practices of other
Node developers. These are some guidelines you may find useful, as follows:

•	 Generally, try to aim for shallow code. This type of refactoring is uncommon
in non-evented environments—remind yourself of it by regularly
re-evaluating entry and exit points, and shared functions.

•	 Where possible provide a common context for callback re-entry. Closures
are very powerful tools in JavaScript, and by extension, Node. As long as the
context frame length of the enclosed callbacks is not excessive.

•	 Name you functions. In addition to being useful in deeply recursive
constructs, debugging code is much easier when a stack trace contains
distinct function names, as opposed to anonymous.

•	 Think hard about priorities. Does the order, in which a given result arrives
or a callback is executed, actually matter? Importantly, does it matter in
relation to I/O operations? If so, consider nextTick and setImmediate.

•	 Consider using finite state machines for managing your events. State
machines are (surprisingly) under-represented in JavaScript codebases.
When a callback re-enters program flow it has likely changed the state of
your application, and the issuing of the asynchronous call itself is a likely
indicator that state is about to change.

Chapter 2

[49]

Listening for file changes
Let's apply what we've learned. The goal is to create a server that a client can connect
to and receive updates from Twitter. We will first create a process to query Twitter
for any messages with the hashtag #nodejs, and writes any found messages to
a tweets.txt file in 140-byte chunks. We will then create a network server that
broadcasts these messages to a single client. Those broadcasts will be triggered by
write events on the tweets.txt file. Whenever a write occurs, 140-byte chunks are
asynchronously read from the last known client read pointer. This will happen until
we reach the end of the file, broadcasting as we go. Finally, we will create a simple
client.html page, which asks for, receives, and displays these messages.

While this example is certainly contrived, it demonstrates:

•	 Listening to the filesystem for changes and responding to those events
•	 Using data stream events for reading and writing files
•	 Responding to network events
•	 Using timeouts for polling state
•	 Using a Node server itself as a network event broadcaster

To handle server broadcasting we are going to use the Server Sent Events (SSE)
protocol, a new protocol being standardized as part of HTML5.

We're first going to create a Node server that listens for changes on a file and
broadcasts any new content to the client. Open your editor and create a file server.js:

var fs = require("fs");
var http = require('http');

var theUser = null;
var userPos = 0;
var tweetFile = "tweets.txt";

We will be accepting a single user connection, whose pointer will be theUser.
The userPos will store the last position this client read from in tweetFile:

http.createServer(function(request, response) {
 response.writeHead(200, {
 'Content-Type': 'text/event-stream',
 'Cache-Control': 'no-cache',
 'Access-Control-Allow-Origin': '*'
 });

 theUser = response;

 response.write(':' + Array(2049).join(' ') + '\n');

Understanding Asynchronous Event-Driven Programming

[50]

 response.write('retry: 2000\n');

 response.socket.on('close', function() {
 theUser = null;
 });

}).listen(8080);

Create an HTTP server listening on port 8080, which will listen for and handle
a single connection, storing the response argument, representing the pipe
connecting the server to client. The response argument implements the writeable
stream interface, allowing us to write messages to the client:

var sendNext = function(fd) {
 var buffer = new Buffer(140);
 fs.read(fd, buffer, 0, 140, userPos * 140, function(err, num) {
 if(!err && num > 0 && theUser) {
 ++userPos;
 theUser.write('data: ' + buffer.toString('utf-8', 0,
 num) + '\n\n');
 return process.nextTick(function() {
 sendNext(fd);
 });
 }
 });
};

We create a function to send the client messages. We will be pulling buffers of 140
bytes out of the readable stream bound to our tweets.txt file, incrementing our file
position counter by one on each read. We write this buffer to the writeable stream
binding our server to the client. When done, we queue up a repeat call of the same
function using nextTick, repeating until we get an error, receive no data, or the
client disconnects:

function start() {
 fs.open(tweetFile, 'r', function(err, fd) {
 if(err) {
 return setTimeout(start, 1000);
 }
 fs.watch(tweetFile, function(event, filename) {
 if(event === "change") {
 sendNext(fd);
 }
 });
 });
};
start();

Chapter 2

[51]

Finally, we start the process by opening the tweets.txt file and watch for any
changes, calling sendNext whenever new tweets are written. When we start the
server there may not yet exist a file to read from, so we poll using setTimeout until
one exists.

Now that we have a server looking for file changes to broadcast, we need to generate
data. We first install the TWiT Twitter package for Node, via npm.

We then create a process whose sole job is to write new data to a file:

var fs = require("fs");
var Twit = require('twit');

var twit = new Twit({
 consumer_key: 'your key',
 consumer_secret: 'your secret',
 access_token: 'your token',
 access_token_secret: 'your secret token'
})

To use this example, you will need a Twitter developer account.
Alternatively, there is also the option of changing the relevant code, in the
following, to simply write random 140-byte strings to tweets.txt.

var tweetFile = "tweets.txt";
var writeStream = fs.createWriteStream(tweetFile, {
 flags : "a"
});

This establishes a stream pointer to the same file that our server will be watching.
We will be writing to this file:

var cleanBuffer = function(len) {
 var buf = new Buffer(len);
 buf.fill('\0');
 return buf;
}

Understanding Asynchronous Event-Driven Programming

[52]

Because Twitter messages are never longer than 140 bytes we can simplify the read/
write operation by always writing 140-byte chunks, even if some of that space is
empty. Once we receive updates we will create a buffer that is number of messages x
140 bytes wide, and write those 140-byte chunks to this buffer:

var check = function() {

 twit.get('search/tweets', {
 q: '#nodejs since:2013-01-01'
 }, function(err, reply) {
 var buffer = cleanBuffer(reply.statuses.length * 140);
 reply.statuses.forEach(function(obj, idx) {
 buffer.write(obj.text, idx*140, 140);
 });
 writeStream.write(buffer);
 })
 setTimeout(check, 10000);
};
check();

We now create a function that will be asked every ten seconds to check for messages
containing the hashtag #nodejs. Twitter returns an array of message objects. The
one object property we are interested in is the #text of the message. Calculate the
number of bytes necessary to represent these new messages (140 x message count),
fetch a clean buffer, and fill it with 140-byte chunks until all messages are written.
Finally, this data is written to our tweets.txt file, causing a change event to occur
that our server is notified of.

The final piece is the client page itself. This is a rather simple page, and how it
operates should be familiar to the reader. The only thing to note is the use of SSE that
listens to port 8080 on localhost. It should be clear how, on receipt of a new tweet
from the server, a list element is added to the unordered list container #list:

<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>

<script>

window.onload = function() {
 var list = document.getElementById("list");
 var evtSource = new
 EventSource("http://localhost:8080/events");

Chapter 2

[53]

 evtSource.onmessage = function(e) {
 var newElement = document.createElement("li");
 newElement.innerHTML = e.data;
 list.appendChild(newElement);
 }
}

</script>

<body>

<ul id="list">

</body>
</html>

To read more about SSE refer Chapter 6, Creating Real-time Applications,
or you can visit the following link:

https://developer.mozilla.org/en-US/docs/Server-sent_
events/Using_server-sent_events

Summary
Programming with events is not always easy. The control and context switches,
defining the paradigm often confound those new to evented systems. This seemingly
reckless loss of control and the resulting complexity drives many developers away
from these ideas. Students in introductory programming courses normally develop
a mindset in which program flow can be dictated, where a program whose execution
flow does not proceed sequentially from A to B can bend understanding.

By examining the evolution of the architectural problems Node is now attempting
to solve for network applications—in terms of scaling, in terms of code organization,
in general terms of data and complexity volume, in terms of state awareness, and in
terms of well-defined data and process boundaries—we have learned how managing
these event queues can be done intelligently. We have seen how different event
sources are predictably stacked for an event loop to process, and how far-future
events can enter and re-enter contexts using closures and smart callback ordering.

We now have a basic domain understanding of the design and characteristics of
Node, in particular how evented programming is done using it. Let's now move into
larger, more advanced applications of this knowledge.

Streaming Data Across
Nodes and Clients

A jug fills drop by drop.

— Buddha

We now have a clearer picture of how the evented, I/O-focused design ethic of Node
is reflected across its various module APIs, delivering a consistent and predictable
environment for development. In this chapter we will discover how data, of many
shapes and sizes, pulled from files or other sources, can be read, written, and
manipulated just as easily using Node. Ultimately we will learn how to use Node to
develop networked servers with rapid I/O interfaces that support highly concurrent
applications sharing real-time data across thousands of clients simultaneously.

Those who work with Internet-based software will have heard about "Big Data". The
importance of I/O efficiency is not lost on those witnessing this explosive growth in
data volume.

Implied by this expansion in data is an increase in the size of individual media
objects transmitted over the network. The videos being watched are longer. The
images being viewed are bigger. The searches are wider and the result sets are larger.

Additionally, scaled network applications are normally spread across many servers,
requiring that the processing of data streams be distributed across processes.
Additionally, the funneling of disparate streams into a single custom output stream
has become the signature of cloud services and various other APIs.

Anyone who has visited a website specializing in the display of large media objects
(such as videos) has likely also experienced latency. In an ideal world, one would
make a request to a server for lolcats.mpg and would receive this file instantly.

Streaming Data Across Nodes and Clients

[56]

However, moving large amounts of data (bytes) takes time. As the size of files
accessible over the Internet began to grow in size, from some number of kilobytes
to many gigabytes, download times grew in parallel, from several minutes to several
hours. Originally, in order to view a video, one's media viewer (often a browser)
required a complete copy prior to commencing playback. For the user, this meant
long waiting times spent staring at the progress bar or spinning icons. It took very
little vision to see that this solution was untenable.

Because the demand was so high for large media objects, those who had an interest
in distributing these objects encouraged the development of better distribution
mechanisms. As Internet became the world's de-facto information distribution
network, for both fixed media objects and live data broadcasts, better solutions arrived.
In particular, streaming media became the standard. The reader will certainly be
familiar with streaming media, and in particular the idea of buffering a stream. Small
chunks (for example a video stream is "played" as they are received) arriving too early
are buffered (helping with "hiccups" and latency), until the entire file has arrived:

Here, a streaming file is simply a stream of data partitioned into slices, where each
slice can be viewed independently irrespective of the availability of others. One can
write to a data stream, or listen on a data stream, free to dynamically allocate bytes,
to ignore bytes, to re-route bytes. Streams of data can be chunked, many processes
can share chunk handling, chunks can be transformed and reinserted, and data flows
can be precisely emitted and creatively managed.

Recalling our discussion on modern software and the Rule of Modularity, we can
see how streams facilitate the creation of independent share-nothing processes that
do one task well, and in combination can compose a predictable architecture whose
complexity does not preclude an accurate appraisal of its shape. If the interfaces
to data are uncontroversial, the data map can be accurately modeled independent
of considerations about data volume or routing.

Chapter 3

[57]

Managing I/O in Node involves managing data events bound to data streams.
A Node Stream object is an instance of EventEmitter. This abstract interface is
implemented in various Node modules and objects. Let's begin by understanding
Node's Stream module, then move on to a discussion of how network I/O in Node
is handled via various Stream implementations; in particular, the HTTP module.

Exploring streams
According to Bjarne Stoustrup in his book The C++ Programming Language, Third Edition:

Designing and implementing a general input/output facility for a programming
language is notoriously difficult... An I/O facility should be easy, convenient, and
safe to use; efficient and flexible; and, above all, complete.

It shouldn't surprise anyone that a design team, focused on providing efficient
and easy I/O, has delivered such a facility through Node. Through a symmetrical
and simple interface, which handles data buffers and stream events so that the
implementer does not have to, Node's Stream module is the preferred way to
manage asynchronous data streams for both internal modules and, hopefully,
for the modules developers will create.

A stream in Node is simply a sequence of bytes. At any time, a stream contains
a buffer of bytes, and this buffer has a zero or greater length:

Because each character in a stream is well defined, and because every type of digital
data can be expressed in bytes, any part of a stream can be redirected, or "piped",
to any other stream, different chunks of the stream can be sent do different handlers,
and so on. In this way stream input and output interfaces are both flexible and
predictable and can be easily coupled.

Streaming Data Across Nodes and Clients

[58]

Digital streams are well described using the analogy of fluids, where individual
bytes (drops of water) are being pushed through a pipe. In Node, streams are objects
representing data flows that can be written to and read from asynchronously. The
Node philosophy is a non-blocking flow, I/O is handled via streams, and so the
design of the Stream API naturally duplicates this general philosophy. In fact, there
is no other way of interacting with streams except in an asynchronous, evented
manner—you are prevented, by design, from blocking I/O.

Five distinct base classes are exposed via the abstract Stream interface: Readable,
Writable, Duplex, Transform, and PassThrough. Each base class inherits from
EventEmitter, which we know of as an interface to which event listeners and
emitters can be bound.

As we will learn, and here will emphasize, the Stream interface is an abstract
interface. An abstract interface functions as a kind of blueprint or definition,
describing the features that must be built into each constructed instance of a Stream
object. For example, a Readable stream implementation is required to implement
a public read method which delegates to the interface's internal _read method.

In general, all stream implementations should follow these guidelines:

•	 As long as data exists to send, write to a stream until that operation returns
false, at which point the implementation should wait for a drain event,
indicating that the buffered stream data has emptied

•	 Continue to call read until a null value is received, at which point wait
for a readable event prior to resuming reads

•	 Several Node I/O modules are implemented as streams. Network sockets,
file readers and writers, stdin and stdout, zlib, and so on. Similarly, when
implementing a readable data source, or data reader, one should implement
that interface as a Stream interface.

It is important to note that as of Node 0.10.0 the Stream interface
changed in some fundamental ways. The Node team has done its
best to implement backwards-compatible interfaces, such that (most)
older programs will continue to function without modification. In this
chapter we will not spend any time discussing the specific features of
this older API, focusing on the current (and future) design. The reader
is encouraged to consult Node's online documentation for information
on migrating older programs.

Chapter 3

[59]

Implementing readable streams
Streams producing data that another process may have an interest in are normally
implemented using a Readable stream. A Readable stream saves the implementer all
the work of managing the read queue, handling the emitting of data events, and so on.

To create a Readable stream:

var stream = require('stream');
var readable = new stream.Readable({
 encoding : "utf8",
 highWaterMark : 16000,
 objectMode: true
});

As previously mentioned, Readable is exposed as a base class, which can be
initialized through three options:

•	 encoding: Decode buffers into the specified encoding, defaulting to UTF-8.
•	 highWaterMark: Number of bytes to keep in the internal buffer before

ceasing to read from the data source. The default is 16 KB.
•	 objectMode: Tell the stream to behave as a stream of objects instead of

a stream of bytes, such as a stream of JSON objects instead of the bytes
in a file. Default false.

In the following example we create a mock Feed object whose instances will inherit
the Readable stream interface. Our implementation need only implement the abstract
_read method of Readable, which will push data to a consumer until there is nothing
more to push, at which point it triggers the Readable stream to emit an "end" event
by pushing a null value:

var Feed = function(channel) {
 var readable = new stream.Readable({
 encoding : "utf8"
 });
 var news = [
 "Big Win!",
 "Stocks Down!",
 "Actor Sad!"
];
 readable._read = function() {
 if(news.length) {
 return readable.push(news.shift() + "\n");
 }
 readable.push(null);
 };
 return readable;
}

Streaming Data Across Nodes and Clients

[60]

Now that we have an implementation, a consumer might want to instantiate the
stream and listen for stream events. Two key events are readable and end.

The readable event is emitted as long as data is being pushed to the stream. It alerts
the consumer to check for new data via the read method of Readable.

Note again how the Readable implementation must provide
a private _read method, which services the public read
method exposed to the consumer API.

The end event will be emitted whenever a null value is passed to the push method
of our Readable implementation.

Here we see a consumer using these methods to display new stream data, providing
a notification when the stream has stopped sending data:

var feed = new Feed();
feed.on("readable", function() {
 var data = feed.read();
 data && process.stdout.write(data);
});
feed.on("end", function() {
 console.log("No more news");
});

Similarly, we could implement a stream of objects through the use of the
objectMode option:

 var readable = new stream.Readable({
 objectMode : true
 });
 var prices = [
 { price : 1 },
 { price : 2 }
];
...
readable.push(prices.shift());

// > { prices : 1 }
// > { prices : 2 }

Here we see that each read event is receiving an object, rather than a buffer or string.

Chapter 3

[61]

Finally, the read method of a Readable stream can be passed a single argument
indicating the number of bytes to be read from the stream's internal buffer. For
example, if it was desired that a file should be read one byte at a time, one might
implement a consumer using a routine similar to:

readable.push("Sequence of bytes");
...
feed.on("readable", function() {
 var character;
 while(character = feed.read(1)) {
 console.log(character);
 };
});
// > S
// > e
// > q
// > ...

Here it should be clear that the Readable stream's buffer was filled with a number
of bytes all at once, but was read from discretely.

Pushing and pulling
We have seen how a Readable implementation will use push to populate the stream
buffer for reading. When designing these implementations it is important to consider
how volume is managed, at either end of the stream. Pushing more data into a stream
than can be read can lead to complications around exceeding available space (memory).
At the consumer end it is important to maintain awareness of termination events, and
how to deal with pauses in the data stream.

One might compare the behavior of data streams running through a network with
that of water running through a hose.

As with water through a hose, if a greater volume of data is being pushed into
the read stream than can be efficiently drained out of the stream at the consumer
end through read, a great deal of back pressure builds, causing a data backlog to
begin accumulating in the stream object's buffer. Because we are dealing with strict
mathematical limitations, read simply cannot be compelled to release this pressure
by reading more quickly—there may be a hard limit on available memory space,
or other limitation. As such, memory usage can grow dangerously high, buffers can
overflow, and so forth.

Streaming Data Across Nodes and Clients

[62]

A stream implementation should therefore be aware of, and respond to, the
response from a push operation. If the operation returns false this indicates that
the implementation should cease reading from its source (and cease pushing) until
the next _read request is made.

In conjunction with the above, if there is no more data to push but more is expected in
the future the implementation should push an empty string (""), which adds no data
to the queue but does ensure a future readable event.

While the most common treatment of a stream buffer is to push to it (queuing data
in a line), there are occasions where one might want to place data on the front of
the buffer (jumping the line). Node provides an unshift operation for these cases,
which behavior is identical to push, outside of the aforementioned difference in
buffer placement.

Writable streams
A Writable stream is responsible for accepting some value (a stream of bytes,
a string) and writing that data to a destination. Streaming data into a file container
is a common use case.

To create a Writable stream:

var stream = require('stream');
var readable = new stream.Writable({
 highWaterMark : 16000,
 decodeStrings: true
});

The Writable streams constructor can be instantiated with two options:

•	 highWaterMark: The maximum number of bytes the stream's buffer will
accept prior to returning false on writes. Default is 16 KB

•	 decodeStrings: Whether to convert strings into buffers before writing.
Default is true.

As with Readable streams, custom Writable stream implementations must
implement a _write handler, which will be passed the arguments sent to the write
method of instances.

Chapter 3

[63]

One should think of a Writable stream as a data target, such as for a file you are
uploading. Conceptually this is not unlike the implementation of push in a Readable
stream, where one pushes data until the data source is exhausted, passing null to
terminate reading. For example, here we write 100 bytes to stdout:

var stream = require('stream');
var writable = new stream.Writable({
 decodeStrings: false
});
writable._write = function(chunk, encoding, callback) {
 console.log(chunk);
 callback();
}
var w = writable.write(new Buffer(100));
writable.end();
console.log(w); // Will be `true`

There are two key things to note here.

First, our _write implementation fires the callback function immediately after
writing, a callback that is always present, regardless of whether the instance write
method is passed a callback directly. This call is important for indicating the status
of the write attempt, whether a failure (error) or a success.

Second, the call to write returned true. This indicates that the internal buffer of the
Writable implementation has been emptied after executing the requested write.
What if we sent a very large amount of data, enough to exceed the default size of the
internal buffer? Modifying the above example, the following would return false:

var w = writable.write(new Buffer(16384));
console.log(w); // Will be 'false'

The reason this write returns false is that it has reached the highWaterMark
option—default value of 16 KB (16 * 1024). If we changed this value to 16383, write
would again return true (or one could simply increase its value).

What to do when write returns false? One should certainly not continue to
send data! Returning to our metaphor of water in a hose: when the stream is
full, one should wait for it to drain prior to sending more data. Node's Stream
implementation will emit a drain event whenever it is safe to write again. When
write returns false listen for the drain event before sending more data.

Streaming Data Across Nodes and Clients

[64]

Putting together what we have learned, let's create a Writable stream with
a highWaterMark value of 10 bytes. We will send a buffer containing more than
10 bytes (composed of A characters) to this stream, triggering a drain event, at which
point we write a single Z character. It should be clear from this example that Node's
Stream implementation is managing the buffer overflow of our original payload,
warning the original write method of this overflow, performing a controlled depletion
of the internal buffer, and notifying us when it is safe to write again:

var stream = require('stream');
var writable = new stream.Writable({
 highWaterMark: 10
});
writable._write = function(chunk, encoding, callback) {
 process.stdout.write(chunk);
 callback();
}
writable.on("drain", function() {
 writable.write("Z\n");
});
var buf = new Buffer(20, "utf8");
buf.fill("A");

console.log(writable.write(buf.toString())); // false

The result should be a string of 20 A characters, followed by false, then followed
by the character Z.

The fluid data in a Readable stream can be easily redirected to
a Writable stream. For example, the following code will take
any data sent by a terminal (stdin is a Readable stream) and
pass it to the destination Writable stream, stdout:

process.stdin.pipe(process.stdout);

Whenever a Writable stream is passed to a Readable
stream's pipe method, a pipe event will fire. Similarly, when a
Writable stream is removed as a destination for a Readable
stream, the unpipe event fires.

To remove a pipe, use the following:
unpipe(destination stream)

Chapter 3

[65]

Duplex streams
A duplex stream is both readable and writeable. For instance, a TCP server created
in Node exposes a socket that can be both read from and written to:

var stream = require("stream");
var net = require("net");
net
.createServer(function(socket) {
 socket.write("Go ahead and type something!");
 socket.on("readable", function() {
 process.stdout.write(this.read())
 });
})
.listen(8080);

When executed, this code will create a TCP server that can be connected to via Telnet:

telnet 127.0.0.1 8080

Upon connection, the connecting terminal will print out Go ahead and type
something!—writing to the socket. Any text entered in the connecting terminal will
be echoed to the stdout of the terminal running the TCP server (reading from the
socket). This implementation of a bi-directional (duplex) communication protocol
demonstrates clearly how independent processes can form the nodes of a complex
and responsive application, whether communicating across a network or within the
scope of a single process.

The options sent when constructing a Duplex instance merge those sent to Readable
and Writable streams, with no additional parameters. Indeed, this stream type
simply assumes both roles, and the rules for interacting with it follow the rules
for the interactive mode being used.

As a Duplex stream assumes both read and write roles, any implementation is
required to implement both _write and _read methods, again following the
standard implementation details given for the relevant stream type.

Transforming streams
On occasion stream data needs to be processed, often in cases where one is writing
some sort of binary protocol or other "on the fly" data transformation. A Transform
stream is designed for this purpose, functioning as a Duplex stream that sits between
a Readable stream and a Writable stream.

Streaming Data Across Nodes and Clients

[66]

A Transform stream is initialized using the same options used to initialize a typical
Duplex stream. Where Transform differs from a normal Duplex stream is in its
requirement that the custom implementation merely provide a _transform method,
excluding the _write and _read method requirement.

The _transform method will receive three arguments, first the sent buffer, an
optional encoding argument, and finally a callback which _transform is expected
to call when the transformation is complete:

_transform = function(buffer, encoding, cb) {
 var transformation = "...";
 this.push(transformation)
 cb();
}

Let's imagine a program that wishes to convert ASCII (American Standard Code for
Information Interchange) codes into ASCII characters, receiving input from stdin. We
would simply pipe our input to a Transform stream, then piping its output to stdout:

var stream = require('stream');
var converter = new stream.Transform();
converter._transform = function(num, encoding, cb) {
 this.push(String.fromCharCode(new Number(num)) + "\n")
 cb();
}
process.stdin.pipe(converter).pipe(process.stdout);

Interacting with this program might produce an output resembling the following:

65 A
66 B
256 Ā
257 ā

An example of a transform stream will be demonstrated in the example that ends
this chapter.

Using PassThrough streams
This sort of stream is a trivial implementation of a Transform stream, which simply
passes received input bytes through to an output stream. This is useful if one doesn't
require any transformation of the input data, and simply wants to easily pipe
a Readable stream to a Writable stream.

Chapter 3

[67]

PassThrough streams have benefits similar to JavaScript's anonymous functions,
making it easy to assert minimal functionality without too much fuss. For example,
it is not necessary to implement an abstract base class, as one does with for the _read
method of a Readable stream. Consider the following use of a PassThrough stream
as an event spy:

var fs = require('fs');
var stream = new require('stream').PassThrough();
spy.on('end', function() {
 console.log("All data has been sent");
});
fs.createReadStream("./passthrough.js").pipe(spy).pipe(process.std
 out);

Creating an HTTP server
HTTP is a stateless data transfer protocol built upon a request/response model:
clients make requests to servers, which then return a response. Facilitating this
sort of rapid patter network communication is the sort of I/O Node is designed
to excel at, it has unsurprisingly become identified as primarily a toolkit for creating
servers—though it can certainly be used to do much, much more. Throughout this
book we will be creating many implementations of HTTP servers, as well as other
protocol servers, and will be discussing best practices in more depth, contextualized
within specific business cases. It is expected that you have already had some
experience doing the same. For both of these reasons we will quickly move through
a general overview into some more specialized uses.

At its simplest, an HTTP server responds to connection attempts, and manages
data as it arrives and as it is sent along. A Node server is typically created using
the createServer method of the http module:

var http = require('http');
var server = http.createServer(function(request, response) {
 console.log("Got Request Headers:");
 console.log(request.headers);
 response.writeHead(200, {
 'Content-Type': 'text/plain'
 });
 response.write("PONG");
 response.end();
});

server.listen(8080);

Streaming Data Across Nodes and Clients

[68]

The object returned by http.createServer is an instance of http.Server, which
extends EventEmitter, broadcasting network events as they occur, such as a client
connection or request. The above code is a common way to write Node servers.
However, it is worth pointing out that directly instantiating the http.Server class is
sometimes a useful way to distinguish distinct server/client interactions. We will use
that format for the following examples.

Here, we create a basic server that simply reports when a connection is made, and
when it is terminated:

var http = require('http');
var server = new http.Server();
server.on("connection", function(socket) {
 console.log("Client arrived: " + new Date());
 socket.on("end", function() {
 console.log("Client left: " + new Date());
 });
})
server.listen(8080);

When building multiuser systems, especially authenticated multiuser systems,
this point in the server-client transaction is an excellent place for client validation
and tracking code, including setting or reading of cookies and other session
variables, or the broadcasting of a client arrival event to other clients working
together in a concurrent real-time application.

By adding a listener for requests we arrive at the more common request/response
pattern, handled as a Readable stream. When a client POSTs some data, we can
catch that data like the following:

server.on("request", function(request, response) {
 request.setEncoding("utf8");
 request.on("readable", function() {
 console.log(request.read())
 });
});

Try sending some data to this server using curl:

curl http://localhost:8080 -d "Here is some data"

By using connection events we can nicely separate our connection handling code,
grouping it into clearly defined functional domains correctly described as executing
in response to particular events.

Chapter 3

[69]

For example, we can set timers on server connections. Here we terminate client
connections that fail to send new data within a roughly two second window:

server.setTimeout(2000, function(socket) {
 socket.write("Too Slow!", "utf8");
 socket.end();
});

If one simply wants to set the number of milliseconds of
inactivity before a socket is presumed to have timed out, simply
use server.timeout = (Integer)num_milliseconds.
To disable socket timeouts, pass a value of 0(zero).

Let's now take a look at how Node's HTTP module can be used to enter into more
interesting network interactions.

Making HTTP requests
It is often necessary for a network application to make external HTTP calls. HTTP
servers are also often called upon to perform HTTP services for clients making
requests. Node provides an easy interface for making external HTTP calls.

For example, the following code will fetch the front page of google.com:

var http = require('http');
http.request({
 host: 'www.google.com',
 method: 'GET',
 path: "/"
}, function(response) {
 response.setEncoding("utf8");
 response.on("readable", function() {
 console.log(response.read())
 });
}).end();

As we can see, we are working with a Readable stream, which can be written to a file.

A popular Node module for managing HTTP requests is Mikeal
Rogers' request:

https://github.com/mikeal/request

Streaming Data Across Nodes and Clients

[70]

Because it is common to use HTTP.request in order to GET external pages, Node
offers a shortcut:

http.get("http://www.google.com/", function(response) {
 console.log("Status: " + response.statusCode);
}).on('error', function(err) {
 console.log("Error: " + err.message);
});

Let's now look at some more advanced implementations of HTTP servers, where
we perform general network services for clients.

Proxying and tunneling
Sometimes it is useful to provide a means for one server to function as a proxy,
or broker, for other servers. This would allow one server to distribute load to other
servers, for example. Another use would be to provide access to a secured server
to users who are unable to connect to that server directly. It is also common to have
one server answering for more than one URL—by using a proxy, that one server can
forward requests to the right recipient.

Because Node has a consistent streams interface throughout its network interfaces,
we can build a simple HTTP proxy in just a few lines of code. For example, the
following program will set up an HTTP server on port 8080 which will respond to
any request by fetching the front page of Google and piping that back to the client:

var http = require('http');
var server = new http.Server();
server.on("request", function(request, socket) {
 http.request({
 host: 'www.google.com',
 method: 'GET',
 path: "/",
 port: 80
 }, function(response) {
 response.pipe(socket);
 }).end();
});
server.listen(8080);

Once this server receives the client socket, it is free to push content from any
readable stream back to the client, and here the result of GET of www.google.com is
so streamed. One can easily see how an external content server managing a caching
layer for your application might become a proxy endpoint, for example.

Chapter 3

[71]

Using similar ideas we can create a tunneling service, using Node's native
CONNECT support. Tunneling involves using a proxy server as an intermediary
to communicate with a remote server on behalf of a client. Once our proxy server
connects to a remote server, it is able to pass messages back and forth between that
server and a client. This is advantageous when a direct connection between a client
and a remote server is not possible, or not desired.

First, we'll set up a proxy server responding to HTTP CONNECT requests, then
make a CONNECT request to that server. The proxy receives our client's Request
object, the client's socket itself, and the head (the first packet) of the tunneling
stream. We then open the requested remote network socket. All that is left to do is
creating the tunnel, which we do by piping remote data to the client, and client data
to the remote connection:

var http = require('http');
var net = require('net');
var url = require('url');
var proxy = new http.Server();
proxy.on('connect', function(request, clientSocket, head) {
 var reqData = url.parse('http://' + request.url);
 var remoteSocket = net.connect(reqData.port, reqData.hostname,
function() {
 clientSocket.write('HTTP/1.1 200 \r\n\r\n');
 remoteSocket.write(head);
 remoteSocket.pipe(clientSocket);
 clientSocket.pipe(remoteSocket);
 });
}).listen(8080);

var request = http.request({
 port: 8080,
 hostname: 'localhost',
 method: 'CONNECT',
 path: 'www.google.com:80'
});
request.end();
request.on('connect', function(res, socket, head) {
 socket.setEncoding("utf8");
 socket.write('GET / HTTP/1.1\r\nHost: www.google.com:80\r\
nConnection: close\r\n\r\n');
 socket.on('readable', function() {
 console.log(socket.read());
 });
 socket.on('end', function() {
 proxy.close();
 });
});

Streaming Data Across Nodes and Clients

[72]

HTTPS, TLS (SSL), and securing your
server
The security of web applications has become a significant discussion topic in recent
years. Traditional applications normally benefited from the well-tested and mature
security models designed into the major servers and application stacks underpinning
major deployments. For one reason or another, web applications were allowed to
venture into the experimental world of client-side business logic and open web
services shielded by a diaphanous curtain.

As Node is regularly deployed as a web server, it is imperative that the community
begins to accept responsibility for securing these servers. HTTPS is a secure
transmission protocol—essentially encrypted HTTP formed by layering the HTTP
protocol on top of the SSL/TLS protocol.

Creating a self-signed certificate for
development
In order to support SSL connections a server will need a properly signed certificate.
While developing, it is much easier to simply create a self-signed certificate, which
will allow one to use Node's HTTPS module.

These are the steps needed to create a certificate for development. Note that this
process does not create a real certificate and is not secure—it simply allows us to
develop within a HTTPS environment. From a terminal:

openssl genrsa -out server-key.pem 2048

openssl req -new -key server-key.pem -out server-csr.pem

openssl x509 -req -in server-csr.pem -signkey server-key.pem -out
server-cert.pem

These keys may now be used to develop HTTPS servers. The contents of these files
need simply be passed along as options to a Node server:

var https = require('https');
var fs = require('fs');

https.createServer({
 key: fs.readFileSync('server-key.pem'),
 cert: fs.readFileSync('server-cert.pem')
}, function(req,res) {
 ...
}).listen(443)

Chapter 3

[73]

Free low-assurance SSL certificates are available from
http://www.startssl.com/ for cases where self-signed
certificates are not ideal during development.

Installing a real SSL certificate
In order to move a secure application out of a development environment and into an
Internet-exposed environment a real certificate will need to be purchased. The prices
of these certificates has been dropping year by year, and it should be easy to find
reasonably priced providers of certificates with a high-enough level of security. Some
providers even offer free person-use certificates.

Setting up a professional cert simply requires changing the HTTPS options we
introduced above. Different providers will have different processes and filenames.
Typically you will need to download or otherwise receive from your provider
a private .key file, your signed domain certificate .crt file, and a bundle describing
certificate chains:

var options = {
 key : fs.readFileSync("mysite.key"),
 cert : fs.readFileSync("mysite.com.crt"),
 ca : [fs.readFileSync("gd_bundle.crt")]
};

It is important to note that the ca parameter must be sent as an array, even if the
bundle of certificates has been concatenated into one file.

The request object
HTTP request and response messages are similar, consisting of:

•	 A status line, which for a request would resemble GET/index.html
HTTP/1.1, and for a response would resemble HTTP/1.1 200 OK

•	 Zero or more headers, which in a request might include Accept-Charset:
UTF-8 or From: user@server.com, and in responses might resemble
Content-Type: text/html and Content-Length: 1024

•	 A message body, which for a response might be an HTML page, and for
a POST request might be some form data

We've seen how HTTP server interfaces in Node are expected to expose a request
handler, and how this handler will be passed some form of a request and response
object, each of which implement a readable or writable stream.

Streaming Data Across Nodes and Clients

[74]

We will cover the handling of POST data and Header data in more depth later
in this chapter. Before we do, let's go over how to parse out some of the more
straightforward information contained in a request.

The URL module
Whenever a request is made to an HTTP server the request object will contain url
property, identifying the targeted resource. This is accessible via request.url.
Node's URL module is used to decompose a typical URL string into its constituent
parts. Consider the following figure:

We see how the url.parse method decomposes strings, and the meaning of each
segment should be clear. It might also be clear that the query field would be more
useful if it was itself parsed into Key/Value pairs. This is accomplished by passing
true as the second argument of to the parse method, which would change the
query field value given above into a more useful key/value map:

query: { filter: 'sports', maxresults: '20' }

This is especially useful when parsing GET requests.

There is one final argument for url.parse that relates to the difference between
these two URLs:

•	 http://www.example.org

•	 //www.example.org

The second URL here is an example of a (relatively unknown) design feature of the
HTTP protocol: the protocol-relative URL (technically, a network-path reference),
as opposed to the more common absolute URL.

Chapter 3

[75]

To learn more about how network-path references are used to
smooth resource protocol resolution visit the following link:

http://tools.ietf.org/html/rfc3986#section-4.2

The issue under discussion is this: url.parse will treat a string beginning with slashes
as indicating a path, not a host. For example, url.parse("//www.example.org")
will set the following values in the host and path fields:

host: null,

path: '//www.example.org'

What we actually want is the reverse:

host: 'www.example.org',

path: null

To resolve this issue, pass true as the third argument to url.parse, which indicates
to the method that slashes denote a host, not a path:

url.parse("//www.example.org",null,true)

It is also the case that a developer will want to create a URL, such as when making
requests via http.request. The segments of said URL may be spread across various
data structures and variables, and will need to be assembled. One accomplishes
this by passing an object like the one returned from url.parse to the method url.
format.

The following code will create the URL string http://www.example.org:

url.format({
 protocol: 'http:',
 host: 'www.example.org'
})

Similarly, one may also use the url.resolve method to generate URL strings in the
common scenario of requiring the concatenating a base URL and a path:

url.resolve("http://example.org/a/b", "c/d") //
'http://example.org/a/c/d'
url.resolve("http://example.org/a/b", "/c/d") //
'http://example.org/c/d'
url.resolve("http://example.org", "http://google.com") //
'http://google.com/'

Streaming Data Across Nodes and Clients

[76]

The Querystring module
As we saw with the URL module, query strings often need to be parsed into a map
of key/value pairs. The Querystring module will either decompose an existing
query string into its parts, or assemble a query string from a map of key/value pairs.

For example, querystring.parse("foo=bar&bingo=bango") will return:

{ foo: 'bar',
 bingo: 'bango' }

If our query strings are not formatted using the normal "&" separator and "="
assignment character, the Querystring module offers customizable parsing.
The second argument to Querystring can be a custom separator string, and the
third a custom assignment string. For example, the following will return the
same mapping as given previously on a query string with custom formatting:

var qs = require("querystring");
console.log(qs.parse("foo:bar^bingo:bango", "^", ":"))
// { foo: 'bar', bingo: 'bango' }

One can compose a query string using the Querystring.stringify method:

console.log(qs.stringify({ foo: 'bar', bingo: 'bango' }))
// foo=bar&bingo=bango

As with parse, stringify also accepts custom separator and assignment arguments:

console.log(qs.stringify({ foo: 'bar', bingo: 'bango' }, "^",
 ":"))
// foo:bar^bingo:bango

Query strings are commonly associated with GET requests, seen following the ?
character. As we've seen above, in these cases automatic parsing of these strings
using the url module is the most straightforward solution. However, strings
formatted in such a manner also show up when we're handling POST data, and in
these cases the Querystring module is of real use. We'll discuss this usage shortly.
But first, something about HTTP headers.

Chapter 3

[77]

Working with headers
Each HTTP request made to a Node server will likely contain useful header
information, and clients normally expect to receive similar package information
from a server. Node provides straightforward interfaces for reading and writing
headers. We'll briefly go over those simple interfaces, clarifying some details.
Finally, we'll discuss how to more advanced header usage might be implemented
in Node, studying some common network responsibilities a Node server will likely
need to accommodate.

A typical request header will look something like the following:

Headers are simple Key/Value pairs. Request keys are always lowercased. You may
use any case format when setting response keys.

Reading headers is straightforward. Read header information by examining the
request.header object, which is a 1:1 mapping of the header's Key/Value pairs.
To fetch the "accept" header from the previous example, simply read request.
headers.accept.

The number of incoming headers can be limited by setting
the maxHeadersCount property of your HTTP server.

If it is preferred that headers are read programmatically, Node provides the
response.getHeader method, accepting the header key as its first argument.

Streaming Data Across Nodes and Clients

[78]

While request headers are simple Key/Value pairs, when writing headers we need
a more expressive interface. As a response typically must send a status code, Node
provides a straightforward way to prepare a response status line and header group
in one command:

response.writeHead(200, {
 'Content-Length': 4096,
 'Content-Type': 'text/plain'
});

To set headers individually, one can use response.setHeader, passing two
arguments: the header key, followed by the header value.

To set multiple headers with the same name, one may pass an array to response.
setHeader:

response.setHeader("Set-Cookie", ["session:12345",
"language=en"]);

Occasionally it may be necessary to remove a response header after that header has
been "queued". This is accomplished by using response.removeHeader, passing the
header name to be removed as an argument.

Headers must be written prior to writing a response. It is an error to write a header
after a response has been sent.

Using cookies
The HTTP protocol is stateless. Any given request has no information on previous
requests. For a server this meant that determining if two requests originated from
the same browser was not possible. Cookies were invented to solve this problem.
Cookies are primarily used to share state between clients (usually a browser) and
a server, existing as small text files stored in browsers.

Cookies are insecure. Cookie information flows between a server and a client in plain
text. There is any number of tamper points in between. Browsers allow easy access
to them, for example. This is a good idea, as nobody wants information on their
browser or local machine to be hidden from them, beyond their control.

Nevertheless, cookies are also used rather extensively to maintain state information,
or pointers to state information, particularly in the case of user sessions or other
authentication scenarios.

Chapter 3

[79]

It is assumed that you are familiar with how cookies function in general. Here we will
discuss how cookies are fetched, parsed, and set by a Node HTTP server. We will use
the example of a server that echoes back the value of a sent cookie. If no cookie exists,
the server will create that cookie and instruct the client to ask for it again.

First we create a server that checks request headers for cookies:

var http = require('http');
var url = require('url');
var server = http.createServer(function(request, response) {
 var cookies = request.headers.cookie;

Note that cookies are stored as the cookie attribute of request.headers. If no
cookies exist for this domain, we will need to create one, giving it the name session
and a value of 123456:

 if(!cookies) {
 var cookieName = "session";
 var cookieValue = "123456";
 var expiryDate = new Date();
 expiryDate.setDate(expiryDate.getDate() + 1);
 var cookieText = cookieName + '=' + cookieValue + ';expires='
+ expiryDate.toUTCString() + ';';
 response.setHeader('Set-Cookie', cookieText);
 response.writeHead(302, {
 'Location': '/'
 });

 return response.end();
 }

If we have set this cookie for the first time, the client is instructed to make another
request to this same server. As there is now a cookie set for this domain, the
subsequent request will contain our cookie, which we handle next:

 cookies.split(';').forEach(function(cookie) {
 var m = cookie.match(/(.*?)=(.*)$/);
 cookies[m[1].trim()] = (m[2] || '').trim();
 });
 response.end("Cookie set: " + cookies.toString());

}).listen(8080);

Streaming Data Across Nodes and Clients

[80]

Understanding content types
A client will often pass along a request header indicating the expected response MIME
(Multi-purpose Internet Mail Extension) type. Clients will also indicate the MIME
type of a request body. Servers will similarly provide header information about the
MIME type of a response body. The MIME type for HTML is text/html, for example.

As we have seen, it is the responsibility of an HTTP response to set headers
describing the entity it contains. Similarly, a GET request will normally indicate the
resource type, the MIME type, it expects as a response. Such a request header might
look like this:

Accept: text/html

It is the responsibility of a server receiving such instructions to prepare a body entity
conforming to the sent MIME type, and if it is able to do so it should return a similar
response header:

Content-Type: text/html; charset=utf-8

Because requests also identify the specific resource desired (such as /files/index.
html), the server must ensure that the requested resource it is streaming back to the
client is in fact of the correct MIME type. While it may seem obvious that a resource
identified by the extension html is in fact of the MIME type text/html, this is not
at all certain—a filesystem does nothing to prevent an image file from being given
an "html" extension. Parsing extensions is an imperfect method of determining file
type. We need to do more.

The UNIX file program is able to determine the MIME type of a system file. For
example, one might determine the MIME type of a file without an extension (for
example, resource) by running this command:

file --brief --mime resource

We pass arguments instructing file to output the MIME type of resource, and that
the output should be brief (only the MIME type, and no other information).

This command might return something like text/plain; charset=us-ascii.
Here we have a tool to solve our problem.

For more information about the file utility consult go
to the following link:

http://unixhelp.ed.ac.uk/CGI/man-cgi?file

Chapter 3

[81]

Recalling that Node is able to spawn child processes, we have a solution to our
problem of accurately determining the MIME type of system files.

We can use the Node command exec method of Node's child_process module
in order to determine the MIME type of a file like so:

var exec = require('child_process').exec;
exec("file --brief --mime resource", function(err, mime) {
 console.log(mime);
});

This technique is also useful when validating a file streamed in from an external
location. Following the axiom "never trust the client", it is always a good idea
to check whether the Content-type header of a file posted to a Node server matches
the actual MIME type of the received file as it exists on the local filesystem.

Handling favicon requests
When visiting a URL via a browser one will often notice a little icon in the browser
tab or in the browser's address bar. This icon is an image, named favicon.ico and
it is fetched on each request. As such, an HTTP GET request is normally combines
two requests—one for the favicon, and another for the requested resource.

Node developers are often surprised by this doubled request. Any implementation
of an HTTP server must deal with favicon requests. To do so, the server must check
the request type, and handle it accordingly. The following example demonstrates
one method of doing so:

var http = require('http');
http.createServer(function(request, response) {
 if(request.url === '/favicon.ico') {
 response.writeHead(200, {
 'Content-Type': 'image/x-icon'
 });
 return response.end();
 }
 response.writeHead(200, {
 'Content-Type': 'text/plain'
 });
 response.write('Some requested resource');
 response.end();

}).listen(8080);

This code will simply send an empty image stream for the favicon. If there is a
favicon to send, one would simply push that data through the response stream, as
we've discussed previously.

Streaming Data Across Nodes and Clients

[82]

Handling POST data
One of the most common REST methods used in network applications is POST.
According to the REST specification a POST is not idempotent, as opposed to most
of the other well-known methods (GET, PUT, DELETE, and so on) that are. This
is mentioned in order to point out that the handling of POST data will very often
have a consequential effect on an application's state, and should therefore
be handled with care.

We will now discuss handling of the most common type of POST data, that which
is submitted via forms. The more complex type of POST—multipart uploads—will
be discussed in Chapter 4, Using Node to Access the Filesystem.

Let's create a server which will return a form to clients, and echo back any data
that client submits with that form. We will need to first check the request URL,
determining if this is a form request or a form submission, returning HTML for
a form in the first case, and parsing submitted data in the second:

var http = require('http');
var qs = require('querystring');
http.createServer(function(request, response) {
 var body = "";
 if(request.url === "/") {
 response.writeHead(200, {
 "Content-Type": "text/html"
 });
 return response.end(
 '<form action="/submit" method="post">\
 <input type="text" name="sometext">\
 <input type="submit" value="Upload">\
 </form>'
);
 }

Note that the form we respond with has a single field named sometext. This form
should POST data in the form sometext=entered_text:

 if(request.url === "/submit") {
 request.on('readable', function() {
 body += request.read();

 });
 request.on('end', function() {
 var fields = qs.parse(body);
 response.end("Thanks!");

Chapter 3

[83]

 console.log(fields)
 });
 }
}).listen(8080);

Once our POST stream ends and the client is notified that the POST is received,
we parse the posted data using Querystring.parse, giving us a Key/Value map
accessible via fields["somedata"].

Creating and streaming images with
Node
Having gone over the main strategies for initiating and diverting streams of
data, let's practice the theory by creating a service to stream (aptly named) PNG
(Portable Network Graphics) images to a client. This will not be a simple file server,
however. The goal is to create PNG data streams by piping the output stream of an
ImageMagick convert operation executing in a separate process into the response
stream of an HTTP connection, where the converter is translating another stream
of SVG (Scalable Vector Graphics) data generated within a virtualized DOM
(Document Object Model) existing in the Node runtime. Let's get started.

The full code for this example can be found in your
code bundle.

Our goal is to use Node to generate pie charts dynamically on a server based on
client requests. A client will specify some data values, and a PNG representing that
data in a pie will be generated. We are going to use the D3.js library, which provides
a Javascript API for creating data visualizations, and the jsdom NPM package, which
allows us to create a virtual DOM within a Node process.

Additionally, the PNG we create will be written to a file. If future requests pass
the same query arguments to our service, we will then be able to rapidly pipe the
existing rendering immediately, without the overhead of regenerating it.

Streaming Data Across Nodes and Clients

[84]

A pie graph represents a range if percentages whose sum fills the total area of a circle,
visualized as slices. Our service will draw such a graph based on the values a client
sends. In our system the client is required to send values adding up to 1, such as .5,
 .3, .2. Our server, when it receives a request, will therefore need to fetch query
parameters as well as create a unique key that maps to future requests with
the same query parameters:

 var values = url.parse(request.url, true).query['values'].
split(",");
 var cacheKey = values.sort().join('');

Here we see the URL module in action, pulling out our data values. As well, we
create a key on these values by first sorting the values, then joining them into a string
we will use as the filename for our cached pie graph. We sort values for this reason:
the same graph is achieved by sending .5 .3 .2 and .3 .5 .2. By sorting and
joining these both become the filename .2 .3 .5.

In a production application, more work would need to be done to
ensure that the query is well formed, is mathematically correct,
and so on. In our example we assume proper values are being sent.

Creating, caching, and sending a PNG
representation
Assuming we do not have a cached copy, we will need to create one. Our system
works by creating a virtual DOM, using D3 to generate an SVG pie chart within
that DOM, passing the generated SVG to the ImageMagick convert program, which
converts SVG data into a PNG representation. Additionally, we will need to store
the created PNG on a filesystem.

We use jsdom to create a DOM, and use D3 to create the pie chart. Visit
https://github.com/tmpvar/jsdom to learn about how jsdom works, and
http://d3js.org/ to learn about using D3 to generate SVG. Assume that we have
created this SVG, and stored it in a variable svg, which will contain a string similar
to this:

<svg width="200" height="200">
 <g transform="translate(100,100)">
 <defs>
 <radialgradient id="grad-0" gradientUnits="userSpaceOnUse"
cx="0" cy="0" r="100">
 <stop offset="0" stop-color="#7db9e8"></stop>
...

Chapter 3

[85]

We now must convert that SVG into a PNG. To do this we spawn a child process
running the ImageMagick convert program, and stream our SVG data to the stdin
of that process:

var svgToPng = spawn("convert", ["svg:", "png:-"]);
svgToPng.stdin.write(svg);
svgToPng.stdin.end();

The stdout of the svgToPng process (a ReadableStream) will push a byte
stream representing the PNG of our pie graph. This stream will be piped to two
WritableStreams: the response object, such that our client receives the PNG data,
and a new PNG file, which filename will be stored in the variable cacheKey. A
response stream already exists; we must now create the file stream:

var filewriter = fs.createWriteStream(cacheKey);
filewriter.on("open", function(err) {
...

Once we have successfully opened a file stream we have all our streams in place:
a ReadableStream represented by the stdout of the convert process; a
WritableStream bound to a file on our filesystem; and the WritableStream
represented by our server's response object. We must now achieve this flow:
PNG conversion stream > file stream > response stream:

svgToPng.stdout.pipe(file).pipe(response);

This will not work as is, however: a WritableStream (file) cannot be piped to another
WritableStream (response), as such a stream does not push data. One way to solve
this is to use a TransformStream:

var streamer = new stream.Transform();
streamer._transform = function(data, enc, cb) {
 filewriter.write(data);
 this.push(data);
 cb();
};
svgToPng.stdout.pipe(streamer).pipe(response);

Recalling our discussion on streams, what is happening here should be clear. A
TransformStream functions as a DuplexStream, being both readable and writable.
We override its abstract _transform method, and do our file writing there. Once we
successfully write to a file, we then push the same data forward onto the response
stream. We can now achieve the desired stream chaining:

svgToPng.stdout.pipe(streamer).pipe(response);

Streaming Data Across Nodes and Clients

[86]

And the client receives a pie graph:

Finally, we need to handle cases where the requested pie chart has already been
rendered and can be directly streamed from a filesystem:

fs.exists(cacheKey, function(exists) {
 response.writeHead(200, {
 'Content-Type': 'image/png'
 });

 if(exists) {
 fs.createReadStream(cacheKey)
 .on('readable', function() {
 var chunk;
 while(chunk = this.read()) {
 response.write(chunk);
 }
 })
 .on('end', function() {
 response.end();
 });

 return;
 }
 ...

Once we have determined that a cached file exists, we run a while loop pulling data
off the file stream, writing this data to a response object, until the file stream ends.

Chapter 3

[87]

Summary
As we have learned, Node's designers have succeeded in creating a simple,
predictable, and convenient solution to the very difficult problem of enabling efficient
I/O between disparate sources and targets. Its abstract Stream interface facilitates the
instantiation of consistent readable and writable interfaces, and the extension of this
interface into HTTP requests and responses, the filesystem, child processes, and other
data channels makes stream programming with Node a pleasant experience.

Now that we've learned how to set up HTTP servers to handle streams of data
arriving from many simultaneously connected clients, and how to feed those clients
buffets of buffered streams, we can begin to engage more deeply with the task
of building enterprise-grade concurrent real-time systems with Node.

Using Node to Access the
Filesystem

We have persistent objects — they're called files.

— Ken Thompson

A file is simply a chunk of data that is persisted, usually, on some hard medium
such as a hard drive. Files are normally composed of a sequence of bytes whose
encoding maps onto some other pattern, like a sequence of numbers or electrical
pulses. A nearly infinite number of encodings are possible, with some common
ones being text files, image files, and music files. Files have a fixed length, and
to be read their character encoding must be deciphered by some sort of reader, like
an MP3 player or a word processor.

When a file is in transit, moving through a cable after it's been siphoned off of some
storage device, it is no different than any other data stream running through the
wire. Its previous solid state is just a stable blueprint that can be easily and infinitely
copied, sliced up, and reworked.

We've seen how evented streams reflect the core design principles informing Node's
design, where byte streams are to be read from and written to, and piped into other
streams, emitting relevant stream events, such as end. Files are easily understood
as being containers of data, filled with bytes that can be extracted or inserted
partially or as a whole.

In addition to their natural similarity to streams, files also display the characteristics
of objects. Files have properties that describe the interface available for accessing file
contents—data structures with properties and associated access methods.

Using Node to Access the Filesystem

[90]

A filesystem reflects some concept of how files should be organized—how they
are identified, where they are stored, how they are to be accessed, and so forth.
A common filesystem for UNIX users is the UFS (Unix File System), while Windows
users may be familiar with NTFS (New Technology File System).

It is interesting that the designers of the Plan 9 operating system (a team including
Ken Thompson) decided to have all control interfaces represented as filesystems,
such that all system interfaces (across devices, across applications) are modeled as
file operations. Treating files as first-class citizens is a philosophy the UNIX OS also
uses—using files as references to named pipes and sockets, among other things,
gives developers enormous power when shaping data flow.

File objects are also powerful, and the system they reside within exposes
fundamental I/O interfaces that must be easy to use, consistent, and very fast. Not
surprisingly, Node's file module exposes just such an interface.

We will be considering handling files in Node from these two perspectives: how file
data content is streamed in and out (read from and written), and how the attributes
of file objects are modified, such as changing file permissions.

Additionally, we will cover the responsibilities of the Node server, in terms of
accepting file uploads and servicing file requests. By working through examples
of directory iterators and file servers the full range and behavior of Node's filesystem
API should become clear.

For those with knowledge of C++ and a healthy curiosity, the filesystem
implementation in Node can be browsed here: https://github.com/
joyent/node/blob/master/src/node_file.cc.

Directories, and iterating over files
and folders
Improving Node's performance with regards to the filesystem has been one of the
main challenges taken up by the core Node team. For example, a (flawed) negative
comparison to the Vert.x environment's file serving speed led to some interesting
commentary from developers and users of both systems which, while not all
constructive, is a good read if one is interested in how filesystems are accessed by
Node and other systems: http://vertxproject.wordpress.com/2012/05/09/
vert-x-vs-node-js-simple-http-benchmarks/.

Chapter 4

[91]

Typically, a filesystem groups files into collections, normally referred to as
directories. One navigates through directories to find individual files. Once a target
file is found, the file object must be wrapped by an interface exposing the file
contents for reading and writing.

Because Node development often involves the creation of servers that both accept
and emit file data, it should be clear how important transfer speed at this active and
important I/O layer is. As mentioned earlier, files can also be understood as objects,
and objects have certain attributes.

Types of files
There are six types of files commonly encountered on a UNIX system:

•	 Ordinary files: These contain a one-dimensional array of bytes, and cannot
contain other files.

•	 Directories: These are also files, implemented in a special way such that they
can describe collections of other files.

•	 Sockets: Used for IPC, allowing processes to exchange data.
•	 Named pipe: A command such as ps aux | grep node creates a pipe,

which is destroyed once the operation terminates. Named pipes are
persistent and addressable, and can be used variously by multiple
processes for IPC indefinitely.

•	 Device files: These are representations of I/O devices, processes that accept
streams of data. /dev/null is commonly an example of a character device file
(accepts serial streams of I/O), and /dev/sda is an example of a block device
file (allowing random access I/O for blocks of data) representing a data drive.

•	 Links: These are pointers to other files of two types, hard links and symbolic
links. Hard links directly point to another file, and are indistinguishable from
the target file. Symbolic links are indirect pointers, and are distinguishable
from normal files.

Most Node filesystem interactions encounter only the first two types, with the third
only indirectly via the Node API. A deeper explanation of the remaining types is
beyond the scope of this discussion. However, Node provides a full suite of file
operations via the file module, and the reader should have at least some familiarity
with the full range and power of file types.

Using Node to Access the Filesystem

[92]

Studying named pipes will reward the reader interested in understanding
how Node was designed to work with streams and pipes. Try this from
a terminal:

mkfifo namedpipe

Following ls –l a listing similar to this will be shown:

prw-r--r-- 1 system staff 0 May 01 07:52 namedpipe

Note the p flag in the file mode. You've created a named pipe. Now enter
this into the same terminal, pushing some bytes into the named pipe:

echo "hello" > namedpipe

It will seem like the process has hung. It hasn't—pipes, like water pipes,
must be open on both ends to complete their job of flushing contents.
We've pumped some bytes in… now what?

Open another terminal, navigate to the same directory, and enter:

cat namedpipe

hello will appear as the contents of namedpipe are flushed. Note
as well that the first terminal is no longer hung.

File paths
Most of the filesystem methods provided by Node will require the manipulation of
file paths, and for this purpose we make use of the path module. We can compose,
decompose, and relate paths with this module. Instead of hand rolling your own
path string splitting and regexing and concatenating routines, try to normalize your
code by delegating path manipulation to this module.

•	 Use path.normalize whenever working with a file path string whose source
is untrusted or unreliable, to ensure a predictable format:
var path = require('path');
path.normalize("../one////two/./three.html");
// -> ../one/two/three.html

•	 Use path.join whenever building a single path out of path segments:
path.join("../","one","two","three.html");
// -> ../one/two/three.html

Chapter 4

[93]

•	 Use path.dirname to snip the directory name out of a path:
path.dirname("../one/two/three.html");
// ../one/two

•	 Use path.basename to manipulate the final path segment:
path.basename("../one/two/three.html");
// -> three.html

// Remove file extension from the basename
path.basename("../one/two/three.html", ".html");
// -> three

•	 Use path.extname to slice from the last period(.) to the end of the path
string:
var pstring = "../one/two/three.html";
path.extname(pstring);
// -> .html
//
// Which is identical to:
// pstring.slice(pstring.lastIndexOf("."));

•	 Use path.relative to find the relative path from one absolute path to another:
path.relative(
 '/one/two/three/four',
 '/one/two/thumb/war'
);
// -> ../../thumb/war

•	 Use path.resolve to resolve a list of path instructions into an absolute path:

path.resolve('/one/two', '/three/four');
// -> /three/four
path.resolve('/one/two/three', '../', 'four', '../../five')
// -> /one/five

Think of the arguments passed to path.resolve as being a sequence of cd calls:

cd /one/two/three
cd ../
cd four
cd ../../five
pwd
// -> /one/five

Using Node to Access the Filesystem

[94]

If the list of arguments passed to path.resolve fails to deliver an absolute path, the
current directory name is used as well. For instance, if we are in /users/home/john/:

path.resolve('one','two/three','four');
// -> /users/home/john/one/two/three/four

These arguments resolve to a relative path one/two/three/four that is therefore
prefixed with the current directory name.

File attributes
A file object exposes some of its attributes, comprising a useful set of metadata
about the file data. If one is using Node to run an HTTP server it will be necessary
to determine the file length of any file requested via a GET, for example. Determining
the time a file was last modified finds uses across many types of applications.

To read the attributes of a file, use fs.stat:

fs.stat("file.txt", function(err, stats) {
 console.log(stats);
});

In the preceding example, stats will be an fs.Stats object describing the file
through a map of attributes:

 dev: 2051, // id of device containing this file
 mode: 33188, // bitmask, status of the file
 nlink: 1, // number of hard links
 uid: 0, // user id of file owner
 gid: 0, // group id of file owner
 rdev: 0, // device id (if device file)
 blksize: 4096, // I/O block size
 ino: 27396003, // a unique file inode number
 size: 2000736, // size in bytes
 blocks: 3920, // number of blocks allocated
 atime: Fri May 3 2013 15:39:57 GMT-0500 (CDT), // last access
 mtime: Fri May 3 2013 17:22:46 GMT-0500 (CDT), // last modified
 ctime: Fri May 3 2013 17:22:46 GMT-0500 (CDT) // last status change

An fs.Stats object exposes several useful methods for accessing file attribute data:

•	 Use stats.isFile to check for standard files
•	 Use stats.isDirectory to check for directories
•	 Use stats.isBlockDevice to check for block type device files
•	 Use stats.isCharacterDevice to check for character type device files

Chapter 4

[95]

•	 Use stats.isSymbolicLink after an fs.lstat to find symbolic links
•	 Use stats.isFIFO to identify named pipes
•	 Use stats.isSocket to check for sockets

There are two further stat methods available:

•	 fs.fstat(fd, callback): Like fs.stat, except that a file descriptor fd
is passed rather than a file path

•	 fs.lstat(path, callback): An fs.stat on a symbolic link will return an
fs.Stats object for the target file, while fs.lstat will return an fs.Stats
object for the link file itself

The following two methods simplify the file timestamp manipulation:

•	 fs.utimes(path, atime, mtime, callback): Change the access and modify
timestamps on a file at path. The access and modify times of a file are stored
as instances of the JavaScript Date object. Date.getTime will, for example,
return the number of milliseconds elapsed since midnight (UTC) on January
1, 1970.

•	 fs.futimes(fd, atime, mtime, callback): Changes the access and modify
timestamps on a file descriptor fd. Similar to fs.utimes.

More information about manipulating dates and times with JavaScript
can be found here: https://developer.mozilla.org/en-US/
docs/JavaScript/Reference/Global_Objects/Date.

Opening and closing files
One of the unofficial rules governing the Node project is to not unnecessarily abstract
away from existing OS implementation details. As we will see, references to file
descriptors appear throughout Node's file API. For POSIX (Portable Operating
System Interface), a file descriptor is simply an (non-negative) integer uniquely
referencing a specific file. Since Node modeled its filesystem methods on POSIX,
not surprisingly a file descriptor is represented in Node as an integer.

Recalling our discussion of how devices and other elements of the OS are
represented as files, it would stand to reason that the standard I/O streams
(stdin, stdout, stderr) would also have file descriptors. In fact, that is the case:

console.log(process.stdin.fd); // 0
console.log(process.stdout.fd); // 1
console.log(process.stderr.fd); // 2

Using Node to Access the Filesystem

[96]

fs.fstat(1, function(err, stat) {
 console.log(stat); // an fs.Stats object
});

File descriptors are easy to obtain, and convenient ways to pass around file
references. Let's look at how file descriptors are created and used by examining
how to perform low level file open and close operations using Node. As the chapter
progresses we'll investigate more refined interfaces to file streams.

fs.open(path, flags, [mode], callback)
Trying to open a file at path. callback will receive any exceptions with the
operation as its first argument, and a file descriptor as its second argument. Here
we open a file for reading:

fs.open("path.js", "r", function(err, fileDescriptor) {
 console.log(fileDescriptor); // An integer, like `7` or `23`
});

flags receives a string indicating the types of operations the caller expects to
perform on the returned file descriptor. Their meanings should be clear:

•	 r: Opening file for reading, throwing an exception if the file doesn't exist.
•	 r+: Opening file for both reading and writing, throwing an exception if the

file doesn't exist.
•	 w: Opening file for writing, creating the file if it doesn't exist, and truncating

the file to zero bytes if it does exist.
•	 wx: Like w, but opens the file in exclusive mode, which means if the file

already exists it will not be opened, and the open operation will fail. This
is useful if multiple processes may be simultaneously trying to create the
same file.

•	 w+: Opening file for reading and writing, creating the file if it doesn't exist,
and truncating the file to zero bytes if it does exist.

•	 wx+: Like wx (and w), additionally opening the file for reading.
•	 a: Opening file for appending, creating the file if it does not exist.
•	 ax: Like a, but opens the file in exclusive mode, which means if the file already

exists it will not be opened, and the open operation will fail. This is useful if
multiple processes may be simultaneously trying to create the same file.

•	 a+: Open file for reading and appending, creating the file if it does not exist.
•	 ax+: Like ax (and a), additionally opening the file for reading.

Chapter 4

[97]

When an operation may create a new file, use the optional mode to set permissions
for this file in octal digits, defaulting to 0666 (see fs.chmod for more information
about octal permissions):

fs.open("index.html","w", 755, function(err, fd) {
	 fs.read(fd, …);
});

fs.close(fd, callback)
The fs.close(fd, callback) method closes a file descriptor. The callback receives
one argument, any exception thrown in the call. It's a good habit to close all file
descriptors that have been opened.

File operations
Node implements the standard POSIX functions for working with files, which
a UNIX user will be familiar with. We will not be covering each member of this
extensive collection in depth, instead focusing on some commonly used examples.
In particular we will be going into depth discussing the methods for opening file
descriptors and manipulating file data, reading and manipulating file attributes,
and moving through filesystem directories. Nevertheless, the reader is encouraged
to experiment with the entire set, which the following list briefly describes. Note that
all of these methods are asynchronous, non-blocking file operations.

fs.rename(oldName, newName, callback)
The fs.rename(oldName, newName, callback) method renames file at oldName
to newName. The callback receives one argument, any exception thrown in the call.

fs.truncate(path, len, callback)
The fs.truncate(path, len, callback) method changes the length of the
file at path by len bytes. If len represents a length shorter than the file's current
length, the file is truncated to that length. If len is greater, the file length is padded
by appending null bytes (\x00) until len is reached. The callback receives one
argument, any exception thrown in the call.

fs.ftruncate(fd, len, callback)
The fs.ftruncate(fd, len, callback) method is like fs.truncate, except that
instead of specifying a file, a file descriptor is passed as fd.

Using Node to Access the Filesystem

[98]

fs.chown(path, uid, gid, callback)
The fs.chown(path, uid, gid, callback) method changes the ownership of the
file at path. Use this to set whether user uid or group gid has access to a file. The
callback receives one argument, any exception thrown in the call.

fs.fchown(fd, uid, gid, callback)
The fs.fchown(fd, uid, gid, callback) method is like fs.chown, except that
instead of specifying a file path, a file descriptor is passed as fd.

fs.lchown(path, uid, gid, callback)
The fs.lchown(path, uid, gid, callback) method is like fs.chown, except that
in the case of symbolic links ownership of the link file itself is changed, but not the
referenced link.

fs.chmod(path, mode, callback)
The fs.chmod(path, mode, callback) method changes the mode (permissions)
on a file at path. You are setting the read(4), write(2), and execute(1) bits for this file,
which can be sent in octal digits:

[r]ead [w]rite E[x]ecute Total

Owner 4 2 1 7
Group 4 0 1 5
Other 4 0 1 5

chmod(755)

You may also use symbolic representations, such as g+rw for group read and write,
similar to the arguments we saw for file.open earlier. For more information on
setting file modes, consult: http://en.wikipedia.org/wiki/Chmod.

The callback receives one argument, any exception thrown in the call.

fs.fchmod(fd, mode, callback)
The fs.fchmod(fd, mode, callback) method is like fs.chmod, except that instead
of specifying a file path, a file descriptor is passed as fd.

Chapter 4

[99]

fs.lchmod(path, mode, callback)
The fs.lchmod(path, mode, callback) method is like fs.chmod, except that in
the case of symbolic links permissions on the link file itself is changed, but not those
of the referenced link.

fs.link(srcPath, dstPath, callback)
The fs.link(srcPath, dstPath, callback) creates a hard link between srcPath
and dstPath. This is a way of creating many different paths to exactly the same
file. For example, the following directory contains a file target.txt and two hard
links—a.txt and b.txt—which each point to this file:

Note that target.txt is empty. If the content of the target file is changed, the length
of the link files will also be changed. Changing the content of the target file:

 echo "hello" >> target.txt

This results in this new directory structure, clearly demonstrating the hard references:

The callback receives one argument, any exception thrown in the call.

fs.symlink(srcPath, dstPath, [type], callback)
The fs.symlink(srcPath, dstPath, [type], callback) method creates
a symbolic link between srcPath and dstPath. Unlike hard links created with
fs.link, symbolic links are simply pointers to other files, and do not themselves
respond to changes in the target file. The default link type is file. Other options
are directory and junction, the last being a Windows-specific type that is ignored
on other systems. The callback receives one argument, any exception thrown in
the call.

Using Node to Access the Filesystem

[100]

Compare and contrast the directory changes described in our fs.link discussion to
the following:

Unlike hard links, symbolic links do not change in length when their target file (in
this case target.txt) changes length. Here we see how changing the target's length
from zero bytes to six bytes has no effect on the length of any bound symbolic links:

fs.readlink(path, callback)
The given symbolic link at path, returns the filename of the targeted file:

fs.readlink('a.txt', function(err, targetFName) {
 console.log(targetFName); // target.txt
});

fs.realpath(path, [cache], callback)
The fs.realpath(path, [cache], callback) method attempts to find the real path
to file at path. This is a useful way to find the absolute path to a file, resolve symbolic
links, and even clean up extraneous slashes and other malformed paths. For example:

fs.realpath('file.txt', function(err, resolvedPath) {
 console.log(resolvedPath); // `/real/path/to/file.txt`
});

Or, even:

fs.realpath('.////./file.txt', function(err, resolvedPath) {
 // still `/real/path/to/file.txt`
});

If some of the path segments to be resolved are already known, one can pass a cache
of mapped paths:

var cache = {'/etc':'/private/etc'};
fs.realpath('/etc/passwd', cache, function(err, resolvedPath) {
 console.log(resolvedPath); // `/private/etc/passwd`
});

Chapter 4

[101]

fs.unlink(path, callback)
The fs.unlink(path, callback) method removes the file at path—equivalent to
deleting a file. The callback receives one argument, any exception thrown in the call.

fs.rmdir(path, callback)
The fs.rmdir(path, callback) method removes the directory at path. Equivalent
to deleting a directory.

Note that if the directory is not empty this will throw an exception. The callback
receives one argument, any exception thrown in the call.

fs.mkdir(path, [mode], callback)
The fs.mkdir(path, [mode], callback) method creates a directory at path.
To set the mode of the new directory, use the permission bit map described in
fs.chmod.

Note that if this directory already exists, an exception will be thrown. The callback
receives one argument, any exception thrown in the call.

fs.exists(path, callback)
The fs.exists(path, callback) method checks whether a file exists at path. The
callback will receive a Boolean true or false.

fs.fsync(fd, callback)
Between the instant a request for some data to be written to a file is made and that
data fully exists on a storage device, the candidate data exists within core system
buffers. This latency isn't normally relevant but, in some extreme cases, such as
system crashes, it is necessary to insist that the file reflect a known state on a stable
storage device.

fs.fsync copies all in-core data of a file referenced by file descriptor fd to disk
(or other storage device). The callback receives one argument, any exception thrown
in the call.

Using Node to Access the Filesystem

[102]

Synchronicity
Conveniently, Node's file module provides synchronous counterparts for each of
the asynchronous methods we've covered, indicated by the suffix Sync. For example,
the synchronous version of fs.mkdir is fs.mkdirSync.

A synchronous call is also able to directly return its result, obviating the need for
callbacks. While demonstrating the creation of HTTPS servers in Chapter 3, Streaming
Data Across Nodes and Clients, we saw both a good use case for synchronous code and
an example of direct assignment of results without a callback:

key: fs.readFileSync('server-key.pem'),
cert: fs.readFileSync('server-cert.pem')

Hey! Doesn't Node strictly enforce asynchronous programming? Isn't blocking code
always wrong? All developers are encouraged to adhere to non-blocking designs,
and you are encouraged to avoid synchronous coding—if facing a problem where
a synchronous operation seems the only solution, it is likely that the problem has
been misunderstood. Nevertheless, edge cases requiring a file object existing fully in
memory prior to executing further instructions (a blocking operation) do exist. Node
gives a developer the power to break with asynchronous tradition if it is the only
possible solution (which it probably isn't!).

One synchronous operation developers regularly use (perhaps without realizing it)
is the require directive:

require('fs')

Until the dependency targeted by require is fully initialized, subsequent JavaScript
instructions will not execute (file loading blocks the event loop). Ryan Dahl struggled
with this decision to introduce synchronous operations (in particular file operations)
into Node, as he mentioned at a Google Tech Talk on July 9, 2013 (http://www.
youtube.com/watch?v=F6k8lTrAE2g):

I think this is an OK compromise. It pained me for months, to drop the purity of
having an asynchronous module system. But, I think it's ok.

And later:

It simplifies the code a lot to be able to just stick in "require, require, require" and
not have to do an onload callback…I think that's been a relatively OK compromise.
[…] There's really two parts to your program: there's the loading and starting up
phase…and you don't really care how fast that runs...you're going to load modules
and stuff…the setup phase of your daemon, generally, is synchronous. It's when you
get into your event loop for serving requests that you want to be very careful about
this. […] I will give people synchronous file I/O. If they do it in servers…it won't be
terrible, right? The important thing is to never let them do synchronous network I/O.

Chapter 4

[103]

Synchronous code does have the advantage of being eminently predictable,
as nothing else happens until this instruction is completed. When starting up
a server, which will happen only rarely, Dahl is suggesting that a little certainty
and simplicity goes a long way. The loading of configuration files, for example,
might make sense on server initialization.

Sometimes a desire to use synchronous commands in Node development is simply
a cry for help; a developer being overwhelmed by deeply nested callback structures.
If ever faced with this pain, try some of the callback-taming libraries mentioned in
Chapter 2, Understanding Asynchronous Event-Driven Programming.

Moving through directories
Let's apply what we have learned and create a directory iterator. The goal for this
project is to create a function that will accept a directory path and return a JSON
object reflecting the directory hierarchy of files, its nodes composed of file objects.
We will also make our directory walker a more powerful event-based parser,
consistent with the Node philosophy.

To move through nested directories one must first be able to read a single directory.
Node's filesystem library provides the fs.readdir command for this purpose:

fs.readdir('.', function(err, files) {
 console.log(files); // list of all files in current directory
});

Remembering that everything is a file, we will need to do more than simply get
a directory listing; we must determine the type of each member of our file list.
By adding fs.stat we have already completed a large majority of the logic:

(function(dir) {
 fs.readdir(dir, function(err, list) {
 list.forEach(function(file) {
 fs.stat(dir + "/" + file, function(err, stat) {
 if(stat.isDirectory()) {
 return console.log("Found directory : " + file);
 }
 console.log("Found file : " + file);
 });
 });
 });
})(".");

Using Node to Access the Filesystem

[104]

This self-executing function receives a directory path argument ("."), folds that
directory listing into an array of file names, fetches an fs.Stats object for each
of these, and makes a decision based on the indicated file type (directory or not
a directory) on what to do next. At this point we also have available to us the
name of the current file and its attributes. Clearly, we have already mapped
a single directory.

We must now map directories within directories, storing results in a JSON object
reflecting the nested filesystem tree, each leaf on the tree a file object. Recursively
passing our directory reader function paths to subdirectories and appending
returned results as branches of the final object is the next step:

var walk = function(dir, done) {
 var results = {};
 fs.readdir(dir, function(err, list) {
 var pending = list.length;	
 if(err || !pending) {
 return done(err, results);
 }
 list.forEach(function(file) {
 var dfile = dir + "/" + file;
 fs.stat(dfile, function(err, stat) {
 if(stat.isDirectory()) {
 return walk(dfile, function(err, res) {
 results[file] = res;
 !--pending && done(null, results);
 });
 }
 results[file] = stat;
 !--pending && done(null, results);
 });
 });
 });
};
walk(".", function(err, res) {
 console.log(require('util').inspect(res, {depth: null}));
});

We create a walk method which receives a directory path and a callback that receives
the directory graph or an error when walk is complete, following Node's style. Not
much coding is needed to create a very fast, non-blocking file tree walker, complete
with file stats.

Chapter 4

[105]

Now let's publish events whenever a directory or file is encountered, giving
any future implementation flexibility to construct its own representation of the
filesystem. To do this we will use the friendly EventEmitter object:

var walk = function(dir, done, emitter) {
 ...
 emitter = emitter || new (require('events').EventEmitter);
 ...
 if(stat.isDirectory()) {
 emitter.emit('directory', dfile, stat);
 return walk(dfile, function(err, res) {
 results[file] = res;
 !--pending && done(null, results);
 }, emitter);
 }
 emitter.emit('file', dfile, stat);
 results[file] = stat;
 ...
 return emitter;
}
walk("/usr/local", function(err, res) {
 ...
}).on("directory", function(path, stat) {
 console.log("Directory: " + path + " - " + stat.size);
}).on("file", function(path, stat) {
 console.log("File: " + path + " - " + stat.size);
});
// File: index.html – 1024
// File: readme.txt – 2048
// Directory: images - 106
// File images/logo.png - 4096
// ...

Now that we know how to discover and address files, we can start reading from and
writing to them.

Reading from a file
In our discussion of file descriptors we touched on one method of opening a file,
fetching a file descriptor, and ultimately pushing or pulling data through that
reference. Reading files is a common operation. Sometimes managing a read buffer
precisely may be necessary, and Node allows byte-by-byte control. In other cases one
simply wants a no-frills stream that is simple to use.

Using Node to Access the Filesystem

[106]

Reading byte by byte
The fs.read method is the most low-level way Node offers for reading files.

fs.read(fd, buffer, offset, length, position, callback)
Files are composed of ordered bytes, and these bytes are addressable by their
position, relative to the beginning of in the file (position zero [0]). Once we have
a file descriptor fd, we can begin to read length number of bytes and insert those
into a Buffer object buffer, insertion beginning at a given buffer offset. For
example, to copy the 8366 bytes beginning at position 309 of readable file fd into
a buffer beginning at an offset of 100, we would use: fs.read(fd, buffer, 100,
8366, 309, callback).

The following code demonstrates how to open and read a file in 512 byte chunks:

fs.open('path.js', 'r', function(err, fd) {
 fs.fstat(fd, function(err, stats) {
 var totalBytes	 = stats.size;
 var buffer = new Buffer(totalBytes);
 var bytesRead 	 = 0;
 // Each call to read should ensure that chunk size is
 // within proper size ranges (not too small; not too large).
 var read = function(chunkSize) {
 fs.read(fd, buffer, bytesRead, chunkSize, bytesRead,
function(err, numBytes, bufRef) {

 if((bytesRead += numBytes) < totalBytes) {
 return read(Math.min(512, totalBytes - bytesRead));
 }
 fs.close(fd);
 console.log("File read complete. Total bytes read: " +
totalBytes);
 // Note that the callback receives a reference to the
 // accumulating buffer
 console.log(bufRef.toString());
 });
 }

 read(Math.min(512, totalBytes));
 });
});

The resulting buffer can be piped elsewhere (including a server response object).
It can also be manipulated using the methods of Node's Buffer object, such as
conversion into a UTF8 string with buffer.toString("utf8").

Chapter 4

[107]

Fetching an entire file at once
Often one simply needs to fetch an entire file, without any ceremony or fine control.
Node provides a shortcut method for exactly this.

fs.readFile(path, [options], callback)
Fetching the data contained by file path can be accomplished in one step:

fs.readFile('/etc/passwd', function(err, fileData) {
 if(err) {
 throw err;
 }
 console.log(fileData);
 // <Buffer 48 65 6C 6C 6F … >
});

We see how callback receives a buffer. It may be more desirable to receive the file
data in a common encoding, such as UTF8. We are able to specify the encoding of
the returned data, as well as the read mode, using the options object, which has two
possible attributes:

•	 encoding: A string, such as utf8. Defaults to null (no encoding).
•	 flag: The file mode as a string. Defaults to r.

Modifying the previous example:

fs.readFile('/etc/passwd', function(err, { encoding : "utf8" },
fileData) {
 ...
 console.log(fileData);
 // "Hello ..."
});

Creating a readable stream
While fs.readFile is an excellent, simple way to accomplish a common task,
it does have the significant drawback of requiring that an entire file be read into
memory prior to any part of the file being sent to a callback. For large files, especially
regularly accessed large files (such as videos), this is problematic as we are unable to
accurately predict the volume of data we will be buffering at any given point in time.
This means the amount of memory available to Node may be starved unpredictably,
taking down an entire application or, worse, make your customers angry as
responsiveness declines and errors begin to surface.

Using Node to Access the Filesystem

[108]

In the previous chapter we learned about data streams and the Stream object.
While files are easily and naturally handled using readable streams, Node provides
a dedicated file streaming interface which offers a compact file streaming facility
without the extra construction work, with more flexibility than that offered by
fs.readFile.

fs.createReadStream(path, [options])
The fs.createReadStream(path, [options]) method returns a readable stream
object for file at path. You may then perform stream operations on the returned
object, such as pipe().

The following options are available:

•	 flags: File mode argument as a string. Defaults to r.
•	 encoding: One of utf8, ascii, or base64. Default to no encoding.
•	 fd: One may set path to null, instead passing the call a file descriptor.
•	 mode: Octal representation of file mode, defaulting to 0666.
•	 bufferSize: The chunk size, in bytes, of the internal read stream. Defaults to 64

* 1024 bytes. You can set this to any number, but memory allocation is strictly
controlled by the host OS, which may ignore a request. See: https://groups.
google.com/forum/?fromgroups#!topic/nodejs/p5FuU1oxbeY.

•	 autoClose: Whether to automatically close the file descriptor (a la fs.close).
Defaults to true. You may want to set this to false and close manually if you
are sharing a file descriptor across many streams, as closing a descriptor will
disrupt any other readers.

•	 start: Begin reading from this position. Default is 0.
•	 end: Stop reading at this position. Default is the file byte length.

Reading a file line by line
While reading a file stream byte-by-byte is sufficient for any file-parsing job, text files
in particular are often more usefully read line by line, such as when reading logfiles.
More precisely, any stream can be understood in terms of the chunks of data separated
by newline characters, typically "\r\n" on UNIX systems. Node provides a native
module whose methods simplify access to newline-separated chunks in data streams.

Chapter 4

[109]

The Readline module
The Readline module has a simple but powerful goal, that is, to make reading
a stream of data line-by-line easier. The bulk of its interface is designed to make
command-line prompting easier, such that interfaces taking user input are easier
to design.

Remembering that Node is designed for I/O, that I/O operations normally involve
moving data between readable and writable streams, and that stdout and stdin are
stream interfaces identical with the file streams returned by fs.createReadStream
and fs.createWriteStream, we will look at how this module can be similarly used
to prompt file streams for a line of text.

The Readline module will be used throughout the book
(and later in this chapter), for purposes beyond the present
discussion on reading files, such as when designing command-line
interfaces. For the impatient, more information on this module can
be found at: http://nodejs.org/api/readline.html.

To start working with the Readline module one must create an interface defining
the input stream and the output stream. The default interface options prioritize
usage as a terminal interface. The options we are interested in are:

•	 input: Required. The readable stream being listened to.
•	 output: Required. The writable stream being written to.
•	 terminal: Set this to true if both the input and output streams should be

treated like a Unix terminal, or TTY (TeleTYpewriter). For files, you will set
this to false.

Reading the lines of a file is made easy through this system. For example, assuming
one has a dictionary file listing common words in the English language one might
want to read the list into an array for processing:

var fs = require('fs');
var readline = require('readline');

var rl = readline.createInterface({
 input: fs.createReadStream("dictionary.txt"),
 terminal: false
});
var arr = [];
rl.on("line", function(ln) {
	 arr.push(ln.trim())
});
// aardvark

Using Node to Access the Filesystem

[110]

// abacus
// abaisance
// ...

Note how we disable TTY behavior, handling the lines ourselves without redirecting
to an output stream.

As expected with a Node I/O module, we are working with stream events. The events
listeners that may be of interest are:

•	 line: Receives the most recently read line, as a string
•	 pause: Called whenever the stream is paused
•	 resume: Called whenever a stream is resumed
•	 close: Called whenever a stream is closed

Except for line, these event names reflect Readline methods, pause a stream with
Readline.pause, resume with Readline.resume, and close with Readline.close.

Writing to a file
As with reading files, Node provides a rich collection of tools for writing to files.
We'll see how Node makes it as easy to target a file's contents byte-by-byte, as it is
to pipe continuous streams of data into a single writable file.

Writing byte by byte
The fs.write method is the most low-level way Node offers for writing files. This
method gives us precise control over where bytes will be written to in a file.

fs.write(fd, buffer, offset, length, position, callback)
To write the collection of bytes between positions 309 and 8675 (length 8366) of
buffer to the file referenced by file descriptor fd, insertion beginning at position 100:

var buffer = new Buffer(8675);
fs.open("index.html", "w", function(err, fd) {
 fs.write(fd, buffer, 309, 8366, 100, function(err, writtenBytes,
buffer) {
 console.log("Wrote " + writtenBytes + " bytes to file");
 // Wrote 8366 bytes to file
 });
});

Chapter 4

[111]

Note that for files opened in append (a) mode some operating
systems may ignore position values, always adding data to
the end of the file. Additionally, it is unsafe to call fs.write
multiple times on the same file without waiting for the
callback. Use fs.createWriteStream in those cases.

With such precise control we can intelligently structure files. In the following
(somewhat contrived) example we create a file-based database containing indexed
information for six months of baseball scores for a single team. We want to be able
to quickly look up whether this team won or lost (or did not play) on a given day.

Since a month can have at most 31 days, we can (randomly) create a 6 x 31 grid of data
in this file, placing one of three values in each grid cell: L (loss), W (win), N (no game).
For fun, we also create a simple CLI (Command-Line Interface) to our database with
a basic query language. This example should make it clear how fs.read, fs.write
and Buffer objects are used to precisely manipulate bytes in files:

var fs = require('fs');
var readline = require('readline');
var cells = 186; // 6 x 31
var buffer = new Buffer(cells);
while(cells--) {
 // 0, 1 or greater
 var rand = Math.floor(Math.random() * 3);
 // 78 = "N", 87 = "W", 76 = "L"
 buffer[cells] = rand === 0 ? 78 : rand === 1 ? 87 : 76;
}
fs.open("scores.txt", "r+", function(err, fd) {
 fs.write(fd, buffer, 0, buffer.length, 0, function(err,
writtenBytes, buffer) {		
 var rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
 });

 var quest = function() {
 rl.question("month/day:", function(index) {
 if(!index) {
 return rl.close();
 }
 var md = index.split('/');
 var pos = parseInt(md[0] -1) * 31 + parseInt(md[1] -1);
 fs.read(fd, new Buffer(1), 0, 1, pos, function(err, br, buff)
{
 var v = buff.toString();

Using Node to Access the Filesystem

[112]

 console.log(v === "W" ? "Win!" : v === "L" ? "Loss..." : "No
game");
 quest();
 });
 });
 };
 quest();
 });
});

Once running, we can simply type in a month/day pair and rapidly access that
data cell. Adding in bounds checking for the input values would be a simple
improvement. Pushing the file stream through a visualizing UI might be a nice
exercise.

Writing large chunks of data
For straightforward write operations fs.write may be overkill. Sometimes all that
is needed is a way to create a new file with some content. Just as common is the
need to append data to the end of a file, as one might do in a logging system. The
fs.writeFile and fs.appendFile methods can help us with those scenarios.

fs.writeFile(path, data, [options], callback)
The fs.writeFile(path, data, [options], callback) method writes the
contents of data to the file at path. The data argument can be either a Buffer or
a string. The following options are available:

•	 encoding: Defaults to utf8. If data is a buffer this option is ignored.
•	 mode: Octal representation of file mode, defaulting to 0666.
•	 flag: Write flags, defaulting to w.

Usage is straightforward:

fs.writeFile('test.txt', 'A string or Buffer of data', function(err) {
 if(err) {
 return console.log(err);
 }
 // File has been written
});

fs.appendFile(path, data, [options], callback)
Similar to fs.writeFile, except that data is appended to the end of the file at path.
As well, the flag option defaults to a.

Chapter 4

[113]

Creating a writable stream
If the data being written to a file arrives in chunks (such as occurs with a file upload),
streaming that data through a WritableStream object interface provides more
flexibility and efficiency.

fs.createWriteStream(path, [options])
The fs.createWriteStream(path, [options]) method returns a writable stream
object for file at path.

The following options are available:

•	 flags: File mode argument as a string. Defaults to w.
•	 encoding: One of utf8, ascii, or base64. Default to no encoding.
•	 mode: Octal representation of file mode, defaulting to 0666.
•	 start: An offset, indicating the position in the file where writing should begin.

For example, this little program functions as the world's simplest word processor,
writing all terminal input to a file, until the terminal is closed:

var writer = fs.createWriteStream("novel.txt", 'w');
process.stdin.pipe(writer);

Caveats
The side effects of opening a file descriptor and reading from it are minimal, such
that in normal development very little thought is given to what is actually happening
within the system. Normally, reading a file doesn't change data shape, volume,
or availability.

When writing to a file a number of concerns must be addressed, such as:

•	 Is there sufficient writable storage space available?
•	 Is another process simultaneously accessing this file, or even erasing it?
•	 What must be done if a write operation fails or is unnaturally terminated

mid-stream?

We've seen the exclusive write mode flag (wx) that can help in the case of multiple
write processes simultaneously trying to create a file. Full solutions to all the
concerns one might face when writing to files are difficult to derive in general,
or state briefly. Node encourages asynchronous programming. Nevertheless,
with regards the filesystem in particular, sometimes synchronous, deterministic
programming is necessary. You are encouraged to keep these and other issues in
mind, and to keep I/O non-blocking whenever possible.

Using Node to Access the Filesystem

[114]

Serving static files
Anyone using Node to create a web server will need to respond intelligently to HTTP
requests. A HTTP request to a web server for a resource expects some sort of response.
A basic file static file server might look like this:

http.createServer(function(request, response) {
 if(request.method !== "GET") {
 return response.end("Simple File Server only does GET");
 }
 fs
 .createReadStream(__dirname + request.url)
 .pipe(response);
}).listen(8000);

This server services GET requests on port 8000, expecting to find a local file at a
relative path equivalent to the URL path segment. We see how easy Node makes it for
us to stream local file data, simply piping a ReadableStream into a WritableStream
representing a client socket connection. This is an enormous amount of functionality
to be safely implemented in a handful of lines.

Eventually a great deal more would be added, such as handling routines for
standard HTTP methods, handling errors and malformed requests, setting proper
headers, managing favicon requests, and so forth.

Let's build a reasonably useful file server with Node, one that will respond to HTTP
requests by streaming back a resource and which will respect caching requests. In
the process we will touch on how to manage content redirection. Later on in this
chapter we will also look at implementing file uploads. Note that a web server fully
compliant with all features of HTTP is a complicated beast, so what we are creating
should be considered a good start, not an end.

Redirecting requests
Sometimes a client will try to GET a URL that is incorrect or incomplete in some way,
the resource may have been moved, or there are better ways to make the same request.
Other times, a POST may create a new resource at a new location the client cannot
know, necessitating some response header information pointing to the newly created
URI. Let's look into two common redirection scenarios someone implementing a static
file server with Node might face.

Chapter 4

[115]

Two response headers are fundamental to redirection:

•	 Location: This indicates a redirection to a location where said content body
can be found

•	 Content-Location: This is meant to indicate the URL where the requester
will find the original location of the entity enclosed in the response body

As well, there are two specific use cases for these headers:

•	 To provide information about the location of a newly created resource
in response to a POST.

•	 To inform the client of an alternate location for the requested resource
in response to a GET.

There are many possible pairings of Location and Content-Location
headers with HTTP status codes, the 3xx (redirection) set in particular.
In fact, these headers may even appear together in the same response.
The user is encouraged to read the relevant sections of the HTTP/1.1
specification, as only a small set of common cases is discussed here.

Location
Responding to a POST with a 201 status code indicates a new resource has been
created its URI assigned to the Location header, and that the client may go ahead
and use that URI in the future. Note that it is up to the client to decide whether, and
when, to fetch this resource. As such this is not, strictly speaking, a redirect.

For example a system might create new accounts by posting new user information
to a server, expecting to receive the location of a new user page:

POST /path/addUser HTTP/1.1

Content-Type: application/x-www-form-urlencoded

name=John&group=friends

…

Status: 201

Location: http://website.com/users/john.html

Similarly, in cases where a resource creation request has been accepted but not
yet fulfilled, a server would indicate a status of 202. This would be the case in the
preceding example if creation of the new user record had been delegated to a worker
queue, which might at some point in the future create a record at the given Location.

We will see a realistic implementation demonstrating this usage later on in the
chapter, when we discuss file uploads.

Using Node to Access the Filesystem

[116]

Content-Location
When a GET is made to a resource that has multiple representations, and those can be
found at distinct resource locations, a content-location header for the particular
entity should be returned.

For example, content format negotiation is a good candidate for Content-Location
handling. One might be interested in retrieving all blog posts for a given month,
perhaps available at a URL such as http://example.com/september/. GET
requests with an Accept header of application/json will receive a response in
JSON format. A request for XML will receive that representation.

If a caching mechanism is being used those resources may have alternate permanent
locations, such as http://example.com/cache/september.json or http://
example.com/cache/september.xml. One would send this additional location
information via Content-Location, in a response object resembling:

Status: 200
Content-Type: application/json
Content-Location: http://blogs.com/cache/allArticles.json
… JSON entity body

In cases where the requested URL has been moved, permanently or temporarily, the
3xx group of status codes can be used with Content-Location to indicate this state.
For example, to redirect a request to a URL which has been permanently moved one
should send a 301 code:

function requestHandler(request,response) {
 var newPath = "/thedroids.html";
 response.writeHead(301, {
 'Content-Location': newPath
 });
 response.end();
}

Implementing resource caching
A general rule, never expend resources delivering irrelevant information to clients.
For a HTTP server, resending files that the client already possesses is an unnecessary
I/O cost, exactly the wrong way to implement a Node server, increasing latency as
well as the financial hit of paying for misappropriated bandwidth.

Browsers maintain a cache of the files they have already fetched, and an ETag
(Entity Tag) identifies these files. An ETag is a response header sent by servers
to uniquely identify entities they are returning, such as a file. When a file changes
on a server, that server will send a different ETag for said file, allowing file changes
to be tracked by clients.

Chapter 4

[117]

When a client makes a request to a server for a resource contained within that client's
cache, that request will contain an If-None-Match header set to the value of the ETag
associated with said cached resource. The If-None-Match header can contain one or
multiple ETags:

If-None-Match : "686897696a7c876b7e"
If-None-Match : "686897696a7c876b7e", "923892329b4c796e2e"

A server understands this header as return the full entity body of the requested
resource only if none of the sent ETags match the current resource entity tag. If one
of the sent ETags does match the current entity tag, the server will respond with
a 304 (not modified) status, which should result in a browser fetching the resource
from its internal cache.

Assuming that we have an fs.Stats object available, managing cache controls on
a resource can be done easily with Node:

var etag = crypto.createHash('md5').update(stat.size + stat.mtime).
digest('hex');
if(request.headers['if-none-match'] === etag) {
 response.statusCode = 304;
 return response.end();
} else {
 // stream the requested resource
}

We create an etag for the current file by creating an MD5 of the current file size and
its last modified time, and match against the sent If-None-Match header. If the two
do not match the resource representation has changed and the new version must be
sent back to the requesting client. Note that the specific algorithm one should use to
create an etag is not formally specified. The example technique should work well for
most purposes.

Hey! What about Last-Modified and If-Unmodified-Since?
These are fine headers, and are also useful in the case of caching files.
Indeed, one should set the Last-Modified header where possible
when responding to entity requests. The techniques we're describing
here using ETag would work similarly with these tags, and in fact using
both Etags and these other tags is encouraged. For more information,
consult: http://www.w3.org/Protocols/rfc2616/rfc2616-
sec13.html#sec13.3.4.

Using Node to Access the Filesystem

[118]

Handling file uploads
It is likely that anyone reading this sentence has had at least one experience with
uploading a file from a client to a server. Some may have even implemented a file
upload service, a server that will receive and do something useful with a multipart
data stream. Within popular development environments this task has been made
very easy. In the PHP environment, for example, uploaded data is automatically
processed and made globally available, neatly parsed and packaged into an array of
files or form field values, without the developer having written a single line of code.

Unfortunately, Node leaves implementation of file upload handling to the
developer, a challenging bit of work many developers may be unable to
successfully or safely complete.

Fortunately, Felix Geisendorfer created the Formidable module, one of the
most important early contributions to the Node project. A widely implemented,
enterprise-grade module with extensive test coverage, it not only makes handling
file uploads a snap, but can be used as a complete tool for handling form
submissions. We will use this library to add file upload capability to our file server.

For more information about how HTTP file uploads are
designed, and the tricky implementation problems developers
must overcome, consult the multipart/form-data specification
(http://www.w3.org/TR/html401/interact/forms.
html#h-17.13.4.2) and Geisendorfer's breakdown of
how Formidable was conceived of and evolved (http://
debuggable.com/posts/parsing-file-uploads-at-
500-mb-s-with-node-js:4c03862e-351c-4faa-bb67-
4365cbdd56cb).

First, install formidable via npm:

npm install formidable

You can now require it:

var formidable = require('formidable');

We will assume that file uploads will be posted to our server along a path of
/uploads/, and that the upload arrives via a HTML form that looks like this:

<form action="/uploads" enctype="multipart/form-data" method="post">
Title: <input type="text" name="title">

<input type="file" name="upload" multiple="multiple">

<input type="submit" value="Upload">
</form>

Chapter 4

[119]

This form will allow a client to write some sort of title for the upload, and to select
one (or multiple) files for uploading. At this point our only responsibility on our
server is to properly detect when a POST request has been made and pass the relevant
request object to Formidable.

We won't be covering every part of the comprehensive formidable API design,
but focusing on the key POST events the library exposes. As formidable extends
EventEmitter, we use the on(eventName, callback) format to catch file data, field
data, and termination events, sending a response to the client describing what the
server has successfully processed:

http.createServer(function(request, response) {
 var rm = request.method.toLowerCase();
 if(request.url === '/uploads' && rm === 'post') {
 var form = new formidable.IncomingForm();
 form.uploadDir = process.cwd();
 var resp = "";
 form
 .on("file", function(field, File) {
 resp += "File : " + File.name + "
";
 })
 .on("field", function(field, value) {
 resp += field + " : " + value + "
";
 })
 .on("end", function() {
 response.writeHead(200, {'content-type': 'text/html'});
 response.end(resp);
 })
 .parse(request);
 return;
 }
}).listen(8000);

We see here how a formidable instance receives an http.Incoming object through
its parse method, and how the write path for incoming files is set using the
uploadDir attribute of that instance. The example sets this directory to the local
directory. A real implementation would likely target a dedicated upload folder, or
even direct the received file to a storage service, receiving in return the final storage
location (perhaps receiving it via HTTP and a Location header…).

Note as well how the file event callback receives a formidable File object as a second
argument, which contains important file information including:

•	 size: The size of the uploaded file, in bytes
•	 path: The current location of the uploaded file on the local filesystem, such

as /tmp/bdf746a445577332e38be7cde3a98fb3

Using Node to Access the Filesystem

[120]

•	 name: The original name of the file as it existed on the client filesystem, such
as lolcats.jpg

•	 type: The file mime type, such as image/png

In a few lines of code we've implemented a significant amount of POST data
management. Formidable also provides tools for handling progress indicators,
dealing with network errors, and more, which the reader can learn about by visiting
https://github.com/felixge/node-formidable.

Putting it all together
Recalling our discussion of favicon handling from the previous chapter, and adding
what we've learned about file caching and file uploading, we can now construct
a simple file server handling GET and POST requests:

http.createServer(function(request, response) {
 var rm = request.method.toLowerCase();
 if(rm === "post") {
 var form = new formidable.IncomingForm();
 form.uploadDir = process.cwd();
 form
 .on("file", function(field, file) {
 // process files
 })
 .on("field", function(field, value) {
 // process POSTED field data
 })
 .on("end", function() {
 response.end("Received");
 })
 .parse(request);
 return;
 }
 // We can only handle GET requests at this point
 if(rm !== "get") {
 return response.end("Unsupported Method");
 }
 var filename = __dirname + request.url;
 fs.stat(filename, function(err, stat) {
 if(err) {
 response.statusCode = err.errno === 34 ? 404 : 500;
 return response.end()
 }

Chapter 4

[121]

 var etag = crypto.createHash('md5').update(stat.size + stat.
mtime).digest('hex');
 response.setHeader('Last-Modified', stat.mtime);
 if(request.headers['if-none-match'] === etag) {
 response.statusCode = 304;
 return response.end();
 }

 response.setHeader('Content-Length', stat.size);
 response.setHeader('ETag', etag);
 response.statusCode = 200;
 fs.createReadStream(filename).pipe(response);
 });
}).listen(8000);

Note the 404 (not found) and 500 (internal server error) status codes.

Content-Length is measured in bytes, not characters. Normally
your data will be in single byte characters (hello is five bytes long),
but this is not always the case. If you are determining the length of
a stream buffer, use Buffer.byteLength.

Summary
In this chapter we've seen how Node's API is a comprehensive map to native
filesystem bindings, exposing a full range of functionality to the developer while
requiring very little code or complexity. Additionally, we've seen how files are
easily wrapped into Stream objects, and how this consistency with the rest of Node's
design simplifies interactions between different types of I/O, such as between
network data and files.

We've also learned something about how to build servers with Node that can
accommodate regular client expectations, easily implementing file uploading and
resource caching. Having covered the key features of Node, it is time to use these
techniques in building larger applications able to handle many thousands of clients.

Managing Many
Simultaneous Client

Connections
If everyone helps to hold up the sky, then one person does not become tired.

— Tshi Proverb

Maintaining a high level of throughput while managing thousands of simultaneous
client transactions in the unpredictable and "bursty" environment of networked
software is one expectation developers have for their Node implementations. Given
a history of failed and unpopular solutions, the problem of concurrency has even
been assigned its own numeronym: "The C10K problem". How should network
software confidently serving 10,000 simultaneous clients be designed?

The question of how to best build high concurrency systems has provoked
much theory over the last several decades, with the debate mostly between two
alternatives, threads and events:

Threading allows programmers to write straight-line code and rely on the operating
system to overlap computation and I/O by transparently switching across threads.
The alternative, events, allows programmers to manage concurrency explicitly by
structuring code as a single-threaded handler that reacts to events (such as
non-blocking I/O completions, application-specific messages, or timer events).

— "A Design Framework for Highly Concurrent Systems" (Welsh, Gribble,
Brewer & Culler, 2000), p. 2. http://www.eecs.harvard.edu/~mdw/

papers/events.pdf

Managing Many Simultaneous Client Connections

[124]

Two important points are made in the preceding quote:

•	 Developers prefer to write structured code (straight-line; single-threaded) that
hides the complexity of multiple simultaneous operations where possible

•	 I/O efficiency is a primary consideration of high-concurrency applications

Until very recently, programming languages and related frameworks were not
(necessarily) optimized for software executing across nodes in a distributed network,
or even across processors. Algorithms are expected to be deterministic; data written
to a database is expected to be immediately available for reading. In this age of
eventually consistent databases and asynchronous control flow, developers can no
longer expect to know the precise state of an application at any given point of time
a sometimes mind-bending challenge for the architects of highly concurrent systems.

As we learned in Chapter 2, Understanding Asynchronous Event-Driven Programming,
Node's design attempts to combine the advantages of both threads and events,
serving all clients on a single thread (an event loop wrapping a JavaScript runtime)
while delegating the blocking work (I/O) to an optimized thread pool that informs
the main thread of state changes via an event notification system.

Think clearly about how the following HTTP server implementation, running on
a single CPU, is responding to each client request by wrapping a callback function
in the context of the request and pushing that execution context onto a stack that
is constantly emptied and rebuilt within a single thread bound to an event loop:

require('http').createServer(function(req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello client from' + req.connection.remoteAddress);
 console.log(req);
}).listen(8000);

Schematically:

Client

Client LIBUV

TCP 1

TCP 2

TCP 3

TCP 4

...

V8 EVENT LOOP
execution thread

gotFile()

response.end()

gotData()

Request

Request

response.end()

LIBUV

DB

FileClient

Client

Node Process

Chapter 5

[125]

On the other hand, a server like Apache spins up a thread for each client request:

INDIVIDUAL THREADS
(64MB each)

Apache 2 process

DB
Connection

Runtime

Request
Handler

Client

DB
Connection

Runtime

Request
Handler

Client

DB
Connection

Runtime

Request
Handler

Client

DB
Connection

Runtime

Request
Handler

Client

These two approaches are very different. The claim implicit in Node's design is
this: it is easier to reason about highly concurrent software when program flow
is organized along a single thread, and that decreasing I/O latency increases the
number of simultaneous clients that can be supported even in a single-threaded
execution model. The second claim will be tested later, but for now let's see how
easy it can be to build basic processes that naturally scale.

We will demonstrate how to track and manage the relationships between concurrent
processes using Node, in particular, those servicing multiple clients simultaneously.
Our goal is to set up a basic understanding of how state should be modeled within
a Node server or other processes. How is it that a large online social network serves
you customized information tailored by your friendships or interests? How is your
shopping cart maintained over several shopping sessions, without disappearing,
even containing suggestions based on your history of purchases? How can a single
client interact with other clients?

Managing Many Simultaneous Client Connections

[126]

Understanding concurrency
We would all agree that there are unexpected events in the world, and that many of
them occur at exactly the same time. It is also clear that the state of any given system
may be composed of any number of sub-states, where the full consequence of even
minor state changes are difficult to predict—the power of a butterfly's wings being
enough to tip a much larger system into an alternate state. And we also know that
the volume and shape of a system, over time, changes in ways difficult to predict.

In his PHD thesis "Foundations of Actor Semantics", written in 1981, William Clinger
proposed that his work was:

...motivated by the prospect of highly parallel computing machines consisting
of dozens, hundreds or even thousands of independent microprocessors, each
with its own local memory and communications processor, communicating via
a high-performance communications network.

As it turns out, Clinger was on to something. Concurrency is a property of systems
composed of many simultaneously executing operations, and the network software
we are now building resembles the one he envisioned, only much larger, where
"hundreds or even thousands" is the lower bound, not the higher.

Node makes concurrency accessible, while simultaneously scaling across multiple
cores, multiple processes, and multiple machines. It is important to note that Node
places as much importance on the simplicity and consistency of programs as it does
on being the fastest solution, embracing and enforcing non-blocking I/O in an effort
to deliver high concurrency through well-designed and predictable interfaces. This
is what Dahl meant when he said, "Node's goal is to provide an easy way to build
scalable network programs".

Happily, it also turns out that Node is very fast.

Concurrency is not parallelism
A problem can be solved by dividing some of it into smaller problems, spreading
those smaller problems across a pool of available people or workers to work on in
parallel, and delivering the parallel results concurrently.

Multiple processes each solving one part of a single mathematical problem
simultaneously is an example of parallelism.

Chapter 5

[127]

Rob Pike, general wizard hacker and co-inventor of Google's Go programming
language defines concurrency in this way:

Concurrency is a way to structure a thing so that you can, maybe, use parallelism
to do a better job. But parallelism is not the goal of concurrency; concurrency's goal
is a good structure.

Successful high-concurrency application development frameworks provide a simple
and expressive vocabulary for describing such systems.

Node's design suggests that achieving its primary goal—to provide an easy way to
build scalable network programs—includes simplifying how the execution order of
coexisting processes is structured and composed. Node helps a developer struggling
with a program within which many things are happening at once (such as serving
many concurrent clients) to better organize his or her code.

This is not to say that Node is designed to concede efficiency in order to maintain
simple interfaces—far from it. Instead, the idea is to move responsibility for
implementing efficient parallel processing away from the developer and into the core
design of the system, leaving the developer free to structure concurrency through
a simple and predictable callback system, safe from deadlocks and other traps.

Node's bracing simplicity comes at a good time, as social and community networks
grow alongside the world's data. Systems are being scaled to sizes that few would
have predicted. It is a good time for new thinkings, such as how to describe and
design these systems, and the way they make requests of, and respond to, each other.

Routing requests
HTTP is a data transfer protocol built upon a request/response model. Using this
protocol many of us communicate our current status to friends, buy presents for
family, or discuss a project over e-mail with colleagues. A staggering number of
people have come to depend on this foundational Internet protocol.

Typically, a browser client will issue an HTTP GET request to a server. This server
then returning the requested resource, often represented as an HTML document.
HTTP is stateless, which simply means that each request or response maintains
no information on previous requests or responses—with each back and forward
movement through web pages the entire browser state is destroyed and rebuilt
from scratch.

Managing Many Simultaneous Client Connections

[128]

Servers route state change requests from clients, ultimately causing new state
representations to be returned, which clients (often browsers) redraw or report.
When the WWW was first conceived this model made sense. For the most part this
new network was understood as a distributed filesystem, accessible by anyone with
a web browser, where a specific resource (such as a newspaper article) could be
requested from a file-serving computer (a server) located somewhere on the network
(at an Internet Protocol or IP address) via an HTTP request (such as GET) by simply
typing in a URL (for example, www.example.org/articles/april/showers.html).
A user requests a page and that page appears, perhaps containing (hyper) links
to related pages.

However, since a stateless protocol does not maintain context information it
was nearly impossible for the operator of a server to develop a more interesting
relationship with a visitor across a series of requests, or for a visitor to dynamically
aggregate multiple responses into a single view.

Additionally, the expressiveness of requests was limited both by the protocol itself
and by the lack of server content rich enough to usefully support a more descriptive
vocabulary. For the most part, requests were as blunt as pointing a finger at an object
of desire—"Get that for me". Consider the parts of a typical URL:

We can see how much client work is involved in describing a simple resource
location, with query parameters and resource targets an awkward afterthought,
becoming nearly unusable once more than a few resource descriptors are used.
While this was workable in a time of simple documents in well-understood and
invariant hierarchies, the demands and complexities of modern networked software
have rendered the original concept unworkable and in need of improvement.

The clumsiness of passing around increasingly complex key/value pairs to maintain
user state began to frustrate the ambitions of this new medium. Very quickly it
became obvious to developers that a growing reliance on the Internet as the utility
communication layer undergirding the world's information, software, and commerce
required a more refined approach.

Chapter 5

[129]

Over time these limitations have been overcome through a combination of
improvements to the HTTP protocol, the introduction of JavaScript to the browser,
technologies such as browser cookies and the attendant innovation from developers
building products and services exploiting these advances.

Nevertheless, the HTTP protocol itself continues to be dominated by the same motifs
of individual file-like resources existing at a distinct and permanent path
and identified by an often nondescriptive name.

What actually exists on many servers now is a complex software specifying
network interfaces to data models. Communicating with these types of networked
applications involves getting and setting the state of that data model, both in general
and as it applies in particular to the client making a request.

Clients deploying a real-time solution both set and get resource state representations
on a server. Application servers must report a client's state in relation to multiple
processes (databases, files, rules engines, calculation engines, and so on) on each
request, and often unilaterally on application state changes (for example, a user
losing access permission). Clients are often not browsers, but other servers. How
should they communicate?

Understanding routes
Routes map URLs to actions. Rather than constructing an application interface in
terms of URL paths to specific files that contain some logic, designing with routes
involves assigning a specific function to a distinct combination of a URL path and
request method. For example, a web service that accepts requests for lists of cities
might be called in this manner:

GET /services/cities.php?country=usa&state=ohio

When your server receives this request it would pass the URL information to a PHP
process that will execute the application logic in cities.php, such as reading the
query, parsing out the country and state, calling a database, building a response, and
returning it.

Node has the great benefit of being able to function both as the server and the
application environment. The server can field requests directly. It makes more sense,
then, to use URLs as simple statements of intent:

GET /listCities/usa/ohio

Managing Many Simultaneous Client Connections

[130]

In a Node server we might use something like the following code to handle these
requests for cities:

var app = http.createServer(function(request, response) {
 var url = request.url;
 var method = request.method;
 if(method === "GET") {
 if(url === "/listCities/usa/ohio") {
 database.call("usa","ohio",function(err, data) {
 response.writeHead(200, {'Content-Type':
 'application/json' });
 // Return list of cities in Ohio, USA
 response.end(JSON.stringify(data));
 });
 }
 if(url === "/listCities/usa/arizona") { ... }
 if(url === "/listCities/canada/ontario") { ... }
 }

One good thing and one bad jump out:

•	 URL handling is clearly organized in one place
•	 The code is impossibly repetitive

Writing out every possible route won't work. We'll keep the organization, but need
to create variables in routes, preferring to define a general route expression like this:

/listCities/:country/:state

The method listCities can accept country and state variable arguments,
identified with a colon (:) prefix. Within our server we would need to convert
this symbolic expression into a regular expression. In this case the RegExp /^\/
listCities\/([^\/\.]+)\/([^\/\.]+)\/?$/ could be used to extract ordered
values from our example URL into a value map similar to:

{ country: "usa",
 state: "ohio" }

By treating requests as expressions our server design has become a little saner, nicely
routing any country/state combination to a common handler function:

 if(request.method === "GET") {
 var match = request.url.match(/^\/listCities\/([^\/\.]+)\/
([^\/\.]+)\/?$/);
 if(match) {
 database.call(match[1],match[2],function(err, data) {…}

 }

Chapter 5

[131]

This form of request routing has "won the argument" in the Node community,
being the default behavior of various frameworks and tools. In fact, this way of
thinking about routing requests has gained acceptance in many other development
environments, such as Ruby on Rails. As a result, most web application frameworks
for Node have been developed around routing.

The most popular web application framework for Node is T.J. Holowaychuk's Express
framework, and we'll be using this framework frequently in this book when designing
routing servers. You can install it via npm by running npm install –g express.

Using Express to route requests
Express simplifies the complexity of defining route-matching routines. Our example
might be written in the following way using Express:

var express = require('express');
var app = express();
app.get('/listCities/:country/:state', function(request, response){
 var country = request.params.country;
 var state = request.params.state;
 response.end("You asked for country: " + country + " and state: " +
state);
});
app.listen(8080);

GET /listCities/usa/ohio
// You asked for country: usa and state: ohio
GET /didnt/define/this
// Cannot GET /didnt/define/this
GET /listCities // note missing arguments
// Cannot GET /listCities

Instantiating Express delivers a fully-formed web server wrapped in an easy-to-use
application development API. Our cities service is clearly defined and its variables
stated, expecting to be called via GET (one might also use app.post(...) or app.
put(...) or any other standard HTTP method).

Managing Many Simultaneous Client Connections

[132]

Express also introduces the idea of chaining request-handling routines, which in
Express are understood as middleware. In our example we are calling a single
function in order to handle a cities request. What if, prior to calling our database,
we want to check that the user is authenticated? We might add an authenticate()
method prior to our main service method:

var authenticate = function(request, response, next) {
 if(validUser) { next(); }
 else { response.end("INVALID USER!"); }
 }
app.get('/listCities/:country/:state', authenticate,
function(request, response) { ... });

Middleware can be chained, in other words, simplifying the creation of complex
execution chains, nicely following the Rule of Modularity. Many types of
middleware for handling favicons, logging, uploads, static file requests, and so on
have already been developed. To learn more, visit the following link:

http://www.express.com

Having established the proper way for Node servers to be configured for routing
requests, we can now begin a discussion on how to identify the client making
the request, assigning that client a unique session ID, and managing that session
through time.

Using Redis for tracking client state
For some of the applications and examples in this chapter we will be using Redis, an
in-memory Key/Value (KV) database developed by Salvatore Sanfilippo and currently
supported by Pivotal. More information on Redis can be found at http://redis.io.
A well-known competitor to Redis is Memcached (http://memcached.org).

In general, any server that must maintain the session state of many clients will need
a high speed data layer with near-instantaneous read/write performance, as request
validation and user state transformations can occur multiple times on each request.
Traditional file-backed relational databases tend to be slower at this task than
in-memory KV databases. We're going to use Redis for tracking the client state.

Redis is a single-threaded server with a straightforward install:

wget http://download.redis.io/redis-stable.tar.gz

tar xvzf redis-stable.tar.gz

cd redis-stable

make

Chapter 5

[133]

There is now a server and a command-line utility available in the /src folder
of the installation folder. It's a good idea to make these easily accessible on
the command line:

sudo cp redis-server /usr/local/bin/

sudo cp redis-cli /usr/local/bin/

To start Redis, run the following command line:

redis-server

To interact with Redis:

redis-cli

The preceding steps are sufficient when exploring Redis
development. In production, one will need to properly configure
the build, allocating memory, setting passwords, and so on. When
ready, you can seek further information from the following link:

http://redis.io/topics/quickstart

Notably, Amazon's ElastiCache service enables Redis "in the
cloud" as an in-memory cache, with automatic scaling and
redundancy:

http://aws.amazon.com/elasticache/

Redis supports a standard interface for expected actions, such as getting or setting
Key/Value pairs. To get the value stored at a key, first start the Redis CLI:

redis-cli

redis> get somerandomkey

(nil)

Redis will return (nil) when a key does not exist. Let's set a key:

redis> set somerandomkey "who am I?"

redis> get somerandomkey

"who am I?"

To use Redis within a Node environment we will need some sort of binding. We will
be using Matt Ranney's node_redis module. Install it with npm using the following
command line:

npm install hiredis redis

Managing Many Simultaneous Client Connections

[134]

To set a value in Redis and get it back again we can now do this in Node:

var redis = require("redis");
var client = redis.createClient();
client.set("userId", "jack", function(err) {
 client.get("userId", function(err, data) {
 console.log(data); // "jack"
 });
});

Storing user data
Managing many users means at least tracking their user information, some stored long
term (for example, address, purchase history, and contact list) and some session data
stored for a short time (time since login, last game score, and most recent answer).

Normally we would create a secure interface or similar, allowing administrators to
create user accounts. It will be clear to the reader how to create such an interface by
the end of this chapter. For the examples that follow, we'll only need to create one
user, to act as a volunteer. Let's create Jack:

redis> hset jack password "beanstalk"

redis> hset jack fullname "Jack Spratt"

This will create a key in Redis—Jack—containing a hash resembling:

{
 "password": "beanstalk",
 "fullname": "Jack Spratt"
}

If we wanted to create a hash and add several KV pairs all at once, we could achieve
the preceding with the hmset command:

redis> hmset jack password "beanstalk" fullname "Jack Spratt"

Now Jack exists:
redis> hgetall jack
1) "password"
2) "beanstalk"
3) "fullname"
4) "Jack Spratt"

We can use the following command to fetch the value stored for a specific field in
Jack's account:

redis> hget jack password // "beanstalk"

Chapter 5

[135]

Handling sessions
How does a server know if the current client request is part of a chain of previous
requests? Web applications engage with clients through long transactional chains—
the shopping cart containing items to buy will still be there even if a shopper
navigates away to do some comparison-shopping. We will call this a session, which
may contain any number of KV pairs, such as a username, product list, or the user's
login history.

How are sessions started, ended, and tracked? There are many ways to attack
this problem, depending on many factors existing in different ways on different
architectures. In particular, if more than one server is being used to handle clients,
how is session data shared between them?

We will use cookies to store session IDs for clients, while building a simple
long-polling server. Keep in mind that as applications grow in complexity this
simple system will need to be extended. As well, long-polling as a technology
is giving ground to the more powerful socket techniques we will explore in our
discussions around building real-time systems. However, the key issues faced when
holding many connected clients simultaneously on a server, and tracking their
sessions, should be demonstrated.

Cookies and client state
Netscape provided the preliminary specification for cookies, in 1997:

Cookies are a general mechanism which server side connections...can use to both
store and retrieve information on the client side of the connection. The addition of
a simple, persistent, client-side state significantly extends the capabilities of
Web-based client/server applications...

A server, when returning an HTTP object to a client, may also send a piece of state
information which the client will store... Any future HTTP requests made by the
client...will include a transmittal of the current value of the state object from the
client back to the server. The state object is called a cookie, for no compelling reason.

— http://lib.ru/WEBMASTER/cookie_spec.txt_with-big-pictures.html

Here we have one of the first attempts to "fix" the stateless nature of HTTP,
specifically the maintenance of session state. It was such a good attempt, which
still remains a fundamental part of the Web.

Managing Many Simultaneous Client Connections

[136]

We've already seen how to read and set the Cookie header with Node. Express
makes the process a little easier:

var express = require('express');
var app = express();
app.use(express.cookieParser());
app.get('/mycookie', function(request, response){
 response.end(request.cookies.node_cookie);
});
app.get('/', function(request, response) {
 response.cookie('node_cookie', Math.floor(Math.random() * 10e10));
 response.end("Cookie set");
});
app.listen(8000);

Note the use method, which allows us to turn on the cookie handling middleware for
Express. Here we see that whenever a client hits our server this client is assigned a
random number as a cookie. By navigating to /mycookie this client can see the cookie.

A simple poll
We need to create a concurrent environment, one with many simultaneously
connected clients. We'll use a long-polling server to do this, broadcasting to all
connected clients via stdin. Additionally, each client will be assigned a unique
session ID, used to identify the client's http.serverResponse object, which we
will push data to.

Long polling is a technique whereby a server holds on to a client connection until
there is data available to send. When data is ultimately sent to the client, the client
reconnects to the server and the process continues. It was designed as an improvement
on short polling, which is the inefficient technique of blindly checking with a server
for new information every few seconds or so, hoping for new data. Long polling only
requires a reconnection following a tangible delivery of data
to the client.

We'll use two routes. The first route is described using a forward slash (/), a root
domain request. Calls to this path will return some HTML forming the client UI.
The second route is /poll, which the client will use to reconnect with the server
following the receipt of some data.

Chapter 5

[137]

The client UI is extremely simple: its sole purpose is to make an XML HTTP
request (XHR) to a server (which will hold that request until some data arrives),
repeating this step immediately following the receipt of some data. Our UI will
display a list of messages received within an unordered list. For the XHR bit we
will use the jQuery library. Any similar library can be used, and building a pure
JavaScript implementation is not difficult.

HTML:

<ul id="results">

JavaScript:

function longPoll() {
 $.get('http://www.pathjs.com/poll', function (data) {
 $('' + data + '').appendTo('#results');
 longPoll();
 });
}
longPoll();

The server is also simple, mainly responsible for setting session IDs and holding
on to concurrent client connections until such time as data is available, which is
broadcast to all connected clients. These connections are indexed via session IDs,
maintained using cookies:

var connections = {};
app.use(express.cookieParser());
app.get('/poll', function(request, response){
 var id = request.cookies.node_poll_id;
 if(!id) {
 return;
 }
 connections[id] = response;
});
app.get('/', function(request, response) {
 fs.readFile('./poll_client.html', function(err, data) {
 response.cookie('node_poll_id', Math.floor(Math.random() *
10e10));
 response.writeHead(200, {'Content-Type': 'text/html'});
 response.end(data);
 });
});
app.listen(2112);

Managing Many Simultaneous Client Connections

[138]

Once a client has fetched the UI it is ready to receive data. In this example we will
allow data arriving via stdin to be broadcast to all connected clients:

var broadcast = function(msg) {
 var conn;
 for(conn in connections) {
 connections[conn].end(msg);
 }
}
process.stdin.on('readable', function() {
 var msg = this.read();
 msg && broadcast(msg.toString());
});

Run this server on the command line, and connect to the server via a browser. A
nearly blank page should be displayed. Return to the command line and enter some
text—this message should immediately appear in your browser. Try it with several
open browser windows, which should all receive what you've entered.

This small example demonstrates another advantage of Node's evented
single-threaded model, especially when it comes to building servers, closure. We see
how a single function, receiving request/response bindings for a unique client can,
via closure, access common data safely. Here the broadcast method is accessing
members of the connections object created earlier within app.get—one method
scope is accessing data created within an external scope. Each call to the HTTP
request handler is protected from interference from another thread or process,
yet can be exposed to useful shared data via closure.

An interesting use of the new WeakMap feature of JavaScript
is using a request object as a key in a map (remember to use
the harmony flag when starting your Node process).

Centralizing states
By keeping user sessions centralized in a Redis database we are able to have multiple
servers access the same session data. This is the primary advantage of centralizing
session data. Additionally, analytics on current sessions (and even past sessions) can
be done.

We've seen how we might use cookies to track user connections. The primary
problem with this solution is that it only works on a single server. What if our
system is running two separate client servers? The connection map we used earlier
is determined by connections to the local server. What if data is written from a remote
server? How do we ensure that all servers are informed of all events, such that each
can push new information to all of its clients?

Chapter 5

[139]

Redis introduces the idea of pub/sub, or publish/subscribe, which can be used
to deliver messages across many Node processes. Usage is simple and intuitive:

var redis = require("redis");
var receiver = redis.createClient();
var publisher = redis.createClient();
receiver.subscribe("firehose");
receiver.on("message", function(channel, message) {
 console.log("Received message: " + message + " on channel: " +
 channel);
});
setTimeout(function() {
 publisher.publish("firehose", "Hello!");
}, 1000);

After creating the publisher and receiver clients, we wait about one second and
publish a message to a channel, which in this case has a subscriber to notify of the
message receipt.

The problem with scaling our simple polling infrastructure is solved by making
a few small changes. Consider again the code that catches and broadcasts messages:

Var broadcast = function(msg) {
 var conn;
 for(conn in connections) {
 connections[conn].end(msg);
 }
}
process.stdin.on('readable', function() {
 var msg = this.read();
 msg && broadcast(msg.toString());
});

Let's convert this into a publish/subscribe system, allowing any number of these
servers to exist while maintaining full broadcast coverage when new messages
arrive:

var redis = require("redis");
var receiver = redis.createClient();
var publisher = redis.createClient();

receiver.subscribe("stdin_message");
receiver.on("message", function(channel, message) {
 var conn;
 for(conn in connections) {
 connections[conn].end(message);
 }

Managing Many Simultaneous Client Connections

[140]

 console.log("Received message: " + message + " on channel: " +
 channel);
});
process.stdin.on('readable', function() {
 var msg = this.read();
 msg && publisher.publish("stdin_message", msg.toString());
});

Rather than favoring the local server, all message broadcasting is made "network
aware", giving all instances of this server a chance to broadcast to the clients it is
managing, regardless of which server is actually receiving the message data.

As we progress through larger applications in later chapters, more advanced
network-messaging techniques will be unpacked. One key takeaway is that the
replication of Node servers is the typical Node scaling strategy. Plan for a distributed
session store, and for building an intra-process communication layer to do
that distribution.

Authenticating connections
In conjunction with establishing client session objects, a Node server often demands
authentication credentials. The theory and practice of web security is extensive.
We want to simplify our understanding into two main authentication scenarios:

•	 When the wire protocol is HTTPS
•	 When it is HTTP

The first is naturally secure, and the second is not. For the first we will learn how
to implement Basic authentication in Node, and for the second a challenge-response
system will be described.

Chapter 5

[141]

Basic authentication
As mentioned, Basic authentication sends plain text over the wire containing a
username/password combination, using standard HTTP headers. It is a simple and
well-known protocol. Any server sending the correct headers will cause any browser
to display a login dialog, like the following one:

Nonetheless this method remains insecure, sending non-encrypted data in plain
text over the wire. For the sake of simplicity we will demonstrate this authentication
method on a HTTP server, but it must be stressed that in real-world usage the server
must be communicating via a secure protocol, such as HTTPS.

Let's implement this authentication protocol with Node. Employing the user
database developed earlier in Redis, we validate submitted credentials by checking
user objects for matching passwords, handling failures and successes.

var http = require('http');
var redis = require("redis");
var client = redis.createClient();

http.createServer(function(req, res) {
 var auth = req.headers['authorization'];
 if(!auth)
 {

Managing Many Simultaneous Client Connections

[142]

By sending a 401 status and the 'authorization' header on a new client
connection, a dialog like the one previous screenshot will appear:

 res.writeHead(401, {'WWW-Authenticate': 'Basic
 realm="Secure Area"'});
 return res.end('<html><body>Please enter some
 credentials.</body></html>');
 }
 var tmp = auth.split(' ');

Split on a space, the original auth string looks like Basic Y2hhcmxlczoxMjM0NQ==
and we need the second part. Note the 'base64' transformation in the following code:

 var buf = new Buffer(tmp[1], 'base64');
 var plain_auth = buf.toString();
 var creds = plain_auth.split(':');
 var username = creds[0];
 var password = creds[1];
 // Find this user record
 client.get(username, function(err, data) {
 if(err || !data) {
 res.writeHead(401, {'WWW-Authenticate': 'Basic
 realm="Secure Area"'});
 return res.end('<html><body>You are not
 authorized.</body></html>');
 }

 res.statusCode = 200;
 res.end('<html><body>Welcome!</body></html>');
 });
}).listen(8080);

In this way a straightforward login system can be designed. Because browsers will
naturally prompt users requesting access to a protected domain, even the login
dialog is taken care of.

To learn about implementing Basic authentication using Express,
visit the following link:

http://expressjs.com/api.html#basicAuth

Chapter 5

[143]

Handshaking
Another authentication method to consider in situations where an HTTPS connection
cannot be established is a challenge-response system:

Pass a client id, requesting access

Challenge publickey

Respond with requested hash

Client Server

In this scenario a client asks a server for access for a specific user, username, ID,
or similar. Typically this data would be sent via a login form. Let's mock up a
challenge/response scenario, using for our example the user we created earlier—
Jack.

The general design and purpose of a challenge/response system aims to avoid
sending any password data in plain text over the wire. So, we will need to decide on
an encryption strategy that both the client and the server share. For our example let's
use the SHA256 algorithm. Node's crypto library contains all of the tools necessary
for creating this type of hash. The client likely does not, so we must provide one.
We'll use the one developed by Chris Veness, which can be downloaded from the
following link:

http://csrc.nist.gov/groups/ST/toolkit/examples.html

To initiate this login the client will need to send an authentication request for the
user Jack:

GET /authenticate/jack

In response the client should receive a server-generated public key—the challenge.
The client must now form a string of Jack's password prefixed by this key. Create
a SHA256 hash from it, and pass the resulting hash to /login/. The server will have
also created the same SHA256 hash—if the two match, the client is authenticated:

<script src="sha256.js"></script>
<script>
$.get("/authenticate/jack", function(publicKey) {
 if(publicKey === "no data") {

Managing Many Simultaneous Client Connections

[144]

 return alert("Cannot log in.");
 }
 // Expect to receive a challenge: the client should be able
 // to derive a SHA456 hash
 // String in this format: publicKey + password. Return that
 // string.
 //
 var response = Sha256.hash(publicKey + "beanstalk");
 $.get("/login/" + response, function(verdict) {
 if(verdict === "failed") {
 return alert("No Dice! Not logged in.");
 }
 alert("You're in!");
 });
});
</script>

The server itself is very simple, composed of the two mentioned authentication
routes. We can see in the following code how, upon receipt of a username, (jack) the
server will first check for an existing user hash in Redis, breaking the handshake if no
such data is found. If a record exists we create a new, random public key, compose
the relevant SHA256 hash, and return this challenge value to the client. Additionally,
we set this hash as a key in Redis, with its value being the sent username:

var crypto = require('crypto');
var fs = require('fs');
var express = require('express');
var app = express();
var redis = require("redis");
var client = redis.createClient();

app.get('/authenticate/:username', function(request, response){
 var publicKey = Math.random();
 var username = request.params.username; // This is always
 "jack"
 // ... get jack's data from redis
 client.hgetall(username, function(err, data) {
 if(err || !data) {
 return response.end("no data");
 }
 // Creating the challenge hash
 var challenge =
 crypto.createHash('sha256').update(publicKey +
 data.password).digest('hex');
 // Store challenge for later match

Chapter 5

[145]

 client.set(challenge, username);
 response.end(challenge);
 });
});
app.get('/login/:response', function(request, response){
 var hash = request.params.response;
 client.exists(hash, function(err, exists) {
 if(err || !exists) {
 return response.end("failed");
 }
 });
 client.del(hash, function() {
 response.end("OK");
 });
});

In the /login/ route handler we can see how a check is made if the response exists
as a key in Redis and, if found, we immediately delete the key. This is necessary for
several reasons, not least of which is preventing others to send the same response
and gain access. We also generally don't want these now useless we want keys to pile
up. This presents a problem: what if a client never responds to the challenge? As the key
cleanup only happens when a /login/ attempt is made, this key will never
be removed.

Unlike most KV data stores Redis introduces the idea of key expiry, where a set
operation can specify a Time To Live (TTL) for a key. For example, here we use the
setex command to set a key userId to value 183 and specify that this key should
expire in one second:

client.setex("doomed", 10, "story", function(err) { ... });

This feature offers an excellent solution to our problem. By replacing the client.
set(challenge, username); line with the following line:

client.setex(challenge, 5, username)

we ensure that, no matter what, this key will disappear in 5 seconds. Doing things
this way also functions as a light security measure, leaving a very short window
for a response to remain valid, and being naturally suspicious of delayed responses.

Managing Many Simultaneous Client Connections

[146]

Summary
Node provides a set of tools that help in the design and maintenance of large-scale
network applications facing the C10K problem. In this chapter we've taken our first
steps into creating network applications with many simultaneous clients, tracking
their session information and their credentials. This exploration into concurrency
has demonstrated some techniques for routing, tracking, and responding to
clients. We've touched on some simple techniques to use when scaling, such as the
implementation of intra-process messaging via a publish/subscribe system built
using a Redis database.

We are now ready to go deeper into the design of real-time software—the logical
next step after achieving high concurrency and low latency by using Node. We will
extend the ideas outlined during our discussion of long polling and place them in
the context of more robust problems and solutions.

Further reading
Concurrency and parallelism are rich concepts that have enjoyed rigorous study
and debate. When an application architecture is designed to favor threads, events,
or some hybrid, it is likely that the architects are opinionated about both concepts.
You are encouraged to dip a toe into the theory and read the following articles. A
clear understanding of precisely what the debate is about will provide an objective
framework that can be used to qualify a decision to choose (or not choose) Node.

•	 Some numbers:
https://cs.uwaterloo.ca/~brecht/papers/getpaper.
php?file=eurosys-2007.pdf

•	 Threads are a bad idea:
http://www.cs.sfu.ca/~vaughan/teaching/431/papers/ousterhout-
threads-usenix96.pdf

•	 Events are a bad idea:
http://static.usenix.org/events/hotos03/tech/full_papers/
vonbehren/vonbehren.pdf

•	 How about together?
http://repository.upenn.edu/cgi/viewcontent.
cgi?article=1391&context=cis_papers

•	 It's a false dichotomy:

http://swtch.com/~rsc/talks/threads07/

Creating Real-time
Applications

Nothing endures but change.

—Heraclitus

What is real-time software? A list of friends gets updated the instant one joins or
exits. Traffic updates automatically stream into the smartphones of drivers looking
for the best route home. The sports page of an online newspaper immediately updates
scoreboards and standings as points are scored in an actual game. Users of this type
of software expect reactions to change to be communicated quickly, and this
expectation demands a particular focus on reducing network latency from
the software designer. Data I/O updates must occur along subsecond time frames.

Let's step back and consider the general characteristics of the Node environment
and community that make it an excellent tool for creating these kinds of responsive
network applications.

Some validation of Node's design, it may be argued, is found in the enormous
community of open developers contributing enterprise-grade Node systems, some
teams financially supported and fully backed by Internet companies as large as
Microsoft, LinkedIn, eBay and others. Multicore, multiserver enterprise systems
are being created using free software mostly written in JavaScript.

Creating Real-time Applications

[148]

Why are so many companies migrating toward Node when designing or updating
their products? The following list enumerates the reasons why:

•	 Node offers the excellent npm package management system, which
integrates easily with the Git version control system. A shallow learning
curve helps even inexperienced developers safely store, modify, and
distribute new modules, programs, and ideas. Developers can develop
private modules on private Git repositories and distribute these repositories
securely within a private network using npm. As a result, the community
of Node users and developers has rapidly expanded, some members gaining
great fame. If you build it, they will come.

•	 Node lifted the system-access barrier for a large group of skilled
programmers, suddenly releasing pent-up talent into an empty volume,
offering the ecosystem of opportunity that a popular new project in need of
many improvements in infrastructure brings. The point is this: Node merged
the opportunity of concurrency with native JavaScript events; its brilliantly
designed API allowed users of a well-known programming paradigm to take
advantage of high-concurrency I/O. If you reward them, they will come.

•	 Node lifted the network-access barrier for a large group of JavaScript
developers whose work and ambition had begun to outgrow the tiny sandbox
available to client developers. It should not be forgotten that the period of time
extending from the introduction of JavaScript in 1995 to the present is nearly
20 years. Nearly a generation of developers has struggled trying to implement
new ideas for network applications within an event-driven development
environment known for, even defined by, its limitations. Overnight, Node
removed those limitations. If you clear paths, they will come.

•	 Node provides an easy way to build scalable network programs, where
network I/O is no longer a bottleneck. The real shift is not from another
popular system to Node—it is away from the idea that expensive and complex
resources are needed to build and maintain efficient applications demanding
burstable concurrency. If a resilient and scalable network architecture can be
achieved cheaply, freed resources can be directed to solving other pressing
software challenges, such as parallelizing data filtering, scaling massively
multiplayer games, building real-time trading platforms or collaborative
document editors, even implementing live code changes in hot systems.
Confidence breeds progress. If you make it easy, they will come.

Node arrived at a time when those building dynamic web pages had begun to run
up against the limitations of servers not equipped to smoothly field many small,
simultaneous requests. The software architect must now solve some interesting
problems: what are the rules of "real time"—will the user be satisfied with "soon",
or is "now" the only right response? And, what is the best way to design systems
responsible for satisfying these user desires?

Chapter 6

[149]

In this chapter we will investigate three standard techniques available to developers
to use when constructing real-time network applications: AJAX, WebSockets, and
Server Sent Events (SSE). Our goals for this chapter are to learn the benefits and
drawbacks of each of these techniques, and to implement each technique with Node.
Remembering that we are aiming to achieve a consistent architecture reflecting the
evented-streams design of Node, we will also consider how well each technique
lends itself to representation as a readable, writable, or duplex stream.

We will close this chapter with the construction of a collaborative code editor,
which should demonstrate the opportunities Node provides for those seeking to
build real-time groupware. As you work your way through the examples, and build
your own applications, these are some questions that are worth asking yourself:

•	 What is the volume of messages I expect to transact per second? How
many simultaneously connected clients are expected at peak times and
at off-peak times?

•	 What is the average size and shape of the messages being transmitted?
How big? How complex?

•	 Can I accept occasional communication breakdowns or dropped messages
if this concession buys me lower average latency?

•	 Do I really need bidirectional communication, or is one side responsible
for nearly all message volume? Do I need a complicated communication
interface at all?

•	 What sorts of networks will my application run within? Will there
be proxy servers between a client and my Node server? Which protocols
are supported?

•	 Do I need a complex solution or will simple and straightforward,
even slightly slower, solutions bring other benefits in the long run?

Introducing AJAX
In 2005, Jesse James Garrett published an article in which he tried to condense
the changes he had been seeing in the way that websites were being designed into
a pattern. After studying this trend, Garrett proposed that dynamically updating
pages represented a new wave of software, resembling desktop software, and
he coined the acronym "AJAX" to describe the technological concept powering
such rapid movement toward "web applications".

Creating Real-time Applications

[150]

This was the diagram he used to demonstrate the general pattern:

The original article can be found at http://www.adaptivepath.com/
ideas/ajax-new-approach-web-applications.

The "Ajax engine" Garrett's diagram referred to, had in fact existed in most
common browsers by the year 2000, and even earlier in some. JavaScript
implementations of the XMLHttpRequest (XHR) object in these browsers gave web
pages the ability to request "chunks" of HTML or other data from servers. Partial
updates could be dynamically applied to a web page, creating the opportunity for
new kinds of user interfaces. For example, the latest pictures from an event could
magically appear to a user, without that user actively requesting a page refresh,
or clicking a "Next Picture" button.

More importantly, Garrett also understood how the synchronous, stateless world
of the "old" Internet was becoming an asynchronous, stateful one. The conversation
between clients and servers was no longer being derailed by sudden amnesia and
could continue usefully for longer periods of time, sharing increasingly useful
information. Garret saw this as a shift to a new generation of network software.

Chapter 6

[151]

Responding to calls
If changes can be introduced into a web application without requiring a complete
reconstruction of state and state display, updating client information becomes
cheaper. The client and server can talk more often, regularly exchanging information.
Servers can recognize, remember, and respond immediately to client desires, aided
by reactive interfaces gathering user actions and reflecting the impact of those
actions within a UI in near real time.

With AJAX, the construction of a multiuser environment supporting real-time
updates to each client's view on the overall application state involves regular polling
of server by clients checking for important updates:

Polling

CLIENT

NODE SERVER

TIME

Network chatter is constant and often redundant.

The significant drawback to this method of polling for state is that many of these
requests will be fruitless. The client has become a broken record, constantly asking
for status updates regardless of whether those updates are available or forthcoming.
When an application spends time or energy performing unnecessary tasks, there
should exist some clear benefit to the user or the provider (or both) offsetting this
cost. Additionally, each futile call adds to the cost of building up then tearing down
HTTP connections.

Such a system can only take snapshots of the state at periodic intervals, and as that
polling interval may increase to several seconds in an effort to reduce redundant
network chatter, our awareness of state changes can begin to appear dull, just a little
behind the latest news.

Creating Real-time Applications

[152]

We saw a better solution in the previous chapter—long polling, the technique
of letting a server hold on to a client connection until new data is available:

Long Polling

CLIENT

NODE SERVER

TIME

A Connection is held by a server until data is ready to broadcast.
On receipt of new data the client then re-establishes a connection.

This improved AJAX technique does not fully escape the cost of building up and
tearing down network connections, yet a significant reduction in the number of
such costly operations is achieved. In general, AJAX fails to deliver a smooth,
stream-like evented interface, requiring a great deal of attending services to persist
state as connections are regularly broken and then re-established.

Nevertheless, AJAX remains a real option for some applications, in particular
simple applications where the ideal polling interval is fairly well known, each poll
standing a good chance of gathering useful results. Let's use Node to build a server
able to communicate with a stock reporting service, and build a polling client that
periodically requests this server to check for changes and report them.

Creating a stock ticker
Ultimately, we will create an application that allows clients to pick a stock and watch
for changes in the data points related to that stock, such as its price, and to highlight
positive or negative changes:

Chapter 6

[153]

To create the client, our work is minimal. We need to simply poll our server every
few seconds or so, updating our interface to reflect any data changes. Let's use
jQuery as our AJAX library provider. To fetch JSON from a server using jQuery, you
will normally do something like this:

var fetch = function() {
 $.getJSON("/service", function(data) {
 // Do something with data
 updateDisplay(data);
 // Call again in 5 seconds
 setTimeout(fetch, 5000);
 });
}
 fetch();

A Node server will receive this request for an update, perform some I/O (check
a database, call an external service), and respond with data, which the client can use.

In our example, Node will be used to connect to the Yahoo! Query Language (YQL)
service, which Yahoo! describes in this way:

The Yahoo! Query Language is an expressive SQL-like language that lets you
query, filter, and join data across Web services. With YQL, apps run faster with
fewer lines of code and a smaller network footprint.

Creating Real-time Applications

[154]

For example, if I wanted to read the latest stock quotes from Yahoo! Finance, my
query might look like:

http://query.yahooapis.com/v1/public/yql?q=select * from yahoo.
finance.quotes where symbol in ("MSFT")

We will construct a Node server that listens for clients requesting an update to the
data for a given stock symbol, such as "IBM". The Node server will then create a YQL
query for that stock symbol and execute that query via http.get, packaging the
received data nicely for the calling client and sending it back.

This package will also be assigned a new callIn property, indicating the number
of milliseconds the client should wait before calling again. This is a useful technique
to remember, as our stock data server will have a much better idea of the traffic
conditions and the update frequency than the client will. Instead of a client blindly
checking on a fixed schedule, our server can recalibrate this frequency after each call,
even demanding that the client stop calling!

As this design, particularly the visual design, can be done through any number
of ways, we will simply look at the core functionality necessary for our client,
contained within the following fetch method:

var fetch = function() {
 var symbol = $("#symbol").val();
 $.getJSON("/?symbol=" + symbol, function(data) {
 if(!data.callIn) {
 return;
 }
 setTimeout(fetch, data.callIn);
 if(data.error) {
 return console.error(data.error);
 }
 var quote = data.quote;
 var keys = fetchNumericFields(quote);
…
 updateDisplay(symbol, quote, keys);
 });
};

Users on this page enter stock symbols into an input box with ID #symbol. This data
is then fetched from our data service. In the preceding code, we see the service call
being made via the $.getJSON jQuery method, the JSON data being received, and
a setTimeout property being set using the callIn interval sent back by Node.

Chapter 6

[155]

Our server is responsible for brokering the above client call with the Yahoo!
Finance data service. Assuming that we have a properly configured the server
that successfully receives stock symbols from clients, we need to open an HTTP
connection to the YQL service, read any response, and return this data:

http.get(query, function(res) {
 var data = "";
 res
 .on('readable', function() {
 var d;
 while(d = this.read()) {
 data += d;
 }
 })
 .on('end', function() {
 var out = {};
 try {
 data = JSON.parse(data);
 out.quote = data.query.results.quote;
 out.callIn = 5000;
 } catch(e) {
 out = {
 error: "Received empty data set",
 callIn: 10000
 };
 }
 response.writeHead(200, {
 "Content-type" : "application/json"
 });
 response.end(JSON.stringify(out));
 });
}).on('error', function(e) {
 response.writeHead(200, {
 "Content-type" : "application/json"
 });
 response.end(JSON.stringify({
 error: "System Error",
 callIn: null
 }));
});

Creating Real-time Applications

[156]

Here, we see a good example of why it is a good idea to let the server, the primary
observer of state, modulate the frequency with which clients poll. If a successful data
object is received, we set the poll interval (callIn) to about five seconds. Should
an error occur, we increase that delay to 10 seconds. It is easy to see how we might
do more, perhaps, throttling connections further if repeated errors occur. Given that,
there will often be limits on the rate at which an application may make requests to
an external service (such as limiting the number of calls that can be made in one
hour), this is also a useful technique for ensuring that constant client polling doesn't
exceed these rate limits.

AJAX is the original technique for creating real-time applications. It remains useful
in some cases, but has been superseded by more efficient transports. As we leave this
section, let's keep in mind some of the advantages and disadvantages of polling:

Pros Cons
The theory and practice of REST is
available, allowing more standardized
communication

Making and breaking connections imposes
a cost on network latency, especially
if done very often

No need for any special protocol server,
with polling easily implemented using a
standard HTTP server

Clients must request data; servers are
unable to unilaterally update clients
as new data arrives

HTTP is well-known and consistently
implemented

Even long-polling doubles the network
traffic needed to maintain a persistent
connection
Data is blindly pushed and pulled, rather
than smoothly broadcasted and listened
for on channels

Let's move on now into a discussion of some newer protocols, in part designed
to solve some of the issues we've found with AJAX: WebSockets and SSE.

Bidirectional communication with
Socket.IO
We're already familiar with what sockets are. In particular, we know how to
establish and manage TCP socket connections using Node, as well as how to pipe
data through them bidirectionally or unidirectionally.

Chapter 6

[157]

The W3C has proposed a socket API that allows browsers to communicate with
a socket server over a persistent connection. Socket.IO is a library that facilitates
the establishment of persistent socket connections for those developing with Node,
providing both a Node-based socket server and an emulation layer for browsers that
do not support the WebSocket API natively.

Let's first take a brief look at how the native WebSocket API is implemented, and
how to build a socket server supporting this protocol using Node. We will then build
a collaborative drawing application using socket.io with Node.

The full specification for the WebSocket API can be found at
http://www.w3.org/TR/websockets/.

Documentation and installation instructions for Socket.IO can
be found at http://socket.io/.

Using the WebSocket API
Socket communication is efficient, only occurring when one of the parties has
something useful to say:

Sockets

CLIENT

NODE SERVER

TIME

Communication is bi-directional and occurs only when necessary

This lightweight model is an excellent choice for applications that require -frequency
message passing between a client and a server, such as found in multiplayer network
games or chat rooms.

Creating Real-time Applications

[158]

According to the W3C, the WebSocket API is intended "to enable web applications
to maintain bidirectional communications with server-side processes". Assuming
that we have established a socket server running at localhost:8080, we can connect
to this server from a browser containing the following line of JavaScript:

var conn = new WebSocket("ws://localhost:8080",['json', 'xml']);

WebSocket expects two arguments: a URL prefixed by the URI scheme ws://, and
an optional subprotocol list, which can be an array or a single string of protocols
that a server may implement.

To establish a secure socket connection, use the wss:// prefix.
As with HTTPS servers, an SSL certificate will need to be used
when starting the server.

Once a socket request is made, the connection events open, close, error, and
message can be handled by a browser:

<head>
 <title></title>
 <script>

 var conn = new WebSocket("ws://localhost:8080",'json');
 conn.onopen = function() {
 conn.send('Hello from the client!');
 };
 conn.onerror = function(error) {
 console.log('Error! ' + error);
 };
 conn.onclose = function() {
 console.log("Server has closed the connection!");
 };
 conn.onmessage = function(msg) {
 console.log('Received: ' + msg.data);
 };
 </script>
</head>

To implement a WebSocket server in Node, we will use the ws module created
by Einar Otto Stangvik, which can be downloaded from https://github.com/
einaros/ws. After installing ws using npm (npm install ws), establishing a Node
socket server is straightforward:

var SocketServer = require('ws').Server;
var wss = new SocketServer({port: 8080});

Chapter 6

[159]

wss.on('connection', function(ws) {
 ws.on('message', function(message) {
 console.log('received: %s', message);
 });
 ws.send("You've connected!");
});

Here, we see how the server simply listens for the connection and message
events from clients, responding as necessary. Should there be a need to terminate
a connection (perhaps, if the client loses authorization), the server can simply emit
a close event, which a client can listen for:

ws.close();

The general schematic for an application using the WebSocket API to create
bidirectional communication therefore looks like this:

NODE SERVER

BROWSER

ws://

BROWSER

ws://

BROWSER

ws://

socket server

The native WebSocket browser implementation is here used to communicate
with our custom Node socket server, which fields requests from the client
as well as broadcasting new data or information to the client when necessary.

Socket.IO
As mentioned previously, Socket.IO aims to provide an emulation layer that will use
the native WebSocket implementation in browsers that support it, reverting to other
methods (such as long-polling) to simulate the native API in browsers that don't.
This is an important fact to keep in mind: the real benefits of WebSockets will not
exist for all client browsers.

Nevertheless, Socket.IO does a very good job of hiding browser differences and
remains a good choice when the control flow made available by sockets is a desirable
model of communication for your application.

Creating Real-time Applications

[160]

In the WebSocket implementation previously given, it is clear that the socket server
is independent of any specific client file. We wrote some JavaScript to establish
a WebSocket connection on a client, independently running a socket server using
Node. Unlike this native implementation, Socket.IO requires a custom client library
to be installed on a server in addition to the socket.io server module:

NODE SERVER

BROWSER

socket.io

BROWSER

socket.io

BROWSER

socket.io

socket.io

Socket.IO can be installed using the npm package manager:

npm install socket.io

Setting up a client/server socket pairing is straightforward.

On the server:

var io = require('socket.io').listen(8080);
io.sockets.on('connection', function (socket) {
 socket.emit('broadcast', { message: 'Hi!' });
 socket.on('clientmessage', function (data) {
 console.log("Client said" + data);
 });
});

On the client:

<script src="/socket.io/socket.io.js"></script>
<script>
 var socket = io.connect('http://localhost');
 socket.on('broadcast', function(data) {
 console.log("Server sent: " + data);
 socket.emit('clientmessage', { message: 'ohai!' });
 });
</script>

Chapter 6

[161]

We can see how both the client and the server are using the same file, socket.io.js.
A server using Socket.IO handles the serving of the socket.io.js file to clients
automatically when requested. It should also jump out how closely the Socket.IO API
resembles a standard Node EventEmitter interface.

Drawing collaboratively
Let's create a collaborative drawing application using Socket.IO and Node. We want
to create a blank canvas that will simultaneously display all the "pen work" being
done by connected clients:

From the server end, there is very little to do. When a client updates coordinates
by moving their mouse, the server simply broadcasts this change to all connected
clients:

io.sockets.on('connection', function(socket) {
 var id = socket.id;
 socket.on('mousemove', function(data) {
 data.id = id;
 socket.broadcast.emit('moving', data);
 });
 socket.on('disconnect', function() {
 socket.broadcast.emit('clientdisconnect', id);
 });
});

Socket.IO automatically generates a unique ID for each socket connection. We will
pass this ID along whenever new draw events occur, allowing the receiving clients
to track how many users are connected. Similarly, when a client disconnects, all
other clients are instructed to remove their references to this client. Later, we will
see how this ID is used within the application UI to maintain a pointer representing
all connected clients.

Creating Real-time Applications

[162]

This is an excellent example of just how simple it is to create multiuser, Move onto
one line network applications using Node and the packages created by the Node
community. Let's break down what this server is doing.

Because we will need to deliver the HTML file that clients will use to draw, half
of the server setup involves creating a static file server. For convenience, we'll use
the node-static package, which can be downloaded from https://github.com/
cloudhead/node-static. Our implementation will serve an index.html file to
any client who connects.

Our Socket.IO implementation expects to receive mousemove events from clients,
and its only task is to send to all connected clients these new coordinates, which
it does by emitting a moving event through its broadcast method. As one client
changes the canvas state by drawing a line, all clients will receive the information
necessary to update their view of the canvas state in real time.

With the communication layer built, we now must create client views. As mentioned,
each client will load an index.html file containing the necessary canvas element,
and the JavaScript necessary to listen for moving events, as well the socket.io
emitter broadcasting client draw events to our server:

<style type="text/css">
/* CSS styling for the pointers and canvas */
</style>
<script src="/socket.io/socket.io.js"></script>
<script src="/script.js"></script>
</head>
<body>
 <div id="pointers"></div>
 <canvas id="canvas" width="2000" height="1000"></canvas>
</body>

A pointers element is created to hold visible representations for the cursors
of all connected clients, which will update as connected clients move their pointers
and/or draw something.

Within the script.js file, we first set up event listeners on the canvas element,
watching for the combination of mousedown and mousemove events indicating a draw
action. Note how we create a time buffer of 50 milliseconds, delaying the broadcast
of each draw event, slightly reducing the resolution of drawings but avoiding an
excessive number of network events:

var socket = io.connect("/");
var prev = {};
var canvas = document.getElementById('canvas');
var context = canvas.getContext('2d');

Chapter 6

[163]

var pointerContainer = document.getElementById("pointers");
var pointer = document.createElement("div");
pointer.setAttribute("class", "pointer");
var drawing = false;
var clients = {};
var pointers = {};
var drawLine = function(fromx, fromy, tox, toy) {
 context.moveTo(fromx, fromy);
 context.lineTo(tox, toy);
 context.stroke();
};
canvas.onmouseup =
canvas.onmousemove =
canvas.onmousedown = function(e) {
 switch(e.type) {
 case "mouseup":
 drawing = false;
 break;
 case "mousemove":
 if(now() - lastEmit > 50) {
 socket.emit('mousemove', {
 'x' : e.pageX,
 'y' : e.pageY,
 'drawing': drawing
 });
 lastEmit = now();
 }
 if(drawing) {
 drawLine(prev.x, prev.y, e.pageX, e.pageY);

 prev.x = e.pageX;
 prev.y = e.pageY;
 }
 break;
 case "mousedown":
 drawing = true;
 prev.x = e.pageX;
 prev.y = e.pageY;
 break;
 default:
 break;
 }
}

Creating Real-time Applications

[164]

Whenever a draw action occurs (a combination of a mousedown and a mousemove
event), we draw the requested line on the client's machine, and then broadcast
these new coordinates to our Socket.IO server via socket.emit('mousemove', …),
remembering to pass along the id value of the drawing client. The server in turn will
broadcast them via socket.broadcast.emit('moving', data), allowing client
listeners to draw equivalent lines on their canvas element:

socket.on('moving', function(data) {
 if(!clients.hasOwnProperty(data.id)) {
 pointers[data.id] = pointerContainer.appendChild(pointer.
cloneNode());
 }
 pointers[data.id].style.left = data.x + "px";
 pointers[data.id].style.top = data.y + "px";

 if(data.drawing && clients[data.id]){
 drawLine(clients[data.id].x, clients[data.id].y, data.x, data.y);
 }
 clients[data.id] = data;
 clients[data.id].updated = now();
});

Within this listener, a client will establish a new client pointer if the sent client ID
has not been see previously, and animate both the drawing of a line and the client
pointer, creating the effect of multiple cursors drawing distinct lines within a single
client view.

Recalling the clientdisconnect event we track on our server, we also enable clients
to listen for these disconnects, removing references to lost clients from both the view
(visual pointer) and our clients object:

socket.on("clientdisconnect", function(id) {
 delete clients[id];
 if(pointers[id]) {
 pointers[id].parentNode.removeChild(pointers[id]);
 }
});

Socket.IO is an excellent tool to consider when building interactive, multiuser
environments where continuous rapid bidirectional data transfer is necessary.

Chapter 6

[165]

Now, take a look at the pros and cons of Socket.IO:

Pros Cons
Rapid bidirectional communication
essential to real-time games,
collaborative editing tools, and other
applications

The number of allowed persistent socket
connections can be limited on the server
side or anywhere in between

Lower overhead than standard HTTP
protocol request, lowering the price of
sending a package across the network

Many browsers do not natively support
web sockets, forcing emulation libraries,
such as Socket.IO, to resort to long-polling
or other inefficient techniques

The evented, streaming nature of
sockets fits conceptually with the
Node architecture—clients and servers
are simply piping data back and forth
through consistent interfaces

Requires a custom protocol server, and
often a custom client library

Many proxies and reverse-proxies
are known to confound socket
implementations, leading to lost clients

Another excellent socket library for Node development is SockJS
(https://github.com/sockjs).

Listening for Server Sent Events
SSE are uncomplicated and specific. They are to be used when the majority of data
transfer proceeds unidirectionally from a server to clients. A traditional and similar
concept is the "push" technology. SSE passes text messages with simple formatting.
Many types of applications passively receive brief status updates or data state
changes. SSE is an excellent fit for these types of applications.

Creating Real-time Applications

[166]

Like WebSocket, SSE also eliminates the redundant chatter of AJAX. Unlike
WebSocket, an SSE connection is only concerned with broadcasting data from servers
to connected clients:

Server Sent Events

CLIENT

NODE SERVER

TIME

Expect for initial handshake, communication is uni-directional
and occurs only when necessary

A client connects to a server supporting SSE by passing the EventSource constructor
a path:

var eventSource	 = new EventSource('/login');

This instance of EventSource will now emit subscribable data events whenever new
data is received from the server.

Using the EventSource API
The way in which EventSource instances emit subscribable data events whenever
new data is received from the server is like the way Readable streams emit data
events in Node, as we can see in this example client:

<script>
 var eventSource = new EventSource('/login');
 eventSource.addEventListener('message', function(broadcast) {
 console.log("got message: " + broadcast);
 });
 eventSource.addEventListener('open', function() {
 console.log("connection opened");
 });
 eventSource.addEventListener('error', function() {
 console.log("connection error/closed");
 });
</script>

Chapter 6

[167]

An EventSource instance emits three default events:

•	 open: When a connection is successfully opened, this event will fire
•	 message: The handler assigned to this event will receive an object whose

data property contains the broadcast message
•	 error: This fires whenever a server error occurs, or the server disconnects

or otherwise severs its connection with this client

Forming part of the standard HTTP protocol, a server responsive to SSE requests
requires minimal configuration. The following server will accept EventSource
bindings and broadcast the current date to the bound client every second:

var http = require("http");
var url = require("url");
http.createServer(function(request, response) {
 var parsedURL = url.parse(request.url, true);
 var pathname = parsedURL.pathname;
 var args = pathname.split("/");
 var method = args[1];
 if(method === "login") {
 response.writeHead(200, {
 "Content-Type": "text/event-stream",
 "Cache-Control": "no-cache",
 "Connection": "keep-alive"
 });
 response.write(":" + Array(2049).join(" ") + "\n");
 response.write("retry: 2000\n");

 response.on("close", function() {
 console.log("client disconnected");
 });
 setInterval(function() {
 response.write("data: " + new Date() + "\n\n");
 }, 1000);
 return;
 }
}).listen(8080);

This server listens for requests and selects those made on the path /login, which
it interprets as a request for an EventSource binding. Establishing an EventSource
connection is simply a matter of responding to the request with a Content-Type
header of text/event-stream. Additionally we indicate that the client's
Cache-Control behavior should be set to no-cache, as we expect a lot of original
material on this channel.

Creating Real-time Applications

[168]

From the point of connection the response object of this client will remain an open
pipe that messages can be sent through using write. Let's look at the next two lines:

response.write(":" + Array(2049).join(" ") + "\n");
response.write("retry: 2000\n");

This first write is adjusting for an XHR implementation feature in some browsers,
which ultimately requires all SSE streams to be prefixed by a 2-KB padding. This
write action need happen only once, and has no relevance to subsequent messages.

To read more about why this 2-KB padding is necessary, visit
http://blogs.msdn.com/b/ieinternals/
archive/2010/04/06/comet-streaming-in-internet-
explorer-with-xmlhttprequest-and-xdomainrequest.
aspx?PageIndex=1.

One of the advantages of SSE is that clients will automatically try to reconnect with
the server, should that connection be severed. The number of milliseconds before
retrying will vary from client to client, and can be controlled using the retry field,
which we use here to set a two-millisecond retry interval.

Finally, we listen for the client's close event, which fires when a client disconnects,
and begins broadcasting the time on a one-second interval:

setInterval(function() {
 response.write("data: " + new Date() + "\n\n");
}, 1000);

A website might bind to this time server and display the current server time:

<html>
<head>
 <script>
 var ev = new EventSource('/login');
 ev.addEventListener("message", function(broadcast) {
 document.getElementById("clock").innerHTML = broadcast.data;
 });
 </script>
</head>
<body>
 <div id="clock"></div>
</body>
</html>

Chapter 6

[169]

Because the connection is one-way, any number of services can be set up
as publishers very easily, with clients binding individually to these services via
new EventSource instances. Server monitoring, for example, could be achieved
easily by modifying the above server such that it periodically sends the value
of process.memoryUsage(). As an exercise, use SSE to re-implement the stocks
service we covered earlier in the section on AJAX.

The EventSource stream protocol
Once a server has established a client connection, it may now send new messages
across this persistent connection at any time. These messages consist of one or more
lines of text, demarcated by one or several of the following four fields:

•	 event: This is an event type. Messages sent without this field will trigger the
client's general EventSource event handler for any message. If set to a string
such as "latestscore", the client's message handler will not be called, with
handling being delegated to a handler bound using EventSource.addEvent
Listener('latestscore'…).

•	 data: This is the message being sent. This is always of the String type,
though it can usefully transport objects passed through JSON.stringify().

•	 id: If set, this value will appear as the lastEventID property of the sent
message object. This can be useful for ordering, sorting, and other operations
on the client.

•	 retry: The reconnection interval, in milliseconds.

Sending messages involves composing strings containing relevant field names and
ending with newlines. These are all valid messages:

response.write("id:" + (++message_counter) + "\n");
response.write("data: I'm a message\n\n");
response.write("retry: 10000\n\n");
response.write("id:" + (++message_counter) + "\n");
response.write("event: stock\n");
response.write("data: " + JSON.stringify({price: 100, change: -2}) +
"\n\n");
response.write("event: stock\n");
response.write("data: " + stock.price + "\n");
response.write("data: " + stock.change + "\n");
response.write("data: " + stock.symbol + "\n\n");
response.write("data: Hello World\n\n");

Creating Real-time Applications

[170]

We can see that multiple data fields can be set as well. An important thing to note
is the double-newline ("\n\n") to be sent after the final data field. Previous fields
should just use a single newline.

The default EventSource client events (open, message, and close) are sufficient
for modeling most application interfaces. All broadcasts from the server are caught
within the solitary message handler, which takes responsibility for routing the
message or otherwise updating the client, in the same way that event delegation
would work when working with events in the DOM using JavaScript.

This system may not be ideal in cases where many unique message identifiers are
needed, overwhelming a single handling function. We can use the event field of SSE
messages to create custom event names that can be individually bound by a client,
neatly separating concerns.

For example, if two special events actionA and actionB are being broadcast, our
server would structure them like this:

event: actionA\n
data: Message A here\n\n

event: actionB\n
data: Message B here\n\n

Our client would bind to them in the normal way, as shown in the following
code snippet:

ev.addEventListener("actionA", function(broadcast) {
 console.log(broadcast.data);
});

ev.addEventListener("actionB", function(broadcast) {
 console.log(broadcast.data);
});

In cases where a single message handling function is becoming too long or too
complex, consider uniquely named messages and handlers.

Chapter 6

[171]

Asking questions and getting answers
What if we wanted to create an interface to interests? Let's build an application
enabling any number of people to ask and/or answer questions. Our users will join
the community server, see a list of open questions and answers to those questions,
and get real-time updates whenever a new question or answer is added. There are
two key activities to model:

•	 Each client must be notified whenever another client asks a question or posts
an answer

•	 A client can ask questions or supply answers

Where would the greatest amount of change happen in a large group of
simultaneous contributors to this community?

Any individual client can potentially ask a few questions or provide a few answers.
Clients will also select questions and have the answers displayed to them. We will
need to satisfy merely a handful of client-to-server requests, such as when sending
a new question or answer to the server. Most of the work will be in satisfying client
requests with data (a list of answers to a question) and broadcasting application
state changes to all connected clients (new question added; new answer given). The
one-to-many relationship existing for clients within such collaborative applications
implies that a single client broadcast may create a number of server broadcasts equal
to the number of connected clients—1 to 10 K, or more. SSE is a great fit here, so let's
get started.

The three main operations for this application are as follows:

•	 Asking a question
•	 Answering a question
•	 Selecting a question

Creating Real-time Applications

[172]

Either of these actions will change the application state. As this state must be reflected
across all clients, we will store the state of our application on our server—all questions,
answers, and the relationships of clients to these data objects. We will also need
to uniquely identify each client. Normally, one would use a database to persist
some of this information, but for our purposes we will simply store this data in
our Node server:

var USER_ID = 1e10;
var clients = {};
var clientQMap = {};
var questions = {};
var answers = {};
var removeClient = function(id) {
 if(id) {
 delete clients[id];
 delete clientQMap[id];
 }
}

In addition to the questions and answers storage objects, we will also need to store
client objects themselves—clients are assigned a unique ID that can be used to look
up information (such as the client's socket) when broadcasts are made.

We only want to broadcast answer data to clients that have expressed an interest in
the specific question—as client UIs are only displaying answers for a single question,
we of course would not broadcast answers to clients indiscriminately. For this
reason, we keep a clientQMap object, which maps a question to all clients listening
to that question, by the ID.

The removeClient method is straightforward: when a client disconnects, the method
removes its data from the pool. We'll see this again later.

With this setup in place, we next need to build our server to respond the /login
path, which is used by EventSource to grab a connection. This service is responsible
for configuring a proper event-stream for clients, storing this Response object for
later use, and assigning the user a unique identifier, which will be used on future
client requests to identify the client and fetch that client's communication socket:

http.createServer(function(request, response) {
 var parsedURL = url.parse(request.url, true);
 var pathname = parsedURL.pathname;
 var args = pathname.split("/");
 // Lose initial null value
 args.shift();
 var method = args.shift();

Chapter 6

[173]

 var parameter = decodeURIComponent(args[0]);
 var sseUserId = request.headers['_sse_user_id_'];
 if(method === "login") {
 response.writeHead(200, {
 "Content-Type": "text/event-stream",
 "Cache-Control": "no-cache"
 });
 response.write(":" + Array(2049).join(" ") + "\n"); // 2kB
 response.write("retry: 2000\n");
 removeClient(sseUserId);
 // A very simple id system. You'll need something more secure.
 sseUserId = (USER_ID++).toString(36);
 clients[sseUserId] = response;
 broadcast(sseUserId, {
 type : "login",
 userId : sseUserId
 });
 broadcast(sseUserId, {
 type : "questions",
 questions : questions
 });
 response.on("close", function() {
 removeClient(sseUserId);
 });

 // In order to keep the connection alive we send a "heartbeat"
every 10 seconds.
 https://bugzilla.mozilla.org/show_bug.cgi?id=444328
 setInterval(function() {
 broadcast(sseUserId, new Date().getTime(), "ping");
 }, 10000);
 return;
 }

After establishing request parameters, our servers check the request for
a _sse_user_id_ header, which is the unique string that is assigned to
a user within /login on the initial EventSource bind:

sseUserId = (USER_ID++).toString(36);
clients[sseUserId] = response;

Creating Real-time Applications

[174]

This ID is then sent to the client via an immediate broadcast, an opportunity we use
to send along the current batch of questions:

broadcast(sseUserId, sseUserId, "login");

The client is now responsible for passing along this ID whenever it makes a call.
By listening for the /login event and storing the ID that is passed, a client can
self-identify when making HTTP calls:

evSource.addEventListener('login', function(broadcast) {
 USER_ID = JSON.parse(broadcast.data);
});
var xhr = new XMLHttpRequest();
xhr.open("POST", "/...");
xhr.setRequestHeader('_sse_user_id_', USER_ID);
...

Recall that we have just created a unidirectional event-stream from our server to
our client. This channel is used to communicate with clients—not response.end()
or similar. The broadcast method, referenced in /login, accomplishes this task
of broadcasting stream events as shown in the following code:

var broadcast = function(toId, msg, eventName) {
 if(toId === "*") {
 for(var p in clients) {
 broadcast(p, msg);
 }
 return;
 }
 var clientSocket = clients[toId];
 if(!clientSocket) {
 return;
 }
 eventName && clientSocket.write("event: " + eventName + "\n");
 clientSocket.write("id: " + (++UNIQUE_ID) + "\n");
 clientSocket.write("data: " + JSON.stringify(msg) + "\n\n");
 }

Scan this code from the bottom up. Note how the primary purpose of broadcast
is to take a client ID, look up that client's event-stream, and write to it, accepting
a custom event name if needed. However, as we will regularly broadcast to all
connected clients, we allow for a special * flag to indicate mass broadcast.

Chapter 6

[175]

Everything is now set up, requiring only the definition of services for the three
main operations for this application: adding new questions and answers, and
remembering the question each client is following.

When questions are asked, we ensure that the question is unique, add it to our
question collection, and tell everyone the new question list:

if(method === "askquestion") {
 // Already asked?
 if(questions[parameter]) {
 return response.end();
 }
 questions[parameter] = sseUserId;	
 broadcast("*", {
 type : "questions",
 questions : questions
 });
 return response.end();
}

Handling answers is nearly identical, except that here we want to broadcast new
answers only to clients asking the right questions:

if(method === "addanswer") {

...
 answers[curUserQuestion] = answers[curUserQuestion] || [];
 answers[curUserQuestion].push(parameter);
 for(var id in clientQMap) {
 if(clientQMap[id] === curUserQuestion) {
 broadcast(id, {
 type : "answers",
 question : curUserQuestion,
 answers : answers[curUserQuestion]
 });
 }
 }
 return response.end();
}

Finally, we store changes to the client's interests by updating clientQMap:

if(method === "selectquestion") {
 if(parameter && questions[parameter]) {
 clientQMap[sseUserId] = parameter;
 broadcast(sseUserId, {

Creating Real-time Applications

[176]

 type : "answers",
 question : parameter,
 answers : answers[parameter] ? answers[parameter] : []
 });
 }
 return response.end();
}

While we won't go too deeply into the client-side HTML and JavaScript necessary to
render this interface, we will look at how some of the core events would be handled.

Assuming a UI rendered in HTML, which lists answers on one side and questions
on the other, containing forms for adding new questions and answers, as well as for
selecting questions to follow, our client code is very lightweight and easy to follow.
After negotiating the initial /login handshake with our server, this client need simply
sends new data via HTTP when submitted. The handling of server responses is neatly
encapsulated into three events, making for easy to follow event stream handling:

var USER_ID = null;
var evSource = new EventSource('/login');
var answerContainer = document.getElementById('answers');
var questionContainer = document.getElementById('questions');
var showAnswer = function(answers) {
 answerContainer.innerHTML = "";
 var x = 0;
 for(; x < answers.length; x++) {
 var li = document.createElement('li');
 li.appendChild(document.createTextNode(answers[x]));
 answerContainer.appendChild(li);
 }
}
var showQuestion = function(questions) {
 questionContainer.innerHTML = "";
 for(var q in questions) {
 //... show questions, similar to #showAnswer
 }
}
evSource.addEventListener('message', function(broadcast) {
 var data = JSON.parse(broadcast.data);
 switch(data.type) {
 case "questions":
 showQuestion(data.questions);
 break;
 case "answers":
 showAnswer(data.answers);

Chapter 6

[177]

 break;
 case "notification":
 alert(data.message);
 break;
 default:
 throw "Received unknown message type";
 break;
 }
});
evSource.addEventListener('login', function(broadcast) {
 USER_ID = JSON.parse(broadcast.data);
});

This interface needs only to wait for new question and answer data, and display
it in lists. Three callbacks are enough to keep this client up-to-date, regardless
of how many different clients update the application's state.

Pros Cons

Lightweight: By using the native HTTP
protocol an SSE server can be created
with a couple of simple headers

Inconsistent browser support requires
a custom library for client-to-server
communication, where unsupported
browsers will normally long-poll

Able to send data to a client
unilaterally, without requiring
matching client calls

One way only: Does not bring its
advantages to cases where bidirectional
communication is needed

Automatic reconnection of dropped
connections, making SSE a reliable
network binding

Server must send a "heartbeat" every
10 seconds or so in order to keep the
connection alive

Simple, easily customizable, and an
easy-to-understand messaging format

EventSource is not supported by all browsers (in particular, IE).
An excellent emulation library for SSE can be found at
https://github.com/Yaffle/EventSource.

Creating Real-time Applications

[178]

Building a collaborative document
editing application
Now that we've examined various techniques to consider when building a
collaborative application, let's put together a collaborative code editor using one
of the most exciting contributions to Node to arrive in the last year: Operational
transformation (OT).

For our discussion here, OT will be understood as a technology that allows many
people to edit the same document concurrently—collaborative document editing.
Google described their (now defunct) Wave project in the following way:

Collaborative document editing means multiple editors are able to edit a shared
document at the same time. It is live and concurrent when a user can see the
changes another person is making, keystroke by keystroke. Google Wave offers live
concurrent editing of rich text documents.

Source: http://www.waveprotocol.org/whitepapers/operational-transform

One of the engineers involved in the Wave project was Joseph Gentle, and Mr. Gentle
was kind enough to write a module bringing OT technology to the Node community,
named ShareJS (www.sharejs.org). We are going to use this module to create an
application that allows anyone to create a new collaboratively editable document.

This example follows (and liberally borrows from) the
many examples contained in the ShareJS GitHub repository.
To delve deeper into the possibilities of ShareJS, visit
https://github.com/share/ShareJS.

To begin with we will need a code editor to bind our OT layer to. For this project, we
will use the excellent Ace editor, which can be cloned from https://github.com/
ajaxorg/ace.

Establishing an Ace editor doesn't require much more than cloning the repository
and writing the following HTML:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Editor</title>
 <style type="text/css" media="screen">
 body {

Chapter 6

[179]

 overflow: hidden;
 }
 #editor {
 margin: 0;
 position: absolute;
 top: 0;
 bottom: 0;
 left: 0;
 right: 0;
 }
 </style>
</head>
<body>
 <pre id="editor">function hello(items) {
 alert("Hello World!");
 }</pre>
 <script src="/ace/ace.js" charset="utf-8"></script>
 <script src="/ace/mode-javascript.js"></script>
 <script src="/ace/theme-eclipse.js"></script>
 <script>
 var editor = ace.edit("editor");
 editor.getSession().setMode(new (require("ace/mode/javascript").
Mode));
 editor.setTheme("ace/theme/eclipse");
 </script>
</body>
</html>

Let's transform this flat editor into a collaborative one. We first add the following
to the <script> collection:

 <script src="/channel/bcsocket.js"></script>
 <script src="/share/share.js"></script>
 <script src="/share/ace.js"></script>

ShareJS uses the bcsocket library, which is an implementation of a Google Browser
channel server for Node. This library acts as a socket library through which clients
and ShareJS servers can communicate. We then load the ShareJS library itself,
and finally the binding file that enables Ace documents to notify ShareJS
of transformations, and to be transformed dynamically.

Once we have these libraries at the ready, we can bind to a ShareJS server:

sharejs.open("documentname", 'text', function(error, doc) {
 if(error) {
 throw(error);

Creating Real-time Applications

[180]

 }
 if(doc.created) {
 doc.insert(0, "var helloWorld = function() { \n alert('Hello
World!'); \n};");
 }
 doc.attach_ace(editor);
 editor.setReadOnly(false);
});

Here, we are making a request to a ShareJS server asking for the creation of a
document of a certain name. If the creation of that OT document is successful, add
some text to that document and bind our Ace editor to that OT document stream.

All that is left to do is create the Node server exposing the functionality of OT to the
client. We will need some way of persisting documents through time, as these large
data objects would likely overwhelm a Node process if all were stored in memory.
In our implementation we will use Redis. Additionally, we will build this server
using the Express framework, which can be easily configured to run applications
using ShareJS.

As we've seen in our earlier examples, this entire server can be built using
surprisingly little code:

// ShareJS uses CoffeeScript, requiring this compiler.
require('coffee-script');
var express = require('express');
var sharejs = require('share');
var server = express();
server.use(express.static(__dirname + '/'));
var options = {
 db: {type: 'none'},
 auth: function(client, action) {
 action.accept();
 }
};
// Let's try and enable redis persistence if redis is installed...
try {
 require('redis');
 options.db = {type: 'redis'};
} catch(e) {}
console.log("Server started");
//	 Bind sharejs interfaces to our server
sharejs.server.attach(server, options);
server.listen(8080);
process.title = 'editor demo'

Chapter 6

[181]

The functionality of this server is straightforward. When documents are requested
(via a client call to sharejs.open), this server will open up a persistent connection
to the requesting client, and will share any changes other clients bound to the same
document may make to it. As mentioned earlier, Redis is used to persist data.

The one thing to note is the auth function passed in the ShareJS option object.
We here accept all incoming connections. If we were instead interested in being able
to reject connections based on some authorization scheme, we would transform this
function into something like the following code:

auth: function(client, action) {
if(client.sessionId in authenticatedSessions) {
 return action.accept();
 }
 action.reject();
}

The client parameter sent to this function contains a full breakdown of request
headers and session data, which can be used to validate clients in ways we've used
throughout this book. The action parameter will contain an object describing the
type of OT action requested, such as update or read, as well as the name of the
document requested. These further values can be used to be even more discerning
with authentication—some clients may be allowed to read but not to make changes,
for example.

This server can now be used to share document state across all clients requesting
identically named documents, facilitating collaborative editing.

Another OT library to consider is https://github.com/
Operational-Transformation/ot.js/.

Creating Real-time Applications

[182]

Summary
In this chapter we've gone over three of the major strategies employed when
building real-time applications: AJAX, WebSocket, and SSE. We've shown that
non-trivial collaborative applications can be developed with very little code by
using Node. We've also seen how some of these strategies enable the modeling
of client/server communication as an evented data stream interface. We've
considered the pros and cons of these various techniques, and we've gone through
some clear examples of the best places to use each one.

Additionally, we've shown how client identifiers and state date can be built and
managed within a Node server, such that state changes can be safely encapsulated
in a central location and broadcasted out to many connected clients safely and
predictably. Demonstrating the quality of the modules being developed with the
Node community, we created a collaborative code editing system through the use
of operational transformation.

In the next chapter we will be looking at how to coordinate the efforts of multiple
Node processes running simultaneously. Through examples, we will learn how
to achieve parallel processing with Node, from spawning many child processes
running Unix programs to creating clusters of load-balancing Node socket servers.

Utilizing Multiple Processes
"It is a very sad thing that nowadays there is so little useless information."

—Oscar Wilde

The importance of I/O efficiency is not lost on those witnessing the rapidly
increasing volume of data being produced within a growing number of applications.
User-generated content (blogs, videos, tweets, posts) is becoming the premier type of
internet content, and this trend has moved in tandem with the rise of social software,
where mapping the intersections between content generates an exponential rise in
yet another level of data.

A number of data silos, such as Google, Facebook, and hundreds of others, expose
their data to the public through an API, often for free. These networks each gather
astounding volumes of content, opinions, relationships, and so forth from their users,
data further augmented by market research and various types of traffic and usage
analysis. Most of these APIs are two-way, gathering and storing data uploaded by
their members as well as serving that data.

Node has arrived during this period of data expansion. In this chapter we will
investigate how Node addresses this need for sorting, merging, searching, and
otherwise manipulating large amounts of data. Fine-tuning your software, so that it
can process large amounts of data safely and inexpensively, is critical when building
fast and scalable network applications.

We will deal with specific scaling issues in the next chapter. In this chapter we will
study some best practices when designing systems where multiple Node processes
work together on large volumes of data.

Utilizing Multiple Processes

[184]

As part of that discussion, we will be investigating strategies for parallelism when
building data-heavy applications, focused on how to take advantage of multiple
CPU environments, use multiple workers, and leverage the OS itself to achieve
the efficiency of parallelism. The process of assembling applications out of these
contained and efficient processing units will be demonstrated by example.

As noted in Chapter 5, Managing Many Simultaneous Client Connections, concurrency is
not the same as parallelism. The goal of concurrency is good structure for programs,
where modeling the complexities inherent in juggling multiple simultaneous
processes is simplified. The goal of parallelism is to increase application performance
by sharing parts of a task or computation across many workers. It is useful to
recall Clinger's vision of "…dozens, hundreds or even thousands of independent
microprocessors, each with its own local memory and communications processor,
communicating via a high-performance communications network."

We've already discussed how Node helps us reason about non-deterministic control
flow. Let's also recall how Node's designers follow the Rule Of Modularity, which
encourages us to write simple parts connected by clean interfaces. This rule leads
to a preference for simple networked processes communicating with each other
using a common protocol. An associated rule is the Rule of Simplicity, stated
as follows:

Developers should design for simplicity by looking for ways to break up program
systems into small, straightforward cooperating pieces. This rule aims to
discourage developers' affection for writing "intricate and beautiful complexities"
that are in reality bug prone programs.

—http://en.wikipedia.org/wiki/Unix_philosophy

It is good to keep this rule in mind as we proceed through this chapter. To tame
expanding data volume we can build enormous, complex, and powerful monoliths
in the hope that they will remain big and powerful enough. Alternatively, we
can build small and useful units of processing that can be combined into a single
processing team of any size, not unlike the way that supercomputers can be built out
of many thousands or millions of cheap commodity processors.

Chapter 7

[185]

A process viewer will be useful while working through this chapter. A good one for
Unix systems is htop, which can be downloaded from http://htop.sourceforge.
net/. This tool provides, among other things, a view into CPU and memory usage;
here we see how load is spread across all eight cores:

Node's single-threaded model
Taken in its entirety, the Node environment usefully demonstrates both the efficiency
of multithreaded parallelism and an expressive syntax amenable to applications
featuring high concurrency. Using Node does not constrain the developer, the
developer's access to system resources, or the types of applications the developer
might like to build.

Nevertheless, a surprising number of persistent criticisms of Node are based on this
misunderstanding. As we'll see, the belief that Node is not multithreaded and is,
therefore, slow, or not ready for prime time, simply misses the point. JavaScript
is single-threaded; the Node stack is not. JavaScript represents the language used
to coordinate the execution of several multithreaded C++ processes, even the
bespoke C++ add-ons created by you, the developer. Node provides JavaScript,
run through V8, primarily as a tool for modeling concurrency. That, additionally,
one can write an entire application using just JavaScript is simply another benefit of
the platform. You are never stuck with JavaScript—you may write the bulk of your
application in C++ if that is your choice.

In this chapter we will attempt to dismantle these misunderstandings, clearing the
way for optimistic development with Node. In particular, we will study techniques for
spreading effort across cores, processes, and threads. For now, this section will attempt
to clarify how much a single thread is capable of (hint: it's usually all you need).

Utilizing Multiple Processes

[186]

The benefits of single-threaded programming
You will be hard-pressed to find any significant number of professional software
engineers working on enterprise-grade software willing to deny that multithreaded
software development is painful. However, why is it so hard to do well?

It is not that multithreaded programming is difficult per se—the difficultly lies
in the complexity of thread synchronization. It is very difficult to build high
concurrency using the thread model, especially models in which the state is shared.
Anticipating every way that an action taken in one thread might affect all the others
is nearly impossible once an application grows beyond the most basic of shapes.
Entanglements and collisions multiply rapidly, sometimes corrupting shared
memory, sometimes creating bugs nearly impossible to track down.

Node's designers chose to recognize the speed and parallelization advantages
of threads without demanding that developers did the same. In particular, Node's
designers wanted to save developers from managing the difficulties that accompany
threaded systems:

•	 Shared memory and the locking behavior leads to systems that are very
difficult to reason about as they grow in complexity.

•	 Communication between tasks requires the implementation of a wide range
of synchronization primitives, such as mutexes and semaphores, condition
variables and so forth. An already challenging environment requires highly
complex tools, expanding the level of expertise necessary to complete even
relatively simple systems.

•	 Race conditions and deadlocks are common pitfalls in these sorts of systems.
Contemporaneous read and write operations within a shared program
space lead to problems of sequencing, where two threads may be in an
unpredictable "race" for the right to influence a state, event, or other key
system characteristic.

•	 Because maintaining dependable boundaries between threads and their states
is so difficult, ensuring that a library (what for Node would be a "module")
is thread-safe consumes a great deal of developer time. Can I know that this
library will not destroy some part of my application? Guaranteeing thread
safety requires great diligence on the part of a library's developer and these
guarantees may be conditional: for example, a library may be thread-safe
when reading—but not when writing.

Chapter 7

[187]

The primary argument for single-threading is that control flow is difficult in
concurrent environments, and especially so when memory access or code execution
order is unpredictable:

•	 Instead of concerning themselves with arbitrary locking and other
collisions, developers can focus on constructing execution chains whose
ordering is predictable.

•	 Because parallelization is accomplished through the use of multiple
processes, each with an individual and distinct memory space,
communication between processes remains uncomplicated—via the Rule
of Simplicity we achieve not only simple and bug-free components, but
easier interoperability as well.

•	 Because state is not (arbitrarily) shared between individual Node processes,
a single process is automatically protected from surprise visits from other
processes bent on memory reallocation or resource monopolization.
Communication is through clear channels using basic protocols, all of which
makes it very hard to write programs that make unpredictable changes
across processes.

•	 Thread-safety is one less concern for developers to waste time worrying
about. Because single-threaded concurrency obviates the collisions present
in multithreaded concurrency, development can proceed more quickly,
on surer ground.

Client Client

Threads, each thread
sharing state, requiring access
blocking and other exclusions

MULTI-THREADING
SINGLE-THREADED,
ASYNCHRONOUS

Independent processes no shared state.
Filtered data passed via messaging–

no collisions

X

XX

Utilizing Multiple Processes

[188]

A single thread efficiently managed by an event loop brings stability, maintainability,
readability, and resilience to Node programs. The big news is that Node continues
to deliver the speed and power of multithreading to its developers—the brilliance
of Node's design makes such power transparent, reflecting one part of Node's stated
aim of bringing the most power to the most people with the least difficulty.

In the preceding diagram, the differences between two single-threaded models and
a multithreaded model are shown.

There is no escape from blocking operations—reading from a file, for example,
will always take some time. A single-threaded synchronous model forces each task
to wait for others to finish prior to starting, consuming more time. Several tasks
can be started in parallel using threads, even at different times, where total
execution time is no longer than that taken by the longest running thread. When
using threads, the developer becomes responsible for synchronizing the activity
of each individual thread, using locks or other scheduling tools. This can become
very complex when the number of threads increases, and in this complexity lives
very subtle and hard-to-find bugs.

Chapter 7

[189]

Rather than having the developer struggle with this complexity, Node itself manages
I/O threads. You need not micromanage I/O threading; one simply designs an
application to establish data availability points (callbacks) and the instructions to
be executed once the said data is available. Threads provide the same efficiency
under the hood, yet their management is exposed to the developer through an easily
comprehensible interface.

Multithreading is already native and
transparent
Node's I/O thread pool executes within the OS scope, and its work is distributed
across cores (just as any other job scheduled by the OS would be similarly
distributed). When you are running Node, you are already taking advantage of its
multithreaded execution.

In the upcoming discussion of child processes and the Cluster module, we will see
this style of parallelism—of multiple parallel processes—in action. We will see how
Node is not denied the full power of an OS.

As we saw earlier, when discussing Node's core architecture, the V8 thread in
which one executes JavaScript programs is bound to libuv, which functions as
the main, system-level, I/O event dispatcher. In this capacity, libuv handles
the timers, filesystem calls, network calls, and other I/O operations requested
by the relevant JavaScript process or module commands, such as fs.readFile,
http.createServer, and so on. Therefore, the main V8 event loop is best
understood as a control-flow programming interface, supported and powered
by the highly-efficient, multithreaded, system delegate libuv.

Burt Belder, one of Node's core contributors, is also one of the core contributors
to libuv. In fact, Node's development has provoked a simultaneous increase in
libuv development, a feedback loop that has only improved the speed and stability
of both projects. It has merged and replaced the libeo and libev libraries that
formed the original core of Node's stack.

Consider another of Raymond's rules, the Rule of Separation: "Separate policy
from mechanism; separate interfaces from engines". The engine that powers Node's
asynchronous, event-driven style of programming is libuv; the interface to that
engine is V8's JavaScript runtime. Continuing with Raymond:

One way to effect that separation is, for example, to write your application as a
library of C service routines that are driven by an embedded scripting language,
with the application flow of control written in the scripting language rather than C.

Utilizing Multiple Processes

[190]

The ability to orchestrate hyper-efficient parallel OS processes within the abstraction
of a single predictable thread exists by design, not as a concession. It concludes
a pragmatic analysis of how the application development process can be improved,
and it is certainly not a limitation on what is possible.

A detailed unpacking of libuv can be found at http://nikhilm.
github.io/uvbook/. Burt Belder also gives an in-depth talk on
how libuv works under the hood at http://www.youtube.
com/watch?v=nGn60vDSxQ4.

Creating child processes
Software development is no longer the realm of monolithic programs. Applications
running on networks cannot forego interoperability. Modern applications are
distributed and decoupled. We now build applications that connect users with
resources distributed across the Internet. Many users are accessing shared resources
simultaneously. A complex system is easier to understand if the whole is understood
as a collection of interfaces to programs that solve one or a few clearly defined, related
problems. In such a system it is expected (and desirable) that processes do not sit idle.

An early criticism of Node was that it did not have multicore awareness. That is,
if a Node server were running on a machine with several cores, it would not be
able to take advantage of this extra horsepower. Within this seemingly reasonable
criticism hid an unjustified bias based on a straw man: a program that is unable
to explicitly allocate memory and execution "threads" in order to implement
parallelization cannot handle enterprise-grade problems.

This criticism is a persistent one. It is also not true.

While a single Node process runs on a single core, any number of Node processes
can be "spun up" through use of the child_process module. Basic usage of this
module is straightforward: we fetch a ChildProcess object, and listen for data
events. This example will call the Unix command ls, listing the current directory:

var spawn = require('child_process').spawn;
var ls = spawn('ls', ['-lh', '.']);
ls.stdout.on('readable', function() {
 var d = this.read();
 d && console.log(d.toString());
});
ls.on('close', function(code) {
 console.log('child process exited with code ' + code);
});

Chapter 7

[191]

Here, we spawn the ls process (list directory), and read from the resulting readable
Stream, receiving something like:

-rw-r--r-- 1 root root 43 Jul 9 19:44 index.html

-rw-rw-r-- 1 root root 278 Jul 15 16:36 child_example.js

-rw-r--r-- 1 root root 1.2K Jul 14 19:08 server.js

child process exited with code 0

Any number of child processes can be spawned in this way. It is important to
note here that when a child process is spawned, or otherwise created, the OS itself
assigns the responsibility for that process to a given CPU. Node is not responsible
for how an OS allocates resources. The upshot is that on a machine with eight
cores it is likely that spawning eight processes will result in each being allocated
to independent processors. In other words, child processes are automatically
spread by the OS across CPUs, putting the lie to claims that Node cannot take
full advantage of multicore environments.

Each new Node process (child) is allocated 10 MB of memory, and
represents a new V8 instance that will take at least 30 milliseconds to
start up. While it is unlikely that you will be spawning many thousands
of these processes, understanding how to query and set OS limits on
user-created processes is beneficial. htop or top will report the number
of processes currently running, or you can use ps aux | wc –l from
the command line. The Unix command ulimit (http://ss64.com/
bash/ulimit.html) provides important information on user limits
on an OS. Passing ulimit, the –u argument will show the maximum
number of user processes that can be spawned. Changing the limit is
accomplished by passing it as an argument: ulimit –u 8192.

The child_process module represents a class exposing four main methods: spawn,
fork, exec, and execFile. These methods return a ChildProcess object that
extends EventEmitter, exposing an interface to child events and a few functions
that are helpful to managing child processes. We'll take a look at its main methods,
and follow up with a discussion of the common ChildProcess interface.

Utilizing Multiple Processes

[192]

Spawning processes
This powerful command allows a Node program to start and interact with processes
spawned via system commands. In the preceding example, we used spawn to call
a native OS process, ls, passing that command the lh and . arguments. In this way,
any process can be started just as one might start it via a command line. The method
takes three arguments:

•	 command: A command to be executed by the OS shell
•	 arguments (optional): These are command-line arguments, sent as an array
•	 options: An optional map of settings for spawn

The options for spawn allow its behavior to be carefully customized:

•	 cwd (String): By default, the command will understand its current working
directory to be the same as that of the Node process calling spawn. Change
that setting using this directive.

•	 env (Object): This is used to pass environment variables to a child process.
For instance, consider spawning a child with an environment object such
as the following:
{
 name : "Sandro",
 role : "admin"
}

The child process environment will have access to these values.

•	 detached (Boolean): When a parent spawns a child, both processes form
a group, and the parent is normally the leader of that group. To make a child
the group leader, use detached. This will allow the child to continue running
even after the parent exits. This is because the parent will wait for the child
to exit by default. You can call child.unref() to tell the parent's event loop
that it should not count the child reference, and exit if no other work exists.

•	 uid (Number): Set the uid (user identity) directive for the child process,
in terms of standard system permissions, such as a UID that has execute
privileges on the child process.

•	 gid (Number): Set the gid (group identity) directive for the child process,
in terms of standard system permissions, such as a GID that has execute
privileges on the child process.

Chapter 7

[193]

•	 stdio (String or Array): Child processes have file descriptors, the first
three being the standard I/O descriptors process.stdin, process.stdout
and process.stderr, in order (fds = 0,1,2). This directive allows those
descriptors to be redefined, inherited, and so forth.
Consider the output of the following child process program:
process.stdout.write(new Buffer("Hello!"));

Here, a parent would listen on child.stdout. If instead we want a child to
inherit its parent's stdio, such that when the child writes to process.stdout
what is emitted is piped through to the parent's process.stdout, we would
pass the relevant parent file descriptors to the child, overriding its own:
spawn("node", ['./reader.js', './afile.txt'], {
 stdio: [process.stdin, process.stdout, process.stderr]
});

In this case, the child's output would pipe straight through to the parent's
standard output channel. Also, see fork, below, for more information on this
kind of pattern.
Each of the three (or more) file descriptors can take one of six values:

°° pipe: This creates a pipe between the child and the parent. As the
first three child file descriptors are already exposed to the parent
(child.stdin, child.stdout, and child.stderr) this is only
necessary in more complex child implementations.

°° ipc: This creates an IPC channel for passing messages between
a child and parent. A child process may have a maximum of one IPC
file descriptor. Once this connection is established, the parent may
communicate with the child via child.send. If the child sends JSON
messages through this file descriptor, those emissions can be caught
by using child.on("message"). If running a Node program as
a child, it is likely a better choice to use ChildProcess.fork, which
has this messaging channel built in.

°° ignore: The file descriptors 0-2 will have /dev/null attached to
them. For others, the referenced file descriptor will not be set on
the child.

°° A stream object: This allows the parent to share a stream with
the child. For demonstration purposes, given a child that will write
the same content to any provided WritableStream, we could do
something like this:

var writer = fs.createWriteStream("./a.out");
writer.on('open', function() {

Utilizing Multiple Processes

[194]

 var cp = spawn("node", ['./reader.js'], {
 stdio: [null, writer, null]
 });
});

The child will now fetch its content and pipe it to whichever output
stream it has been sent:

fs.createReadStream('cached.data').pipe(process.stdout);

°° An integer: A file descriptor id.
°° null and undefined: These are the default values. For file

descriptors 0-2 (stdin, stdout, and stderr) a pipe is created. Others
default to ignore.

In addition to passing stdio settings as an array, certain common groupings can
be implemented by passing a shortcut string value:

•	 'ignore' = ['ignore', 'ignore', 'ignore']

•	 'pipe' = ['pipe', 'pipe', 'pipe']

•	 'inherit' = [process.stdin, process.stdout, process.stderr]
or [0,1,2]

We have shown some examples of using spawn to run Node
programs as child processes. While this is a perfectly valid usage
(and a good way to try out the API options), spawn is primarily for
running system commands. See the discussion of fork, below, for
more information on running Node processes as children.

It should be noted that the ability to spawn any system process means that one can
use Node to run other application environments installed on the OS. If one had the
popular PHP language installed, the following would be possible:

var spawn = require('child_process').spawn;

var php = spawn("php", ['-r', 'print "Hello from PHP!";']);

php.stdout.on('readable', function() {
 var d;
 while(d = this.read()) {
 console.log(d.toString());
 }
});

// Hello from PHP!

Chapter 7

[195]

Running a more interesting, larger program would be just as easy.

Apart from the ease with which one might run Java or Ruby or other programs
through Node using this technique, asynchronously, we also have here a good
answer to a persistent criticism of Node: JavaScript is not as fast as other languages
for crunching numbers, or doing other CPU-heavy tasks. This is true, in the
sense that Node is primarily optimized for I/O efficiency and helping with the
management of high-concurrency applications, and JavaScript is an interpreted
language without a strong focus on heavy computation.

However, using spawn, one can very easily pass off massive computations and
long-running routines on analytics engines or calculation engines to separate
processes in other environments. Node's simple event loop will be sure to notify
the main application when those operations are done, seamlessly integrating the
resultant data. In the meantime, the main application is free to keep serving clients.

Forking processes
Like spawn, fork starts a child process, but is designed for running Node programs
with the added benefit of having a communication channel built in. Rather than
passing a system command to fork as its first argument, one passes the path to
a Node program. As with spawn, command-line options can be sent as a second
argument, accessible via process.argv in the forked child process.

An optional options object can be passed as its third argument, with the following
parameters:

•	 cwd (String): By default, the command will understand its current working
directory to be the same as that of the Node process calling fork. Change
that setting using this directive.

•	 env (Object): This is used to pass environment variables to a child process.
See spawn.

•	 encoding (String): This sets the encoding of the communication channel.
•	 execPath (String): This is the executable used to create the child process.
•	 silent (Boolean): By default, a forked child will have its stdio associated

with the parent's (child.stdout is identical to parent.stdout, for
example). Setting this option to true disables this behavior.

An important difference between fork and spawn is that the former's child process
does not automatically exit when it is finished. Such a child must explicitly exit when
it is done, easily accomplished via process.exit().

Utilizing Multiple Processes

[196]

In the following example, we create a child that emits an incrementing number
every tenth of a second, which its parent then dumps to the system console. First,
the child program:

var cnt = 0;

setInterval(function() {
 process.stdout.write(" -> " + cnt++);
}, 100);

Again, this will simply write a steadily increasing number. Remembering that with
fork a child will inherit the stdio of its parent, we only need create the child in
order to get output in a terminal running the parent process:

var fork = require('child_process').fork;
fork('./emitter.js');

// -> 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9 -> 10 ...

The silent option can be demonstrated here. The following
turns off any output to the terminal:

fork('./emitter.js', [], { silent: true });

Creating multiple, parallel processes is easy. Let's multiply the number of children
created:

fork('./emitter.js');
fork('./emitter.js');
fork('./emitter.js');

// 0 -> 0 -> 0 -> 1 -> 1 -> 1 -> 2 -> 2 -> 2 -> 3 -> 3 -> 3 -> 4 ...

It should be clear at this point that by using fork we are creating many parallel
execution contexts, spread across all machine cores.

This is straightforward enough, but the built-in communication channel fork
provides makes communicating with forked children even easier, and cleaner.
Consider the following:

•	 Parent
var fork = require('child_process').fork;
var cp = fork('./child.js');
cp.on('message', function(msgobj) {
 console.log('Parent got message:', msgobj.text);
});

Chapter 7

[197]

cp.send({
 text: "I love you"
});

•	 Child

process.on('message', function(msgobj) {
 console.log('Child got message:', msgobj.text);
 process.send({
 text: msgobj.text + ' too'
 });
});

By executing the parent script, we will see the following in our console:

Child got message: I love you

Parent got message: I love you too

Buffering process output
In cases where the complete buffered output of a child process is sufficient, with no
need to manage data through events, child_process offers the exec method. The
method takes three arguments:

•	 command: A command-line string. Unlike spawn and fork, which pass
arguments to a command via an array, this first argument accepts a full
command string, such as ps aux | grep node.

•	 options: This is an optional argument.
°° cwd (String): This sets the working directory for the command

process.
°° env (Object): This is a map of key-value pairs that will be exposed

to the child process.
°° encoding (String): This is the encoding of the child's data stream.

The default value is 'utf8'.
°° timeout (Number): This specifies the milliseconds to wait for the

process to complete, at which point the child process will be sent
the killSignal.maxBuffer value.

°° killSignal.maxBuffer (Number): This is the maximum number
of bytes allowed on stdout or stderr. When this number is
exceeded, the process is killed. This default is 200 KB.

Utilizing Multiple Processes

[198]

°° killSignal (String): The child process receives this signal after
a timeout. This default is SIGTERM.

•	 callback: This receives three arguments: an Error object, if any; stdout
(a Buffer object containing the result); stderr (a Buffer object containing
error data, if any). If the process was killed, Error.signal will contain the
kill signal.

When you want the buffering behavior of exec but are targeting a Node file, use
execFile. Importantly, execFile does not spawn a new subshell, which makes
it slightly less expensive to run.

Communicating with your child
All instances of the ChildProcess object extend EventEmitter, exposing events
useful for managing child data connections. Additionally, ChildProcess objects
expose some useful methods for interacting with children directly. Let's go through
those now, beginning with attributes and methods:

•	 child.connected: When a child is disconnected from its parent via
child.disconnect(), this flag will be set to false.

•	 child.stdin: This is a WritableStream corresponding to the child's
standard in.

•	 child.stdout: This is a ReadableStream corresponding to the child's
standard out.

•	 child.stderr: This is a ReadableStream corresponding to the child's
standard error.

•	 child.pid: This is an integer representing the process ID (PID) assigned
to the child process.

•	 child.kill: This tries to terminate a child process, sending it an optional
signal. If no signal is specified, the default is SIGTERM (for more about signals,
see http://unixhelp.ed.ac.uk/CGI/man-cgi?signal+7). While the method
name sounds terminal, it is not guaranteed to kill a process—it only sends
a signal to a process. Dangerously, if kill is attempted on a process that has
already exited, it is possible that another process that has been newly assigned
the PID of the dead process will receive the signal, with indeterminable
consequences. This method should fire a close event, which the signal used
to close the process.

Chapter 7

[199]

•	 child.disconnect(): This command severs the IPC connection between
the child and its parent. The child will then die gracefully, as it has no IPC
channel to keep it alive. You may also call process.disconnect() from
within the child itself. Once a child has disconnected, the connected flag
on that child reference will be set to false.

Sending messages to children
As we saw in our discussion of fork, and when using the ipc option on spawn, child
processes can be sent messages via child.send, with the message passed as the first
argument. A TCP server, or socket handle, can be passed along with the message
as a second argument. In this way, a TCP server can spread requests across multiple
child processes. For example, the following server distributes socket handling across
a number of child processes equaling the total number of CPUs available. Each forked
child is given a unique ID, which it reports when started. Whenever the TCP server
receives a socket, that socket is passed as a handle to a random child process. That
child process then sends a unique response, demonstrating that socket handling
is being distributed.

•	 Parent
var fork = require('child_process').fork;
var net = require('net');
var children = [];

require('os').cpus().forEach(function(f, idx) {
 children.push(fork("./child.js", [idx]));
});

net.createServer(function(socket) {
 var rand = Math.floor(Math.random() * children.length);
 children[rand].send(null, socket);
}).listen(8080);

•	 Child

var id = process.argv[2];
process.on('message', function(n, socket) {
 socket.write('child ' + id + ' was your server today.\r\n');
 socket.end();
});

Utilizing Multiple Processes

[200]

Start the parent server in a terminal window. In another window, run telnet
127.0.0.1 8080. You should see something similar to the following output, with
a random child ID being displayed on each connection (assuming there exist
multiple cores):

Trying 127.0.0.1...

…

child 3 was your server today.

Connection closed by foreign host.

Parsing a file using multiple processes
One of the tasks many developers will take on is the building of a logfile processor.
A logfile can be very large and many megabytes long. Any single program working
on a very large file can easily run into memory problems or simply run much too
slowly. It makes sense to process a large file in pieces. We're going to build a simple
log processor that breaks up a big file into pieces and assigns one to each of several
child workers, running them in parallel.

The entire code for this example can be found in the logproc folder of the code
bundle. We will focus on the main routines:

•	 Determining the number of lines in the logfile
•	 Breaking those up into equal chunks
•	 Creating one child for each chunk and passing it parse instructions
•	 Assembling and displaying the results

To get the word count of our file, we use the wc command with child.exec as
shown in the following code:

child.exec("wc -l " + filename, function(e, fL) {
 fileLength = parseInt(fL.replace(filename, ""));
 var fileRanges = [];
 var oStart = 1;
 var oEnd = fileChunkLength;

 while(oStart < fileLength) {
 fileRanges.push({
 offsetStart : oStart,
 offsetEnd : oEnd
 })

Chapter 7

[201]

 oStart = oEnd + 1;
 oEnd = Math.min(oStart + fileChunkLength, fileLength);
 }

Let's say we use fileChunkLength of 500,000 lines. This means four child processes
are to be created, and each will be told to process a range of 500,000 lines in our file,
such as 1 to 500,000:

var w = child.fork('bin/worker');
w.send({
 file : filename,
 offsetStart : range.offsetStart,
 offsetEnd : range.offsetEnd
});
w.on('message', function(chunkData) {
 // pass results data on to a reducer.
});

Each of these workers will themselves use a child process to grab their allotted
chunk, employing sed, the native Stream Editor for Unix:

process.on('message', function(m) {
 var filename = m.file;

 var sed = "sed -n '" + m.offsetStart + "," + m.offsetEnd + "p' " +
filename;

 var reader = require('child_process').exec(sed, {
 maxBuffer : 1024 * 1000000
 }, function(err, data, stderr) {

 // Split the file chunk into lines and process it.
 //
 data = data.split("\n");
 ...

Utilizing Multiple Processes

[202]

Here we are executing the command sed –n '500001,1000001p' logfile.txt,
which plucks the given range of lines and returns them for processing. Once we're
done processing the columns of data (adding them up, and so forth), this child will
return its data to the master (as previously described) and the data results will be
written to a file, otherwise manipulated, or sent to stdout, as shown in
the following output:

The full file for this example is much longer, but all of that extra code is merely
formatting and other detail—the Node child process management we have described
suffices to create a parallelized system for number crunching that will process many
millions of lines of code in seconds. By using more processes, spread across more
cores, the log parsing speed can be reduced even further.

Once you have the logproc folder, run the command npm install,
and execute an example log parse with the command node bin/
master.js –f ./short.log –rmin 0 –rmax 20. You should see
a simple distribution mapping of the data contained in short.log. Go
ahead and play with the numbers.

Chapter 7

[203]

Using the cluster module
As we saw when processing large logfiles, the pattern of a master parent controller
for many child processes is just right for vertical scaling in Node. In response to
this, the Node API has been augmented by a cluster module, which formalizes
this pattern and helps to make its achievement easier. Continuing with Node's core
purpose of helping to make scalable network software easier to build, the particular
goal of cluster is to facilitate the sharing of network ports amongst many children.

For example, the following code creates a cluster of worker processes all sharing
the same HTTP connection:

var cluster = require('cluster');
var http = require('http');
var numCPUs = require('os').cpus().length;

if(cluster.isMaster) {
 for(var i = 0; i < numCPUs; i++) {
 cluster.fork();
 }
}

if(cluster.isWorker) {
 http.createServer(function(req, res) {
 res.writeHead(200);
 res.end("Hello from " + cluster.worker.id);
 }).listen(8080);
}

We'll dig into the details shortly. For now, notice that cluster.fork has taken
zero arguments. What does fork without a command or file argument do? Within
a cluster, the default action is to fork the current program. We see during cluster.
isMaster, the action is to fork children (one for each available CPU). When this
program is re-executed in a forking context, cluster.isWorker will be true and
a new HTTP server running on a shared port is started. Multiple processes are
sharing the load for a single server.

Start and connect to this server with a browser. You will see something like Hello
from 8, the integer corresponding to the unique cluster.worker.id value of the
worker that assigned responsibility for handling your request. Balancing across all
workers is handled automatically, such that refreshing your browser a few times
will result in different worker IDs being displayed.

Utilizing Multiple Processes

[204]

Later on, we'll go through an example of sharing a socket server across a cluster.
For now, we'll lay out the cluster API, which breaks down into two sections: the
methods, attributes, and events available to the cluster master, and those available
to the child. As workers in this context are defined using fork, the documentation
for that method of child_process can applied here as well.

•	 cluster.isMaster: This is the Boolean value indicating whether the process
is a master.

•	 cluster.isWorker: This is the Boolean value indicating whether the process
was forked from a master.

•	 cluster.worker: This will bear a reference to the current worker object, only
available to a child process.

•	 cluster.workers: This is a hash containing references to all active worker
objects, keyed by the worker ID. Use this to loop through all worker objects.
This only exists within the master process.

•	 cluster.setupMaster([settings]): This is a convenient way of passing
a map of default arguments to be used when a child is forked. If all children
are going to fork the same file (as is often the case), you will save time by
setting it here. The available defaults are as follows:

°° exec (String): This is the file path to the process file, defaulting
to __filename.

°° args (Array): This contains Strings sent as arguments to the child
process. The default is to fetch arguments with process.argv.
slice(2).

°° silent (Boolean): This specifies whether or not to send output
to the master's stdio, defaulting to false.

•	 cluster.fork([env]): This creates a new worker process. Only the master
process may call this method. To expose a map of key-value pairs to the
child's process environment, send an object to env.

•	 cluster.disconnect([callback]): This is used to terminate all workers
in a cluster. Once all the workers have died gracefully, the cluster process
will itself terminate if it has no further events to wait on. To be notified
when all children have expired, pass callback.

Chapter 7

[205]

Cluster events
The cluster object emits several events listed as follows:

•	 fork: This is fired when the master tries to fork a new child. This is not the
same as online. This receives a worker object.

•	 online: This is fired when the master receives notification that a child is fully
bound. This differs from the fork event and receives a worker object.

•	 listening: When the worker performs an action that requires a listen()
call (such as starting an HTTP server), this event will be fired in the master.
The event emits two arguments: a worker object, and the address object
containing the address, port, and addressType values of the connection.

•	 disconnect: This is called whenever a child disconnects, which can happen
either through process exit events or after calling child.kill(). This will fire
prior to the exit event—they are not the same. This receives a worker object.

•	 exit: Whenever a child dies this event is emitted. The event receives three
arguments: a worker object, the exit code number, and the signal string, such
as SIGNUP, which caused the process to be killed.

•	 setup: This is called after cluster.setupMaster has executed.

Worker object properties
Workers have the following attributes and methods:

•	 worker.id: This is the unique ID assigned to a worker, also representing the
worker's key in the cluster.workers index.

•	 worker.process: This specifies a ChildProcess object referencing a worker.
•	 worker.suicide: The workers that have recently had kill or disconnect

called on them will have their suicide attribute set to true.
•	 worker.send(message, [sendHandle]): Refer to child_process.fork(),

which is previously mentioned.
•	 worker.kill([signal]): This kills a worker. The master can check this

worker's suicide property in order to determine if the death was intentional
or accidental. The default signal value that is sent is SIGTERM.

•	 worker.disconnect(): This instructs a worker to disconnect. Importantly,
existing connections to the worker are not immediately terminated (as with
kill), but are allowed to exit normally prior to the worker fully disconnecting.
This is because existing connections may stay in existence for a very long time.
It is a good pattern to regularly check if the worker has actually disconnected,
perhaps using timeouts.

Utilizing Multiple Processes

[206]

Worker events
Workers also emit events, such as the ones mentioned in the following list:

•	 message: See child_process.fork
•	 online: This is identical to cluster.online, except that the check is against

only the specified worker
•	 listening: This is identical to cluster.listening, except that the check

is against only the specified worker
•	 disconnect: This is identical to cluster.disconnect, except that the check

is against only the specified worker
•	 exit: See the exit event for child_process
•	 setup: This is called after cluster.setupMaster has executed

Now, using what we now know about the cluster module, let's implement
a real-time tool for analyzing the streams of data emitted by many users
simultaneously interacting with an application.

Real-time activity updates of multiple
worker results
Using what we've learned we are going to construct a multiprocess system to track
the behavior of all visitors to a sample web page. This will be composed of two main
segments: a WebSocket-powered client library, which will broadcast each time a user
moves a mouse, and an administration interface visualizing user interaction as well
as when a user connects and disconnects from the system. Our goal is to show how
a more complex system might be designed (such as one that tracks and graphs every
click, swipe, or other interaction a user might make). The final administration interface
will show activity graphs for several users and resemble this:

Chapter 7

[207]

Because this system will be tracking the X and Y positions of each mouse motion
made by all users, we will spread this continuous stream of data across all available
machine cores using cluster, with each worker in the cluster sharing the burden of
carrying the large amounts of socket data being fed into a single, shared port.

A good place to start is in designing the mock client page, which is responsible solely
for catching all mouse movement events and broadcasting them, through a WebSocket,
to our clustered socket server. We are using the native WebSocket implementation;
you may want to use a library to handle older browsers (such as Socket.IO):

<head>
 <script>
 var connection = new WebSocket('ws://127.0.0.1:8081', ['json']);
 connection.onopen = function() {
 var userId = 'user' + Math.floor(Math.random()*10e10);
 document.onmousemove = function(e) {
 connection.send(JSON.stringify({
 id : userId,
 x : e.x,

Utilizing Multiple Processes

[208]

 y : e.y
 }));
 }
 };
 </script>
</head>

Here, we need to simply turn on the basic mousemove tracking, which will broadcast
the position of a user's mouse on each movement to our socket. Additionally, we
send along a unique user ID, as a tracking client identity will be important to us
later on. Note that in a production environment you will want to implement a more
intelligent unique ID generator, likely though a server-side authentication module.

In order for this information to reach other clients, a centralized socket server must
be set up. As mentioned, we will want this socket server to be clustered. Clustered
child processes, each duplicates of the following program, will handle mouse data
sent by clients:

var SServer = require('ws').Server;
var socketServer = new SServer({
port: 8081
});
socketServer.on('connection', function(socket) {
 var lastMessage = null;
 var kill = function() {
 if(lastMessage) {
process.send({
 kill : lastMessage.id
 });
 }
 };
 socket.on('message', function(message) {
 lastMessage = JSON.parse(message);
 process.send(lastMessage);
 });
 socket.on('close', kill);
 socket.on('error', kill);
});

In this demonstration, we are using Einar Otto Stangvik's
very fast and well-designed socket server library, ws, which is
hosted on GitHub at https://github.com/einaros/ws.

Chapter 7

[209]

Thankfully our code remains very simple. We have a socket server listening for
messages (remember that the client is sending an object with mouse X and Y, as well
as a user ID). Finally, when data is received (the message event), we parse the received
JSON into an object and pass that back to our cluster master via process.send. Note
as well how we store the last message (lastMessage), done for bookkeeping reasons,
as when a connection terminates we will need to pass along the last user ID seen on
this connection to administrators.

The pieces to catch client data broadcasts are now set up. Once this data is received,
how is it passed to the administration interface previously pictured?

We've designed this system with scaling in mind, and we want to decouple the
collection of data from the systems that broadcast data. Our cluster of socket
servers can accept a constant flow of data from many thousands of clients, and
should be optimized for doing just that. In other words, the cluster should delegate
the responsibility for broadcasting mouse activity data to another system, even
to other servers.

In the next chapter we will look at more advanced scaling and messaging tools, such
as message queues and UDP broadcasting. For our purposes here, we will simply
create an HTTP server responsible for managing connections from administrators,
and broadcasting mouse activity updates to them. We will use SSE for this, as the
data flow need only be one-way, from server to client.

The HTTP server will implement a very basic validation system for administrator
logins, holding on to successful connections in a way that will allow our socket
cluster to broadcast mouse activity updates to all. It will also serve as a basic static
file server, sending both the client and administration HTML when requested,
though we will focus only on how it handles two routes: admin/adminname;
and /receive/adminname. Once the server is understood, we will then go into
how our socket cluster connects to it.

The first route /admin/adminname is mostly responsible for validating administrator
login, also ensuring that this is not a duplicate login. Once that identity is established,
we can send back an HTML page to the administration interface. The specific client
code used to draw the graphs previously pictured won't be discussed here. What
we do need is an SSE connection to our server such that the interface's graphing
tools receive real-time updates of mouse activity. Some JavaScript on the returned
administrator's page establishes such a connection:

var ev = new EventSource('/receive/adminname');
ev.addEventListener("open", function() {
 console.log("Connection opened");
});

Utilizing Multiple Processes

[210]

ev.addEventListener("message", function(data) {
 // Do something with mouse data, like graph it.
}

On our server we implement the /receive/adminname route:

if(method === "receive") {
 // Unknown admin; reject
 if(!admins[adminId]) {
 return response.end();
 }
 response.writeHead(200, {
 "Content-Type": "text/event-stream",
 "Cache-Control": "no-cache",
 "Connection": "keep-alive"
 });
 response.write(":" + Array(2049).join(" ") + "\n");
 response.write("retry: 2000\n");
 response.on("close", function() {
 admins[adminId] = {};
 });
 setInterval(function() {
 response.write("data: PING\n\n");
 }, 15000);

 admins[adminId].socket = response;
 return;
}

The main purpose of this route is to establish an SSE connection and to store the
administrator's connection, such that we can later broadcast to it.

Chapter 7

[211]

We will now add the pieces that will pass mouse activity data along to a visualization
interface. Scaling this subsystem across cores using the cluster module is our next
step. The cluster master now simply needs to wait for mouse data from its socket-
serving children, as previously described.

We will use the same ideas presented in the earlier discussion of cluster, simply
forking the preceding socket server code across all available CPUs:

if(cluster.isMaster) {
 var i;
 for(i=0; i < numCPUs; i++) {
 cluster.fork();
 }
 cluster
 .on('exit', function(worker, code, signal) {
 console.log('worker ' + worker.process.pid + ' died');
 })
 // ...adding other listeners as needed

 // Set up socket worker listeners
 Object.keys(cluster.workers).forEach(function(id) {
 cluster.workers[id].on('message', function(msg) {
 var a;
 for(a in admins) {
 if(admins[a].socket) {
 admins[a].socket.write("data: " + JSON.stringify(msg) +
"\n\n");
 }
 }
 });
 });
}

Mouse activity data pipes into a cluster worker through a socket and is broadcasted
via process.send to the cluster master previously described. On each worker
message we run through all connected administrators and send mouse data to their
visualization interfaces, using SSE. The administrators can now watch for the arrival
and exit of clients, as well as their individual level of activity.

Utilizing Multiple Processes

[212]

Summary
This is the first chapter where we've really begun to test Node's scalability goal.
Having considered the various arguments for and against different ways of thinking
about concurrency and parallelism, we arrived at an understanding of how Node has
successfully maintained the advantages of threading and parallel processing while
wrapping all of that complexity within a concurrency model that is both easy
to reason about and robust.

Having gone deeper into how processes work, and in particular how child processes
can communicate with each other, even spawn further children, we looked at two use
cases. An example of how to combine native Unix command processes seamlessly
with custom Node processes led us to a performant and straightforward technique
for processing large files. The cluster module was then applied to the problem
of how to share responsibility for handling a busy socket between multiple workers,
this ability to share socket handles between processes demonstrating a powerful aspect
of Node's design.

Having seen how Node applications might be scaled vertically, we can now look
into horizontal scaling across many systems and servers. In the next chapter we'll
learn how to connect Node with third-party services, such as Amazon and Facebook,
communicate across networks with message queues, set up multiple Node servers
behind proxies, and more.

Scaling Your Application
Evolution is a process of constant branching and expansion.

—Stephen Jay Gould

Scalability and performance are not the same thing:

The terms "performance" and "scalability" are commonly used interchangeably,
but the two are distinct: performance measures the speed with which a single request
can be executed, while scalability measures the ability of a request to maintain its
performance under increasing load. For example, the performance of a request may
be reported as generating a valid response within three seconds, but the scalability
of the request measures the request's ability to maintain that three-second response
time as the user load increases.

—Steven Haines, "Pro Java EE 5"

In the previous chapter we looked at how Node clusters might be used to increase
the performance of an application. Through the use of clusters of processes and
workers we've learned how to efficiently deliver results in the face of many
simultaneous requests. We learned to scale Node vertically, keeping the same
footprint (a single server) and increasing throughput by piling on the power of
available CPUs.

In this chapter we will focus on horizontal scalability: the idea is that an application
composed of self-sufficient and independent units (servers) can be scaled by adding
more units without altering the application's code.

Scaling Your Application

[214]

We want to create an architecture within which any number of optimized and
encapsulated Node-powered servers can be added or subtracted in response to
changing demands, dynamically scaling without ever requiring a system rewrite.
We want to share work across different systems, pushing requests to the OS, to
another server, to a third-party service, while coordinating those I/O operations
intelligently using Node's evented approach to concurrency.

Through architectural parallelism, our systems can manage increased data
volume more efficiently. Specialized systems can be isolated when necessary, even
independently scaled or otherwise clustered.

Node is particularly well suited to handle two key aspects of horizontally
scaled architectures.

First, Node enforces non-blocking I/O, such that the seizing up of any one unit will
not cause a cascade of locking that brings down an entire application. Because no
single I/O operation will block the entire system, integrating third-party services can
be done with confidence, encouraging a decoupled architecture.

Second, Node places great importance on supporting as many fast network
communication protocols as possible. Whether through a shared database, a shared
filesystem, or a message queue, Node's efficient network and Stream layers allow
many servers to synchronize their efforts in balancing load. Being able to efficiently
manage shared socket connections, for instance, helps when scaling out a cluster of
servers as much as it does a cluster of processes.

In this chapter we will look at how to balance traffic between many servers running
Node, how these distinct servers can communicate, and how these clusters can bind
to and benefit from specialized cloud services.

When to scale?
The theory around application scaling is a complex and interesting topic that
continues to be refined and expanded. A comprehensive discussion of the topic
would require several books, curated for different environments and needs. For our
purposes we will simply learn how to recognize when scaling up (or even scaling
down) is necessary.

Having a flexible architecture that can add and subtract resources as needed is
essential to a resilient scaling strategy. A vertical scaling solution does not always
always suffice (simply adding memory or CPUs will not deliver the necessary
improvements). When should horizontal scaling be considered?

Chapter 8

[215]

One simple but useful way to check the CPU and memory usage
commanded by Node processes running on a server is to use the Unix ps
command, in combination with grep:
ps –A u | grep node

This will list all of your Node processes, and their resource allotments.

Network latency
When network response times are exceeding some threshold, such as each request
taking several seconds, it is likely that the system has gone well past a stable state.

While the easiest way to discover this problem is to wait for customer complaints
about slow websites, it is better to create controlled stress tests against an equivalent
application environment or server.

AB (Apache Bench) is a simple and straightforward way to do blunt stress tests
against a server. This tool can be configured in many ways, but the kind of test you
would do for measuring the network response times for your server is generally
straightforward.

For example, let's test the response times for this simple Node server:

http.createServer(function(request, response) {
 response.writeHeader(200, {"Content-Type": "text/plain"});
 response.write("Hello World");
 response.end();
}).listen(2112)

Here's how one might test running 10000 requests against that server, with a
concurrency of 100 (the number of simultaneous requests):

ab -n 10000 -c 100 http://yourserver.com/

If all goes well, you will receive a report similar to this:

Concurrency Level: 100

Time taken for tests: 9.658 seconds

Complete requests: 10000

Failed requests: 0

Write errors: 0

Total transferred: 1120000 bytes

HTML transferred: 110000 bytes

Requests per second: 1035.42 [#/sec] (mean)

Scaling Your Application

[216]

Time per request: 96.579 [ms] (mean)

Time per request: 0.966 [ms] (mean, across all concurrent requests)

Transfer rate: 113.25 [Kbytes/sec] received

Connection Times (ms)

 min mean[+/-sd] median max

Connect: 0 0 0.4 0 6

Processing: 54 96 11.7 90 136

Waiting: 53 96 11.7 89 136

Total: 54 96 11.6 90 136

Percentage of the requests served within a certain time (ms)

 50% 90

 66% 98

	 …

 99% 133

 100% 136 (longest request)

There is a lot of useful information contained in this report. In particular one should
be looking for failed requests and the percentage of long running requests.

Much more sophisticated testing systems exist, but ab is a good quick-and-dirty
snapshot of performance. Get in the habit of creating testing environments that
mirror your production systems, and testing them.

Running ab on the same server running the Node process you are
testing will of course impact the test speeds. The test runner itself
uses a lot of server resources, so your results will be misleading.
Full documentation for ab can be found in the following link:

http://httpd.apache.org/docs/2.2/programs/ab.html

Hot CPUs
When CPU usage begins to nudge maximums, start to think about increasing the
number of units processing client requests. Remember that while adding one new
CPU to a single-CPU machine will bring immediate and enormous improvements,
adding another CPU to a 32-core machine will not necessarily bring an equal
improvement. Slowdowns are not always about slow calculations.

Chapter 8

[217]

As mentioned earlier, htop is a great way to get a quick overview of your server's
performance. Because it visualizes the load being put on each core in real time, it is
a great way to get an idea of what is happening. Additionally, the load average of
your server is nicely summarized with three values. This is a happy server:

Load average: 0.00 0.01 0.00

What do these values mean? What is a "good" or a "bad" load average?

All three numbers are measuring CPU usage, presenting measurements taken at one,
five, and fifteen-minute intervals. Generally it can be expected that short-term load
will be higher than long-term load. If on average over time your server is not overly
stressed, it is likely that clients are having a good experience.

On a single-core machine, load average should remain between 0.00 and 1.00. Any
request will take some. Time—the question is whether the request is taking more time
than necessary— and whether there are delays due to excessive load.

If a CPU can be thought of as a pipe, a measurement of 0.00 means that there is no
excessive friction, or delay, in pushing through a drop of water. A measurement
of 1.00 indicates that our pipe is at its capacity—water is flowing smoothly, but
any additional attempts to push water through will be faced with delays, or
backpressure. This translates into latency on the network, with new requests joining
an ever-growing queue.

A multicore machine simply multiplies the measurement boundary. A machine with
four cores is at its capacity when load average reaches 4.00.

How you choose to react to load averages depends on the specifics of an application.
It is not unusual for servers running mathematical models to see their CPU averages
hit maximum capacity—in such cases you want all available resources dedicated to
performing calculations. A file server running at capacity, on the other hand, is likely
worth investigating.

Generally, a load average above 0.60 should be investigated. Things are not urgent,
but there may be a problem around the corner. A server that regularly reaches 1.00
after all known optimizations have been made is a clear candidate for scaling, as of
course is any server exceeding that average.

Scaling Your Application

[218]

Node also offers native process information via the os module:

var os = require('os');
// Load average, as an Array
console.log(os.loadavg());
// Total and free memory
console.log(os.totalmem());
console.log(os.freemem());
// Information about CPUs, as an Array
console.log(os.cpus());

Socket usage
When the number of persistent socket connections begins to grow past the capacity
of any single Node server, however optimized, it will be necessary to think about
spreading out the servers handling user sockets. Using socket.io it is possible
to check the number of connected clients at any time using the following command:

io.sockets.clients()

In general it is best to track web socket connection counts within the application,
via some sort of tracking/logging system.

Many file descriptors
When the number of file descriptors opened in an OS hovers close to its limit it is
likely that an excessive number of Node processes are active, files are open, or other
file descriptors (such as sockets or named pipes) are in play. If these high numbers
are not due to bugs or a bad design, it is time to add a new server.

Checking the number of open file descriptors, of any kind, can be accomplished
using lsof:

lsof | wc –l // 1345

Data creep
When the amount of data being managed by a single database server begins to exceed
many millions of rows or very many gigabytes of memory, it is time to think about
scaling. Here you might choose to simply dedicate a single server to your database,
begin to shard databases, or even move into a managed cloud storage solution earlier
rather than later. Recovering from a data layer failure is rarely a quick fix, and in
general it is dangerous to have a single point of failure for something as important
as all of your data.

Chapter 8

[219]

If you're using Redis, the info command will provide most of the data you will
need, to make these decisions. For example:

redis> info
Clients
connected_clients:1
blocked_clients:0
Memory
used_memory:17683488
used_memory_human:16.86M
used_memory_rss:165900288
used_memory_peak:226730192
used_memory_peak_human:216.23M
used_memory_lua:31744
mem_fragmentation_ratio:9.38
CPU
used_cpu_sys:13998.77
used_cpu_user:21498.45
used_cpu_sys_children:1.60
used_cpu_user_children:7.19
...

More information on INFO can be found at this link:

http://redis.io/commands/info

For MongoDB you might use the db.stats() command:

> db.stats(1024)
{ "collections" : 3,
 "objects" : 5,
 "avgObjSize" : 39.2,
 "dataSize" : 0,
 "storageSize" : 12,
 "numExtents" : 3,
 "indexes" : 1,
 "indexSize" : 7,
 "fileSize" : 196608,
 "nsSizeMB" : 16,
 ...
 "ok" : 1 }

Passing the argument 1024 flags stats to display all values in kilobytes.
More information can be found here:

http://docs.mongodb.org/manual/reference/command/dbStats/

Scaling Your Application

[220]

Tools for monitoring servers
There are several tools available for monitoring servers, but few designed specifically
for Node. One strong candidate is StrongOps (http://strongloop.com/
strongloop-suite/strongops/) from StrongLoop, a company founded by the key
contributors of Node's core. This cloud service is easily integrated with a Node app,
offering a useful dashboard visualizing CPU usage, average response times, and more.

Other good monitoring tools to consider are listed in the following:

•	 Scout: https://scoutapp.com/
•	 Nagios: http://www.nagios.org/
•	 Munin: http://munin-monitoring.org/
•	 Monit: http://mmonit.com/monit/

Running multiple Node servers
It is easy to purchase several servers and then to run some Node processes on
them. But how can those distinct servers be coordinated such that they form part of
a single application? One aspect of this problem concerns clustering multiple identical
servers around a single entry point. How can client connections be shared across
a pool of servers?

Forward and reverse proxies
A proxy is someone or something acting on behalf of another.

A forward proxy normally works on behalf of clients in a private network, brokering
requests to an outside network, such as retrieving data from the Internet. Earlier
in this book we looked at how one might set up a proxy server using Node, where
the Node server functioned as an intermediary, forwarding requests from clients
to other network servers, usually via the Internet. Early web providers such as AOL
functioned in the following way:

Chapter 8

[221]

client

client

client

forward
proxy internet

private network

Network administrators use forward proxies when they must restrict access to the
outside world, that is, the Internet. If network users are downloading malware from
somebadwebsite.com via an e-mail attachment, the administrator can block access to
that location. Restrictions on access to social networking sites might be imposed on
an office network. Some countries even restrict access to public websites in this way.

A reverse proxy, not surprisingly, works in the opposite way, accepting requests
from a public network and servicing those requests within a private network
the client has little much visibility into. Direct access to servers by clients is first
delegated to a reverse proxy:

server

server

server

reverse
proxyinternet

private network

This is the type of proxy we might use to balance requests from clients across many
Node servers. Client X does not communicate with any given server directly. A broker
Y is the point of first contact, able to direct X to a server that is under less load, or that
is located closer to X, or is in some other way the best server for X to access at this time.

We will take a look at how to implement reverse proxies when scaling Node,
discussing implementations that use Nginx and those using native Node modules.

Scaling Your Application

[222]

Nginx as a proxy
Nginx (pronounced as "Engine X") is a popular choice when hiding Node servers
behind a proxy. Nginx is a very popular high-performance web server that is often
used as a proxy server. There is some serendipity in the fact that Nginx is a popular
choice with Node developers, given its design:

Nginx is able to serve more requests per second with [fewer] resources because
of its architecture. It consists of a master process, which delegates work to one or
more worker processes. Each worker handles multiple requests in an event-driven
or asynchronous manner using special functionality from the Linux kernel (epoll/
select/poll). This allows Nginx to handle a large number of concurrent requests
quickly with very little overhead.

—http://www.linuxjournal.com/magazine/nginx-high-performance-
web-server-and-reverse-proxy

Nginx also makes simple load balancing very easy. In our examples we will see how
proxying through Nginx comes with load balancing "out of the box".

It is assumed that you have installed Nginx (if not, please visit http://wiki.nginx.
org/Main to get started). We must now augment the nginx.conf file, in particular
the http section. Our goal is to create a single Nginx server whose sole responsibility
is to evenly distribute client requests across some number of Node servers, such that
capacity for the entire system can be scaled without changing anything about how
a client can or should connect to our application:

internet request

upstream

two.example.com

one.example.com

one.example.com

NGINX

Node one.example.com

Node two.example.com

Node three.example.com

Chapter 8

[223]

Within the http section of nginx.config are defined some upstream servers
that will be candidates for redirection:

http {
...
 upstream app_myservers {
 server first.example.com;
 server second.example.com;
 server third.example.com;
 }
...
}

Now that we've established the candidate pool, we need to configure Nginx such
that it will forward requests to one of its members:

server {
 listen 0.0.0.0:80;
 server_name example.com my_website;
...
 location / {
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_set_header X-NginX-Proxy true;

 proxy_pass http://app_myservers/;
 proxy_redirect off;
 }
}

The key line is this one:

proxy_pass http://app_myservers/;

Note how the name app_myservers matches the name of our upstream definition.
This should make what is happening clear: an Nginx server listening on port 80
will pass the request on to a server definition as contained in app_myservers. If the
upstream definition has only one server in it, that server gets all the traffic. If several
servers are defined, Nginx attempts to distribute traffic evenly among them.

Scaling Your Application

[224]

It is also possible to balance load across several local servers using
the same technique. One would simply run different Node servers
on different ports, such as server 127.0.0.1:8001; server
127.0.0.1:8002; ...

Because we will likely want more precise control over how traffic is distributed
across our upstream servers, there are further directives that can be applied to
upstream server definitions.

In order to control the relative weighting of traffic distribution, we use the weight
directive:

upstream app_myservers {
 server first.example.com weight=1;
 server second.example.com weight=2;
 server third.example.com weight=4;
}

This definition tells Nginx to distribute twice as much load to the second server as to
the first, and four times as much to the third. For example, servers with more memory
or CPUs might be favored. Another way to use this system is to create an A/B testing
scenario, where one server containing a proposed new design receives some small
fraction of the total traffic, such that metrics on the testing server (sales, downloads,
engagement length, and so on) can be compared against the wider average.

Two other useful directives are available, which work together to manage
connection failures:

•	 max_fails: This is the number of times communication with a server fails
prior to marking that server as inoperative. The period of time within which
these failures must occur is defined by fail_timeout.

•	 fail_timeout: The time slice during which max_fails must occur, indicating
that a server is inoperative. This number also indicates the amount of time
after a server is marked inoperative that Nginx will again attempt to reach
the flagged server.

For example:

upstream app_myservers {
 server first.myservers.com weight=1 max_fails=2 fail_
timeout=20s;
 server second.myservers.com weight=2 max_fails=10 fail_
timeout=5m;
 server third.myservers.com weight=4;
}

Chapter 8

[225]

Full documentation for Nginx can be found at the following link:

http://wiki.nginx.org/Configuration

Using HTTP Proxy
Node is designed to facilitate the creation of network software, so it comes as no
surprise that several proxying modules have been developed. The team at NodeJitsu
has released the proxy they use in production, HTTP proxy. Let's take a look at how
we would use it to route requests to different Node servers.

Unlike with Nginx, the entirety of our routing stack will exist in Node. One Node
server will be running our proxy, listening on port 80. We'll cover the following three
scenarios:

•	 Running multiple Node servers on separate ports on the same machine.
•	 Using one box as a pure router, proxying to external URLs.
•	 Creating a basic round-robin load balancer.

As an initial example, let's look at how to use this module to redirect requests:

var httpProxy = require('http-proxy');
var proxy = httpProxy.createServer({
target: {
 host: 'www.example.com',
 port: 80
}
}).listen(80);

By starting this server on port 80 of our local machine, we are able redirect the user
to another URL.

To run several distinct Node servers, each responding to a different URL, on a single
machine, one simply has to define a router:

var httpProxy = httpProxy.createServer({
 router: {
 'www.mywebsite.com' : '127.0.0.1:8001',
 'www.myothersite.com' : '127.0.0.1:8002',
 }
});
httpProxy.listen(80);

Scaling Your Application

[226]

For each of your distinct websites you can now point your DNS name servers
(via ANAME or CNAME records) to the same endpoint (wherever this Node
program is running), and they will resolve to different Node servers. This is handy
when you want to run several websites but don't want to create a new physical
server for each one. Another strategy is to handle different paths within the same
website on different Node servers:

var httpProxy = httpProxy.createServer({
 router: {
 'www.mywebsite.com/friends': '127.0.0.1:8001',
 'www.mywebsite.com/foes' : '127.0.0.1:8002',
 }
});
httpProxy.listen(80);

This allows specialized functionality in your application to be handled by uniquely
configured servers.

Setting up a load balancer is also straightforward. As with Nginx's upstream
directive, we simply list the servers to be balanced and cycle through them:

var httpProxy = require('http-proxy');
var addresses = [
 { host: 'one.example.com', port: 80 },
 { host: 'two.example.com', port: 80 }
];
httpProxy.createServer(function(req, res, proxy) {
 var target = addresses.shift();
 proxy.proxyRequest(req, res, target);
 addresses.push(target);
}).listen(80);

Unlike with Nginx, we are responsible for doing the actual balancing. In this
example, we treat servers equally, cycling through them in order. After the selected
server is proxied, it is returned to the rear of the list.

It should be clear that this example could be easily extended to accommodate other
directives, like Nginx's weight.

Another good option for proxying is the bouncy module created
by James Halliday. You'll find the repository in the following link:

https://github.com/substack/bouncy

Chapter 8

[227]

Message queues – RabbitMQ
One of the best ways to ensure that distributed servers maintain a dependable
communication channel is to bundle the complexity of remote procedure calls into
a distinct unit—a messaging queue. When one process wishes to send a message to
another process, the message can simply be placed on this queue—like a to-do list for
your application—with the queue service doing the work of ensuring messages get
delivered as well as delivering any important replies back to the original sender.

There are a few enterprise-grade message queues available, many of them deploying
AMQP (Advanced Message Queueing Protocol). We will focus on a very stable and
well-known implementation: RabbitMQ.

To install RabbitMQ in your environment follow the instructions found
in the website: http://www.rabbitmq.com/download.html.

You will also need to install Erlang (instructions given under the
Official Clients section at the preceding link).

Once installed you will start the RabbitMQ server with this command:

service rabbitmq-server start

To interact with RabbitMQ using Node we will use the node-amqp module created
by Theo Schlossnagle:

npm install amqp

To use a message queue one must first create a consumer—a binding to RabbitMQ
that will listen for messages published to the queue. The most basic consumer will
listen for all messages:

var amqp = require('amqp');
var consumer = amqp.createConnection({ host: 'localhost', port: 5672
});
var exchange;
consumer.on('ready', function() {
 exchange = consumer.exchange('node-topic-exchange', {type:
 "topic"});
 consumer.queue('node-topic-queue', function(q) {
 q.bind(exchange, '#');
 q.subscribe(function(message) {
 // Messages are buffers
 console.log(message.data.toString('utf8'));
 });
 });
});

Scaling Your Application

[228]

We now are now listening for messages from the RabbitMQ server bound to port 5672.

Once this consumer establishes a connection, it will establish the name of the queue
it will listen to, and should bind to an exchange. In this example we create a topic
exchange (the default), giving it a unique name. We also indicate that we would
like to listen for all messages via #. All that is left to do is subscribe to the queue,
receiving a message object. We will learn more about the message object as we
progress. For now, note the important data property, containing sent messages.

Now that we have established a consumer, let's publish a message to the exchange. If
all goes well, we will see the sent message appear in our console:

consumer.on('ready', function() {
 // ...
exchange.publish("some-topic", "Hello!");
});
// Hello!

We have already learned enough to implement useful scaling tools. If we have
a number of distributed Node processes, even on different physical servers, each
can reliably send messages to one another via RabbitMQ. Each process simply needs
to implement an exchange queue subscriber to receive messages, and an exchange
publisher to send messages.

Types of exchanges
RabbitMQ provides three types of exchanges: direct, fanout, and topic. The
differences appear in the way each type of exchange processes routing keys—the
first argument sent to exchange.publish.

A direct exchange matches routing keys directly. A queue binding like the following
one matches only messages sent to 'room-1':

queue.bind(exchange, 'room-1');

Because no parsing is necessary, direct exchanges are able to process more messages
than topic exchanges in a set period of time.

A fanout exchange is indiscriminate; it routes messages to all of the queues bound
to it, ignoring routing keys. This type of exchange is used for wide broadcasts.

A topic exchange matches routing keys based on the wildcards # and *. Unlike other
types, routing keys for topic exchanges must be composed of words separated by
dots—"animals.dogs.poodle", for example. A # matches zero or more words—it
will match every message (as we saw in the previous example), just like a fanout
exchange. The other wildcard is *, and this matches exactly one word.

Chapter 8

[229]

Direct and fanout exchanges can be implemented using nearly the same code as the
given topic exchange example, requiring only that the exchange type be changed,
and bind operations be aware of how they will be associated with routing keys
(fanout subscribers receive all messages, regardless of the key; for direct the routing
key must match directly).

This last example should drive home how topic exchanges work. We will create three
queues with different matching rules, filtering the messages each queue receives
from the exchange:

consumer.on('ready', function() {
 // When all 3 queues are ready, publish.
 var cnt = 3;
 var queueReady = function() {
 if(--cnt > 0) {
 return;
 }
 exchange.publish("animals.dogs.poodles", "Poodle!");
 exchange.publish("animals.dogs.dachshund", "Dachshund!");
 exchange.publish("animals.cats.shorthaired", "Shorthaired
 Cat!");
 exchange.publish("animals.dogs.shorthaired", "Shorthaired
 Dog!");
 exchange.publish("animals.misc", "Misc!");
 }
 var exchange = consumer.exchange('topical', {type: "topic"});
 consumer.queue('queue-1', function(q) {
 q.bind(exchange, 'animals.*.shorthaired');
 q.subscribe(function(message) {
 console.log('animals.*.shorthaired -> ' +
 message.data.toString('utf8'));
 });
 queueReady();
 });
 consumer.queue('queue-2', function(q) {
 q.bind(exchange, '#');
 q.subscribe(function(message) {
 console.log('# -> ' + message.data.toString('utf8'));
 });
 queueReady();
 });
 consumer.queue('queue-3', function(q) {
 q.bind(exchange, '*.cats.*');
 q.subscribe(function(message) {
 console.log('*.cats.* -> ' +
 message.data.toString('utf8'));
 });

Scaling Your Application

[230]

 queueReady();
 });
});

// # -> Poodle!
// animals.*.shorthaired -> Shorthaired Cat!
// *.cats.* -> Shorthaired Cat!
// # -> Dachshund!
// # -> Shorthaired Cat!
// animals.*.shorthaired -> Shorthaired Dog!
// # -> Shorthaired Dog!
// # -> Misc!

The node-amqp module contains further methods for controlling connections,
queues, and exchanges; in particular, it contains methods for removing queues
from exchanges, and subscribers from queues. Generally, changing the makeup of
a running queue on the fly can lead to unexpected errors, so use these with caution.

To learn more about the AMQP (and the options available when
setting up with node-amqp) visit the following link:

http://www.rabbitmq.com/tutorials/amqp-concepts.html

Using Node's UDP module
UDP (User Datagram Protocol) is a lightweight core Internet messaging protocol,
enabling servers to pass around concise datagrams. UDP was designed with
a minimum of protocol overhead, forgoing delivery, ordering, and duplication
prevention mechanisms in favor of ensuring high performance. UDP is a good choice
when perfect reliability is not required and high-speed transmission is, such as what
is found in networked video games and videoconferencing applications.

This is not to say that UDP is normally unreliable. In most applications it delivers
messages with high probability. It is simply not suitable when perfect reliability
is needed, such as in a banking application. It is an excellent candidate for
monitoring and logging applications, and for non-critical messaging services.

Creating a UDP server with Node is straightforward:

var dgram = require("dgram");
var socket = dgram.createSocket("udp4");
socket.on("message", function(msg, info) {
 console.log("socket got: " + msg + " from " +
 info.address + ":" + info.port);

Chapter 8

[231]

});
socket.bind(41234);
socket.on("listening", function() {
 console.log("Listening for datagrams.");
});

The bind command takes three arguments, which are as follows:

•	 port: The Integer port number.
•	 address: This is an optional address. If this is not specified, the OS will try

to listen on all addresses (which is often what you want). You might also try
using 0.0.0.0 explicitly.

•	 callback: This is an optional callback, which receives no arguments.

This socket will now emit a message event whenever it receives a datagram via the
port 41234. The event callback receives the message itself as a first parameter, and
a map of packet information as the second:

•	 address: The originating IP.
•	 family: One of IPv4 or IPv6.
•	 port: The originating port.
•	 size: The size of the message in bytes.

This map is similar to the map returned when calling socket.address().

In addition to the message and listening events, a UDP socket also emits a close and
error event, the latter receiving an Error object whenever an error occurs. To close
a UDP socket (and trigger the close event), use server.close().

Sending a message is even easier:

var client = dgram.createSocket("udp4");
var message = new Buffer("UDP says Hello!");
client.send(message, 0, message.length, 41234, "localhost",
function(err, bytes) {
 client.close();
});

The send method takes the form client.send(buffer, offset, length, port,
host, callback):

•	 buffer: A Buffer containing the datagram to be sent
•	 offset: An Integer indicating the position in buffer where the datagram begins

Scaling Your Application

[232]

•	 length: The number of bytes in a datagram. In combination with offset this
value identifies the full datagram within buffer

•	 port: An Integer identifying the destination port
•	 address: A String indicating the destination IP for the datagram
•	 callback: An optional callback function, called after the send has taken place

The size of a datagram cannot exceed 65507 bytes, which is equal
to 2^16-1 (65535) bytes minus the 8 bytes used by the UDP header
minus the 20 bytes used by the IP header.

We now have another candidate for inter-process messaging. It would be rather easy
to set up a monitoring server for our node application, listening on a UDP socket
for program updates and stats sent from other processes. The protocol speed is fast
enough for real-time systems, and any packet loss or other UDP hiccups would be
insignificant taken as a percentage of total volume over time.

Taking the idea of broadcasting further, we can also use the dgram module to
create a multicast server. A multicast is simply a one-to-many server broadcast.
We can broadcast to a range of IPs which have been permanently reserved as
multicast addresses:

Host Extensions for IP Multicasting [RFC1112] specifies the extensions required
of a host implementation of the Internet Protocol (IP) to support multicasting. The
multicast addresses are in the range 224.0.0.0 through 239.255.255.255.

—http://www.iana.org/assignments/multicast-addresses/
multicast-addresses.xhtml

Additionally, the range between 224.0.0.0 and 224.0.0.255 is further reserved for
special routing protocols.

As well, certain port numbers are allocated for use by UDP (and TCP), a list of which
can be found in the following link:

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

The upshot of all this fascinating information is the knowledge that there is a block
of IPs and ports reserved for UDP and/or multicasting, and we are now going to use
some of them to implement multicasting over UDP with Node.

Chapter 8

[233]

UDP multicasting with Node
The only difference between setting up a multicasting UDP server and a "standard"
one is binding to a special UDP port for sending, and indicating that we'd like to
listen to all available network adapters. Our multicasting server initialization looks
like the following code snippet:

var socket = dgram.createSocket('udp4');
var multicastAddress = '230.1.2.3';
var multicastPort = 5554;
socket.bind(multicastPort);
socket.on("listening", function() {
 this.setMulticastTTL(64);
 this.addMembership(multicastAddress);
});

Once we've decided on a multicast port and an address and have bound, we catch
the listenng event and configure our server. The most important command is
socket.addMembership, which tells the kernel to join the multicast group at
multicastAddress. Other UDP sockets can now subscribe to the multicast group
at this address.

Datagrams hop through networks just like any network packet. The
setMulticastTTL method is used to set the maximum number of hops (Time To
Live) a datagram is allowed to make before it is abandoned, and not delivered. The
acceptable range is 0-255, with the default being one (1) on most systems. This is not
normally a setting one need worry about, but it is available when precise limits make
sense, such as when packets are cheap and hops are costly.

If you'd like to also allow listening on the local interface,
use socket.setBroadcast(true) and socket.
setMulticastLoopback(true). This is normally not necessary.

We are eventually going to use this server to broadcast messages to all UDP listeners
on multicastAddress. For now, let's create two clients that will listen for multicasts:

dgram.createSocket('udp4')
.on('message', function(message, remote) {
 console.log('Client1 received message ' + message + ' from ' +
 remote.address + ':' + remote.port);
})
.bind(multicastPort, multicastAddress);
dgram.createSocket('udp4')
.on('message', function(message, remote) {

Scaling Your Application

[234]

 console.log('Client2 received message ' + message + ' from ' +
 remote.address + ':' + remote.port);
})
.bind(multicastPort, multicastAddress);

We now have two clients listening to the same multicast port. All that is left to do
is the multicasting. In this example we will use setTimeout to send a counter value
every second:

var cnt = 1;
var sender;
(sender = function() {
 var msg = new Buffer("This is message #" + cnt);
 socket.send(
 msg,
 0,
 msg.length,
 multicastPort,
 multicastAddress
);
 ++cnt;
 setTimeout(sender, 1000);
})();

The counter values will produce something like the following:

Client2 received message This is message #1 from 67.40.141.16:5554

Client1 received message This is message #1 from 67.40.141.16:5554

Client2 received message This is message #2 from 67.40.141.16:5554

Client1 received message This is message #2 from 67.40.141.16:5554

Client2 received message This is message #3 from 67.40.141.16:5554

...

We have two clients listening to broadcasts from a specific group. Let's add another
client, listening on a different group—let's say at multicast address 230.3.2.1:

dgram.createSocket('udp4')
.on('message', function(message, remote) {
 console.log('Client3 received message ' + message + ' from ' +
 remote.address + ':' + remote.port);
})
.bind(multicastPort, '230.3.2.1');

Chapter 8

[235]

Because our server currently broadcasts messages to a different address, we will
need to change our server configuration and add this new address with another
addMembership call:

socket.on("listening", function() {
 this.addMembership(multicastAddress);
 this.addMembership('230.3.2.1');
});

We can now send to both addresses:

(sender = function() {
 socket.send(
 ...
 multicastAddress
);
 socket.send(
 ...
 '230.3.2.1'
);
 // ...
})();

Nothing stops the client from broadcasting to others in the group, or even members
of another group:

dgram.createSocket('udp4')
.on('message', function(message, remote) {
 var msg = new Buffer("Calling original group!");
 // 230.1.2.3 is the multicast address
 socket.send(msg, 0, msg.length, multicastPort, '230.1.2.3');
})
.bind(multicastPort, '230.3.2.1');

Any Node process that has an address on our network interface can now listen on
a UDP multicast address for messages, providing a fast and elegant inter-process
communication system.

Scaling Your Application

[236]

Using Amazon Web Services in your
application
As a few thousand users become a few million users, as databases scale to terabytes
of data, the cost and complexity of maintaining an application begins to overwhelm
teams with insufficient experience, funding, and/or time. When faced with rapid
growth it is sometimes useful to delegate responsibilities for one or more aspects
of your application to cloud-based service providers. AWS (Amazon Web Services)
is just such a suite of cloud-computing services, offered by amazon.com.

You will need an AWS account in order to use these examples. All
of the services we will explore are free or nearly free for low-volume
development uses. To create an account on AWS, visit the following link:

http://aws.amazon.com/

Once you have created an account, you will be able to manage all of your
services via the AWS console at:

https://console.aws.amazon.com/console/home

In this section we will learn how to use three popular AWS services:

•	 For storing documents and files we will connect with Amazon S3
(Simple Storage Service)

•	 Amazon's Key/Value database, DynamoDB
•	 To manage a large volume of e-mail, we will leverage Amazon's SES

(Simple Email Service)

To access these services we will use the AWS SDK for Node, which can be found
at the following link:

https://github.com/aws/aws-sdk-js

To install the module run the following command:

npm install aws-sdk

Full documentation for the aws-sdk module can be found at the
following link:

http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
frames.html

Chapter 8

[237]

Authenticating
Developers registered with AWS are assigned two identifiers:

•	 A public Access Key ID (a 20-character, alphanumeric sequence).
•	 A Secret Access Key (a 40-character sequence). It is very important to keep

your Secret Key private.

Amazon also provides developers with the ability to identify the region with which
to communicate, such as "us-east-1". This allows developers to target the closest
servers (regional endpoint) for their requests.

The regional endpoint and both authentication keys are necessary to make requests.

For a breakdown of regional endpoints visit the following link:

http://docs.aws.amazon.com/general/latest/gr/rande.
html

As we will be using the same credentials in each of the following examples, let's
create a single config.json file that is re-used:

{
 "accessKeyId" : "your-key",
 "secretAccessKey" : "your-secret",
 "region" : "us-east-1",
 "apiVersions" : {
 "s3" : "2006-03-01",
 "ses" : "2010-12-01",
 "dynamodb" : "2012-08-10"
 }
}

We also configure the specific API versions we will be using for services. Should
Amazon's services API change, this will ensure our code will continue to work.

An AWS session can now be initialized with just two lines of code. Assume that
these two lines exist prior to any of the example code that follows:

var AWS = require('aws-sdk');
AWS.config.loadFromPath('./config.json');

Scaling Your Application

[238]

Errors
When experimenting with these services it is likely that error codes will appear on
occasion. Because of their complexity, and the nature of cloud computing, these
services can sometimes emit surprising or unexpected errors. For example, because
S3 can only promise eventual consistency in some regions and situations, attempting
to read a key that has just been written to may not always succeed. We will be
exploring the complete list of error codes for each service, and they can be found at
the following locations:

•	 S3
http://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.
html

•	 DynamoDB
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/
Welcome.html

•	 SES

http://docs.aws.amazon.com/ses/latest/DeveloperGuide/api-error-
codes.html

and
http://docs.aws.amazon.com/ses/latest/DeveloperGuide/smtp-
response-codes.html

As it will be difficult in the beginning to predict where errors might arise, it is
important to employ the domain module or other error-checking code as you
proceed.

Additionally, a subtle but fundamental aspect of Amazon's security and consistency
model is the strict synchronization of its web server time and time as understood
by a server making requests. A discrepancy of 15 minutes is the maximum
allowed. While this seems like a long time, in fact time drift is very common. When
developing watch out for 403: Forbidden errors that resemble one of the following:

•	 SignatureDoesNotMatch: This error means that the signature has expired
•	 RequestTimeTooSkewed: The difference between the request time and the

current time is too large

Chapter 8

[239]

If such errors are encountered the internal time of the server making requests may
have drifted. If so, that server's time will need to be synchronized. On Unix one can
use the NTP (Network Time Protocol) to achieve synchrony. One solution is to use
the following commands:

rdate 129.6.15.28

ntpdate 129.6.15.28

For more information on NTP and time synchronization visit the
following link:

http://www.pool.ntp.org/en/

Let's start using AWS services, beginning with the distributed file service, S3.

Using S3 to store files
S3 can be used to store any file one expects to be able to store on a filesystem. Most
commonly, it is used to store media files such as images and videos. S3 is an excellent
document storage system as well, especially well-suited for storing small JSON
objects or similar data objects.

Also, S3 objects are accessible via HTTP, which makes retrieval very natural, and
REST methods such as PUT/DELETE/UPDATE are supported. S3 works very much
like one would expect a typical file server to work, is spread across servers that span
the globe, and offers storage capacity that is for all practical purposes limitless.

S3 uses the concept of a bucket as a sort of corollary to "hard drive". Each S3 account
can contain 100 buckets (this is a hard limit), with no limits on the number of files
contained in each bucket.

Working with buckets
Creating a bucket is easy:

var S3 = new AWS.S3();
S3.createBucket({
 Bucket: 'nodejs-book'
}, function(err, data) {
 if(err) { throw new Error("Unable to create bucket."); }
 console.log(data);
});

Scaling Your Application

[240]

We will receive a data map containing the bucket Location, and a RequestId:

{ Location: '/nodejs-book',
RequestId: 'A0F2B68C72BE8A29' }

It is likely that many different operations will be made against a bucket. As a
convenience the aws-sdk allows a bucket name to be automatically defined in the
parameter list for all further operations:

var S3 = new AWS.S3({
 params: { Bucket: 'nodejs-book' }
});
S3.createBucket(function(err, data) { // ... });

Use listBuckets to fetch an array of existing buckets:

S3.listBuckets(function(err, data) {
 console.log(data.Buckets);
});
// [{ Name: 'nodejs-book',
// CreationDate: Mon Jul 15 2013 22:17:08 GMT-0500 (CDT) },
// ...
//]

Bucket names are global to all S3 users. No single user of S3
can use a bucket name that another user has claimed. If I have
a bucket named foo no other S3 user can ever use that bucket
name. This is a gotcha that many miss.

Working with objects
Let's add a document to the nodejs-book bucket on S3:

var S3 = new AWS.S3({
 params: { Bucket: 'nodejs-book' }
});
var body = JSON.stringify({ foo: "bar" });
var s3Obj = {
 Key: 'demos/putObject/first.json',
 Body: body,
 ServerSideEncryption: "AES256",
 ContentType: "application/json",
 ContentLength: body.length,
 ACL: "private"
}

Chapter 8

[241]

S3.putObject(s3Obj, function(err, data) {
 if(err) { throw new Error("PUT error"); }
 console.log(data);
});

If the PUT is successful its callback will receive an object similar to the following:

{ ETag: '"9bb58f26192e4ba00f01e2e7b136bbd8"',
 ServerSideEncryption: 'AES256',
 RequestId: 'C7AAD7FF0A14F979' }

You are encouraged to consult the SDK documentation and experiment with all of
the parameters putObject accepts. Here we focus on the only two required fields,
and a few useful and common ones:

•	 Key: A name to uniquely identify your file within this bucket.
•	 Body: A Buffer, String, or Stream comprising the file body.
•	 ServerSideEncryption: Whether to encrypt the file within S3. The only

current option is AES256 (which is a good one!).
•	 ContentType: Standard MIME type.
•	 ContentLength: A String indicating the destination IP for the datagram.
•	 ACL: Canned access permissions, such as private or public-read-write.

Consult the S3 documentation.

It is a good idea to have the object Key resemble a filesystem path, helping with sorting
and retrieval later on. In fact, Amazon's S3 console reflects this pattern in its UI:

Let's stream an image up to S3:

var fs = require('fs');
fs.stat("./testimage.jpg", function(err, stat) {
 var s3Obj = {
 Key: 'demos/putObject/testimage.jpg',
 Body: fs.createReadStream("./testimage.jpg"),
 ContentLength: stat.size,
 ContentType: "image/jpeg",
 ACL: "public-read"
 }
 S3.putObject(s3Obj, function(err, data) { // ... });
})

Scaling Your Application

[242]

As we gave this image public-read permissions, it will be accessible at the
following URL:

https://s3.amazonaws.com/nodejs-book/demos/putObject/testimage.jpg

Fetching an object from S3 and streaming it onto a local filesystem is even easier:

var outFile = fs.createWriteStream('./fetchedfile.jpg');
S3.getObject({
 Key : 'demos/putObject/testimage.jpg'
}).createReadStream().pipe(outFile);

Alternatively, we can catch data events on the HTTP chunked transfer:

S3.getObject({
 Key : 'demos/putObject/testfile.jpg'
})
.on('httpData', function(chunk) { outFile.write(chunk); })
.on('httpDone', function() { outFile.end(); })
.send();

To delete an object:

S3.deleteObject({
 Bucket : 'nodejs-book',
 Key : 'demos/putObject/optimism.jpg'
}, function(err, data) { // ... });

To delete multiple objects, pass an Array (to a maximum of 1000 objects):

S3.deleteObjects({
 Bucket : 'nodejs-book',
 Delete : {
 Objects : [{
 Key : 'demos/putObject/first.json'
 }, {
 Key : 'demos/putObject/testimage2.jpg'
 }]
 }
}, function(err, data) { // ... });

Chapter 8

[243]

Using AWS with a Node server
Putting together what we know about Node servers, streaming file data through
pipes, and HTTP, it should be clear how to mount S3 as a filesystem in just a few
lines of code:

http.createServer(function(request, response) {
 var requestedFile = request.url.substring(1);
 S3.headObject({
 Key : requestedFile
 }, function(err, data) {
 // 404, etc.
 if(err) {
 response.writeHead(err.statusCode);
 return response.end(err.name);
 }
 response.writeHead(200, {
 "Last-Modified" : data.LastModified,
 "Content-Length" : data.ContentLength,
 "Content-Type" : data.ContentType,
 "ETag" : data.ETag
 });
 S3.getObject({
 Key : requestedFile
 }).createReadStream().pipe(response);
 });
}).listen(8080);

A standard Node HTTP server receives a request URL. We first attempt a HEAD
operation using the aws-sdk method headObject, accomplishing two things:

•	 We'll determine if the file is available
•	 We will have the header information necessary to build a response

After handling any non-200 status code errors we only need to set our response
headers and stream the file back to the requester, as previously demonstrated.

Such a system can also operate as a fail-safe, in both directions; should S3, or the
file, be unavailable, we might bind to another file system, streaming from there.
Conversely, if our preferred local filesystem fails, we might fall through to our
backup S3 filesystem.

See the amazon/s3-redirect.js file in the code bundle
available at the Packt website for an example of using 302
redirects to similarly mount an AWS filesystem.

Scaling Your Application

[244]

S3 is a powerful data storage system with even more advanced features than those
we've covered, such as object versioning, download payment management, and
setting up objects as torrent files. With its support for streams, the aws-sdk module
makes it easy for Node developers to work with S3 as if it was a local filesystem.

Getting and setting data with DynamoDB
DynamoDB (DDB) is a NoSQL database providing very high throughput and
predictability that can be easily scaled. DDB is designed for data-intensive
applications, performing massive map/reduce and other analytical queries with
low latency and reliably. That being said, it is also an excellent database solution
for general web applications.

The whitepaper announcing DynamoDB was highly influential,
sparking a real interest in NoSQL databases, and inspiring many,
including Apache Cassandra. The paper deals with advanced
concepts, but rewards careful study:

http://www.allthingsdistributed.com/files/amazon-
dynamo-sosp2007.pdf

A Dynamo database is a collection of tables, which is a collection of items, which
are a collection of attributes. Each item in a table (or row, if you prefer) must have
a primary key, functioning as an index for the table. Each item can have any number
of attributes (up to a limit of 65 KB) in addition to the primary key.

This is an item, with five attributes, one attribute serving as the primary key (Id):

{ Id = 123
 Date = "1375314738466"
 UserId = "DD9DDD8892"
 Cart = ["song1", "song2"]
 Action = "buy" }

Let's create a table with both a primary and a secondary key:

var AWS = require('aws-sdk');
AWS.config.loadFromPath('../config.json');
var db = new AWS.DynamoDB();
db.createTable({
 TableName: 'purchases',
 AttributeDefinitions : [{
 AttributeName : "Id", AttributeType : "N"
 }, {
 AttributeName : "Date", AttributeType : "N"
 }],

Chapter 8

[245]

 KeySchema: [{
 AttributeName: 'Id', KeyType: 'HASH'
 }, {
 AttributeName: 'Date', KeyType: 'RANGE'
 }],
 ProvisionedThroughput: {
 ReadCapacityUnits: 2,
 WriteCapacityUnits: 2
 }
}, function(err, data) { console.log(util.inspect(data)); });

The callback will receive an object similar to this:

{ TableDescription: {
 AttributeDefinitions: [// identical to what was sent],
 CreationDateTime: 1375315748.029,
 ItemCount: 0,
 KeySchema: [// identical to what was sent],
 ProvisionedThroughput: {
 NumberOfDecreasesToday: 0,
 ReadCapacityUnits: 2,
 WriteCapacityUnits: 2
 },
 TableName: 'purchases',
 TableSizeBytes: 0,
 TableStatus: 'CREATING'
 }
}

Table creation/deletion is not immediate—you are essentially queueing up the
creation of a table (note TableStatus). At some point in the (near) future the table
will exist. As DDB table definitions cannot be changed without deleting the table
and rebuilding it, in practice, this delay is not something that should impact your
application—build once, then work with items.

DDB tables must be given a schema indicating the item attributes that will function
as keys, defined by KeySchema. Each attribute in KeySchema can be either a RANGE
or a HASH. There must be one such index; there can be at most two. Each added item
must contain any defined keys, with as many additional attributes as desired.

Each item in KeySchema must be matched in count by the items in
AttributeDefinitions. In AttributeDefinitions each attribute can be either
a number ("N") or a string ("S"). When adding or modifying attributes it is always
necessary to identify attributes by its type as well as by the name.

Scaling Your Application

[246]

To add an item:

db.putItem({
 TableName : "purchases",
 Item : {
 Id : {"N": "123"},
 Date : {"N": "1375314738466"},
 UserId : {"S" : "DD9DDD8892"},
 Cart : {"SS" : ["song1", "song2"]},
 Action : {"S" : "buy"}
 }
}, function() { // ... });

In addition to our primary and (optional) secondary keys we want to add other
attributes to our item. Each must be given one of the following types:

•	 S: A String
•	 N: A Number
•	 B: A Base64-encoded string
•	 SS: An Array of Strings (String set)
•	 NS: An Array of Numbers (Number set)
•	 BS: An Array of Base64-encoded strings (Base64 set)

All items will need to have this same number of columns—again,
dynamic schemas are not a feature of DDB.

Assume that we've created a table that looks like the following table:

Id Date Action Cart UserId
123 1375314738466 buy { "song1", "song2" } DD9DDD8892
124 1375314738467 buy { "song2", "song4" } DD9EDD8892
125 1375314738468 buy { "song12", "song6" } DD9EDD8890

Now let's perform some search operations.

Chapter 8

[247]

Searching the database
There are two types of search operations available: query and scan. A scan on a
table with a single primary key will, without exception, search every item in a table,
returning those matching your search criteria. This can be very slow on anything but
small databases. A query is a direct key lookup. We'll look at queries first. Note that
in this example we will assume that this table has only one primary key.

To fetch the Action and Cart attributes for item 124, we use the following code:

db.getItem({
 TableName : "purchases",
 Key : {
 Id : { "N" : "124" }
 },
 AttributesToGet : ["Action", "Cart"]
}, function(err, res) {
 console.log(util.inspect(res, { depth: 10 }));
});

Which will return:

{ Item: {
 Action: { S: 'buy' },
 Cart: { SS: ['song2', 'song4'] }
 }
}

To select all attributes, simply omit the AttributesToGet definition.

A scan is more expensive, but allows more involved searches. The usefulness of
secondary keys is particularly pronounced when doing scans, allowing us to avoid
the overhead of scanning the entire table. In our first example of scan we will work
as if there is only a primary key. Then we will show how to filter the scan using the
secondary key.

To get all the records whose Cart attribute contains song2, use the following code:

db.scan({
 TableName : "purchases",
 ScanFilter : {
 "Cart": {
 "AttributeValueList" : [{
 "S":"song2"
 }],
 "ComparisonOperator" : "CONTAINS"
 },
 }

Scaling Your Application

[248]

}, function(err, res) {
 console.log(util.inspect(res, {
 depth: 10
 }));
});

This will return all attribute values for items with Id 123 and 124.

Let's now use our secondary key to filter this further:

db.scan({
 TableName : "purchases",
 ScanFilter : {
 "Date": {
 "AttributeValueList" : [{
 "N" : "1375314738467"
 }],
 "ComparisonOperator" : "EQ"
 },
 "Cart": {
 "AttributeValueList" : [{
 "S" : "song2"
 }],
 "ComparisonOperator" : "CONTAINS"
 },
 }
}, function(err, res) {
 console.log(util.inspect(res, {depth: 10}));
});

This new filter limits results to item 124.

Sending mail via SES
Amazon describes the problems SES is designed to solve in this way:

Building large-scale email solutions to send marketing and transactional messages
is often a complex and costly challenge for businesses. To optimize the percentage
of emails that are successfully delivered, businesses must deal with hassles such
as email server management, network configuration, and meeting rigorous Internet
Service Provider (ISP) standards for email content.

Chapter 8

[249]

Apart from the typical network scaling problems inherent in growing any system,
providing e-mail services is made particularly difficult due to the prevalence of
spam. It is very hard to send a large number of unsolicited e-mails without ending up
blacklisted, even when the recipients are amenable to receiving them. Spam control
systems are automated; your service must be listed in the "whitelists", which is used by
various e-mail providers and spam trackers in order to avoid having a low percentage
of your e-mails end up somewhere other than your customer's inbox. A mail service
must have a good reputation with the right people or it becomes nearly useless.

Amazon's SES service has the necessary reputation, providing application developers
with cloud-based e-mail service which is reliable and able to handle a nearly infinite
volume of e-mail. In this section we will learn how SES can be used
by a Node application as a reliable mail delivery service.

Ensure that you have SES access by visiting your developer console.
When you first sign up with SES you will be given Sandbox access. When
in this mode you are limited to using only Amazon's mailbox simulator,
or sending e-mail to address you have verified (such as one's own). You
may request production access, but for our purposes you will only need
to verify an e-mail address to test with.

Because the cost of using a service such as SES will increase as your mail volume
increases, you might want to periodically check your quotas:

var ses = new AWS.SES();
ses.getSendQuota(function(err, data) {
 console.log(err, data);
});

To send a message:

ses.sendEmail({
 Source : "spasquali@gmail.com",
 Destination : {
 ToAddresses : ["spasquali@gmail.com"]
 },
 Message : {
 Subject: { Data : "NodeJS and AWS SES" },
 Body : {
 Text : { Data : "It worked!" }
 }
 }
}, function(err, resp) {
 console.log(resp);
});

Scaling Your Application

[250]

The callback will receive something like the following output:

RequestId: '623144c0-fa5b-11e2-8e49-f73ce5ee2612'

MessageId: '0000014037f1a167-587a626e-ca1f-4440-a4b0-81756301bc28-000000'

Multiple recipients, HTML body contents, and all the other features one would
expect from a mail service are available.

Authenticating with Facebook Connect
Building a scalable authentication system is hard. Though it may seem easy—create
a table or a list of users and their credentials, change that list using a simple web
form, and you're done!

If your goal is to create a scalable system that can grow as your user base grows then
you will need to do much more. It will be necessary to create e-mail systems and
scalable databases, session management, and the many other subsystems essential
to satisfying the user's expectation of a low-latency path from sign-up to sign-in
to the desired content.

Let's put together what we've learned with AWS with Connect, Facebook's
authentication service. You can see the full code for this example in the /facebook
folder of your code bundle available at the Packt website.

To begin, visit developers.facebook.com, set up a developers account, and then
create an application. Remember to properly set your application path as shown in
the following screenshot:

Once registered, find and copy your two application keys. You will need these later.

To create a Node server that allows users to login via Connect, we will use the
excellent passport npm module, which will make it easy to connect to many cloud
services, including Facebook. Additionally, we will use S3 to store a simple user
object, allowing us to map Connect login IDs to our internal application records.
We'll build this all using Express, which works well with passport.

Chapter 8

[251]

Initialize S3 as per our previous examples, and create a bucket to store user records
in. passport works with the metaphor of a "strategy". Once we've established our
credentials using our Facebook login keys, we provide a callback to catch the results
of a user's attempt to log in—Facebook will redirect to this URL after a user has
attempted authentication.

If the login is successful, map a record of this user to our S3 store, setting the S3
object key to the user's Facebook ID. We now have a strategy in place to accept logins
using Connect:

var FacebookStrategy = require('passport-facebook').Strategy;
// For the demo we use a simple session strategy.
// You will likely handle sessions using a DB.
passport.serializeUser(function(user, done) {
 done(null, user);
});
passport.deserializeUser(function(obj, done) {
 done(null, obj);
});
passport.use(new FacebookStrategy({
 clientID : 'your-id',
 clientSecret : 'your-secret',
 callbackURL : "http://www.pathjs.com/auth/facebook/callback"
},
function(accessToken, refreshToken, profile, done) {
 profile.local = {
 lastLogin : new Date().getTime(),
 sessionId : parseInt(Math.random() * 100000)
 }
 var s3Obj = {
 Key: profile.id,
 Body: JSON.stringify(profile),
 ServerSideEncryption : "AES256",
 ContentType: "application/json",
 ACL: "private"
 }
 S3.putObject(s3Obj, function(err, data) {
 if(err) { return done(err); }
 return done(err, profile);
 });
}));

Scaling Your Application

[252]

When a user visits our site, we can now present them with a Facebook login.

All that is left to do is create an Express server with the necessary paths to
authenticate and log out, including a path to handle the Facebook callback:

var app = express();
app.configure(function() {
 app.set('views', __dirname + '/views');
 app.set('view engine', 'jade');
 // more setup
});
app.get('/', function(req, res){
 res.render('index', {
 user: req.user
 });
});
app.get('/auth/facebook', passport.authenticate('facebook'));
app.get(
 '/auth/facebook/callback',
 passport.authenticate('facebook', {
 failureRedirect: '/'
 }),
 function(req, res) {
 res.redirect('/');
 }
);
app.get('/logout', function(req, res){
 req.logout();
 res.redirect('/');
});
app.listen(8080);

One final step is to use the Jade templating engine to create the login/logout pages
(see the Express initialization). The key bit is passing responsibility for rendering our
application's index page, located at the server root, to a Jade template:

app.get('/', function(req, res){
 res.render('index', {
 user: req.user
 });
});

This template can be found in the index.jade file located in facebook/views/
within your code bundle.

Chapter 8

[253]

That's it! Your Node application, already fast, has now delegated responsibility for
authentication and user record storage to experts in scaling (and securing) such
systems. Your application can now handle several thousands of simultaneous
connections and scale nearly indefinitely by leveraging two of the largest and most
stable application infrastructures in the world—one for free, and the other at a very
low cost.

Summary
Big data applications have placed significant responsibility on developers of
network applications to prepare for scale. Node has offered help in creating
a network-friendly application development environment that can easily
connect to other devices on a network, such as cloud services and, in particular,
other Node servers.

In this chapter we learned some good strategies for scaling Node servers,
from analyzing CPU usage to communicating across processes. With our new
knowledge of message queues and UDP we can build networks of Node servers
scaling horizontally, letting us handle more and more traffic by simply replicating
existing nodes. Having investigated load balancing and proxying with Node, we can
confidently add capacity to our applications. When matched with the cloud services
provided by AWS and Facebook, we are able to scale our data stores and user
account management with ease and at low cost.

As our applications grow we will need to maintain continuous awareness of how
each part, as well as the whole, is behaving. Before a new component is added,
that integration will need to be tested. In the next chapter we will learn strategies
for testing your systems, both in the large and in the small.

Testing your Application
When the terrain disagrees with the map, trust the terrain.

—Swiss Army Manual

Because a community fully committed to code sharing is building Node, and
interoperability between modules is so important, it should come as no surprise
that code testing tools and frameworks entered Node's ecosystem right after
inception. Indeed, the normally parsimonious core Node team added the assert
module early on, suggesting a recognition that testing is a fundamental part
of the development process.

Testing software is a complicated and still mostly ill-defined activity. It is also
essential to all phases of a non-trivial development project. The set of expectations
accompanying the adjective "enterprise" when associated with "software" is a large
one, comprising at least security, stability, consistency, predictability, and scale.
Software is expected to anticipate and nimbly integrate multifaceted and unpredictable
changes in data volume and shape, user expectations, business goals, staffing, even
government regulations, and legal climate.

Testing is not solely a bug-detecting and defect-fixing process. Test-driven
development, for example, insists on having tests precede the existence of any
code! Testing, generally, is the process of making comparisons between existing
behavior and desired behavior in software, where new information is continuously
fed back into the process. In this sense, testing involves modeling expectations
and verifying that individual functions, composed units, and implementation
paths satisfy the expectations of designers, programmers, product owners,
customers, and entire organizations.

Testing your Application

[256]

Achieving this goal requires that the pieces of a system are well tested, such that
their inclusion or exclusion will have a known and consistent impact on both the
system itself and on expectations for the system, such as sales, or implementation
velocity, or ability to process secure data. Testing is therefore also about managing
risk. In this way anomalies can be quantified and qualified, while bumps in the
terrain can now usefully inform our current understanding of the map such that
the number of missteps (or defects) decline and our confidence rises. Testing helps us
measure when we are done.

There are many schools of thought on when to test, what to test, who should test,
and how to test. In this chapter we will focus on some known and useful patterns for
testing Node applications, investigating native Node tools for code integrity testing,
general testing with the Mocha framework, and headless browser testing; the last
allowing for the testing of browser-based JavaScript from within a Node environment.

As you move through this chapter, it might be useful to keep in mind that
integrating the philosophy of testing into a project is very difficult to do well.
Typically, implementation becomes more difficult as the size of an untested
codebase increases, and/or as the number of contributors grow. Some might
say that a comprehensive testing strategy should be implemented as early as
possible—something to consider as you embark on your next Node project.

Why testing is important
A good testing strategy builds confidence through the accumulation of proof and
increasing clarity. Within a company this might mean that some criteria for the
execution of a business strategy have been satisfied, allowing for the release of a new
product. The developers within a project team gain the pleasure of an automated
judge that confirms or denies whether changes committed to a codebase are sound.
With a good testing framework refactoring loses its danger: the "if you break it you
own it" caveat that once placed negative pressure on developers with new ideas is
no longer as ominous. Given a good version control system and test/release process,
any breaking change can be rolled back without negative impact, freeing curiosity
and experimentation.

Three common types of tests are: unit tests, functional tests, and integration tests.
While our goal in this chapter is not to put forward a general theory about how
to test applications, it will be useful to briefly summarize what unit, functional, and
integration tests are, which members of a team are most interested in each, and how
we might go about breaking up a codebase into testable units.

Chapter 9

[257]

Unit tests
Unit tests concern themselves with units of system behavior. Each unit being
tested should encapsulate a very small set of code paths, without entanglements.
When a unit test fails this should, ideally, indicate that an isolated part of the
overall functionality is broken. If a program has a well described set of unit
tests, the purpose and expected behavior of an entire program should be easy
to comprehend, entire program should be easy to comprehend. A unit test applies
a limited perspective to small parts of a system, unconcerned with how those parts
may be wrapped up into larger functional blocks.

An example unit test might be described in this way: when the value 123 is passed
to a method validate_phone_number(), the test should return false. There is no
confusion about what this unit does, and a programmer can use it with confidence.

Unit tests are normally written and read by programmers. Class methods are good
candidates for unit tests, as are other service endpoints whose input signatures are
stable and well understood, with expected outputs that can be accurately validated.
Generally it is assumed that unit tests run quickly. If a unit test is taking a long time
to execute it is likely the code under test is much more complex than it should be.

Unit tests are not concerned with how a function or method under test will receive
its inputs, or how it will be used in general. A test for an add method shouldn't be
concerned with whether the method will be used in a calculator or somewhere else,
it should simply test if the two integer inputs (3,4) will cause the unit to emit a correct
result (7). A unit test is not interested in where it fits in the dependency tree. For this
reason unit tests will often "mock" or "stub" data sources, such as passing two random
integers to an add method. As long as the inputs are typical they need not be actual.
Additionally, good unit tests are reliable: unencumbered by external dependencies
they should remain valid regardless of how the system around them changes.

Unit tests only confirm that a single entity works in isolation. Testing whether units
can work well when combined is the purpose of functional testing.

Functional tests
Where unit tests concern themselves with specific behaviors, functional tests
are designed to validate pieces of functionality. The ambiguity of the root word
"function", especially for programmers, can lead to confusion, where "unit tests"
are called "functional tests", and vice versa. A functional test combines many units
into a body of functionality, such as, "when a user enters a username and password
and clicks on send, that user will be logged into the system". We can easily see that
this functional group would be comprised of many unit tests, one for validating
a username, one for handling a button click, and so on.

Testing your Application

[258]

Functional tests are normally the concern of those responsible for some specific
domain within an application. While programmers and developers will remain
the ones to implement these tests, product managers or similar stakeholders will
normally devise them. These tests for the most part check whether larger product
specifications are being satisfied, rather than for technical correctness.

The example unit test for validate_phone_number given earlier might form part
of a functional test with this description: when a user enters the wrong phone
number, open a help dialog that describes the right format in that user's country.
That an application bothers to help users that make mistakes with phone numbers
is an abstract effort very different from simply validating a technical entity like
a phone number. Functional tests might be thought of as abstract models of how
well some collection of units work together to satisfy a product need.

Because functional tests are made against combinations of many units, it is expected
that, unlike an isolated unit test, executing them will involve mixing concerns from
any number of external objects or systems. In the preceding login example we see
how a relatively simple functional test can cut across database, UI, security, and
other application layers. Because it is compositionally more complex, a functional
test is expected to take a little more time to run than a unit test. Functional tests are
expected to change less often than unit tests, such that changes in functionality often
represent major releases, as opposed to the minor changes unit test modifications
usually indicate.

Note that, like unit tests, functional tests are themselves isolated from concerns about
how the functional group under test, as a whole, relates to the rest of an application.
For this reason mock data may be used as a context for running functional tests,
as the functional group itself is not concerned with its effect on general application
state, which is the domain of integration tests.

Integration tests
Integration tests ensure that the entire system is correctly wired together, such that
a user would feel the application is working correctly. In this way integration tests
typically validate the expected functionality of an entire application, or one of a small
set of significant product functionality.

The most important difference between integration and the other types of tests under
discussion is that integration tests are to be executed within a realistic environment,
on real databases with actual domain data, on servers, and other systems mirroring
the target production environment. In this way, integration tests can easily break
formerly passing unit and functional tests.

Chapter 9

[259]

For example, a unit test for validate_phone_number may have given a pass to
an input like 555-123-4567, but during an integration test it will fail to pass some
real (and valid) system data like 555.123.4567. Similarly, a functional test may
successfully test the ability of an ideal system to open a help dialog, but when
integrated with a new browser or other runtime it is found that the expected
functionality is not achieved. An application that runs well against a single local
filesystem may fail when run against a distributed filesystem.

Because of this added complexity, system architects—the team members that are able
to apply a higher-level perspective on what system correctness entails—normally
design integration tests. These tests find errors in the wiring that isolated tests are
not able to recognize. Not surprisingly, integration tests can often take a long time
to run, typically designed to not only run simple scenarios but to imitate expected
high-load, realistic environments.

A powerful new tool for doing deep testing of Node application
performance is DTrace. Joyent's hosting cloud provides access to this
tool (http://www.joyent.com/blog/bruning-questions-
debugging-node-apps-with-dtrace), and support is growing. A
nice overview of DTrace can be found here:

http://mcavage.github.com/presentations/dtrace_
conf_2012-04-03/#agenda

Native Node testing and debugging tools
A preference for tested code has formed part of the Node community's ethos since its
inception, reflected in the fact that most popular Node modules, even simple ones,
are distributed with test suites. While browser-side development with JavaScript
suffered for many years without usable testing tools, the relatively young Node
distribution contains many. Perhaps because of this, many mature and easy to
use third-party testing frameworks have been developed for Node. This leaves
a developer no excuse for writing untested code! Let's look into some of the
provided tools for debugging and testing Node programs.

Writing to the console
Console output is the most basic testing and debugging tool, providing a quick
way to see what is happening at some point in a script. The globally accessible
console.log is commonly used when debugging.

Testing your Application

[260]

Node has enriched this standard output mechanism with more useful methods,
such as console.error(String, String…), which prints arguments to stderr
rather than stdout, and console.dir(Object), which runs util.inspect (see the
following) on the provided object and writes results to stdout.

The following pattern is commonly seen when a developer wants to track how long
a piece of code takes to execute:

var start = new Date().getTime();
for(x=0; x < 1000; x++) { ... }
console.log(new Date().getTime() - start);
// A time, in milliseconds

The console.time and console.timeEnd methods standardize this pattern:

console.time('Add 1000000 records');
var rec = [];
for (var i = 0; i < 1000000; i++) {
 rec.push(1);
}
console.timeEnd('Add 1000000 records');
// > Add 1000000 records: 59ms

We will see other special console methods when discussing the assert module
and performing stack traces later in this chapter.

More output tools are accessible via the util module:

•	 util.debug(String): Blocks the running process and outputs the string
to stderr:
> require('util').debug("Error!")

DEBUG: Error!

•	 util.error(String, [String…]): Same as debug, but can send multiple
strings to stderr:
> require('util').error("Error1","Error2","Error3")

Error1

Error2

Error3

•	 util.puts(String, [String…]): Outputs multiple strings to stdout,
adding a newline after each argument:
> require('util').puts("A","B","C")
A
B
C

Chapter 9

[261]

•	 util.print(String, [String…]): Outputs multiple strings to stdout,
without adding a newline after each argument:
> require('util').print(1,2,3)

123

•	 util.log(String): Outputs a timestamped message to stdout:

> require('util').log('Message with a timestamp')

20 Aug 18:32:08 - Message with a timestamp

Formatting console output
The preceding methods are all very useful when logging simple strings. More often,
useful logging data may need to be formatted, either by composing several values
into a single string, or by neatly displaying a complex data object. The util.format
and util.inspect methods can be used to handle these cases.

The util.format(format, [arg, arg…]) method
This method allows a formatting string to be composed out of placeholders, each
of which captures and displays the additional values passed. For example:

> util.format('%s:%s', 'foo','bar')

'foo:bar'

Here, we see that the two placeholders (prefixed by %) are replaced in order by the
passed arguments. Placeholders expect one of the following three types of values:

•	 %s: A string
•	 %d: A number, either an integer or a float
•	 %j: A JSON object

If a greater number of arguments than placeholders is sent, the extra arguments are
converted to strings via util.inspect(), and concatenated to the end of the output,
separated by spaces:

> util.format('%s:%s', 'foo', 'bar', 'baz');

'foo:bar baz'

If no formatting string is sent, the arguments are simply converted to strings
and concatenated, separated by a space.

Testing your Application

[262]

The util.inspect(object, [options]) method
Use this method when a string representation of an object is desired. Through the
setting of various options the look of the output can be controlled:

•	 showHidden: Defaults to false. If true, the object's non-enumerable properties
will be shown.

•	 depth: An object definition, such as a JSON object, can be deeply nested.
By default util.inspect only traverses two levels into the object. Use this
option to increase (or decrease) that depth.

•	 colors: Allows the colorization of the output (see the following code snippet).
•	 customInspect: If the object being processed has an inspect method

defined, the output of that method will be used instead of Node's default
stringification method (see the following code snippet). Defaults to true.

Setting a custom inspector:

var util = require('util');
var obj = function() {
 this.foo = "bar";
};
obj.prototype.inspect = function() {
 return "CUSTOM INSPECTOR";
}
console.log(util.inspect(new obj))
// CUSTOM INSPECTOR
console.log(util.inspect(new obj, { customInspect: false }))
// { foo: 'bar' }

This can be very useful when logging complex objects, or objects whose values are
so large as to make console output unreadable.

The color: true option of util.inspect allows for colorization of object output,
which can be useful for complex objects. Colors are assigned to data types. The
default assignments are set in util.inspect.styles:

{ special: 'cyan',
 number: 'yellow',
 boolean: 'yellow',
 undefined: 'grey',
 null: 'bold',
 string: 'green',
 date: 'magenta',
 regexp: 'red' }

Chapter 9

[263]

These default color assignments may be swapped out with one of the supported
ANSI color codes stored in the util.inspect.colors object: bold, italic, underline,
inverse, white, grey, black, blue, cyan, green, magenta, red, and yellow. For example,
to have the number values of objects displayed in green rather than the default of
yellow use the following code:

util.inspect.styles.number = "green";
console.log(util.inspect([1,2,4,5,6], {colors: true}));
// [1,2,3,4,5,6] Numbers are in green

The Node debugger
Most developers have used an IDE for development. A key feature of all good
development environments is access to a debugger, which allows breakpoints
to be set in a program in places where state or other aspects of the runtime need
to be checked.

V8 is distributed with a powerful debugger (commonly seen powering the Google
Chrome browser's developer tools panel), and this is accessible to Node. It is invoked
using the debug directive:

> node debug somescript.js

Simple step-through and inspection debugging can now be achieved within a node
program. Consider the following program:

myVar = 123;
setTimeout(function () {
 debugger;
 console.log("world");
}, 1000);
console.log("hello");

Note the debugger directive. Executing this program without using the debugger
directive will result in hello being displayed, followed by world, one second later.
When using the directive, one would see this:

> node debug somescript.js

< debugger listening on port 5858

connecting... ok

break in debug-sample.js:1

 1 myVar = 123;

 2 setTimeout(function () {

 3 debugger;

debug>

Testing your Application

[264]

Once a breakpoint is hit, we are presented with a CLI to the debugger itself, from
within which we can execute some standard debugging and other commands:

•	 cont or c: Continue execution from last breakpoint, until next breakpoint
•	 step or s: Step in, that is, keep running until a new source line

(or breakpoint) is hit, then return control to debugger
•	 next or n: Same as step, but function calls made on the new source line

are executed without stopping
•	 out or o: Step out, that is, execute the remainder of the current function

and back out to the parent function
•	 backtrace or bt: Trace the steps to the current execution frame, similar to:

…

#3 Module._compile module.js:456:26

#4 Module._extensions..js module.js:474:10

#5 Module.load module.js:356:32

… etc.

•	 setBreakpoint() or sb(): Set a breakpoint on the current line
•	 setBreakpoint(Integer) or sb(Integer): Set a breakpoint on

the specified line
•	 clearBreakpoint() or cb(): Clear breakpoint on current line
•	 clearBreakpoint(Integer) or cb(Integer): Clear a breakpoint

on the specified line
•	 run: If the debugger's script has terminated, this will start it again
•	 restart: Terminates and re-starts the script
•	 pause or p: Pause running code
•	 kill: Kill the running script
•	 quit: Exit the debugger
•	 version: Display V8 version
•	 scripts: Lists all loaded scripts

To repeat the last debugger command simply hit Enter on your keyboard.

Returning to the script we are debugging, entering cont into the debugger would
result in the following output:

debug> cont

< hello // ... a pause of 1000 ms will now occur, then...

break in debug-sample.js:3

 1 myVar = 123;

Chapter 9

[265]

 2 setTimeout(function () {

 3 debugger;

 4 console.log("world");

 5 }, 1000);

debug>

Notice how hello was not printed when we started the debugger, even though one
would expect the command console.log('hello') to execute prior to the breakpoint
being reached in the setTimeout callback. The debugger is not executing at run time:
it is evaluating at compile time as well as at run time, giving you deep visibility into
how the bytecode for your program is being assembled and eventually executed.

It is normally useful at a breakpoint to do some inspection, such as the value
of variables. There is an additional command available to the debugger: repl,
that enables this. Currently, our debugger is stopped after having successfully
parsed the script and executed the first function pushed into the event loop,
console.log('hello'). What if we wanted to check the value of myVar?
Use repl:

debug> repl

Press Ctrl + C to leave debug repl

> myVar

123

Play around with REPL here, experimenting with how it might be used.

At this point our program has a single remaining instruction to execute, printing
world. An immediate cont command will execute this last command, the event loop
will have nothing further to do, and our script will terminate:

debug> cont

< world

program terminated

debug>

Testing your Application

[266]

As an experiment, run the script again, using next instead of cont, just before the
execution of this final context. Keep hitting Enter and try to follow the code that is
being executed. You will see that after world is printed the timers.js script will be
introduced into this execution context, as Node cleans up after firing a timeout. Run
the scripts command in the debugger at this point. You will see something like:

debug> next

break in timers.js:125

 123

 124 debug(msecs + ' list empty');

 125 assert(L.isEmpty(list));

 126 list.close();

 127 delete lists[msecs];

debug> scripts

* 37: timers.js

 46: debug-sample.js

debug>

It will be useful to experiment with various methods, learning both what is
happening when Node executes scripts at a deep level, as well as helping with your
debugging needs.

It may be useful to read the following document, describing how
the Google Chrome debugger interface is used at https://
developers.google.com/chrome-developer-tools/docs/
javascript-debugging#breakpoints.

Miroslav Bajtos' node-inspector module is something to consider
for debugging, allowing a developer to remotely debug a Node
application from the Chrome browser:

https://github.com/node-inspector/node-inspector

Chapter 9

[267]

The assert module
Node's assert module is used for simple unit testing. In many cases it suffices as
a basic scaffolding for tests, or used as the assertion library for testing frameworks
(like Mocha, as we'll see later). Usage is straightforward: we want to assert the truth
of something, and throw an error if our assertion is not true. For example:

> require('assert').equal(1,2,"Not equal!")

AssertionError: Not equal!

 at repl:1:20

 ...

If the assertion were true (both values are equal) nothing would be returned:

> require('assert').equal(1,1,"Not equal!")

undefined

Following the UNIX Rule of Silence (when a program has nothing surprising,
interesting or useful to say, it should say nothing), assertions only return a value
when the assertion fails. The value returned can be customized using an optional
message argument, as seen in the preceding section.

The assert module API is composed of a set of comparison operations with
identical call signatures: the actual value, the expected value, and an optional
message to display when comparison fails. Alternate methods functioning as
shortcuts or handlers for special cases are also provided.

A distinction must be made between identity comparison (===) and equality
comparison (==) the former often referred to as strict equality comparison (as is
the case in the assert API). Because JavaScript employs dynamic typing, when two
values of different types are compared using the equality operator ==, an attempt
is made to coerce (or cast) one value into the other, a sort of common denominator
operation. For example:

1 == "1" // true
false == "0" // true
false == null // false

As you might expect, these sorts of comparisons can lead to surprising results.
Notice the more predictable results when identity comparison is used:

1 === "1" // false
false === "0" // false
false === null // false

Testing your Application

[268]

The thing to remember is that the === operator does not perform type coercion prior
to the comparison, while the equality operator compares after type coercion.

Additionally, because objects may contain the same values but not be derived from
the same constructor, the identity of two objects with the same values is distinct for
objects, identity requires that both operands refer to the same object:

var a = function(){};
var b = new a;
var c = new a;
var d = b;
console.log(a == function(){}) // false
console.log(b == c) // false
console.log(b == d) // true
console.log(b.constructor === c.constructor); // true

Finally, the concept of deep equality is used for object comparisons where identity
need not be exact. Two objects are deeply equal if they both possess the same
number of owned properties, the same prototype, the same set (though not
necessarily the same order) of keys, and equivalent (not identical) values for each
of their properties:

var a = [1,2,3];
var b = [1,2,3];
assert.deepEqual(a, b);// passes
assert.strictEqual(a, b);// throws AssertionError: [1,2,3] ===
 [1,2,3]

It is useful to test your assumptions about how values are understood in comparison
to each other by designing some assertion tests. The results may surprise you.
Node’s assert module provides the following comparison methods:.

•	 assert.equal(actual, expected, [message]): Test coerced equality
with ==.

•	 assert.notEqual(actual, expected, [message]): Test coerced equality
with !=.

•	 assert.deepEqual(actual, expected, [message]): Test for deep equality.
•	 assert.notDeepEqual(actual, expected, [message]): Test for

deep inequality.
•	 assert.strictEqual(actual, expected, [message]): Test identity

equivalence. Identical to using the === operator.
•	 assert.notStrictEqual(actual, expected, [message]): Test for

identity mismatch. Identical to using the!== operator.
•	 assert(value, [message]): Throws error if sent value is not truthy.
•	 assert.ok(value, [message]): Identical to assert(value).
•	 assert.ifError(value): Throws error if value is truthy.

Chapter 9

[269]

•	 assert.throws(block, [error], [message]): Test if the supplied code
block throws an error. The optional error value can be an error constructor,
regular expression, or a validation function returning a Boolean value.

•	 assert.doesNotThrow(block, [error], [message]): Test if the supplied
code block does not throw an error.

•	 assert.fail(actual, expected, message, operator): Throws
an exception. This is most useful when the exception is trapped by
a try/catch block:

try {
 assert.fail(1,2,"Bad!","NOT EQ")
} catch(e) {
 console.log(e)
}

The preceding code produces the following output:

{ message: 'Bad!',
 actual: 1,
 expected: 2,
 operator: 'NOT EQ',
 name: 'AssertionError: Bad!' }

A shortcut method for logging assertion results is available in the console API:

> console.assert(1 == 2, "Nope!")

AssertionError: Nope!

For a more detailed explanation of how comparison is done in JavaScript,
consult: https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Operators/Comparison_Operators.

Node's assert module is strongly influenced by the CommonJS
test specification: http://wiki.commonjs.org/wiki/Unit_
Testing/1.0.

Testing your Application

[270]

Sandboxing
For some applications it is useful to be able to run a script within a protected context,
isolated from the general application scope. For these purposes Node provides the
vm module, a sandbox environment consisting of a new V8 instance and a limited
execution context for running script blocks. For example, one might want to execute
code submitted from a web-based editor within such a virtual machine:

var vm = require('vm');
var sandbox = {
 count: 2
};
var someRandomCode = 'var foo = ++count;';
vm.runInNewContext(someRandomCode, sandbox);
console.log(require('util').inspect(sandbox));
// { count: 3, foo: 3 }

Here we see how a provided sandbox becomes the local execution scope for
the provided script. The running script can only operate within the provided
sandbox object, and is denied access to even the standard Node globals, such
as the running process:

...
var someRandomCode = 'var foo = ++count; process.exit(0);';
vm.runInNewContext(someRandomCode, sandbox);
// vm.runInNewContext(someRandomCode, sandbox);
// ^
// ReferenceError: process is not defined

The core Node team has marked vm as unstable, meaning that its API and behavior
may change at any given time. Two other points also need to be stated:

•	 This module does not guarantee a perfectly safe "jail" within which
completely untrusted code can be executed. If this is your need, consider
running a separate process with proper system-level permissions.

•	 Because vm spins up a new V8 instance, each invocation costs some
milliseconds of startup time and about two megabytes of memory. It should
be used sparingly.

For the purpose of testing code, the vm module can be quite effective, in particular
in its ability to force code to run in a limited context. When performing a unit test,
for example, one can create a special environment with mocked data simulating
the environment within which the tested script will run. This can be better than
creating an artificial call context with fake data. Additionally, this sandboxing
will allow the execution context for new code to be better controlled, providing
good protection against memory leaks and other unanticipated collisions that may
bubble up while testing.

Chapter 9

[271]

Distinguishing between local scope and execution
context
Before covering further examples, we need to distinguish between the local scope
of a process and its execution context. The distinction will help with understanding
the difference between the two primary vm methods, vm.runInThisContext and
vm.runInNewContext.

The execution context of a Node process represents the runtime context within
V8, including native Node methods and other global objects (process, console,
setTimeout, and so on). The members of this object are easily traced using the Node
REPL:

node > global

The local scope of a Node program contains runtime definitions, such as variables
defined using var.

A script executed through vm.runInNewContext has no visibility into either scope—
its context is limited to the sandbox object to which it was passed, as seen earlier.

A script executed through vm.runInThisContext has visibility into the global
execution scope, but not into the local scope. We can demonstrate this as follows:

var localVar = 123;
var tc = vm.runInThisContext('localVar = 321;');
console.log(localVar, tc);
var ev = eval('localVar = 321;');
console.log(localVar, ev);
// 123 321
// 321 321

Scripts are therefore run within contexts through vm. It is often useful to precompile
contexts and scripts, in particular when each will be used repeatedly.

Use vm.createContext([sandbox])to compile an execution context, and pass in
a key/value map, such as {a: 1, b: 2}. We'll now look at how to use these
compiled objects together.

Testing your Application

[272]

Using compiled contexts
After receiving a string of JavaScript code, the V8 compiler will do its best to optimize
the code into a compiled version that runs more efficiently. This compilation step
must occur each time a vm context method receives code as a string. If the code doesn't
change and is re-used at least once, use vm.createScript(code, [filename])
to compile it once and for all.

This Script object also inherits runInThisContext and runInNewContext methods
from vm. Here we run a compiled script in both contexts, demonstrating how
the x and y variables being incremented exist in fully isolated scopes:

x = 0;
y = 0;
var script = vm.createScript('++x, ++y;');
var emulation = vm.createContext({ x:0, y:0 });
for(var i=0; i < 1000; i++) {
 script.runInThisContext();
 script.runInNewContext(emulation);
}
console.log(x, y);
console.log(emulation.x, emulation.y);
// 1000 1000 1000
// 1000 1000 1000

Had both scripts modified the same x and y variables, then the outputs would have
instead been 2000 2000. Additionally, if the runInNewContext script is not passed
an emulation layer (sandbox) it will throw a ReferenceError, having no access
to the global x and y values. Try it out.

The optional filename argument is used for debugging,
appearing in stack traces. It might help to provide one
when debugging.

Errors and exceptions
The terms "error" and "exception" are often used interchangeably. Within the Node
environment these two concepts are not identical. Errors and exceptions are different.
Additionally, the definition of error and exception within Node does not necessarily
align with similar definitions in other languages and development environments.

Conventionally, an error condition in a Node program is a non-fatal condition that
should be caught and handled, seen most explicitly in the Error as first argument
convention displayed by the typical Node callback pattern. An exception is a serious
error (a system error) that a sane environment should not ignore or try to handle.

Chapter 9

[273]

One comes across three common error contexts in Node, and should
respond predictably:

•	 A synchronous context: This will normally happen in the context of
a function, where a bad call signature or another non-fatal error is detected.
The function should simply return an error object; new Error(…) or some
other consistent indicator that the function call has failed.

•	 An asynchronous context: When expected to respond by firing a callback
function, the execution context should pass an Error object, with appropriate
message, as the first argument to that callback.

•	 An event context: Quoting the Node documentation: "When an EventEmitter
instance experiences an error, the typical action is to emit an error event.
Error events are treated as a special case in node. If there is no listener for it,
then the default action is to print a stack trace and exit the program.
" Use events where events are expected.

Clearly, these are the three situations where an error is caught in a controlled
manner, prior to it destabilizing the entire application. Without falling too far into
defensive coding, an effort should be made to check inputs and other sources for
errors and properly dismiss them.

An additional benefit of always returning a proper Error object is access to the stack
property of that object. The error stack shows the provenance of an error, each link in
the chain of function, calls the function that led to the error. A typical Error.stack
trace would look like this:

> console.log(new Error("My Error Message").stack);

Error: My Error Message

 at Object.<anonymous> (/js/errorstack.js:1:75)

 at Module._compile (module.js:449:26)

 at Object.Module._extensions..js (module.js:467:10)

 ...

Similarly, the stack is always available via the console.trace method:

> console.trace("The Stack Head")

Trace: The Stack Head

 at Object.<anonymous> (/js/stackhead.js:1:71)

 at Module._compile (module.js:449:26)

 at Object.Module._extensions..js (module.js:467:10)

 ...

Testing your Application

[274]

It should be clear how this information aids in debugging, helping to ensure that
the logical flow of our application is sound.

A normal stack trace truncates after a dozen or so levels. If
longer stack traces are useful to you, try Matt Insler's longjohn
at https://github.com/mattinsler/longjohn.

As well, run and examine the js/stacktrace.js file in your
bundle for some ideas on how stack information might be used
when reporting errors, or even test results.

Exception handling is different. Exceptions are unexpected or fatal errors that have
destabilized the application. These should be handled with care; a system in an
exception state is unstable, with indeterminate future states, and should be gracefully
shut down and restarted. This is the smart thing to do.

Typically, exceptions are caught in try/catch blocks:

try { something.that = wontWork; }
catch(thrownError) {
 // do something with the throw
}

Peppering a codebase with try/catch blocks and trying to anticipate all errors can
become unmanageable and unwieldy. Additionally, what if an exception you didn't
anticipate—an uncaught exception—occurs? How do you pick up where you left off?

Node does not yet have a good built-in way to handle uncaught critical exceptions.
This is a weakness of the platform. An exception that is uncaught will continue
to bubble up through the execution stack until it hits the event loop where, like
a wrench in the gears of a machine, it will take down the entire process.

The best we have is to attach an uncaughtException handler to the process itself:

process.on('uncaughtException', function(err) {
 console.log('Caught exception: ' + err);
});
setTimeout(function() {
 console.log("The exception was caught and this can run.");
}, 1000);
throwAnUncaughtException();
// > Caught exception: ReferenceError: throwAnUncaughtException
 is not defined
// > The exception was caught and this can run.

Chapter 9

[275]

While nothing that follows our exception code will execute, the timeout will still fire,
as the process managed to catch the exception, saving itself. However, this is a very
clumsy way of handling exceptions.

The recently added domain module makes a good attempt at fixing this hole
in Node's design. We will discuss the domain module next as a better tool
for handling exceptions.

The domain module
Error handling in asynchronous code is also difficult to trace:

function f() {
 throw new error("error somwhere!")
}
setTimeout(f, 1000*Math.random());
setTimeout(f, 1000*Math.random());

Which function caused the error? It is difficult to say. It is also difficult to intelligently
insert exception management tools. It is difficult to know what to do next. Node's
domain module attempts to help with this and other exception localization issues.
In this way code can be tested, and errors handled, with more precision.

At its simplest, domain sets up a context within which a function or other chunk
of code can be run such that any errors occurring within that implicit domain
binding will be routed to a specific domain error handler. For example:

var dom = domain.create();
dom.on('error', function(err) {
 console.error('error', err.stack);
});
dom.run(function() {
 throw new Error("my domain error");
});
// error Error: my domain error
// at /js/basicdomain.js:10:8
// ...

Here a function that throws an error is run within the context of a domain able
to intelligently catch those exceptions, implicitly binding all event emitters, timers,
and other requests created within that context.

Testing your Application

[276]

Sometimes a method might be created elsewhere (not within the implicit context
of a given domain.run) but is nevertheless best associated with an external domain.
The add method exists for just such explicit binding:

var dom = domain.create();
dom.on("error", function(err) {
 console.log(err);
});
var somefunc = function() {
 throw new Error('Explicit bind error');
};
dom.add(somefunc);
dom.run(function() {
 somefunc();
});
// [Error: Explicit bind error]

Here we see how a function not implicitly bound within the run context can still be
added to that context explicitly. To remove an execution context from a domain, use
domain.remove. An array of all timers, functions, and other emitters added explicitly
or implicitly to a domain is accessible via domain.members.

The way in which JavaScript's bind method binds a function to a context, similarly
the domain.bind method allows an independent function to be bound to a domain:

var dom = domain.create();
dom.on("error", ...);
fs.readFile('somefile', dom.bind(function(err, data) {
 if(err) { throw new Error('bad file call'); }
}));
// { [Error: bad call]
// domain_thrown: true,
// ...

Here we see how any function can be wrapped by a particular error domain "inline",
a feature especially useful for managing exceptions in callbacks. Note that Error
objects processed through a domain have special properties added to them:

•	 error.domain: The domain that handled the error.
•	 error.domainEmitter: If EventEmitter fires an error event within

a domain, this function will be flagged.
•	 error.domainBound: The callback that passed an error as its first argument.

Chapter 9

[277]

•	 error.domainThrown: A Boolean indicating whether the error was thrown
or not. Errors passed to callbacks, or those announced by an EventEmitter
do not trip this flag.

Another method, domain.intercept, functions similar to domain.
bind, but simplifies error handling in callbacks, such that the developer
will no longer need to repetitively check (or even set) the first argument
of every callback cb(err, data)for errors. An example is found in the
js/domainintercept.js file in your code bundle.

We may want to control when a domain is active, responsibly exiting a domain when
our code is moving into a different execution stack (perhaps with its own domains),
possibly re-entering the original domain at a later time. For this we use the domain.
enter and domain.exit methods. Assuming we have set up two domains dom1
and dom2, the first emitting domain 1 error and the second domain 2 error,
we can move between domain contexts as follows:

dom1.add(aFuncThatThrows);
dom1.run(function() {
 dom1.exit();
 dom2.enter();
 aFuncThatThrows();
});
// domain 2 error

Any number of enter and exit events can be used. Note that no changes are
made to the domain objects themselves, as exit does not close the domain or any
such thing. If a domain needs to be destroyed you should use the domain.dispose
method, which will also try to sanely clean up any in-flight domain I/O, aborting
streams, clearing timers, ignoring callbacks, and so on.

Headless website testing with ZombieJS
and Mocha
Even though we are working on the server with Node, there is no doubt that
much of what we are programming will affect those connecting to our services via
a browser. As it is expected that we will be using Node to test our server-side code,
why not integrate browser-side testing as well?

Testing your Application

[278]

We'll dig deeper into how to unify the entire make/build/test/deploy chain in
the next section. For now, let's look into the easy to use Mocha testing framework
and how some simple browser testing can be done right from the server.

The libraries we will use in this section and the next are available through
the following sources:

•	 Mocha: http://visionmedia.github.io/mocha/
•	 Grunt: http://www.gruntjs.com/
•	 ZombieJS: http://zombie.labnotes.org/

PhantomJS: http://www.phantomjs.org/

Mocha
Mocha expects a directory containing testable units to contain a /test directory,
within which exist various spec, or test specification and files, making up the suite
of tests that Mocha will apply to your application. You will describe what you are
testing, and Mocha, smartly, provides a describe method to do just that:

var assert = require("assert")
describe('Array', function() {
 describe('#indexOf()', function() {
 it('should return -1 when the value is not present',
 function() {
 assert.equal(-1, [1,2,3].indexOf(5));
 assert.equal(-1, [1,2,3].indexOf(0));
 })
 })
})

Here we are describing a test that checks array operations. The describe and
it directives are simply organizational tools, providing a title for the test suite
being described (#indexOf()), and providing a description of each test in the
suite (should return -1 …). If you were to run this through Mocha, some neatly
formatted test reports with these descriptions would be written to the console,
and under each the pass/fail state of the test.

We have seen in the preceding example how Node's assert module is being used.
Mocha is not an assertion library, it is a test runner that makes using an assertion
library easier. You need not use Node's library; other popular assertion libraries
are Chai (http://chaijs.com/api/assert/) and, by the maker of Mocha, Should
(https://github.com/visionmedia/should.js/).

Chapter 9

[279]

Fully describing Mocha is beyond the scope of this book. The preceding description
should be sufficient to understand how test specifications work in the examples
that will follow. You are encouraged to visit the Mocha website and run through
examples yourself.

Headless web testing
One way to test if a UI is working is to pay several people to interact with a website
via a browser and report any errors they find. This is expensive, inefficient, and
offers incomplete coverage, as there is no guarantee that all errors will be found.
Automating the process of testing a UI with browser simulation tools is the topic
of this section.

A browser, stripped of its buttons and other controls, is at heart a program that
validates and runs JavaScript, HTML, and CSS. That the validated HTML is rendered
visually on your screen is simply a consequence of humans only being able to see
with their eyes. A server can interpret the logic of compiled code and see the results
of your interactions with that code without a visual component. Perhaps because
eyes are usually found in one's head, a browser running on a server is typically
referred to as a headless browser. We are going to learn how to do headless browser
testing, first with ZombieJS (a custom-built headless browser), and later with
PhantomJS (a headless version of the WebKit engine).

Most websites will use forms in some way, and a common task for developers is
to validate form inputs, such that a user is warned about mismatched passwords
or invalid e-mails prior to submitting the form. Consider the following form:

<input type="text" id="email" size="20" />
<input type="password" id="password" size="20" />
<input type="submit" value="Sign In" onclick="return
 checkForm(this.parentNode)" />

This is clearly a login form, requiring an e-mail address and a password. We also
see that the submit button of this form will delegate validation to some JavaScript,
ultimately preventing submission if the form values are invalid. How do we test
that this form is correctly validating form data via Node running on a server?

Please consult the mocha-zombie folder in your code bundle while
working through this example. To start, run npm install in this
folder. Consult the readme.md file for further instructions.

Testing your Application

[280]

Assuming that the preceding HTML file is available at localhost:8000, we
can test it using only ZombieJS and Node's assert module, rolling our own
testing framework :

var zombie = require("zombie");
var assert = require("assert");
var count = 0;
var testFramework = function(meth, v1, v2) {
 ++count;
 try {
 assert[meth](v1, v2);
 console.log("Test " + count + " OK!");
 } catch(e) {
 console.log("Test " + count + " Error!");
 console.log(e);
 }
}
browser = new zombie();
browser.visit("http://localhost:8000/login.html", function() {
 testFramework("ok", browser.success);
 testFramework("ok", browser.query('#nonexistentId'));
});
// Test 1 OK!
// Test 2 Error!
// { name: 'AssertionError',
// actual: undefined,
// expected: true,
// operator: '==',
// message: '"undefined" == true' }

Here we see the ZombieJS object property success being tested (was the page
found?), and a DOM query for the element with #nonexistentId being run on
our new headless DOM, the first test succeeding and the second failing. Our mock
testing framework needs to only catch assertion errors and report results.

Consult the ZombieJS website for the full set of methods available
to test the DOM in much more complex ways.

Chapter 9

[281]

Mocha is a much better testing framework than ours, so let's integrate Mocha
and ZombieJS to test if our login form has both an e-mail and a password field:

var server = someServerRunningOn8000;
describe('Simple Login Test', function() {
 this.browser = new zombie({ site: 'http://localhost:8000' });
 this.browser.visit('/login.html');
 it('should have an input with id of #email', function() {
 assert.ok(this.browser.success);
 assert.ok(this.browser.query('input#email'));
 });
 it('should have an input with id of #password', function() {
 assert.ok(this.browser.success);
 assert.ok(this.browser.query('input#password'));
 });
});

After calling mocha on the command line, you should see something like
this displayed:

Configure Mocha with a /test/mocha.opts file,
an example is in your code bundle. For more information visit
http://visionmedia.github.io/mocha/#mocha.opts.

The bundled example contains a more complex test file, but we're only scratching
the surface here. There are many ways to think about and design tests, so this is only
a starting point as you learn to describe your application using logical assertions,
and delve deeper into Mocha and various assertion libraries.

Using Grunt, Mocha, and PhantomJS to
test and deploy projects
With our new knowledge about headless browsers and test frameworks, let's
develop a slightly more realistic build/test/deploy system using Node. We'll
continue to use Mocha, and swap out ZombieJS for the solid PhantomJS, which
unlike ZombieJS is not an emulator, it is a true WebKit browser, making it a more
powerful and accurate testing environment.

Testing your Application

[282]

We will introduce Grunt, The JavaScript Test Runner, which is designed for task
automation, such as automatically running Mocha tests and deploying the current
build, if all those tests pass.

The goal is to create a system that allows developers to write simple HTML pages
and have Grunt to automatically test and deploy them. It is to turn this source code:

<head>
<!-- build:css:deploy css/style.min.css -->
 <link rel="stylesheet" href="css/normalize.css">
 <link rel="stylesheet" href="css/main.css">
<!-- /build -->
</head>
<body>
<!-- build:js:deploy js/app.min.js -->
 <script src="js/file1.js"></script>
 <script src="js/file2.js"></script>
 <script src="js/file3.js"></script>
<!-- /build -->
<!-- build:remove:deploy -->
 <script src="../../test/framework.js"></script>
 <script src="../../test/spec/file1.js"></script>
 <script src="../../test/spec/file2.js"></script>
 <script src="../../test/spec/file3.js"></script>
<!-- /build -->
</body>

Into this deployed code:

<head>
 <link rel="stylesheet" href="css/style.min.css">
</head>
<body>
 <script src="js/app.min.js"></script>
</body>

This is where the code testing and minification is done automatically, following
the build directives surrounding script and link chunks.

At the end of this process, a new /build directory will be created, containing both
a stage/ and a deploy/ folder, each containing specific builds of the files within
your original /source directory. This is a full workflow that can help you with
testing and deploying your projects.

Chapter 9

[283]

Working with Grunt
The current workflow Grunt tries to simplify is that around Unix make utility.
A typical make file to automatically run Mocha would be named Makefile and
look something like this:

TESTS = test/*.js
test:
 mocha
.PHONY: test

It's a little cryptic, but the ideas are straightforward:

1.	 Set up a test runner that will run the command mocha.
2.	 Have that runner look for JavaScript spec files in the directory test/.

Grunt tries to accomplish the same goals within a Node environment, where calling
module functions makes more sense than running system commands, and using
standard JSON syntax for declaring system dependencies makes more sense.

Grunt tasks are written to a Gruntfile.js, and one to run Mocha tests might look
like this:

module.exports = function(grunt) {
 grunt.initConfig({
 mocha: {
 all: ['./test/*.js']
 }
 });
 grunt.loadNpmTasks('grunt-mocha');
 grunt.registerTask('default', ['mocha']);
}

Adding more tasks follows the same pattern. To add the jshint task, which will check
your JavaScript source code for possible errors, we add something like the following:

...
jshint: {
 options: {
 jshintrc: ".jshintrc"
 },
 files: ["Gruntfile.js", "tasks/*.js"]
}
...
this.loadNpmTasks("grunt-contrib-jshint");
...

Testing your Application

[284]

Go ahead and explore the mocha-phantom-grunt folder in your code bundle.
You can start by installing it and running grunt:

> npm install

...

> grunt

Read through the output and see if you can follow what is going on. Then dive
into the code and follow how Grunt sets up task runners that will ultimately
validate, test, and deploy your project with ease.

Summary
The Node community has embraced testing from the beginning, and many testing
frameworks and native tools are made available to developers. In this chapter we've
examined why testing is so important to modern software development, as well as
something about functional, unit, and integration testing, what they are and how
they can be used. With the vm module we learned how to create special contexts
for testing JavaScript programs, along the way picking up some techniques for
sandboxing untrusted code.

In addition we've learned how to work with the extensive set of Node testing and
error-handling tools, from more expressive console logging to Move onto one line
tracing and debugging. Through the assert and domain modules we were exposed to
error catching and reporting mechanisms, giving us a more robust way to specifically
target errors and exceptions, rather than simply catching all in one global handler.

Finally, we learned how to set up a proper build and test system using Grunt and
Mocha, in the process experimenting with two different headless browser testing
libraries, learning two ways in which such testing might be done in each, and how
these virtual browsers can be integrated seamlessly with other testing environments.

Organizing Your Work
"The way to build a complex system that works is to build it from very simple
systems that work."

 – Kevin Kelly

Node's straightforward module management system encourages the development
of maintainable codebases. The Node developer is blessed with a rich ecosystem of
clearly defined packages with consistent interfaces that are easy to combine, typically
delivered via npm. When developing both simple and complex solutions, the Node
developer will often find many pieces of that system readymade, and can rapidly
compose those open source modules into larger, consistent, and predictable systems.

Because the value of any one module can be multiplied by adding useful
submodules, the Node module ecosystem has grown rapidly.

We will cover the details of how Node understands modules and module paths,
how modules are defined, how to use modules in the npm package repository,
and how to create and share new npm. By following some simple rules you will
find it easy to shape the structure of your application, and help others work with
what you've created.

"Module" and "package" will be used interchangeably to describe
the file or collection of files compiled and returned by require().

Organizing Your Work

[286]

Loading and using modules
The Node designers believe that most modules should be developed in userland—by
developers, for developers. Such an effort is made to limit the growth of the standard
library. Node's standard library contains the following short list of modules:

Network and I/O Strings and Buffers Utilities

TTY
UDP/Datagram
HTTP
HTTPS
Net
DNS
TLS/SSL
Readline
FileSystem

Path
Buffer
Url
StringDecoder
QueryString

Utilities
VM
Readline
Domain
Console
Assert

Encryption and Compression Environment Events and Streams

ZLIB
Crypto
PunyCode

Process
OS
Modules

Child Processes
Cluster
Events
Stream

Modules are loaded via the global require statement, which accepts the module
name or path as a single argument. You are encouraged to augment the module
ecosystem by creating new modules or new combinations of modules.

The module system itself is implemented in the require (module) module.

Appendix A

[287]

Understanding the module object
A Node module is simply a JavaScript file expected to assign a useful value to
the module.exports property:

module.exports = new function() {
 this.it = function(it) {
 console.log(it);
 }
}

We now have a module that can be required by another file. If this module was
defined in the file ./say.js, the following is one way to use it:

var say = require("./say");
say.it("Hello");
// Hello

Note how it was not necessary to use the .js suffix. We'll discuss how Node resolves
paths shortly.

Node's core modules are also defined using the standard module.
exports pattern, as can be seen by browsing the source code
defining console: https://github.com/joyent/node/blob/
master/lib/console.js.

Once loaded, modules are cached based on their resolved filename, resolved relative
to the calling module. Subsequent calls to require(./myModule) will return identical
(cached) objects. Note however that accessing the same module via a different relative
path (such as ../../myModule) will return a different object—think of the cache being
keyed by relative module paths.

A snapshot of the current cache can be fetched via require('module')._cache).

The module object itself contains several useful readable properties, such as:

•	 module.filename: The name of the file defining this module.
•	 module.loaded: Whether the module is in process of loading. Boolean true

if loaded.
•	 module.parent: The module that required this module, if any.
•	 module.children: The modules required by this module, if any.

Organizing Your Work

[288]

You can determine if a module is being executed directly via
node module.js or via require('./module.js') by
checking if require.main === module, which will return
true in the former case.

Resolving module paths
The require statement is regularly seen when browsing (or building) a Node
program. You will have noticed that the argument passed to require can take many
forms, such as the name of a core module or a file path.

The following pseudo code, taken from the Node documentation, is an ordered
description of the steps taken when resolving module paths:

require(X) from module at path Y
1. If X is a core module,
 a. return the core module
 b. STOP
2. If X begins with './' or '/' or '../'
 a. LOAD_AS_FILE(Y + X)
 b. LOAD_AS_DIRECTORY(Y + X)
3. LOAD_NODE_MODULES(X, dirname(Y))
4. THROW "not found"
LOAD_AS_FILE(X)
1. If X is a file, load X as JavaScript text. STOP
2. If X.js is a file, load X.js as JavaScript text. STOP
3. If X.node is a file, load X.node as binary addon. STOP
LOAD_AS_DIRECTORY(X)
1. If X/package.json is a file,
 a. Parse X/package.json, and look for "main" field.
 b. let M = X + (json main field)
 c. LOAD_AS_FILE(M)
2. If X/index.js is a file, load X/index.js as JavaScript text. STOP
3. If X/index.node is a file, load X/index.node as binary addon. STOP
LOAD_NODE_MODULES(X, START)
1. let DIRS=NODE_MODULES_PATHS(START)
2. for each DIR in DIRS:
 a. LOAD_AS_FILE(DIR/X)
 b. LOAD_AS_DIRECTORY(DIR/X)
NODE_MODULES_PATHS(START)
1. let PARTS = path split(START)
2. let ROOT = index of first instance of "node_modules" in PARTS, or 0
3. let I = count of PARTS - 1
4. let DIRS = []
5. while I > ROOT,

Appendix A

[289]

 a. if PARTS[I] = "node_modules" CONTINUE
 c. DIR = path join(PARTS[0 .. I] + "node_modules")
 b. DIRS = DIRS + DIR
 c. let I = I - 1
6. return DIRS

File paths may be absolute or relative. Note that local relative paths will not be
implicitly resolved and must be stated. For example, if you would like to require the
file myModule.js from the current directory it is necessary to at least prepend ./ to the
file name in order to reference the current working directory—require('myModule.
js') will not work. Node will assume you are referring to either a core module or
a module found in the./node_modules folder. If neither exists, a MODULE_NOT_FOUND
error will be thrown.

As seen in the pseudo code above, this node_modules lookup ascends a directory
tree beginning from the resolved path of the calling module or file. For example, if
the file at '/user/home/sandro/project.js' called require('library.js'), then
Node would seek in the following order:

/user/home/sandro/node_modules/library.js

/user/home/node_modules/library.js

/user/node_modules/library.js

/node_modules/library.js

Organizing your files and/or modules into directories is always a good idea. Usefully,
Node allows modules to be referenced through their containing folder, in two ways.
Given a directory, Node will first try to find a package.json file in that directory,
alternatively seeking for an index.js file. We will discuss the use of the package.
json files in the next section. Here we need to simply point out that if require is
passed the directory ./myModule it will look for is ./myModule/index.js.

If you've set the NODE_PATH environment variable then Node will use
that path information to do further searches if a requested module is
not found via normal channels. For historical reasons $HOME/.node_
modules, $HOME/.node_libraries, and $PREFIX/lib/node
will also be searched. $HOME represents a user's home directory, and
$PREFIX will normally be the location Node was installed to.

Organizing Your Work

[290]

Using npm
As mentioned when discussing how Node does path lookups, modules may be
contained within a folder. If you are developing a program as a module for others
to use you should bundle that module within its own folder and publish it. The npm
package management system is designed to help you do just that.

As we've seen throughout the examples in this book, a package.json file describes
a module, usefully documenting the module's name, version number, dependencies,
and so forth. It must exist if you would like to publish your package via npm. In this
section we will investigate the key properties of this file, and offer some hints and
tips on how to configure and distribute your modules.

Try npm help json to fetch detailed documentation for all the available
package.json fields, or visit https://npmjs.org/doc/json.html.

A package.json file must conform to the JSON specification. For example,
properties and values must be double-quoted.

Initializing a package file
You can create a package file by hand, or use the handy npm init command-line
tool, which will prompt you for a series of values and automatically generate
a package.json file. Let's run through some of these values:

•	 name: (Required) This string is what will be passed to require() in order
to load your module. Make it short and descriptive, using only alphanumeric
characters—this name will be used in URLs, command line arguments, and
folder names. Try to avoid using "js" or "node" in the name.

•	 version: (Required) npm uses semantic versioning, where these are all valid:
°° >=1.0.2 <2.1.2
°° 2.1.x
°° ~1.2

For more information on version numbers, visit https://npmjs.org/
doc/misc/semver.html.

•	 description: When people search npmjs.org for packages, this is what they
will read. Make it short and descriptive.

Appendix A

[291]

•	 entry point: This is the file that should set module.exports—it defines
where the module object definition resides.

•	 keywords: A comma-separated list of keywords that will help others find
your module in the registry.

•	 license: Node is an open community that likes permissive licenses. "MIT"
and "BSD" are good ones here.

You might also want to set the private field to true while you are developing your
module. This ensures that npm will refuse to publish it, avoiding accidental releases
of incomplete or time-sensitive code.

Using scripts
npm is ultimately a build tool, and the scripts field in your package file allows
you to set various build directives executed at some point following certain npm
commands. For example, you might want to minify JavaScript, or execute some
other processes that build dependencies that your module will need whenever npm
install is executed. The available directives are:

•	 prepublish, publish, postpublish: Run by the npm publish command.
•	 preinstall, install, postinstall: Run by the npm install command.
•	 preuninstall, uninstall, postuninstall: Run by the npm uninstall command.
•	 preupdate, update, postupdate: Run by the npm update command.
•	 pretest, test, posttest: Run by the npm test command.
•	 prestop, stop, poststop: Run by the npm stop command.
•	 prestart, start, poststart: Run by the npm start command.
•	 prerestart, restart, postrestart: Run by the npm restart command. Note

that npm restart will run the stop and start scripts if no restart script
is provided.

It should be clear that the commands with prefix pre will run before, and the
commands with prefix post will run after their primary command (such as publish)
is executed.

Package files demonstrating the use of script directives can be
found in the mocha-zombie folder in the code bundle for Chapter 9,
Testing Your Application.

Organizing Your Work

[292]

Declaring dependencies
It is likely that a given module will itself depend on other modules. These
dependencies are declared within a package.json file using four related properties,
which are:

•	 dependencies: The core dependencies of your module should reside here.
•	 devDependencies: Some modules are only needed during development (and

not in production), such as those used for testing. Declare those modules here.

npm install will always install both dependencies and
devDependencies. To install an npm package without
loading devDependencies, use the command npm
install --production.

•	 bundledDependencies: Node is changing rapidly, as are npm packages.
You may want to lock a certain bundle of dependencies into a single
bundled file and have those published with your package, such that
they will not change via the normal npm update process.

•	 optionalDependencies: Contains modules that are optional. If these modules
cannot be found or installed the build process will not stop (as it will with
other dependency load failures). You can then check for this module's
existence in your application code.

Dependencies are normally defined with a npm package name followed by
versioning information:

"dependencies" : {
 "express" : "3.3.5"
}

However they can also point to a tarball:

"foo" : "http://foo.com/foo.tar.gz"

You can point to a GitHub repository:

"herder": "git://github.com/sandro-pasquali/herder.git#master"

Or even the shortcut:

"herder": "sandro-pasquali/herder"

Appendix A

[293]

These GitHub paths are also available to npm install. For example,
npm install sandro-pasquali/herder.

Additionally, in cases where only those with proper authentication are able to install
a module, the following format can be used to source secure repositories:

"dependencies": {
 "a-private-repo":
 "git+ssh://git@github.com:user/repo.git#master"
}

By properly organizing your dependencies by type, and intelligently sourcing those
dependencies, build requirements should be easy to accommodate using Node's
package system.

Publishing packages
In order to publish to npm, you will need to create a user. npm adduser will trigger
a series of prompts requesting your name, e-mail, and password. You may then use
this command on multiple machines to authorize the same user account.

To reset your npm password visit https://npmjs.org/forgot.

Once you have authenticated with npm you will be able to publish your packages
using the command npm publish. The easiest path is to run this command from your
package folder. You may also target another folder for publishing (remember that
a package.json file must exist in that folder).

You may also publish a gzipped TAR archive containing a properly configured
package folder.

Note that if the version field of the current package.json file is lower or equal
to that of the existing, published package npm will complain and refuse to publish.
You can override this by using the --force argument with publish, but you
probably want to update the version and republish.

To remove a package use npm unpublish <name>[@<version>]. Note that
once a package is published other developers may depend on it. For this reason
you are strongly discouraged from removing packages that others are using.
If what you want to do is discourage the use of a version, use npm deprecate
<name>[@<version>] <message>.

Organizing Your Work

[294]

To further assist collaboration, npm allows multiple owners to be set for a package:

•	 npm owner ls <package name>: Lists the users with access to a module.
•	 npm owner add <user> <package name>: The added owner will have full

access, including the ability to modify the package and add other owners.
•	 npm owner rm <user> <package name>: Removes an owner and

immediately revokes all privileges.

All owners have equal privileges—special access controls are unavailable, such
as being able to give write but not delete access.

Globally installing packages and binaries
Some Node modules are useful as command-line programs. Rather than requiring
something such as > node module.js to run a program, we might want to simply
type > module on the console and have the program execute. In other words, we
might want to treat a module as an executable file installed on the system $PATH and
therefore accessible from anywhere. There are two ways to achieve this using npm.

The first and simplest way is to install a package using the -g (global) argument:

npm install -g module

If a package is intended as a command-line application that should be installed
globally, it is a good idea to set the preferGlobal property of your package.json
file to true. The module will still install locally, but users will be warned about its
global intentions.

Another way to ensure global access is by setting a package's bin property:

"name": "aModule",
"bin" : {
 "aModule" : "./path/to/program"
}

When this module is installed, aModule will be understood as a global CLI
command. Any number of such programs may be mapped to bin. As a shortcut,
a single program can be mapped like so:

"name": "aModule",
"bin" : "./path/to/program"

In this case the name of the package itself (aModule) will be understood as
the active command.

Appendix A

[295]

Sharing repositories
Node modules are often stored in version control systems, allowing several
developers to manage package code. For this reason the repository field of
package.json can be used to point developers to such a repository, should
collaboration be desired. For example:

"repository" : {
 "type" : "git",
 "url" : "http://github.com/sandro-pasquali/herder.git"
}
"repository" : {
 "type" : "svn",
 "url" : "http://v8.googlecode.com/svn/trunk/"
}

Similarly, you might want to point users to where bug reports should be filed
by using the bugs field:

"bugs": {
 "url": "https://github.com/sandro-pasquali/herder/issues"
}

Introducing the Path
Framework

"Great acts are made up of small deeds."

 – Lao Tzu

JavaScript is the only language natively installed in browsers. All web-based
applications depend on JavaScript to deliver their UI. If you are using a framework
built on another language (such as Ruby on Rails), you must merge two completely
different development models, one for the client and one for the server. With
the arrival of Node and JavaScript on the server, this unfortunate and awkward
workflow has been made smooth and elegant.

The Path Framework is a powerful full-stack application development platform
that will help you create enterprise-class applications in less time. Unlike Express,
which is limited to the server side of an application, and client-side frameworks
such as EmberJS that offer no help on building servers, Path unifies your application
development process. With its focus on the full stack, Path enables the JavaScript
developer to build complete applications using a single language that are scalable,
easy to maintain, test, and modify. Of course, Node occupies a central place in the
Path design.

Path's goal is to help developers easily build web applications that work like native
applications. This means responsive single-page applications with powerful features.

Introducing the Path Framework

[298]

Data is synchronized automatically between client and server when you build
an application with Path. No more building complex and error-prone client/server
synchronization hooks. Client interfaces are composed out of modules of any number
and complexity, easily using an elegant, declarative, and data-centric syntax. Real-time
data broadcasts across groups of clients, in both directions, in a snap. Programming
route handlers on the server is just as easy as binding a click to a button.

Some of the key features of Path are as follows:

•	 Just JavaScript: Context switching is hard. Finally, a unified team speaking
a common language, across the stack.

•	 Automatic UI refresh: Your UI modules automatically update when the
data they are bound to changes. Two-way data binding without the knots.

•	 No more CRUD: Move beyond the dirty old CRUD model into an efficient
socket-based communication paradigm designed for modern real-time
application development.

•	 Hot code updates: Change your code on the server and the clients will
be updated automatically.

•	 Interoperability: Anything that can communicate over WebSockets can
communicate with a Path server.

•	 Dirt simple module loading: Simple declarative HTML syntax helps you
compose UIs in a way that is easy for you to create and easy for others to read.

•	 Automatic module caching: It means smart dependency loading.
•	 As easy as HTML: Modules are naturally expressed by nesting HTML

elements. Loaded modules can themselves create further module dependency
trees. Element attributes store options and other component settings.
User events are bound to server actions without using any JavaScript.

•	 Embeddable: Use as much or as little of Path as you'd like. Path is here
to help, not hinder. Other frameworks can even share your Path server.

•	 Out-of-the-box productivity: Path comes packed with prebuilt applications
you can get started with right away.

To get started, clone the Path repository from
https://github.com/sandro-pasquali/pathjs.git,
and follow the instructions on that page.

Appendix B

[299]

Managing state
As we discussed earlier:

If changes can be introduced into a web application without requiring a complete
reconstruction of state and state display then updating client information becomes cheaper.
The client and server can talk more often, regularly exchanging information. Servers can
recognize, remember, and respond immediately to client desires, aided by reactive interfaces
gathering user actions and reflecting the impact of those actions within a UI in near real time.

A very important question every application developer must ask is this one: where
should state reside?

Of course, permanent data must ultimately reside in a persistent layer such as
a server-side database. As well, transient-state data (such as which navigation item
is highlighted in a UI) can happily exist in the client. However, if an application
displays real bank records in a data grid within a browser, how do changes made
to the canonical record (the database) synchronize with changes in client model?

For example, imagine a banking application where a browser-based UI indicates to
the user that she has a balance of USD 100. This UI was "drawn" based on an earlier
request to a server, asking something like: What is Mary's bank balance? Clearly that
number may change in the next second, or even millisecond, given the automated
nature of banking. How can Mary be sure that when she pays a USD 100 bill she still
has USD 100 in the bank?

One solution is to periodically expire the validity of the client state and poll a server
for state changes, resynching client and server state. Additionally, client requests are
revalidated on the server—Mary would be warned if she tries to spend USD 100 that
she doesn't have. Client state is optimistic, and transactions are revalidated.

However, there are several problems with this model:

•	 Not all state can exist on a client: Secured state data must remain on the
server, which means clients can handle only pieces of state, making even the
best attempt to maintain a synchronized client state imperfect by definition.

•	 Revalidation is not an acceptable solution in many cases: Consider
a real-time shooter. If one player alters the state of another player (let's say
by killing that player), it is not acceptable to at some point in the future
reanimate the killed player simply because the shooter's client had incorrect
position information that renders the original kill invalid.

Introducing the Path Framework

[300]

•	 Optimism leads to false security: Meaningless is one word that can be
used to described state data that may or may not be valid. For example,
a stock-trading program showing the wrong price for FOO Corporation
may lead a trader to short sell BAR Corporation. If the state of BAR
(according to the client) matches that on a server the trade will go through,
and the trader may lose money. Any single bit of information cannot
itself validate all other bits of information. Indeterminacy is a feature of
concurrent systems, and these systems challenge deductive state validation
techniques—whether a comparison is valid cannot always be determined.

Many techniques have been used to synchronize client and server state—cookies,
hidden form fields, fat URLs, and others. Path takes a different view, based on
the advantages that Node provides, in particular when paired with the WebSocket
protocol. If we can create highly responsive servers linked with clients through
efficient pipelines, where sub-second response times are expected, it is better
to simply keep important state information on the server and cease any attempts
to create client-side reflections on a mirror that is easily smudged.

Bridging the client/server divide
Node is designed for high-concurrency environments, where many clients
connecting simultaneously can have their needs met quickly and predictably. This
ability also implies that each client can expect a Node server to respond rapidly
when it itself sends many simultaneous requests.

One of Path's key design beliefs is that keeping state synchronized across clients
and servers is complex and difficult to do well. For this reason, applications built
with Path exchange data between clients and servers exclusively through the
WebSockets protocol.

The following is a high-level view of how Path handles client requests. We see how
the cluster module is used to share responsibility for handling socket connections
among several socket servers:

Appendix B

[301]

Each Actor executes within Context, passing
its result to the next Actor, it any.

Actors can be used by many User States

Any device that can implement the
WebSockets protocol.

A browsers. for example, opens a socket connection
with a server like so:

var connection = new WebSocket('ws://127.0.0,I:808l');

A of socket sewers, one for each core.
Each runs in its own process. sharing a single
port. Distribution of load across processes is

done by the OS itselt.

Cluster

Socket servers execute within a common scope, a
Node process.Via built-in IPC and the use of

closures, reference sharing and other bookkeeping
communication between and is achieved.

master

master child

Client connection data is shared between child processes
in the cluster. Connections are instantiated as
User State obiects, which are state machines.

Each request is a Transaction. Each Transaction takes
a User State and configures and starts it. binding
data event handlers, which normally broadcast

data back to client.

Actors are then assigned to User State. These
Actors are tasked with satisfying the Transaction.

Actors emit data/error events.

ws://
ws://

ws://

ws
ws

ws

V8
V8

V8

Transaction User State

on("data")
on("finished")

on("error") Actor

Cluster

Once a request has been assigned to a server that request must be fulfilled. We will
call that a transaction. Each transaction is being fulfilled for a single user and, as
such, fulfillment is delegated to a user object. This user object is a state machine,
containing any specific state information for this user. Depending on transaction
fulfillment requirements, one or more actors will be assigned, emitting their results
(or error warnings). Authenticated users will have a unique machine to process their
requests, while other users will share a common "guest" machine.

In this way each request can be framed within a user scope, accurately resolved
within the canonical state and responded to with confidence.

Introducing the Path Framework

[302]

Sending and receiving
In addition to keeping state on the server, Path also aims at reducing the
responsibility of a caller for holding on to a call context until a response is received.
This sort of call frame maintenance anticipating callback execution is an essential
condition of nearly all AJAX development patterns, and is typically represented
as follows:

//Within some execution context, such as an autocomplete input
someXhrProxy.get("/a/path/", function(data) {
 //A callback bound to the execution context via closures
});

Some client-side libraries attempt to simplify this pattern with abstractions like
Promises, but they miss the point: a call should "fire and forget", its job being solely
the transmission of a request. The impact of that action, for both the server and the
client, is not the caller's concern. A developer only needs to assert a desired change
of state, or request some information. Path facilitates this separation of concerns,
absolves the call function of any responsibility for maintaining call contexts at the
functional level and manages the flow of execution itself:

All elements can bind user actions using data-attributes. The

standard events are all included - mouseover, click, change, etc.

Event binding is , via attribute.declarative data-action

The Path Runtime is bound, via event delegation, to all events

that occur within a document. When bound events occur,

Path will prepare an event object and route it.

Path works on a "fire and forget” model. to the server via a route,

The server will process the request, and respond with a object. Path listens on a socket,

aligns with original call data, and routes resultData to the paths listening on the method.

send

resultData

callld receive

posting some data if needed.

<element.../> data-action="click/user/getEmail...

Because events are trapped via delegation (rather than

explicitly bound on a per-element basis) elements

may be introduced/removed without side effects.

Path bindings:
path.open("/User/getEmail)

.click(function(){...//handler}

Path Runtime

Path.route

Any handler or other function may call path.route("/path/here","method")

Client
path.send('/user/getEmail');

path.open("/user/getEmail")
.receive(function(resultData){...})

WS://

Server

callld, [postData]

callld, resultData

Appendix B

[303]

Path uses a declarative model for binding user actions. For example, the following
is all that is necessary to bind a click event to an element:

a href="#" data-action="click/create/user/jack">Create user

We create the action to execute when that element is clicked by opening the set path,
and listening for the click event:

path
.open("/create/user/:username")
.click(function(username) {
 console.log("New user: " + username);
})

Clicking on the element will log New user: jack to the console.

To send a request to the server, we follow a similar pattern. If, for example,
we wanted to route the /create/user/jack path to a server, creating a new user,
we would use the send command:

path
.open("/create/user/:username")
.click(function(username) {
 path.send("/create/user/" + username);
})

See the examples in your code bundle for more involved transactions.

Achieving a modular architecture
Path's declarative model also makes it very easy to load modules and dependencies
via HTML. Some of the key goals of its module loading system are as follows:

•	 Bundling: When it is known that a group of modules is needed, bundle them
into one package and send them in one request.

•	 Caching: Once a module has been retrieved from the server, it should not need
to be requested again. Path maintains a cache of module data on the client.

•	 Communication: Path routes events through paths such as /click/get/
email. Modules do the same, broadcasting their data along module/
moduleName/eventName paths, allowing listeners to act on
those transmissions.

•	 Encapsulation: No direct access to a module's internals is allowed. All
communication is via paths, as described previously.

Introducing the Path Framework

[304]

•	 Templates and data binding: Each module is easily bound to a data source,
served through a real time socket server. When new data arrives, the module
will automatically update its view.

Path was designed to help simplify the designing of modular architectures. Through
a declarative syntax, Path makes it easy to see how an application is laid out, even
for a nontechnical person. Additionally, the natural binding mechanism for modules
further simplifies comprehension of "what is going on", as well as aiding the creation
of real-time UI updates, as data bindings automatically receive socket updates,
piping new data into new view templates as it arrives:

: This also means that the HTML returned in a module bundle
can declare modules, these balm caught on the next pass.
NB

itself

Modules are declared via HTML. Any element given
a attribute of and a (eg. "grid")

Dependency trees are directly reflected by
the DOM tree. Here, "pager" will certainty have

"grid" loaded when it is initialized.

class module name

Path will make a pass over the DOM
looking for module definitions, progressing
one level down the tree. Here, that means

“notifier” and "grid" will be recognized
and fetched.

down a level...

Both modules will be fetched,
packaged, and returned as a

single response.

Passes continue until all modules
have been fetched, the DOM being

updated with each new bundle.

Once module bundles arrive in the client they will
be cached. Should module "grid" be requested twice,

the second request will simply run the pre-loaded
Javaacrlpt again, re-inserting HTML and so on.

js, html, css bundle

<notifier>
<grid>

<added>
<elements>
<pager>

<other>
<elements>
</pager>

</grid>

DOM

js, html, css bundle

notifer, module pager

Path Runtime

Path bindings:
path.open("/user/getEmail")

.click(function(){... //handler}

WSWS

<div class="notifier"><ldiv>
<div class="module' name="grid’>

<div class="pager"
data-params="perPage: 10">

</div>
</div>

Appendix B

[305]

For example, if I have a list of items to display I might use a special module named
list. A list module may want tool tips to appear when items in its list are hovered
over, so it may depend on a tooltip dependency. This relationship would be
expressed as follows:

<div class="module" name="list">
 <div class="module" name="tooltip"></div>

 ...
 ...

</div>

The list module may now use tooltip features. Another way of expressing this
relationship is as follows:

<div class="module" name="tooltip"></div>
<div class="module" name="list">

 ...
 ...

</div>

The advantage of the second method is that, while continuing to ensure that tooltip
exists when list is loaded, both modules can be loaded in parallel, as they exist on the
same level within a DOM tree.

This built-in tendency towards facilitating bundling and parallel loading helps
applications developed with Path remain performant, regardless of number of
modules or the complexity of dependencies. The flexibility provided here by Path
makes dependency loading and assignment transparent and efficient.

Automatically binding is also easy to achieve. Consider the following HTML:

<textarea data-binding="form.something.selected"></textarea>
<select data-binding="form.something.selected">
 <option value="one">1</option>
 <option value="two">2</option>
</select>

Introducing the Path Framework

[306]

Note how both the select element and the textarea element have identical
data-binding properties. Path will automatically "wire up" this relationship such
that whenever a new selection is made the content of the given textarea will
reflect the new selected data. With very little work, very complex data relationships
and interactive feedback loops can be created using Path.

Investigate the examples given in your code bundle, and play around with
different orderings and nestings of modules, different data bindings. With Path
we can realistically begin to design applications in which a client is understood
as simply another event emitter and event listener, not unlike a Stream or
process.stdin, the same holds true for the client's perception of the server.
With its full-stack comprehensive design, Path is the real-time framework designed
for the Node developer.

Creating your own
C++ Add-ons

"If two (people) on the same job agree all the time then one is useless. If they
disagree all the time, then both are useless."

 – Darryl F. Zanuck

A very common description of Node is this: Node.js allows JavaScript to run on
the server. While true, this is also misleading. Node's creators organized and linked
powerful C++ libraries in such a way that their efficiency could be harnessed
without developers needing to comprehend their complexities. Node abstracts away
the complexity of multiuser, simultaneous multithreaded I/O by wrapping that
concurrency model into a single-threaded environment that is easy to understand
and already well understood by millions of web developers.

When you are working with Node you are ultimately working with C++, a language
whose suitability for enterprise-level software development no one would question.

Node's C++ foundation puts lie to claims that Node is not enterprise-ready. These
claims confuse what JavaScript's role in the Node stack actually is. The bindings
to Redis and other database drivers used regularly in Node programs are C
bindings–fast, near the "metal". Node's process bindings (spawn, exec, and so on)
facilitate a smooth integration of powerful system libraries (such as ImageMagick)
with headless browsers and HTTP data streams. With Node, we are able to access
the enormously powerful suite of native Unix programs through the ease and
comfort of JavaScript. And of course, we can write our own C++ add-ons.

Creating your own C++ Add-ons

[308]

Paraphrasing Professor Keith Devlin's description in Calculus: One of the Most
Successful Technologies (https://www.youtube.com/watch?v=8ZLC0egL6pc), these
are some features of successful consumer technologies:

•	 It should remove difficulty or drudgery from the process of completing a task.
•	 It should be easy to learn and use.
•	 It should be easier to learn and use than the popular method, if one exists.
•	 Once learned, it can be used without constant expert guidance. A user

remains able to remember and/or derive most or all of the rules governing
interactions with the technology through time.

•	 It should be possible to use it without knowing how it works.

Hopefully, as you think about the class of problems Node aims to solve, and the form
of the solution it provides, the above five features are easily seen in the technology
Node represents. Node is fun to learn and use, with a consistent and predictable
interface. Importantly, "under the hood" Node runs enormously powerful tools that
the developer only needs to understand in terms of their API.

Wonderfully, Node, V8, libuv, and the other libraries composing the Node stack
are open sourced, a significant fact that further distinguishes Node from many
competitors. Not only can one contribute directly to the core libraries but one can cut
and paste code blocks and other routines to use in one's own work. You should see
your growth into a better Node developer as a chance to simultaneously become
a better C++ programmer.

This is not a primer on C++, leaving you to pursue this study on your own. Don't be
intimidated! The C-family of languages is designed using forms and idioms not unlike
what you are already used to with JavaScript. For example, if..then constructs, for
loops, functions, and returning values from functions, even semicolon-terminated
lines, are central to JavaScript and regularly used in C++ programming. As a JavaScript
developer you should be able to understand the design and goals of the following
examples with little effort, and can dip into C++ programming to resolve the meaning
of the parts that aren't clear. Extending these examples iteratively is an excellent way
to gently enter the world of C++ programming.

Appendix C

[309]

Hello World
Let's build our first add-on. In keeping with tradition, this add-on will result in
a Node module that will print out Hello World!. Even though this is a very
simple example, it typifies the structure of all further C++ add-ons you will build.
This allows you to incrementally experiment with new commands and structures,
growing your knowledge in easy to understand steps.

C++ files are typically given a .cc extension. To start, we create a hello.cc file:

#include <node.h>
#include <v8.h>

using namespace v8;

Handle<Value> Method(const Arguments& args) {
 HandleScope scope;
 return scope.Close(String::New("Hello World!"));
}

void init(Handle<Object> target) {
 target->Set(String::NewSymbol("hello"),
 FunctionTemplate::New(Method)->GetFunction());
}

NODE_MODULE(hello, init)

This example includes the Node and V8 libraries, building our module using the
same libraries Node modules build on NODE_MODULE is simply a macro that greatly
simplifies the export of an initialization function, which every add-on should
provide. The name of the module itself should be passed as a first argument. The
second argument should point to the initializing function.

You are embedding C++ code into the V8 runtime such that JavaScript can be bound
into the relevant scope. V8 must scope all the new allocations made in your code,
and so you'll need to wrap the code you write, extending V8. To this end you'll see
several instances of the Handle<Value> syntax, wrapping C++ code in the examples
that follow. Comparing these wrappers to what will be defined in the initialization
function pushed out to NODE_MODULE should make it clear how Node is being bound
to C++ methods via the V8 bridge.

To learn more about how V8 embeds C++ code, visit
https://developers.google.com/v8/embed.

Creating your own C++ Add-ons

[310]

Unlike JavaScript, C++ must be compiled prior to executing. This compile step
converts human-readable code into optimized bytecode. To compile C++ code
such that it can be easily used as a Node add-on, we will need to use node-gyp,
the tool necessary for building out our add-ons. To install it, simply run npm
install -g node-gyp.

The benefit of using node-gyp (vs. native compilers like gcc) is that it removes the
pain of dealing with the differences between platforms. You can just write code and
know that the build process will work. To that end, let's compile our hello.cc file.

The first step is to create a binding.gyp file, which will provide the compiler with
necessary build information. A basic file will suffice in our case:

{
 "targets": [
 {
 "target_name": "hello",
 "sources": ["hello.cc"]
 }
]
}

Note the target_name of "hello", corresponding to the target-
>Set(String::NewSymbol("hello") line in our .cc file, and the linking of our
source hello.cc file.

In cases where more than one source file needs to be compiled,
simply add it to the sources array.

Within the same directory, enter node-gyp configure into your terminal. You will
see information about the build process printed to your terminal. Once completed
a new build/ directory will exist, containing various files. Importantly, there will
exist a Makefile. Go ahead and change current directory into build/ and run make.
You will see something like this in your terminal:

 CXX(target) Release/obj.target/hello/hello.o

 SOLINK_MODULE(target) Release/hello.node

 SOLINK_MODULE(target) Release/hello.node: Finished

The build process is now complete. As described in the preceding output,
a Release/ directory has been created containing a compiled hello.node file.
This is the file we will be linking to within our Node code.

Appendix C

[311]

As a shortcut you can use node-gyp configure build to
configure and build in one step.

Once we've built and compiled our add-on, we can begin using it immediately
within our own Node programs. Jump back into the directory containing hello.cc.
Within this directory create the follow Node program:

var addon = require('./build/Release/hello');
console.log(addon.hello());

Run this program, and you will see Hello World! displayed in your terminal.
You are now a C++ programmer!

Creating a calculator
Of course one would never bother to write an add-on to simply echo back strings.
It is more likely that you will want to expose an API or interface to your Node
programs. Let's create a simple calculator, with two methods: add and subtract.
In this example, we will demonstrate how to pass arguments from JavaScript to
methods within an add-on, and to send any results back.

The complete code for this example will be found in your code bundle. The meat
of the program can be seen in this snippet, where we define an interface for our
two methods, each one expect to receive two numbers as arguments:

#include <node.h>
#include <v8.h>

using namespace v8;

Handle<Value> Add(const Arguments& args) {
 HandleScope scope;

 if(args.Length() < 2) {
 ThrowException(Exception::TypeError(String::New("Wrong number
 of arguments")));
 return scope.Close(Undefined());
 }

 if(!args[0]->IsNumber() || !args[1]->IsNumber()) {
 ThrowException(Exception::TypeError(String::New("Wrong
 arguments")));
 return scope.Close(Undefined());
 }

Creating your own C++ Add-ons

[312]

 Local<Number> num = Number::New(args[0]->NumberValue() +
 args[1]->NumberValue());
 return scope.Close(num);
}

Handle<Value> Subtract(const Arguments& args) {
 // Similar method to do subtraction...
}

void Init(Handle<Object> exports) {
 exports->Set(String::NewSymbol("add"),
 FunctionTemplate::New(Add)->GetFunction());
 exports->Set(String::NewSymbol("subtract"),
 FunctionTemplate::New(Subtract)->GetFunction());
}

NODE_MODULE(calculator, Init)

We can quickly see that two methods have been scoped: Add and Subtract
(Subtract is defined nearly identically with Add, with only a change of operator).
Within the Add method we see an Arguments object (reminiscent of JavaScript's
arguments object) that is checked for length (we expect two arguments) and type
(we want numbers). Take a good look at how this method closes out:

Local<Number> num = Number::New(args[0]->NumberValue() + args[1]-
 >NumberValue());
return scope.Close(num);

While there seems to be a lot going on, it is really rather simple: V8 is instructed
to allocate space for a Number variable with name num, to be assigned the value
of adding our two numbers together. When this operation has been completed,
we close out the execution scope and return num. We don't have to worry about
memory management for this reference, as that is automatically handled by V8.

Finally, we see in the following chunk not only how this particular program defines
its interface, but how, at a deep level, Node modules and the exports object are
in fact associated:

void Init(Handle<Object> exports) {
 exports->Set(String::NewSymbol("add"),
 FunctionTemplate::New(Add)->GetFunction());
 exports->Set(String::NewSymbol("subtract"),
 FunctionTemplate::New(Subtract)->GetFunction());
}

Appendix C

[313]

As in our "hello" example, here we see the new symbols (these are just types
of strings) add and subtract, which represent the method names for our
new Node module. Their function is implemented with the easy-to-follow
FunctionTemplate::New(Add)->GetFunction()).

Using our calculator from a Node program is now rather easy:

var calculator = require('./build/Release/calculator');

console.log(calculator.add(2,3));
console.log(calculator.subtract(3,2));

When this is executed you will see the following displayed in your terminal:

5

1

Implementing callbacks
In keeping with the typical pattern of a Node program, add-ons also implement
the notion of callbacks. As one might expect in a Node program, a C++ add-on
performing an expensive and time-consuming operation should comprehend
the notion of asynchronously executing functions.

The following code will expose a method that will pass back the current system
time to any callback it is sent:

#include <node.h>
#include <ctime>

using namespace v8;

Handle<Value> GetTime(const Arguments& args) {
 HandleScope scope;

 Local<Function> cb = Local<Function>::Cast(args[0]);
 const unsigned argc = 1;
 time_t stamp = time(0);
 Local<Value> argv[argc] = {
 Local<Value>::New(Number::New(stamp))
 };
 cb->Call(Context::GetCurrent()->Global(), argc, argv);

 return scope.Close(Undefined());
}

Creating your own C++ Add-ons

[314]

void Init(Handle<Object> exports, Handle<Object> module) {
 module->Set(String::NewSymbol("exports"),
 FunctionTemplate::New(GetTime)->GetFunction());
}

NODE_MODULE(callback, Init)

Here we include the ctime standard library, using its time method when setting
up our GetTime handle. The magic happens within this handle, where your function
argument is properly bound and called.

Once you have created your binding file and compiled everything, go ahead and run
your callback module:

var timeNow = require('./build/Release/callback');

timeNow(function(stamp){
 console.log(stamp);
});
// 1481315296

Beginning with these tools you can start developing some equally simple add-ons,
eventually moving into deeper territory.

Closing thoughts
Being able to easily link C++ modules with your Node program is a powerful new
paradigm. It may be tempting, then, to exuberantly begin writing C++ add-ons for
every identifiable segment of your programs. While this might be a productive way
to learn, it is not necessarily the best idea in the long run. While it is certainly true that
in general, compiled C++ will run more quickly than JavaScript code, remember that
V8 is ultimately using another type of compilation on the JavaScript code it is running.
JavaScript running within V8 runs very efficiently. As well, we don't want to lose the
simplicity of organization and predictable single-threaded runtime of JavaScript when
designing complex interactions within a high-concurrency environment. Remember:
Node came into being partly as an attempt to save the developer from working with
threads and related complexities when performing I/O. As such, try and keep these
two rules in mind:

•	 Is a C++ module actually going to run more quickly?: The answer
isn't always yes. The extra step of jumping into a different execution
context and then back into V8 is wasteful if your add-on is only returning
a static string. Felix Geisendorfer's talk describing his work with
building fast MySQL bindings provides some insight into these decisions:
http://www.youtube.com/watch?v=Kdwwvps4J9A.

Appendix C

[315]

•	 How does splitting up your codebase affect maintainability?: While
it would be hard for any developer to suggest using less-efficient code,
sometimes a negligible performance gain does not overcome an increase
in complexity that can lead to harder-to-find bugs or difficulties with sharing
or otherwise managing your codebase.

Node merged a beautiful JavaScript API with an enormously powerful and easily
extensible application stack. Given the ability to integrate C++ into your applications,
there is no reason to exclude Node from the list of technologies to consider for your
next project.

Links and resources
The Node documentation for add-ons is excellent: http://nodejs.org/api/
addons.html.

A repository containing many examples of add-ons can be found here:
https://github.com/rvagg/node-addon-examples.

An excellent resource for those learning C++: http://www.learncpp.com/.

When you're feeling more confident, the source code for Node's core modules
is an excellent place to both explore and to learn from: https://github.com/
joyent/node/tree/master/src.

Index
Symbols
403: Forbidden errors 238
.cc extension 309

A
abstract interface 58
Add method 312
add-ons

URL, for examples 315
AJAX 14
Amazon Web Services. See AWS
Apache Bench (ab) 215, 216
application scaling

about 214
CPU usage, measuring 216, 217
data creep 218, 219
file descriptors 218
monitoring server tools 220
network latency 215
socket usage 218

ASCII characters
ASCII codes, converting to 66

ASCII codes
converting, to ASCII characters 66

assert module 267-269
asynchronous context 273
AWS

authenticating 237
data, setting with DynamoDB 244
e-mail, sending via SES 249, 250
errors 238
S3, using for storing files 239
using, in application 236

using, with Node server 243

B
bind command

arguments 231
blocking process 27
bouncy module 226
browser testing

performing 279, 280
performing, ZombieJS used 280

buckets
working with 239

bundledDependencies 292
bundling 303

C
C++ 307

URL 315
caching 303
C++ add-ons

calculator, creating 311-313
callbacks, implementing 313, 314
Hello World, building 309-311

calculator
creating 311-313

Calculus
features 308

callbacks
implementing 313, 314

child process communication, event sources
about 32
creating 32, 33

[318]

child processes
communicating with 198
creating 190, 191
forking 195-197
messages, sending 199, 200
output, buffering 197, 198
spawning 192-194

click event 303
CLI (Command-Line Interface) 111
client/server divide

bridging 300, 301
client-server state

issues 299, 300
managing 299, 300

cluster module
used, for parsing file 203, 204

cluster object
disconnect event 205
events 205
exit event 205
fork event 205
listening event 205
online event 205
setup event 205

C++ modules
linking, with Node program 314

communication 303
concurrency 126, 127
connections

authenticating 140
basic authentication 141, 142
handshaking 143, 145

console output
about 259
formatting 261
util.format() method 261
util.inspect() method 262

console.timeEnd method 260
console.time method 260
content types 80
conventions, Node community 45
convert operation 83
cookies

about 78
using 78, 79

C++ programming 308

ctime standard library 314
cwd (String) parameter 192, 195

D
D3.js library 83
data binding 304
datagrams 230
db.stats() command 219
DDB. See DynamoDB
deferred event sources

deferred execution blocks 42
execution blocks 42
I/O 42
timers 42

deferred execution, event sources
about 35
process.nextTick 36

dependencies 292
detached (Boolean) 192
devDependencies 292
digital streams 58
direct exchange 228
directives

list 291
directories

about 103
nested directories, moving through 103,

104, 105
domain.bind method 276
domain module 275, 276
DOM (Document Object Model) 83
duplex streams 65
DynamoDB

about 244
database, searching 247, 248
table, creating 244, 245

E
encapsulation 303
encoding (String) parameter 195
Encryption and Compression modules

Crypto 286
PunyCode 286
ZLIB 286

ENOENT (no entity) error 34

[319]

env (Object) parameter 192, 195
error handling 272
errors 272
ES6 (EcmaScript6) 15
ES6 Harmony 18
event API 10
event context 273
event-driven programming

implementing 25
event loop 41, 42
events

about 10
event listeners, removing 11
listening for 30

events, broadcasting
collaboration 28, 29
queueing 29, 30

event sources
child process communication 32, 33
deferred execution 30
filesystem change events 34
signals 30, 31

exception handling 274, 275
exceptions 274
exchange publisher 228
exchange queue subscriber 228
exchanges, types

direct exchange 228
fanout exchange 228
topic exchange 228

exec method
about 197
callback argument 198
command argument 197
options argument 197

execPath (String) parameter 195

F
Facebook Connect

used, for authenticating 250-253
fail_timeout directive 224
fanout exchange 228
favicon requests

handling 81

file
about 89
byte by byte, reading 106
byte by byte, writing 110
caveats 113
fetching, at once 107
large chunks of data, writing 112
line by line, reading 108
parsing, cluster module used 203, 204
parsing, multiple child processes used 200-

202
readable stream, creating 107
reading from 105
writable stream, creating 113
writing to 110

file changes
listening for 49-52

file events, event sources 34, 35
file paths

path.basename 93
path.dirname 93
path.extname 93
path.join 92
path.normalize 92
path.relative 93
path.resolve 93

filesystem
about 90
directories 91, 103
file attributes 94
file objects 90
file operations 97
file paths 92, 93
files, closing 96
files, opening 95
file types 91
NTFS (New Technology File System) 90
sSynchronicity 102
UFS (Unix File System) 90

file types, filesystem
device files 91
directories 91
links 91
named pipe 91
ordinary files 91
sockets 91

[320]

file uploads
handling 118, 119

fork
about 195
parameters 195

fork method 32
fork processes 32
forward proxy 220
fs.appendFile(path, data, [options], callback)

method 112
fs.chmod(path, mode, callback) method 98
fs.chown(path, uid, gid, callback) method

98
fs.close(fd, callback) method 97
fs.createReadStream(path, [options])

method 108
fs.createWriteStream(path, [options])

method 113
fs.exists(path, callback) method 101
fs.fchmod(fd, mode, callback) method 98
fs.fchown(fd, uid, gid, callback) method 98
fs.fsync(fd, callback) method 101
fs.ftruncate(fd, len, callback) method 97
fs.futimes() method 95
fs.lchmod(path, mode, callback) method 99
fs.lchown(path, uid, gid, callback)

method 98
fs.link(srcPath, dstPath, callback)

method 99
fs.mkdir(path, [mode], callback)

method 101
fs.open() method 97
fs.open(path, flags, [mode], callback)

method 96
fs.read(fd, buffer, offset, length, position,

callback) method 106
fs.readFile(path, [options], callback)

method 107
fs.readlink(path, callback) method 100
fs.realpath(path, [cache], callback)

method 100
fs.rename(oldName, newName, callback)

method 97

fs.rmdir(path, callback) method 101
fs.Stats object 94
fs.symlink(srcPath, dstPath, [type], callback)

method 99
fs.truncate(path, len, callback) method 97
fs.unlink(path, callback) method 101
fs.utimes() method 95
fs.write(fd, buffer, offset, length, position,

callback) method 110
fs.writeFile(path, data, [options], callback)

method 112
functional tests 257, 258

G
GC (Garbage Collection) 17
gid (Number) 192
Grunt

about 282
URL 278
working with 283

H
Harmony

about 15, 18
options 18

hashtag #nodejs 49
headers

working with 77, 78
Hello World

building 309-311
htop

about 185, 217
URL 185

HTTP 67
HTTP Proxy

about 225
using 225, 226

HTTP requests
making 69, 70

HTTPS 72
HTTP server

creating 67, 68

[321]

I
idle process 27
ImageMagick 83
images

streaming, with Node 83
installation, SSL certificate 73
integration tests 258, 259
Inter-Process Communication (IPC) 31
I/O bound 27
I/O events 26

J
JavaScript

extending 9
JavaScript event model

events 10
modularity 12
network 13

jsdom package 83

K
KB (Kilobytes) 16

L
libuv

about 19, 189, 308
URL 190

listenng event 233
logproc folder 200

M
max_fails directive 224
MIME 80
Mocha

about 278
integrating, with ZombieJS 281
URL 278
used, for browser testing 278

modular architecture, Path Framework
achieving 303-306

module
paths, resolving 288

module.children property 287
module.filename property 287
module.loaded property 287
module loading system

key goals 303
module object

about 287
module.children property 287
module.filename properties 287
module.filename property 287
module.loaded property 287
module.parent

property 287
module.parent property 287
module paths

resolving 288, 289
modules

about 286
Encryption and Compression 286
Network and I/O 286

Monit
URL 220

multicast 232
multiple child processes

used, for parsing file 200-202
multiple Node servers

forward proxy 220
HTTP Proxy, using 225
Nginx, as proxy 222
reverse proxy 221
running 220

multiprocess system
constructing 206-211

Multi-purpose Internet Mail Extension. See
MIME

multithreading 189, 190
Munin

URL 220

[322]

N
Nagios

URL 220
Network and I/O modules

DNS 286
FileSystem 286
HTTP 286
HTTPS 286
Net 286
Readline 286
TLS/SSL 286
TTY 286
UDP/Datagram 286

network-path reference 74
Network Time Protocol (NTP) 239
Nginx

about 222
connection failures, managing 224
using, as proxy 222-224
wiki URL 222

Node
about 7, 55
event-driven programming, implementing

25
multithreading 189, 190
single-threaded model 185
URL, for add-ons 315
used, for streaming images 83

node-amqp module 230
Node community

conventions 45
error handling 45-47
guidelines 48
pyramids 47

Node debugger 263-266
Node developer 285
NodeJitsu 225
Node.js environment

overview 8
Node program

executing 21, 23
Node's standard library

modules 286

npm
about 13
dependencies, declaring 292, 293
package file, initializing 290, 291
packages, installing globally 294
packages, publishing 293
repositories, sharing 295
scripts, using 291
using 290

Number variable 312

O
objects

deleting 242
multiple objects, deleting 242
working with 240, 241

optionalDependencies 292
OS (Operating System) 16
output tools

util.debug(String) 260
util.error(String, [String�]) 260
util.log(String) 261
util.print(String, [String�]) 261
util.puts(String, [String�]) 260

P
package file

description 290
entry point (main) 291
initializing 290
keywords 291
license 291
name 290
version 290

parallelism 126
PassThrough streams

using 67
Path Framework

about 297
calls, responding 302, 303
features 298
modular architecture, achieving 303-306

persistent (Boolean) 34

[323]

PhantomJS
URL 278

PNG (Portable Network Graphics) 83
PNG representation

caching 84-86
creating 84-86
sending 84-86

Portable Operating System Interface
(POSIX) signal 30

POST data
handling 82, 83

preferGlobal property 294
process ID (PID) 31
process.nextTick 36
process object 19
proxy 220
proxying 70, 71
publish command 303
push operation 61, 62

Q
Querystring module 76
queueing 29, 30

R
RabbitMQ

about 227
consumer, creating 227
exchange, binding 228
interacting 227
starting 227
types of exchanges 228

Readable stream
about 59
creating 59
implementing 59-61
push operation 61, 62

Read-Eval-Print-Loop. See REPL
Readline module 109
Redis

user data, storing 134
using, for tracking client state 132, 133

ref function 40
REPL 21, 23

request object
about 73
Querystring module 76
URL module 74, 75

requests
routing 127-129
routing, Express used 131, 132

requests redirection, static files
Content-Location 116
location 115
performing 114

resource caching, static files
implementing 116, 117

reverse proxy 221
routes 129
routing keys 228
Rule of Modularity 56
Rule of Separation 189
Rule of Simplicity 184

S
S3

about 239
buckets, working with 239
objects, working with 240, 241
used, for storing files 239

sandboxing
about 270
compiled contexts, using 272
local scope, versus execution context 271

Scout
URL 220

scripts
preinstall, install, postinstall 291
prepublish, publish, postpublish 291
prerestart, restart, postrestart 291
prestart, start, poststart 291
prestop, stop, poststop 291
pretest, test, posttest 291
preuninstall, uninstall, postuninstall 291
preupdate, update, postupdate 291
using 291

self-signed certificate
creating, for development 72

send method 231

[324]

server
securing 72

Server Sent Events (SSE) 49
sessions handling

about 135
client state 136
cookies 135
polling 136-138
state, centralizing 138, 139

setImmediate method 37
setInterval function 39
setMulticastTTL method 233
setTimeout function 38
setTimeout method 36
signal, event sources 30, 31
Signals Intelligence (SIGINT) signal 31
SIGUSR1 signal 31
silent (Boolean) parameter 195
single-threaded model

about 185
benefits 186, 188
difficulties 186, 187

spawn
about 192
arguments 192
command argument 192
options 192

SSL certificate
installing 73

SSL/TLS protocol 72
static files

requests, redirecting 114
resource caching, implementing 116, 117
serving 114

stdio (String or Array) 193
Stream Editor 201
Stream module 57
Stream object 108
streams

exploring 57, 58
transforming 65

StrongOps
URL 220

SVG (Scalable Vector Graphics) 83
synchronous code 103
synchronous context 273
synchronous operation 102

T
TCP (Transmission Control Protocol) server

23
templates 304
testing

benefits 256
tests

functional tests 257
integration tests 258
unit tests 257

threading 123
timers

about 38
ref method 41
setInterval 39
setTimeout 38
unref method 40

TLS/SSL 14
topic exchange 228
Transform stream 66
TTY (TeleTYpewriter) 109
tunneling 70, 71

U
UDP module

about 230
close event 231
error event 231
multicasting UDP, setting up with

Node 233-235
UDP server

creating, with Node 230
uid (Number) 192
uncaughtException handler 274
unit tests 257
unref function 40
URL module 74, 75
User Datagram Protocol. See UDP module
util.format(format, [arg, arg�]) method 261
util.format method 261
util.inspect method 261
util.inspect(object, [options]) method 262

[325]

V
V8

about 15, 308, 309
harmony 18
limits 16
memory 16
process object 20
URL 309

V8 thread 19
validate_phone_number() method 257
VM (Virtual Machine) 15

W
watch method 34
wc command 200
Worker object

disconnect() method 205
events 206

id attribute 205
kill([signal]) method 205
process attribute 205
properties 205
send(message, [sendHandle]) method 205
suicide attribute 205

Writable stream
about 62
creating 62
implementing 63, 64

Writable streams
constructors, instantiating 62

ws
URL 208

Z
ZombieJS

URL 278
used, for browser testing 280

Thank you for buying
Mastering Node.js

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Node Web Development - Second
Edition
ISBN: 978-1-78216-330-5 Paperback: 248 pages

A practical introduction to Node.js, an exciting
server-side JavaScript web development stack

1.	 Learn about server-side JavaScript with Node.js
and Node modules.

2.	 Website development both with and without
the Connect/Express web application
framework.

3.	 Developing both HTTP server and client
applications.

Node Cookbook
ISBN: 978-1-84951-718-8 Paperback: 342 pages

Over 50 recipes to master the art of asynchronous
server-side JavaScript using Node

1.	 Packed with practical recipes taking you from
the basics to extending Node with your own
modules

2.	 Create your own web server to see Node’s
features in action

3.	 Work with JSON, XML, web sockets, and make
the most of asynchronous programming

Please check www.PacktPub.com for information on our titles

Using Node.js for UI Testing
ISBN: 978-1-78216-052-6 Paperback: 146 pages

Learn how to easily automate testing of your web
apps using Node.js, Zombie.js and Mocha

1.	 Use automated tests to keep your web app rock
solid and bug-free while you code

2.	 Use a headless browser to quickly test your
web application every time you make a small
change to it

3.	 Use Mocha to describe and test the capabilities
of your web app

CoffeeScript Programming with
jQuery, Rails, and Node.js
ISBN: 978-1-84951-958-8 Paperback: 140 pages

Learn CoffeeScript programming with the three most
popular web technologies around

1.	 Learn CoffeeScript, a small and elegant
language that compiles to JavaScript and will
make your life as a web developer better

2.	 Explore the syntax of the language and see how
it improves and enhances JavaScript

3.	 Build three example applications in
CoffeeScript step by step

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding the Node Environment
	Extending JavaScript
	Events
	Modularity
	The Network

	V8
	Memory and other limits
	Harmony

	The process object
	The Read-Eval-Print Loop and executing a Node program
	Summary

	Chapter 2: Understanding Asynchronous Event-Driven Programming
	Broadcasting events
	Collaboration
	Queueing

	Listening for events
	Signals
	Forks
	File events
	Deferred execution
	process.nextTick

	Timers
	setTimeout
	setInterval
	unref and ref

	Understanding the event loop
	Four sources of truth

	Callbacks and errors
	Conventions
	Know your errors
	Building pyramids
	Considerations

	Listening for file changes
	Summary

	Chapter 3: Streaming Data Across Nodes and Clients
	Exploring streams
	Implementing readable streams
	Pushing and pulling

	Writable streams
	Duplex streams
	Transforming streams
	Using PassThrough streams

	Creating an HTTP server
	Making HTTP requests
	Proxying and tunneling

	HTTPS, TLS(SSL), and securing your server
	Creating a self-signed certificate for development
	Installing a real SSL certificate

	The request object
	The URL module
	The Querystring module

	Working with headers
	Using cookies
	Understanding content types
	Handling favicon requests

	Handling POST data
	Creating and streaming images with Node
	Creating, caching, and sending a PNG representation

	Summary

	Chapter 4: Using Node to Access the Filesystem
	Directories, and iterating over files
and folders
	Types of files
	File paths
	File attributes
	Opening and closing files
	fs.open(path, flags, [mode], callback)
	fs.close(fd, callback)

	File operations
	fs.rename(oldName, newName, callback)
	fs.truncate(path, len, callback)
	fs.ftruncate(fd, len, callback)
	fs.chown(path, uid, gid, callback)
	fs.fchown(fd, uid, gid, callback)
	fs.lchown(path, uid, gid, callback)
	fs.chmod(path, mode, callback)
	fs.fchmod(fd, mode, callback)
	fs.lchmod(path, mode, callback)
	fs.link(srcPath, dstPath, callback)
	fs.symlink(srcPath, dstPath, [type], callback)
	fs.readlink(path, callback)
	fs.realpath(path, [cache], callback)
	fs.unlink(path, callback)
	fs.rmdir(path, callback)
	fs.mkdir(path, [mode], callback)
	fs.exists(path, callback)
	fs.fsync(fd, callback)

	Synchronicity
	Moving through directories

	Reading from a file
	Reading byte by byte
	fs.read(fd, buffer, offset, length, position, callback)

	Fetching an entire file at once
	fs.readFile(path, [options], callback)

	Creating a readable stream
	fs.createReadStream(path, [options])

	Reading a file line by line
	The Readline module

	Writing to a file
	Writing byte by byte
	fs.write(fd, buffer, offset, length, position, callback)

	Writing large chunks of data
	fs.writeFile(path, data, [options], callback)
	fs.appendFile(path, data, [options], callback)

	Creating a writable stream
	fs.createWriteStream(path, [options])

	Caveats

	Serving static files
	Redirecting requests
	Location

	Implementing resource caching

	Handling file uploads
	Putting it all together

	Summary

	Chapter 5: Managing Many Simultaneous Client Connections
	Understanding concurrency
	Concurrency is not parallelism

	Routing requests
	Understanding routes
	Using Express to route requests

	Using Redis for tracking client state
	Storing user data

	Handling sessions
	Cookies and client state
	A simple poll
	Centralizing states

	Authenticating connections
	Basic authentication
	Handshaking

	Summary
	Further reading

	Chapter 6: Creating Real-time Applications
	Introducing AJAX
	Responding to calls
	Creating a stock ticker

	Bidirectional communication with
Socket.IO
	Using the WebSocket API
	Socket.IO
	Drawing collaboratively

	Listening for Server Sent Events
	Using the EventSource API
	The EventSource stream protocol
	Asking questions and getting answers

	Building a collaborative document editing application
	Summary

	Chapter 7: Utilizing Multiple Processes
	Node's single-threaded model
	The benefits of single-threaded programming
	Multithreading is already native and transparent

	Creating child processes
	Spawning processes
	Forking processes
	Buffering process output

	Communicating with your child
	Sending messages to children

	Parsing a file using multiple processes
	Using the cluster module
	Cluster events
	Worker object properties
	Worker events

	Real-time activity updates of multiple worker results
	Summary

	Chapter 8: Scaling Your Application
	When to scale?
	Network latency
	Hot CPUs
	Socket usage
	Many file descriptors
	Data creep
	Tools for monitoring servers

	Running multiple Node servers
	Forward and reverse proxies
	Nginx as a proxy
	Using HTTP Proxy

	Message queues – RabbitMQ
	Types of exchanges

	Using Node's UDP module
	UDP multicasting with Node

	Using Amazon Web Services in your application
	Authenticating
	Errors
	Using S3 to store files
	Working with buckets
	Working with objects
	Using AWS with a Node server

	Getting and setting data with DynamoDB
	Searching the database

	Sending mail via SES

	Authenticating with Facebook Connect
	Summary

	Chapter 9: Testing your Application
	Why testing is important
	Unit tests
	Functional tests
	Integration tests

	Native Node testing and debugging tools
	Writing to the console
	Formatting console output

	The Node debugger
	The assert module
	Sandboxing
	Distinguishing between local scope and execution context
	Using compiled contexts

	Errors and exceptions
	The domain module

	Headless website testing with ZombieJS and Mocha
	Mocha
	Headless web testing

	Using Grunt, Mocha, and PhantomJS to test and deploy projects
	Working with Grunt

	Summary

	Appendix A: Organizing Your Work
	Loading and using modules
	Understanding the module object
	Resolving module paths

	Using npm
	Initializing a package file
	Using scripts
	Declaring dependencies
	Publishing packages
	Globally installing packages and binaries
	Sharing repositories

	Appendix B: Introducing the Path Framework
	Managing state
	Bridging the client/server divide
	Sending and receiving
	Achieving a modular architecture

	Appendix C: Creating your own
C++ Add-ons
	Hello World
	Creating a calculator
	Implementing callbacks
	Closing thoughts
	Links and resources

	Index

